JP2004296609A - Permanent magnet film - Google Patents

Permanent magnet film Download PDF

Info

Publication number
JP2004296609A
JP2004296609A JP2003084710A JP2003084710A JP2004296609A JP 2004296609 A JP2004296609 A JP 2004296609A JP 2003084710 A JP2003084710 A JP 2003084710A JP 2003084710 A JP2003084710 A JP 2003084710A JP 2004296609 A JP2004296609 A JP 2004296609A
Authority
JP
Japan
Prior art keywords
permanent magnet
powder
film
magnetic
magnet film
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2003084710A
Other languages
Japanese (ja)
Other versions
JP4560619B2 (en
Inventor
Satoshi Sugimoto
諭 杉本
Koichiro Inomata
浩一郎 猪俣
Jun Aketo
純 明渡
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
National Institute of Advanced Industrial Science and Technology AIST
Original Assignee
National Institute of Advanced Industrial Science and Technology AIST
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by National Institute of Advanced Industrial Science and Technology AIST filed Critical National Institute of Advanced Industrial Science and Technology AIST
Priority to JP2003084710A priority Critical patent/JP4560619B2/en
Priority to PCT/JP2004/004229 priority patent/WO2004086430A1/en
Publication of JP2004296609A publication Critical patent/JP2004296609A/en
Application granted granted Critical
Publication of JP4560619B2 publication Critical patent/JP4560619B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01FMAGNETS; INDUCTANCES; TRANSFORMERS; SELECTION OF MATERIALS FOR THEIR MAGNETIC PROPERTIES
    • H01F41/00Apparatus or processes specially adapted for manufacturing or assembling magnets, inductances or transformers; Apparatus or processes specially adapted for manufacturing materials characterised by their magnetic properties
    • H01F41/14Apparatus or processes specially adapted for manufacturing or assembling magnets, inductances or transformers; Apparatus or processes specially adapted for manufacturing materials characterised by their magnetic properties for applying magnetic films to substrates
    • H01F41/16Apparatus or processes specially adapted for manufacturing or assembling magnets, inductances or transformers; Apparatus or processes specially adapted for manufacturing materials characterised by their magnetic properties for applying magnetic films to substrates the magnetic material being applied in the form of particles, e.g. by serigraphy, to form thick magnetic films or precursors therefor
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C24/00Coating starting from inorganic powder
    • C23C24/02Coating starting from inorganic powder by application of pressure only
    • C23C24/04Impact or kinetic deposition of particles
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01FMAGNETS; INDUCTANCES; TRANSFORMERS; SELECTION OF MATERIALS FOR THEIR MAGNETIC PROPERTIES
    • H01F10/00Thin magnetic films, e.g. of one-domain structure
    • H01F10/08Thin magnetic films, e.g. of one-domain structure characterised by magnetic layers
    • H01F10/10Thin magnetic films, e.g. of one-domain structure characterised by magnetic layers characterised by the composition
    • H01F10/18Thin magnetic films, e.g. of one-domain structure characterised by magnetic layers characterised by the composition being compounds
    • H01F10/20Ferrites
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01FMAGNETS; INDUCTANCES; TRANSFORMERS; SELECTION OF MATERIALS FOR THEIR MAGNETIC PROPERTIES
    • H01F1/00Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties
    • H01F1/01Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials
    • H01F1/03Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity
    • H01F1/032Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity of hard-magnetic materials
    • H01F1/04Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity of hard-magnetic materials metals or alloys
    • H01F1/047Alloys characterised by their composition
    • H01F1/053Alloys characterised by their composition containing rare earth metals
    • H01F1/055Alloys characterised by their composition containing rare earth metals and magnetic transition metals, e.g. SmCo5
    • H01F1/059Alloys characterised by their composition containing rare earth metals and magnetic transition metals, e.g. SmCo5 and Va elements, e.g. Sm2Fe17N2
    • H01F1/0596Alloys characterised by their composition containing rare earth metals and magnetic transition metals, e.g. SmCo5 and Va elements, e.g. Sm2Fe17N2 of rhombic or rhombohedral Th2Zn17 structure or hexagonal Th2Ni17 structure
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01FMAGNETS; INDUCTANCES; TRANSFORMERS; SELECTION OF MATERIALS FOR THEIR MAGNETIC PROPERTIES
    • H01F10/00Thin magnetic films, e.g. of one-domain structure
    • H01F10/08Thin magnetic films, e.g. of one-domain structure characterised by magnetic layers
    • H01F10/10Thin magnetic films, e.g. of one-domain structure characterised by magnetic layers characterised by the composition
    • H01F10/12Thin magnetic films, e.g. of one-domain structure characterised by magnetic layers characterised by the composition being metals or alloys
    • H01F10/126Thin magnetic films, e.g. of one-domain structure characterised by magnetic layers characterised by the composition being metals or alloys containing rare earth metals

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Power Engineering (AREA)
  • Materials Engineering (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Mechanical Engineering (AREA)
  • Metallurgy (AREA)
  • Organic Chemistry (AREA)
  • Manufacturing & Machinery (AREA)
  • Hard Magnetic Materials (AREA)
  • Manufacturing Cores, Coils, And Magnets (AREA)
  • Thin Magnetic Films (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a permanent magnet film which can efficiently and inexpensively be obtained and has film thickness desired for thinning in the future and a high magnetic characteristic, and to provide a manufacturing method of the film. <P>SOLUTION: In the manufacturing method of the permanent magnet film, the permanent magnet film is formed by making permanent magnet material powder into aerosol and jetting it to a film object to be formed. Permanent magnetic material powder is composed of a mixture of metal magnetic substance powder or ferrite compound powder or metal magnetic substance powder and ferrite compound powder, a mixture of metal magnetic substance powder and polymeric material powder and a mixture of metal magnetic substance powder, ferrite compound powder and polymeric material powder. <P>COPYRIGHT: (C)2005,JPO&NCIPI

Description

【0001】
【発明の属する技術分野】
本発明は永久磁石能を有する磁性膜およびその製造方法に関する。
【0002】
【従来の技術】
永久磁石は自ら発する磁界のため電子通信機器、自動車などの分野で従来から広く利用されている。
これらの永久磁石材料としては、希土類金属元素(以下、Rと略記する)とホウ素(B)と鉄(Fe)とを主成分とするRFeB系合金やRとコバルト(Co)を主成分とするRCo系合金等の希土類磁石、スピネル型構造やマグネトプランバイト型構造の結晶構造を有するフェライト相から構成されるフェライト磁石、Feとアルミニウム(Al)とニッケル(Ni)とCoを主成分とするFeAlNiCo系合金、銅(Cu)とNiとFeを主成分とするCuNiFe系合金、CuNiCo系合金、Feとクロム(Cr)とCoを主成分とするFeCrCo系合金等の合金磁石がある。
これらの永久磁石の製造方法としては各磁石材料を溶解鋳造する、または微粉末にしてから焼結または樹脂と複合化させるなどの方法が用いられている(例えば特許文献1、2、3参照。)。
しかしながら近年では電子機器、通信機器のモバイル化、ウエアラブル化に伴い、いっそう薄型の永久磁石が要望されている。これまでに焼結磁石の切削による薄型化や樹脂と複合化させることにより厚さ300μm程度のボンド磁石の形成が報告されている。またスパッタ法などを用いることにより1μm以下の薄膜磁石、プラズマレーザーデポジション(PLD)法により100〜500μm程度の厚膜磁石の作製なども報告されている(例えば特許文献4、5参照。)。
【0003】
【特許文献1】
特開2000−273556号公報
【特許文献2】
特開2000−150217号公報
【特許文献3】
特開2003−59706号公報
【特許文献4】
特開平9−50611号公報
【特許文献5】
特開2000−212766号公報
【0004】
【発明が解決しようとする課題】
しかしながら、従来の永久磁石特性の高い磁性膜の形成には、焼結磁石の切削やボンド磁石の作製などが用いられるが、将来薄型化に望まれている200μm以下の厚さを有する磁性膜の作製は難しい。またスパッタ法では現実的に数μm程度の薄い磁性膜を形成することしかできず、PLD法を用いる場合にもその形成には時間とコストがかかるという問題点があった。
このような背景から、高い永久磁石特性を有する磁性膜を、従来の焼結磁石、ボンド磁石よりも薄く、そしてスパッタ、PLD法で形成できる以上の適当な膜厚で高速に形成するための技術が求められている。
【0005】
本発明は、このような点に鑑みてなされたものであり、効率的かつ低コストで得られ、将来薄型化に望まれる膜厚でかつ高い磁気特性を有する永久磁石膜およびその製造方法を提供することを目的とする。
【0006】
【課題を解決するための手段】
本発明による膜形成の原理は以下のとおりである。
例えば、延展性を持たない脆性材料(セラミックス)に機械的衝撃力を付加すると、結晶子同士の界面などの壁開面に沿って結晶格子のずれを生じたり、あるいは破砕される。そして、これらの現象が起こると、ずれ面や破面には、もともとの内部に存在し別の原子と結合していた原子が剥き出しの状態となった新生面が形成される。この新生面の原子一層の部分は、もともと安定した原子結合状態から外力により強制的に不安定な表面状態に晒され、表面エネルギーが高い状態となる。この活性面が隣接した脆性材料表面や同じく隣接した脆性材料の新生面あるいは基板表面と接合して安定状態に移行する外部からの連続した機械的衝撃力の付加は、この現象を継続的に発生させ、微粒子の変形、破砕などの繰り返しにより接合の進展、緻密化が行われ、脆性材料物が形成される。
本発明は、更に、機械的衝撃力を搬送ガスにて材料を基材に衝突させることにより得るようにしたものであり、基材上に材料の多結晶構造物をダイレクトに形成させるものである。具体的には、磁性膜形成の原料に用いられる金属磁性体粉末あるいはフェライト磁性粉末等からなる材料の微粒子をガス中に分散させたエアロゾルを搬送し、高速で基材表面に噴射して衝突させ、微粒子を破砕あるいは変形せしめ、基板との界面にアンカー層を形成して接合させるとともに、破砕あるいは変形した断片微粒子同士を接合させることにより、基材との密着性が良好で強度の大きい膜構造を得ることができる。
【0007】
上記目的を達成するため、本発明永久磁石膜の製造方法は、永久磁石能を有する永久磁石膜の製造方法において、永久磁石材料粉末をエアロゾル化して被成膜物に噴射することにより永久磁石膜を形成することを特徴とする。
また、本発明永久磁石膜の製造方法は、永久磁石材料粉末を、金属磁性体粉末若しくはフェライト化合物粉末、又は金属磁性体粉末及びフェライト化合物粉末の混合体、金属磁性体粉末及び高分子材料粉末の混合体、フェライト化合物粉末及び高分子材料粉末の混合体、金属磁性体粉末、フェライト化合物粉末及び高分子材料粉末の混合体から構成することを特徴とする。
また、本発明永久磁石膜の製造方法は、永久磁石膜の形成を常温下行うことを特徴とするが、被成膜物を加熱しながら常温以上で成膜することにより、また、これら常温下で得られた永久磁石膜を加熱処理することにより、磁石膜の組織を変化せしめ、用途に応じて磁石膜の磁気特性を制御することも可能である。
永久磁石能を有する金属磁性体粉末からなる永久磁石膜において、金属磁性体粉末の結晶粒間に20nm以下、好ましくは10nm以下の非結晶層を含む磁性相を有し、ビッカース硬度が200〜1000Hv、好ましくは300〜800HVであり、保磁力が0.2T以上、好ましくは1.7T以上であることを特徴とする。
また、本発明の永久磁石膜は、永久磁石能を有するフェライト化合物粉末からなる永久磁石膜において、フェライト化合物粉末の結晶粒間に10〜20nm以下の酸化物層を含む磁性相を有し、ビッカース硬度が200〜1000Hv、好ましくは300〜800HVであり、保磁力が0.2T以上、好ましくは1.7T以上であることを特徴とする。
また、本発明の永久磁石膜は、永久磁石能を有する金属磁性体粉末及びフェライト化合物粉末の混合体からなる永久磁石膜において、金属磁性体粉末の結晶粒間に20nm以下、好ましくは10nm以下の非結晶層を含む磁性相とフェライト化合物粉末の結晶粒間に20nm以下、好ましくは10nm以下の酸化物層を含む磁性相との混相を有し、ビッカース硬度が200〜1000Hv、好ましくは300〜800HVであり、保磁力が0.2T以上、好ましくは1.7T以上であることを特徴とする。
また、本発明の永久磁石膜は、永久磁石能を有する金属磁性体粉末及び高分子材料粉末の混合体からなる永久磁石膜において、金属磁性体粉末の結晶粒間に高分子層を含む磁性相を有することを特徴とする。
また、本発明の永久磁石膜は、金属磁性体粉末を1種又は2種以上の金属磁性体粉末から構成することを特徴とする。
また、本発明の永久磁石膜は、フェライト化合物粉末を1種又は2種以上のフェライト化合物粉末から構成することを特徴とする。
また、本発明の永久磁石膜は、永久磁石膜の厚さが2μm〜500μmであることを特徴とする。
また、本発明の永久磁石膜は、永久磁石膜の厚さが2μm〜300μmであることを特徴とする。
また、本発明の永久磁石膜は、永久磁石膜の厚さが2μm〜200μmであることを特徴とする。
また、本発明の永久磁石膜は、厚さ200μm以下のSi基板、金属基板又は樹脂基板上にバインダーレスで形成されたことを特徴とする。
また、本発明の永久磁石膜は、Si基板、金属基板又は樹脂基板上に50MPa以上の密着強度で形成されたことを特徴とする。
【0008】
【発明の実施の形態】
以下、本発明による実施の形態を図面を参照しながら説明する。
図1は磁性膜製造装置の概略模式図である。
本発明の磁性膜の形成には、形成する磁性膜の原料となる微粒子粉末をエアロゾル化して基板などの被成膜物に衝突させ、厚膜を形成するエアロゾル・デポジション法(以下「AD法」という。)を用いる。このAD法では、目的とする磁性膜の組成に等しい組成の原料粉末をエアロゾル化して被成膜物に衝突させることで、所望の組成および膜厚の磁性膜を効率的に製造することができる。
【0009】
このAD法を行うための磁性膜形成装置10は、ミキサ11,チャンバ12,ロータリーポンプおよびメカニカルブースターポンプ13を有している。ミキサ11には、原料粉末14が仕込まれるようになっていて、ミキサ11の振動により、中に仕込まれた原料粉末14が混合されるようになっている。これにより原料粉末14が単一種の粉末である場合にはミキサ内でのその粒度分布の偏りをなくし、原料粉末14が複数種の粉末である場合にはこれらを均一に混合するとともにその粒度分布の偏りを無くすことができる。
【0010】
チャンバ12には、その内部に、ミキサ11に配管を介して接続されているノズル15が配置され、このノズル15の先端からミキサ11内の原料粉末14がガスボンベ17からの気体によりエアロゾル化されて噴射されるようになっている。ノズル15の先端側には、マスク16を介して基板20が配置されるようになっている。原料粉末14が噴射されると、粒子14aがマスク15で被覆されていない基板20表面に衝突して順に積層していくようになっている。
また、ロータリーポンプおよびメカニカルブースターポンプ13は、チャンバ12内の圧力調整に用いられる。ここでは、チャンバ12内の圧力を10−2Torr以下に設定している。
さらに、磁性膜の形成は例えば室温など常温下で行うことができる。
【0011】
上記のように、AD法により永久磁石膜を形成する際には、金属磁性体粉末、フェライト化合物粉末または両粉末の混合粉末等を原料粉末14としてミキサ11内に仕込んで混合し、ノズル15からエアロゾル化して基板20に噴射する。原料粉末の速度が大になると、保持力を向上させるものの、成膜体内に欠陥や歪みの導入を促進し、同時に飽和磁化を低下させ、磁石性能を低下させる。 従って、これら両条件を満たす最適な速度範囲で噴射させることが必要である。
最適な速度は、材料の種類により相違するが、脆性材料の場合は200〜800m/sec、金属微粒子の場合は400〜800m/secの範囲である。
【0012】
このような磁性膜形成装置10では、所望の膜厚の磁性膜を高速で製造することができる。例えば、従来のスパッタ法では、磁性膜の膜厚が通常1μm程度であるのに対し、本AD法によれば2μmから500μm程度の範囲の膜厚で磁性膜を形成することができる。形成する膜厚としては、好ましくは2μmから300μm、更に好ましくは2μmから200μmである。
さらにAD法による磁性膜の成膜速度は、10μm /min程度と速く、工業的にも優れた方法といえる。
【0013】
図2はAD法で得られる磁性膜の模式図である。
ADを行うと図2に示すように基板であるところの被成膜物20に衝突した微粒子がその表面に積層された磁性膜30が形成される。磁性膜30は、金属磁性体粉末を原料とした場合は微粒子の結晶粒間に20nm以下の非結晶層を有する構成となっており、又フェライト化合物粉末を原料とした場合は微粒子の結晶粒間に20nm以下の酸化物層(FeOx,SmOxなど)を含む磁性相を有する構成となっている。また、AD法で形成された磁性膜は、焼結法や溶射法などの従来法で形成した場合よりビッカース硬度は高くなる。製造時の条件、例えば噴射速度等にもよるが、200Hv〜1000Hv、好ましくは300Hv〜800Hvの硬度を有する。
このように形成された磁性膜は形成前に仕込む粉末の組成にほぼ一致するようになる。これに対し、従来のスパッタ法では、形成する磁性膜の組成は用いるターゲットの面積で配合比を決定し、熱処理によって最適組織を発現させる必要があり、この点で、磁性膜30の形成にAD法を用いると形成できる磁性膜の組成自由度を格段に向上させることができる。
【0014】
AD法による磁性膜形成の原料に用いられる金属磁性体粉末は、Fe、Co、Ni、Mnの単体金属の他、FeAlNiCo系、CuNiFe系、CuNiCo系、FeCrCo系、FePt系、CoPt系、RFeB系、RCo系、RFeN系、Mn Al系、MnAlC系合金なども用いることができる。さらにこれらの金属磁性体相とFeB相、Fe相などとのナノコンポジット粉末も利用できる。
一方、フェライト磁性粉末としてはCoO・Feなどのスピネルフェライト化合物、BaFe1219、SrFe1219などのM型フェライト化合物、BaFe1827、SrFe1827などのW型フェライト化合物を用いることが可能である。
金属磁性体粉末及びフェライト化合物粉末の粒径は、およそ数十nm〜数μmである。
【0015】
さらに上記金属磁性体粉末とフェライト磁性粉末の混合粉末を用いることも可能である。
例えば、数十nmからサブμmサイズのフェライト磁性粉末等の酸化物粉末と数μmサイズの希土類磁石化合物粉末等の金属石化化合物粉末を混合するといったサイズの異なる酸化物粉末と金属磁石化合物粉末とを混合した粉末、又は金属磁石化合物粉末に酸化物粉末を担持した粉末を用いてAD法により膜形成をする場合には、図14で示すような大きな金属磁石化合物粉末の粒子を核としその周りに小さな酸化物粉末が配置された結晶粒から構成される厚膜が得られる。
【0016】
さらに上記金属磁性体粉末と高分子材料粉末またはフェライト磁性粉末と高分子材料粉末または金属磁性体粉末とフェライト磁性粉末と高分子材料粉末の混合粉末を用いることも可能である。
高分子材料粉末としては、アクリル系、ナイロン系、エポキシ系、ポリアミド系、ポリイミド系などの樹脂が用いられる。
【0017】
このAD法を用いて得られる磁性膜は、被成膜物に非常に強固に付着し、ガラス基板やSiO基板の他、Fe、Cu、Mg合金などの金属、Alなどのセラミックス、ポリカーボネート、ABS樹脂などの高分子材料などにも形成することができる。薄膜磁石、厚膜磁石を用いたマイクロモーター、マイクロアクチュエータなどを構成する場合、この様な薄い基板上への磁石膜の形成が要求されるが、従来、厚さが5μm〜200μmの上記基板上に薄い磁石膜を接着材で貼り付ける場合、接着層の塗布作業、磁石膜の貼り付け作業が非常に困難で生産性に大きな課題があった。本発明によれば、磁石材料微粒子の吹きつけにより容易に、厚さ200μm以下の薄い基板材料の特定部位表面だけに磁石膜を形成することができる。
以上、説明したように磁性膜形成にAD法を用いることにより、成膜速度を速め永久磁石能を有する磁性膜を効率的に形成することができる。このAD膜で形成される磁性膜の組成は原料粉末の組成で決まり、安定した組成の磁性膜を容易に形成でき高い磁気特性を有する磁性膜を形成できる。
また、AD法による磁性膜形成は低温プロセスであるため、膜形成される被成膜物への影響が少ない。また従来のスパッタのように高額のターゲットを必要としないため低コストで磁性膜の形成が可能である。
AD法で得られた磁性膜は被成膜物との密着強度は、2μm以上の膜厚でも50MPa以上と非常に強いため、アクチュエータなどに応用した際に耐久性や安定性が向上できる。さらに従来のスパッタ法で形成困難であった膜厚1μm以上、従来のボンド磁石で困難であった300μm以下の磁性膜を形成することが可能である。従って種々の材質の基板や部品などに、それらの用途あるいはスペースに合わせて任意に磁性膜を形成することができる。
【0018】
以下、AD法を用いて形成した磁性膜の特性を評価した結果について説明する。
まず、AD法に用いたSmFeN 粉末(平均粉末粒径3μm)の磁気特性を振動磁気磁力計(VSM)で調べた。
図3にその減磁曲線を示したが、この図において縦軸は磁気分極J(T)、横軸は磁界μH(T)を表している。これよりホストのSmFeN 粉末は0.7T程度の残留磁化Br と1.2T 程度の保磁力μ を有していることがわかる。
【0019】
次にこの粉末を用いてAD法を行い、厚膜を作製した。図4にAD法を用いて作製したSmFeN 膜の外観写真を示す。なおAD法におけるガス流量は2l/minから10l/minで変化させ成膜時間は4分間で一定とした。ガス流量2l/minの条件で作製した場合には、良好な膜は形成しなかったが4l/min以上のガス流量では写真に示すような良好な膜を形成することができた。
【0020】
図5はガス流量4〜10l/min、成膜時間4分間の条件でAD法にて作製したSmFeN 厚膜のX 線回折パターンを示す。縦軸がX 線強度、横軸が2θを表す。ほぼ全てのX線回折ピークはTbFe17 型構造で指数づけすることが可能であり、得られた厚膜はSmFe17Nx系化合物より構成されていると考えられる。 これよりAD法前後において出現相の変化はないと推察され、これは成膜の前後において結晶構造が変化しない本AD法の特徴であり、他のスパッタ法などの方法と異なる方法である。
【0021】
図6にAD法を用いて作製したSmFeN膜の膜厚のAD法におけるガス流量依存性を示した。図6の横軸は、AD法におけるガス流量(l/min)、縦軸は膜厚(μ m)をそれぞれ表している。なお成膜時間は4分間で一定とした。これより8l/m inの流速で約4分間の噴射により45μm以上の膜厚が得られており、これより算出される成膜速度は10μm/min以上であることから、AD法により高速で成膜がなされていることがわかる。
【0022】
図7にSmFeN 膜の膜厚のAD 法における成膜時間依存性を示した。図7の横軸はAD法における成膜時間(min)、縦軸は膜厚(μm)をそれぞれ表している。これより成膜時間が長くなるほど膜厚が厚くなり、さらに8l/m inの方が4l/m inの膜厚よりも厚いことからその成膜速度はガス流量が多い条件ほど高いことが判明した。また、この膜厚の厚膜は、焼結磁石を切削加工して作製することは難しく、また4分間という短時間で厚膜が形成できる本法の優位性が伺える。
【0023】
図8および図9にガス流量6l/m in成膜時間4分間の条件でAD法にて得られたSmFeN 膜の光学顕微鏡組織および走査電子顕微鏡組織を示す。これより得られた厚膜は数十nmから数μmの粒子が結合して形成されているのがわかる。焼結法では高温の焼結により結晶粒成長が生じ、5μm以上に結晶粒が成長してしまうことを考えると、本法は微細結晶から構成される厚膜の作製が可能な方法であるといえる。
【0024】
図10に得られた成膜時間4分間の条件でAD法にて作製したSmFeN 厚膜のマイクロビッカース硬度に及ぼすAD法におけるガス流量の影響を示した。縦軸はビッカース硬度HV、横軸にはガス流量gfr(l/min)を示している。ガス流量によってHV はさほど変化せず、600〜800の高い硬度を示している。
【0025】
図11は磁気測定結果を示す図である。図11では、横軸が磁界強度μH(T)、縦軸は磁気分極J(T)をそれぞれ表している。AD法を用いて形成した膜厚18μmのSmFeN膜について磁気特性を行った。得られた保磁力μcJは1.7Tであり、形成したSmFeN膜は、図3に示した原料粉末の保磁力よりも高い保磁力を示している。
【0026】
図12は磁気特性のガス流量依存性を示している。横軸はAD法におけるガス流量(l/min)、縦軸は飽和磁気分極Js(T)、残留磁束密度Br(T)、保磁力μcJ(T)をそれぞれ表している。これより全てのガス流量において1.8T程度の保磁力が得られていることがわかる。
【0027】
図13にガス流量4l/m in、8l/m inで成膜したSmFeN 厚膜の磁気特の成膜時間依存性を示した。これよりほぼ全ての時間において1.8T程度の保磁力が得られていることがわかる。図12、図13から判断して本AD法で作成したSmFeN 厚膜は、ホストの磁性粉末よりも高い保磁力を示しているといえ、これは図8、9に示したように形成された厚膜が微細粒子から構成されていることに関係していると推察される。
また、この時、実験に用いたノズル(開口:0.4×5mm)から噴射されるSmFeN 原料粒子の飛行速度は、ガス流量の増加に対応し増加するが、文献(JVST A)に記載の飛行時間差法で測定すると、上記ガス流量:4l/m inで200m/secである。 従って、良好な成膜体を得るには、SmFeN 原料粒子の飛行速度(噴射速度)は、少なくとも200m/sec以上が必要であることが明らかになった。
また、磁性粉末としてSmFeNなどの希土類磁石粉末ではなく、フェライト磁石粉末の原料であるM型フェライト粉末(平均粉末粒径1.3μm)を用い、上記と同様、4l/m inから10l/m inのガス流量、成膜時間4分間にて厚膜を作製したところ、図15のような0.14〜0.25Tの保磁力が得られた。これより本AD法では、希土類磁石粉末以外にもフェライト磁石粉末で保磁力を発生する厚膜磁石を作製できることがわかる。したがって本法は、さまざまな磁石材料においても高保磁力厚膜磁石を作製できる方法であるといえる。
また、以上の結果を総合すると本AD法は、従来のボンド磁石よりも薄型の磁石を高速で作成することができる方法であるといえる。
【0028】
【発明の効果】
以上説明したように本発明は、以下の効果を奏する。
(1)永久磁石膜形成にAD法を用いることにより従来のスパッタ法で困難であった膜厚1μm以上、また従来のボンド磁石で困難であった300μm以下の磁性膜を効率的かつ低コストで形成することができる。特に将来薄型化に望まれている2μm以上で200μm以下の範囲の膜厚の磁性膜を形成することができる。
(2)AD法による磁性膜形成は低温プロセスであるため、膜形成される被成膜物への影響が少ない。また、低温での成形のため得られる膜の結晶粒サイズは数μmから数百nm、あるいは100nm以下のサイズとなり、磁性粒子間で交換結合が大きく作用して高い磁気特性を発現する磁性膜を得ることができる。
(3)AD法により形成された磁性膜は形成前に仕込む粉末の組成にほぼ一致するようになるため、従来のスパッタ法に比較して磁性膜の組成自由度を格段に向上させることができるとともに、安定した組成の磁性膜を容易に形成できる。
(4)AD法で得られた磁性膜は被成膜物との密着強度が大きい。
(5)従来のスパッタのように光学のターゲットを必要としないため低コストで磁性膜の形成が可能である。
(6)磁性粒子を高飽和磁化を示すFe、Co、FeCoなどのソフト磁性相とハード磁性相を混合することによって、両相がナノメータオーダーで析出したナノコンポジット磁石厚膜の製造も可能である。
【図面の簡単な説明】
【図1】本発明の実施の形態に係る磁性膜製造装置の概略模式図である。
【図2】本発明の実施の形態に係るAD法で得られる磁性膜の模式図である。
【図3】本発明の実施の形態に係るAD法に用いたSmFeN 粉末(平均粉末粒径3μm)の磁気特性の減磁曲線を示した図である。
【図4】本発明の実施の形態に係るAD法を用いて作製したSmFeN 膜の外観写真を示した図である。
【図5】ガス流量4〜10l/min、成膜時間4分間の条件で本発明の実施の形態に係るAD法にて作製したSmFeN 厚膜のX 線回折パターンを示した図である。
【図6】本発明の実施の形態に係るAD法を用いて作製したSmFeN膜の膜厚のAD法におけるガス流量依存性を示した図である。
【図7】SmFeN 膜の膜厚の本発明の実施の形態に係るAD法における成膜時間依存性を示した図である。
【図8】ガス流量6l/m in成膜時間4分間の条件で本発明の実施の形態に係るAD法にて得られたSmFeN 膜の光学顕微鏡組織を示した図である。
【図9】ガス流量6l/m in成膜時間4分間の条件で本発明の実施の形態に係るAD法にて得られたSmFeN 膜の走査電子顕微鏡組織を示した図である。
【図10】成膜時間4分間の条件で本発明の実施の形態に係るAD法にて作製したSmFeN 厚膜のマイクロビッカース硬度に及ぼすAD法におけるガス流量の影響を示した図である。
【図11】磁気測定結果を示す図である。
【図12】磁気特性のガス流量依存性を示した図である。
【図13】ガス流量4l/m in、8l/m inで成膜したSmFeN 厚膜の磁気特の成膜時間依存性を示した図である。
【図14】大きな金属磁石化合物粉末の粒子を核としその周りに小さな酸化物粉末が配置された結晶粒から構成される厚膜が得られる状況を示した図である。
【図15】M型フェライト粉末を用いたAD厚膜における保磁力のガス流量依存性を示した図である。
【符号の説明】
10 磁性膜形成装置
11 ミキサ
12 チャンバ
13 ロータリーポンプおよびメカニカルブースターポンプ
14 原料粉末
14a 粒子
15 ノズル
16 マスク
17 ガスボンベ
20 基板(被成膜物)
30 磁性膜
[0001]
TECHNICAL FIELD OF THE INVENTION
The present invention relates to a magnetic film having permanent magnet capability and a method for manufacturing the same.
[0002]
[Prior art]
Permanent magnets have been widely used in fields such as electronic communication devices and automobiles because of their own magnetic field.
As these permanent magnet materials, RFeB-based alloys mainly containing a rare earth metal element (hereinafter abbreviated as R), boron (B) and iron (Fe), or R and cobalt (Co) as main components Rare-earth magnets such as RCo-based alloys, ferrite magnets composed of a ferrite phase having a spinel type structure or a magnetoplumbite type crystal structure, FeAlNiCo containing Fe, aluminum (Al), nickel (Ni) and Co as main components There are alloy magnets such as a base alloy, a CuNiFe-based alloy containing copper (Cu), Ni, and Fe as main components, a CuNiCo-based alloy, and a FeCrCo-based alloy containing Fe, chromium (Cr), and Co as main components.
As a method for manufacturing these permanent magnets, a method of melting and casting each magnet material, or forming a fine powder and then sintering or compounding with a resin is used (for example, see Patent Documents 1, 2, and 3). ).
However, in recent years, as electronic devices and communication devices have become mobile and wearable, there is a demand for thinner permanent magnets. So far, it has been reported that a bonded magnet having a thickness of about 300 μm is formed by cutting a sintered magnet by thinning or combining it with a resin. It has also been reported that a thin film magnet having a thickness of 1 μm or less is produced by using a sputtering method or the like, and a thick film magnet having a thickness of about 100 to 500 μm is produced by using a plasma laser deposition (PLD) method (for example, see Patent Documents 4 and 5).
[0003]
[Patent Document 1]
Japanese Patent Application Laid-Open No. 2000-273556 [Patent Document 2]
Japanese Patent Application Laid-Open No. 2000-150217 [Patent Document 3]
JP 2003-59706 A [Patent Document 4]
Japanese Patent Application Laid-Open No. 9-50611 [Patent Document 5]
JP 2000-21766 A
[Problems to be solved by the invention]
However, cutting of a sintered magnet or production of a bonded magnet is used for forming a conventional magnetic film having high permanent magnet characteristics. However, a magnetic film having a thickness of 200 μm or less, which is expected to be made thinner in the future, is used. Fabrication is difficult. Further, the sputtering method can actually only form a thin magnetic film of about several μm, and there is a problem that even when the PLD method is used, it takes time and cost to form the film.
Against this background, a technology for forming a magnetic film having high permanent magnet properties at a high speed with a thickness smaller than that of conventional sintered magnets and bonded magnets and with an appropriate film thickness that can be formed by sputtering or PLD. Is required.
[0005]
The present invention has been made in view of the above points, and provides a permanent magnet film having a film thickness and high magnetic properties which can be obtained efficiently and at low cost, and which is desired for thinning in the future, and a method of manufacturing the same. The purpose is to do.
[0006]
[Means for Solving the Problems]
The principle of film formation according to the present invention is as follows.
For example, when a mechanical impact force is applied to a brittle material (ceramic) having no extensibility, a crystal lattice shift occurs along an open wall such as an interface between crystallites, or the material is crushed. When these phenomena occur, a new surface is formed on the displaced surface or the fractured surface in which atoms originally existing inside and bonded to another atom are exposed. The layer of one layer of atoms of the new surface is forcibly exposed to an unstable surface state by an external force from the originally stable atomic bond state, and the surface energy becomes high. The application of a continuous mechanical impact from the outside where the active surface joins the adjacent brittle material surface or the newly formed surface of the adjacent brittle material or the substrate surface and enters a stable state continuously causes this phenomenon. By repeating deformation, crushing and the like of fine particles, the progress of bonding and densification are performed, and a brittle material is formed.
The present invention further provides a mechanical impact force obtained by colliding a material with a substrate using a carrier gas, and directly forms a polycrystalline structure of the material on the substrate. . Specifically, an aerosol in which fine particles of a material such as a magnetic metal powder or a ferrite magnetic powder used as a raw material for forming a magnetic film are dispersed in a gas is conveyed, and is jetted and collided with the base material surface at a high speed. By crushing or deforming the fine particles, forming an anchor layer at the interface with the substrate and joining them, and joining the crushed or deformed fragment fine particles together, the film structure with good adhesion to the substrate and high strength Can be obtained.
[0007]
In order to achieve the above object, a method for producing a permanent magnet film according to the present invention is directed to a method for producing a permanent magnet film having permanent magnet capability. Is formed.
Further, the method for producing a permanent magnet film of the present invention comprises the steps of: forming a permanent magnet material powder, a metal magnetic material powder or a ferrite compound powder, or a mixture of a metal magnetic material powder and a ferrite compound powder, a metal magnetic material powder and a polymer material powder. It is characterized by comprising a mixture, a mixture of a ferrite compound powder and a polymer material powder, a metal magnetic powder, a mixture of a ferrite compound powder and a polymer material powder.
The method for producing a permanent magnet film according to the present invention is characterized in that the permanent magnet film is formed at room temperature. By subjecting the permanent magnet film obtained in the above to heat treatment, the structure of the magnet film can be changed, and the magnetic properties of the magnet film can be controlled according to the application.
A permanent magnet film made of metal magnetic powder having permanent magnet capability has a magnetic phase including an amorphous layer of 20 nm or less, preferably 10 nm or less between crystal grains of the metal magnetic powder, and has a Vickers hardness of 200 to 1000 Hv. , Preferably 300 to 800 HV, and a coercive force of 0.2 T or more, preferably 1.7 T or more.
Further, the permanent magnet film of the present invention is a permanent magnet film made of a ferrite compound powder having a permanent magnet function, and has a magnetic phase including an oxide layer of 10 to 20 nm or less between crystal grains of the ferrite compound powder, The hardness is 200 to 1000 Hv, preferably 300 to 800 HV, and the coercive force is 0.2 T or more, preferably 1.7 T or more.
Further, the permanent magnet film of the present invention, in a permanent magnet film comprising a mixture of a metal magnetic material powder having a permanent magnet function and a ferrite compound powder, 20 nm or less, preferably 10 nm or less between crystal grains of the metal magnetic material powder. It has a mixed phase of a magnetic phase containing an amorphous layer and a magnetic phase containing an oxide layer of 20 nm or less, preferably 10 nm or less between crystal grains of a ferrite compound powder, and has a Vickers hardness of 200 to 1000 Hv, preferably 300 to 800 HV. And the coercive force is 0.2 T or more, preferably 1.7 T or more.
Further, the permanent magnet film of the present invention is a permanent magnet film comprising a mixture of a metal magnetic powder having a permanent magnet function and a polymer material powder, wherein the magnetic phase including a polymer layer between crystal grains of the metal magnetic powder. It is characterized by having.
Further, the permanent magnet film of the present invention is characterized in that the metal magnetic powder is composed of one or more kinds of metal magnetic powder.
Further, the permanent magnet film of the present invention is characterized in that the ferrite compound powder is composed of one or more ferrite compound powders.
Further, the permanent magnet film of the present invention is characterized in that the thickness of the permanent magnet film is 2 μm to 500 μm.
Further, the permanent magnet film of the present invention is characterized in that the thickness of the permanent magnet film is 2 μm to 300 μm.
Further, the permanent magnet film of the present invention is characterized in that the thickness of the permanent magnet film is 2 μm to 200 μm.
Further, the permanent magnet film of the present invention is characterized in that it is formed on a Si substrate, a metal substrate or a resin substrate having a thickness of 200 μm or less without a binder.
Further, the permanent magnet film of the present invention is formed on a Si substrate, a metal substrate or a resin substrate with an adhesion strength of 50 MPa or more.
[0008]
BEST MODE FOR CARRYING OUT THE INVENTION
Hereinafter, embodiments of the present invention will be described with reference to the drawings.
FIG. 1 is a schematic diagram of a magnetic film manufacturing apparatus.
In the formation of the magnetic film of the present invention, aerosol deposition method (hereinafter referred to as “AD method”) for forming a thick film by forming fine powder as a raw material of a magnetic film to be formed into an aerosol and colliding with an object to be formed such as a substrate. "). In the AD method, a raw material powder having a composition equal to the composition of a target magnetic film is aerosolized and collides with an object to be formed, whereby a magnetic film having a desired composition and thickness can be efficiently manufactured. .
[0009]
The magnetic film forming apparatus 10 for performing the AD method has a mixer 11, a chamber 12, a rotary pump, and a mechanical booster pump 13. The raw material powder 14 is charged into the mixer 11, and the raw material powder 14 charged therein is mixed by the vibration of the mixer 11. Thus, when the raw material powder 14 is a single type of powder, the deviation of the particle size distribution in the mixer is eliminated, and when the raw material powder 14 is a plurality of types of powder, these are uniformly mixed and the particle size distribution thereof is reduced. Can be eliminated.
[0010]
A nozzle 15 connected to the mixer 11 via a pipe is disposed in the chamber 12, and the raw material powder 14 in the mixer 11 is aerosolized by the gas from the gas cylinder 17 from the tip of the nozzle 15. It is to be injected. A substrate 20 is arranged on the tip side of the nozzle 15 via a mask 16. When the raw material powder 14 is sprayed, the particles 14 a collide with the surface of the substrate 20 not covered with the mask 15 and are sequentially laminated.
Further, the rotary pump and the mechanical booster pump 13 are used for adjusting the pressure in the chamber 12. Here, the pressure in the chamber 12 is set to 10 −2 Torr or less.
Further, the formation of the magnetic film can be performed at normal temperature such as room temperature.
[0011]
As described above, when a permanent magnet film is formed by the AD method, a metal magnetic material powder, a ferrite compound powder or a mixed powder of both powders is charged as a raw material powder 14 into the mixer 11 and mixed. Aerosol is formed and sprayed on the substrate 20. When the speed of the raw material powder is increased, although the coercive force is improved, the introduction of defects and distortion into the film is promoted, and at the same time, the saturation magnetization is reduced and the magnet performance is reduced. Therefore, it is necessary to perform injection in an optimum speed range that satisfies both of these conditions.
The optimum speed varies depending on the type of material, but is in the range of 200 to 800 m / sec for brittle materials and 400 to 800 m / sec for fine metal particles.
[0012]
In such a magnetic film forming apparatus 10, a magnetic film having a desired film thickness can be manufactured at a high speed. For example, in the conventional sputtering method, the thickness of the magnetic film is usually about 1 μm, but according to the AD method, the magnetic film can be formed in a thickness in the range of about 2 μm to about 500 μm. The film thickness to be formed is preferably 2 μm to 300 μm, and more preferably 2 μm to 200 μm.
Further, the deposition rate of the magnetic film by the AD method is as fast as about 10 μm / min, which can be said to be an industrially superior method.
[0013]
FIG. 2 is a schematic diagram of a magnetic film obtained by the AD method.
When the AD is performed, as shown in FIG. 2, a magnetic film 30 is formed in which fine particles colliding with the film-forming object 20 which is a substrate are laminated on the surface thereof. The magnetic film 30 has an amorphous layer of 20 nm or less between the crystal grains of the fine particles when the metal magnetic material powder is used as a raw material, and the crystal layer between the fine particles when the ferrite compound powder is used as the raw material. Has a magnetic phase including an oxide layer (FeOx, SmOx, etc.) of 20 nm or less. In addition, the magnetic film formed by the AD method has a higher Vickers hardness than that formed by a conventional method such as a sintering method or a thermal spraying method. It has a hardness of 200 Hv to 1000 Hv, preferably 300 Hv to 800 Hv, depending on the conditions at the time of production, for example, the injection speed and the like.
The magnetic film thus formed almost matches the composition of the powder charged before the formation. On the other hand, in the conventional sputtering method, it is necessary to determine the composition of the magnetic film to be formed by determining the compounding ratio based on the area of the target to be used, and to develop an optimum structure by heat treatment. When the method is used, the degree of freedom of composition of the magnetic film that can be formed can be remarkably improved.
[0014]
The metal magnetic powder used as a raw material for forming a magnetic film by the AD method is a simple metal such as Fe, Co, Ni and Mn, as well as FeAlNiCo, CuNiFe, CuNiCo, FeCrCo, FePt, CoPt, and RFeB. , RCo, RFeN, MnAl, and MnAlC alloys can also be used. Further, nanocomposite powders of these metallic magnetic phases and Fe 3 B phase, Fe phase and the like can also be used.
On the other hand, ferrite magnetic powders include spinel ferrite compounds such as CoO.Fe 2 O 3 , M-type ferrite compounds such as BaFe 12 O 19 and SrFe 12 O 19, and W-type ferrite compounds such as BaFe 18 O 27 and SrFe 18 O 27 Can be used.
The particle diameter of the metal magnetic material powder and the ferrite compound powder is about several tens nm to several μm.
[0015]
It is also possible to use a mixed powder of the above-mentioned metal magnetic powder and ferrite magnetic powder.
For example, an oxide powder and a metal magnet compound powder having different sizes such as a mixture of an oxide powder such as a ferrite magnetic powder having a size of several tens nm to a sub-μm size and a metal fossil compound powder such as a rare earth magnet compound powder having a size of several μm are mixed. When a film is formed by the AD method using a mixed powder or a powder in which an oxide powder is supported on a metal magnet compound powder, particles of a large metal magnet compound powder as shown in FIG. A thick film composed of crystal grains on which small oxide powder is arranged is obtained.
[0016]
Further, it is also possible to use the above-mentioned metal magnetic powder and polymer material powder, or ferrite magnetic powder and polymer material powder, or a mixed powder of metal magnetic material powder, ferrite magnetic powder and polymer material powder.
As the polymer material powder, a resin such as an acrylic resin, a nylon resin, an epoxy resin, a polyamide resin, or a polyimide resin is used.
[0017]
The magnetic film obtained by using the AD method adheres very firmly to a film-forming object, and in addition to a glass substrate or a SiO 2 substrate, a metal such as Fe, Cu, or Mg alloy, or a ceramic such as Al 2 O 3. , Polycarbonate, and a polymer material such as an ABS resin. In the case of forming a micromotor, a microactuator and the like using a thin film magnet and a thick film magnet, it is required to form a magnet film on such a thin substrate. When a thin magnet film is adhered to an adhesive with an adhesive, the application of the adhesive layer and the attachment of the magnet film are extremely difficult, and there is a major problem in productivity. According to the present invention, it is possible to easily form a magnet film only on the surface of a specific portion of a thin substrate material having a thickness of 200 μm or less by spraying magnet material fine particles.
As described above, by using the AD method for forming a magnetic film, it is possible to increase the film forming speed and efficiently form a magnetic film having permanent magnet capability. The composition of the magnetic film formed by the AD film is determined by the composition of the raw material powder, and a magnetic film having a stable composition can be easily formed, and a magnetic film having high magnetic properties can be formed.
In addition, since the formation of the magnetic film by the AD method is a low-temperature process, there is little influence on the object on which the film is formed. Also, since a high-cost target is not required unlike the conventional sputtering, a magnetic film can be formed at low cost.
The magnetic film obtained by the AD method has a very strong adhesion strength to a film-forming object of 50 MPa or more even with a film thickness of 2 μm or more, so that durability and stability can be improved when applied to an actuator or the like. Further, it is possible to form a magnetic film having a thickness of 1 μm or more, which was difficult to form by the conventional sputtering method, and 300 μm or less, which was difficult with the conventional bonded magnet. Therefore, a magnetic film can be arbitrarily formed on substrates and components of various materials in accordance with their use or space.
[0018]
Hereinafter, the result of evaluating the characteristics of the magnetic film formed by using the AD method will be described.
First, the magnetic characteristics of the SmFeN powder (average powder particle size: 3 μm) used in the AD method were examined with a vibrating magnetometer (VSM).
FIG. 3 shows the demagnetization curve. In this figure, the vertical axis represents the magnetic polarization J (T), and the horizontal axis represents the magnetic field μ 0 H (T). From this SmFeN powder hosts seen to have a coercive force μ 0 H c J remanent magnetization Br and about 1.2T about 0.7 T.
[0019]
Next, an AD method was performed using this powder to produce a thick film. FIG. 4 shows a photograph of the appearance of the SmFeN film formed by the AD method. The gas flow rate in the AD method was changed from 2 l / min to 10 l / min, and the film formation time was constant at 4 minutes. When the film was manufactured under the condition of a gas flow rate of 2 l / min, a good film was not formed, but at a gas flow rate of 4 l / min or more, a good film as shown in the photograph could be formed.
[0020]
FIG. 5 shows an X-ray diffraction pattern of a thick SmFeN film produced by the AD method under the conditions of a gas flow rate of 4 to 10 l / min and a film formation time of 4 minutes. The vertical axis represents X-ray intensity and the horizontal axis represents 2θ. Almost all of the X-ray diffraction peaks can be indexed by a Tb 2 Fe 17 type structure, and the obtained thick film is considered to be composed of a Sm 2 Fe 17 Nx-based compound. This suggests that the appearance phase does not change before and after the AD method, which is a feature of the AD method in which the crystal structure does not change before and after the film formation, and is a method different from other methods such as the sputtering method.
[0021]
FIG. 6 shows the gas flow rate dependence of the film thickness of the SmFeN film manufactured by the AD method in the AD method. The horizontal axis in FIG. 6 represents the gas flow rate (l / min) in the AD method, and the vertical axis represents the film thickness (μm). The film formation time was constant for 4 minutes. From this, a film thickness of 45 μm or more was obtained by jetting at a flow rate of 8 l / min for about 4 minutes, and the film formation rate calculated from this was 10 μm / min or more. It can be seen that the film has been formed.
[0022]
FIG. 7 shows the dependency of the film thickness of the SmFeN 2 film on the film formation time in the AD method. The horizontal axis in FIG. 7 represents the film formation time (min) in the AD method, and the vertical axis represents the film thickness (μm). Thus, the longer the film formation time, the thicker the film thickness. Further, since 8 l / min is thicker than 4 l / min, it was found that the film formation rate was higher as the gas flow rate was larger. . Further, it is difficult to produce a thick film having this thickness by cutting a sintered magnet, and the superiority of the present method, which can form a thick film in a short time of 4 minutes, can be seen.
[0023]
8 and 9 show the optical microscope structure and the scanning electron microscope structure of the SmFeN 2 film obtained by the AD method under the conditions of a gas flow rate of 6 l / min and a film formation time of 4 minutes. It can be seen that the obtained thick film is formed by bonding particles of several tens nm to several μm. Considering that high-temperature sintering causes crystal grain growth in the sintering method and crystal grains grow to 5 μm or more, this method is a method capable of producing a thick film composed of fine crystals. I can say.
[0024]
FIG. 10 shows the influence of the gas flow rate in the AD method on the micro-Vickers hardness of the SmFeN thick film produced by the AD method under the conditions of the obtained film formation time of 4 minutes. The vertical axis shows Vickers hardness HV, and the horizontal axis shows gas flow rate gfr (l / min). HV does not change much with the gas flow rate, indicating a high hardness of 600 to 800.
[0025]
FIG. 11 is a diagram showing the results of the magnetic measurement. In FIG. 11, the horizontal axis represents the magnetic field strength μ 0 H (T), and the vertical axis represents the magnetic polarization J (T). The magnetic characteristics of the SmFeN film having a thickness of 18 μm formed by the AD method were measured. The obtained coercive force μ 0 H cJ is 1.7 T, and the formed SmFeN film shows a higher coercive force than the coercive force of the raw material powder shown in FIG.
[0026]
FIG. 12 shows the gas flow rate dependence of the magnetic characteristics. The horizontal axis represents the gas flow rate (l / min) in the AD method, and the vertical axis represents the saturation magnetic polarization Js (T), the residual magnetic flux density Br (T), and the coercive force μ 0 HcJ (T). This shows that a coercive force of about 1.8 T is obtained at all gas flow rates.
[0027]
FIG. 13 shows the dependence of the magnetic characteristics of the SmFeN thick film deposited at a gas flow rate of 4 l / min and 8 l / min on the deposition time. From this, it can be seen that a coercive force of about 1.8 T was obtained almost all the time. Judging from FIG. 12 and FIG. 13, it can be said that the SmFeN thick film formed by the present AD method has a higher coercive force than the magnetic powder of the host, and this was formed as shown in FIGS. It is presumed to be related to the fact that the thick film is composed of fine particles.
At this time, the flight speed of the SmFeN raw material particles jetted from the nozzle (opening: 0.4 × 5 mm) used in the experiment increases in response to the increase in the gas flow rate, but is described in the literature (JVSTA A). When measured by the time-of-flight difference method, the gas flow rate is 200 m / sec at the flow rate of 4 l / min. Therefore, it has been clarified that the flying speed (spray speed) of the SmFeN raw material particles needs to be at least 200 m / sec or more in order to obtain a good film-formed body.
Further, instead of a rare-earth magnet powder such as SmFeN as the magnetic powder, an M-type ferrite powder (average powder particle size: 1.3 μm), which is a raw material of the ferrite magnet powder, is used, and as described above, from 4 l / min to 10 l / min. When a thick film was produced at a gas flow rate of 4 minutes and a film formation time of 4 minutes, a coercive force of 0.14 to 0.25 T as shown in FIG. 15 was obtained. This indicates that the present AD method can produce a thick film magnet that generates a coercive force with ferrite magnet powder in addition to rare earth magnet powder. Therefore, this method can be said to be a method that can produce a high coercive force thick film magnet even with various magnet materials.
In addition, when the above results are combined, it can be said that the present AD method is a method capable of producing a magnet thinner than a conventional bonded magnet at a higher speed.
[0028]
【The invention's effect】
As described above, the present invention has the following effects.
(1) By using the AD method for forming the permanent magnet film, a magnetic film having a thickness of 1 μm or more, which was difficult with the conventional sputtering method, and a magnetic film of 300 μm or less, which was difficult with the conventional bonded magnet, can be efficiently and at low cost. Can be formed. In particular, it is possible to form a magnetic film having a thickness in the range of 2 μm or more and 200 μm or less, which is expected to be thinner in the future.
(2) Since the formation of the magnetic film by the AD method is a low-temperature process, the influence on the film-forming object on which the film is formed is small. In addition, the crystal grain size of the film obtained by molding at a low temperature is several μm to several hundred nm, or a size of 100 nm or less, and a magnetic film exhibiting high magnetic characteristics due to a large exchange coupling between magnetic particles acts. Obtainable.
(3) Since the magnetic film formed by the AD method almost matches the composition of the powder to be charged before the formation, the degree of freedom in the composition of the magnetic film can be remarkably improved as compared with the conventional sputtering method. At the same time, a magnetic film having a stable composition can be easily formed.
(4) The magnetic film obtained by the AD method has a high adhesion strength to the object to be formed.
(5) Since no optical target is required unlike conventional sputtering, a magnetic film can be formed at low cost.
(6) By mixing a magnetic particle with a soft magnetic phase such as Fe, Co, or FeCo exhibiting a high saturation magnetization and a hard magnetic phase, it is possible to produce a nanocomposite magnet thick film in which both phases are precipitated on the order of nanometers. .
[Brief description of the drawings]
FIG. 1 is a schematic diagram of a magnetic film manufacturing apparatus according to an embodiment of the present invention.
FIG. 2 is a schematic diagram of a magnetic film obtained by an AD method according to an embodiment of the present invention.
FIG. 3 is a diagram showing a demagnetization curve of the magnetic characteristics of SmFeN powder (average powder particle size: 3 μm) used in the AD method according to the embodiment of the present invention.
FIG. 4 is a view showing an appearance photograph of an SmFeN 2 film manufactured by using the AD method according to the embodiment of the present invention.
FIG. 5 is a view showing an X-ray diffraction pattern of a thick SmFeN film produced by the AD method according to the embodiment of the present invention under the conditions of a gas flow rate of 4 to 10 l / min and a deposition time of 4 minutes.
FIG. 6 is a diagram showing the gas flow rate dependence of the film thickness of the SmFeN film manufactured by using the AD method according to the embodiment of the present invention in the AD method.
FIG. 7 is a diagram showing the dependence of the thickness of the SmFeN 2 film on the deposition time in the AD method according to the embodiment of the present invention.
FIG. 8 is a diagram showing an optical microscope structure of an SmFeN 2 film obtained by an AD method according to an embodiment of the present invention under a gas flow rate of 6 l / min and a film forming time of 4 minutes.
FIG. 9 is a diagram showing a scanning electron microscope structure of an SmFeN 2 film obtained by an AD method according to an embodiment of the present invention under a gas flow rate of 6 l / min and a film forming time of 4 minutes.
FIG. 10 is a diagram showing the influence of a gas flow rate in the AD method on the micro-Vickers hardness of a thick SmFeN film produced by the AD method according to the embodiment of the present invention under the condition of a film formation time of 4 minutes.
FIG. 11 is a diagram showing a result of magnetic measurement.
FIG. 12 is a diagram showing the gas flow rate dependence of magnetic characteristics.
FIG. 13 is a diagram showing the dependence of magnetic characteristics on the deposition time of a thick SmFeN film deposited at a gas flow rate of 4 l / min and 8 l / min.
FIG. 14 is a view showing a situation where a thick film composed of crystal grains in which particles of a large metal magnet compound powder are nuclei and small oxide powders are arranged around the nuclei is obtained.
FIG. 15 is a diagram showing the gas flow rate dependence of coercive force in an AD thick film using M-type ferrite powder.
[Explanation of symbols]
DESCRIPTION OF SYMBOLS 10 Magnetic film forming apparatus 11 Mixer 12 Chamber 13 Rotary pump and mechanical booster pump 14 Raw material powder 14a Particle 15 Nozzle 16 Mask 17 Gas cylinder 20 Substrate (film-forming object)
30 Magnetic film

Claims (15)

永久磁石能を有する永久磁石膜の製造方法において、永久磁石材料粉末をエアロゾル化して被成膜物に噴射することにより永久磁石膜を形成することを特徴とする永久磁石膜の製造方法。A method for producing a permanent magnet film having permanent magnet capability, comprising forming a permanent magnet film by aerosolizing a permanent magnet material powder and spraying the powder on an object to be deposited. 永久磁石材料粉末を、金属磁性体粉末若しくはフェライト化合物粉末、又は金属磁性体粉末及びフェライト化合物粉末の混合体、金属磁性体粉末及び高分子材料粉末の混合体、フェライト化合物粉末及び高分子材料粉末の混合体、金属磁性体粉末、フェライト化合物粉末及び高分子材料粉末の混合体から構成することを特徴とする請求項1記載の永久磁石膜の製造方法。Permanent magnet material powder, metal magnetic powder or ferrite compound powder, or a mixture of metal magnetic powder and ferrite compound powder, a mixture of metal magnetic powder and polymer material powder, ferrite compound powder and polymer material powder 2. The method for producing a permanent magnet film according to claim 1, comprising a mixture of a mixture, a magnetic metal powder, a ferrite compound powder and a polymer material powder. 永久磁石膜の形成を常温下で行うことを特徴とする請求項1又は請求項2記載の永久磁石膜の製造方法。3. The method according to claim 1, wherein the permanent magnet film is formed at a normal temperature. 永久磁石能を有する金属磁性体粉末からなる永久磁石膜において、金属磁性体粉末の結晶粒間に20nm以下の非結晶層を含む磁性相を有し、ビッカース硬度が200〜1000Hvであり、保磁力が0.2T以上であることを特徴とする永久磁石膜。A permanent magnet film made of a metal magnetic powder having a permanent magnet capability, has a magnetic phase including an amorphous layer of 20 nm or less between crystal grains of the metal magnetic powder, has a Vickers hardness of 200 to 1000 Hv, and has a coercive force. Is 0.2 T or more. 永久磁石能を有するフェライト化合物粉末からなる永久磁石膜において、フェライト化合物粉末の結晶粒間に20nm以下の酸化物層を含む磁性相を有し、ビッカース硬度が200〜1000Hvであり、保磁力が0.2T以上であることを特徴とする永久磁石膜。A permanent magnet film made of a ferrite compound powder having a permanent magnet capability has a magnetic phase including an oxide layer of 20 nm or less between crystal grains of the ferrite compound powder, has a Vickers hardness of 200 to 1000 Hv, and has a coercive force of 0. .2T or more, permanent magnet film characterized by the above-mentioned. 永久磁石能を有する金属磁性体粉末及びフェライト化合物粉末の混合体からなる永久磁石膜において、金属磁性体粉末の結晶粒間に20nm以下の非結晶層を含む磁性相とフェライト化合物粉末の結晶粒間に20nm以下の酸化物層を含む磁性相との混相を有し、ビッカース硬度が200〜1000Hvであり、保磁力が0.2T以上であることを特徴とする永久磁石膜。In a permanent magnet film made of a mixture of a magnetic metal powder having a permanent magnet function and a ferrite compound powder, a magnetic phase including a non-crystalline layer of 20 nm or less between crystal grains of the magnetic metal powder and a crystal grain of a ferrite compound powder. A mixed phase with a magnetic phase containing an oxide layer having a thickness of 20 nm or less, a Vickers hardness of 200 to 1000 Hv, and a coercive force of 0.2 T or more. 永久磁石能を有する金属磁性体粉末及び高分子材料粉末の混合体からなる永久磁石膜において、金属磁性体粉末の結晶粒間に高分子層を含む磁性相を有することを特徴とする永久磁石膜。A permanent magnet film comprising a mixture of a magnetic metal powder having a permanent magnet function and a polymer material powder, wherein the permanent magnet film has a magnetic phase including a polymer layer between crystal grains of the metal magnetic powder. . 金属磁性体粉末を1種又は2種以上の金属磁性体粉末から構成することを特徴とする請求項4、請求項6又は請求項7記載の永久磁石膜。8. The permanent magnet film according to claim 4, wherein the metal magnetic material powder is composed of one or more metal magnetic material powders. フェライト化合物粉末を1種又は2種以上のフェライト化合物粉末から構成することを特徴とする請求項5又請求項6記載の永久磁石膜。7. The permanent magnet film according to claim 5, wherein the ferrite compound powder is composed of one or more ferrite compound powders. 請求項1乃至請求項3のいずれか1項に記載の方法により製造された請求項4乃至請求項9のいずれか1項に記載の永久磁石膜。The permanent magnet film according to any one of claims 4 to 9, which is manufactured by the method according to any one of claims 1 to 3. 永久磁石膜の厚さが2μm〜500μmであることを特徴とする請求項4乃至請求項11のいずれか1項に記載の永久磁石膜。The permanent magnet film according to any one of claims 4 to 11, wherein the thickness of the permanent magnet film is 2 µm to 500 µm. 永久磁石膜の厚さが2μm〜300μmであることを特徴とする請求項4乃至請求項11のいずれか1項に記載の永久磁石膜。The permanent magnet film according to any one of claims 4 to 11, wherein the thickness of the permanent magnet film is 2 µm to 300 µm. 永久磁石膜の厚さが2μm〜200μmであることを特徴とする請求項4乃至請求項11のいずれか1項に記載の永久磁石膜。The permanent magnet film according to any one of claims 4 to 11, wherein the thickness of the permanent magnet film is 2 µm to 200 µm. 厚さ200μm以下のSi基板、金属基板又は樹脂基板上にバインダーレスで形成されたことを特徴とする請求項4乃至請求項13のいずれか1項に記載の永久磁石膜。The permanent magnet film according to any one of claims 4 to 13, wherein the permanent magnet film is formed on an Si substrate, a metal substrate, or a resin substrate having a thickness of 200 µm or less without a binder. Si基板、金属基板又は樹脂基板上に50MPa以上の密着強度で形成されたことを特徴とする請求項4乃至請求項13のいずれか1項に記載の永久磁石膜。The permanent magnet film according to any one of claims 4 to 13, wherein the permanent magnet film is formed on an Si substrate, a metal substrate, or a resin substrate with an adhesion strength of 50 MPa or more.
JP2003084710A 2003-03-26 2003-03-26 Permanent magnet membrane Expired - Lifetime JP4560619B2 (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
JP2003084710A JP4560619B2 (en) 2003-03-26 2003-03-26 Permanent magnet membrane
PCT/JP2004/004229 WO2004086430A1 (en) 2003-03-26 2004-03-25 Permanent magnetic film

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2003084710A JP4560619B2 (en) 2003-03-26 2003-03-26 Permanent magnet membrane

Publications (2)

Publication Number Publication Date
JP2004296609A true JP2004296609A (en) 2004-10-21
JP4560619B2 JP4560619B2 (en) 2010-10-13

Family

ID=33094998

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2003084710A Expired - Lifetime JP4560619B2 (en) 2003-03-26 2003-03-26 Permanent magnet membrane

Country Status (2)

Country Link
JP (1) JP4560619B2 (en)
WO (1) WO2004086430A1 (en)

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008060506A (en) * 2006-09-04 2008-03-13 Nec Tokin Corp Inductor and method of manufacturing the same
WO2009150629A1 (en) * 2008-06-13 2009-12-17 Politecnico Di Torino Process for the production of macroscopic nanostructured permanent magnets with high density of magnetic energy and corresponding magnets
WO2010146680A1 (en) * 2009-06-18 2010-12-23 トヨタ自動車株式会社 Method and apparatus for producing magnetic powder
EP2800107A4 (en) * 2011-12-26 2015-09-02 Nissan Motor Molded rare-earth magnet and low-temperature solidification and molding method
DE102017215265A1 (en) * 2017-08-31 2019-02-28 Siemens Aktiengesellschaft Method for producing a permanent magnet, permanent magnet, electric machine, medical device and electric vehicle
DE102018212761A1 (en) * 2018-07-31 2020-02-06 Siemens Aktiengesellschaft Method for manufacturing a permanent magnet, electrical machine and vehicle, in particular hybrid-electric aircraft
WO2022154058A1 (en) * 2021-01-14 2022-07-21 パウダーテック株式会社 Magnetic composite

Family Cites Families (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
NL7708959A (en) * 1977-08-15 1979-02-19 Philips Nv PROCEDURE FOR FORMING A MAGNETO-OPTIC POLYCRYSTALLINE COBALT FERRITE LAYER AND COBALT FERRITE LAYER MANUFACTURED BY THE PROCESS.
JP2002049318A (en) * 2000-08-02 2002-02-15 Dainippon Ink & Chem Inc Flexible magnet sheet
AU2001296005A1 (en) * 2000-10-23 2002-05-15 National Institute Of Advanced Industrial Science And Technology Composite structure and method for manufacture thereof
JP2002313615A (en) * 2001-04-09 2002-10-25 Enplas Corp Plastic magnet composition
JP4017032B2 (en) * 2002-03-29 2007-12-05 ソニー株式会社 Magnetic film and method for forming the same
JP4281858B2 (en) * 2002-03-29 2009-06-17 ソニー株式会社 Magnetic film
JP3901623B2 (en) * 2002-09-30 2007-04-04 富士フイルム株式会社 Deposition method

Cited By (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008060506A (en) * 2006-09-04 2008-03-13 Nec Tokin Corp Inductor and method of manufacturing the same
WO2009150629A1 (en) * 2008-06-13 2009-12-17 Politecnico Di Torino Process for the production of macroscopic nanostructured permanent magnets with high density of magnetic energy and corresponding magnets
CN102084443A (en) * 2008-06-13 2011-06-01 都灵理工学院 Process for the production of macroscopic nanostructured permanent magnets with high density of magnetic energy and corresponding magnets
WO2010146680A1 (en) * 2009-06-18 2010-12-23 トヨタ自動車株式会社 Method and apparatus for producing magnetic powder
JPWO2010146680A1 (en) * 2009-06-18 2012-11-29 トヨタ自動車株式会社 Magnetic powder manufacturing method and manufacturing apparatus thereof
JP5267665B2 (en) * 2009-06-18 2013-08-21 トヨタ自動車株式会社 Magnetic powder manufacturing method and manufacturing apparatus thereof
EP2800107A4 (en) * 2011-12-26 2015-09-02 Nissan Motor Molded rare-earth magnet and low-temperature solidification and molding method
DE102017215265A1 (en) * 2017-08-31 2019-02-28 Siemens Aktiengesellschaft Method for producing a permanent magnet, permanent magnet, electric machine, medical device and electric vehicle
DE102018212761A1 (en) * 2018-07-31 2020-02-06 Siemens Aktiengesellschaft Method for manufacturing a permanent magnet, electrical machine and vehicle, in particular hybrid-electric aircraft
WO2022154058A1 (en) * 2021-01-14 2022-07-21 パウダーテック株式会社 Magnetic composite

Also Published As

Publication number Publication date
WO2004086430A1 (en) 2004-10-07
JP4560619B2 (en) 2010-10-13

Similar Documents

Publication Publication Date Title
US20200157689A1 (en) Cold spray of brittle materials
JP2013135071A (en) Rare earth magnet compact and low temperature solidifying molding method
KR20130009942A (en) Rare-earth permanent magnetic powder,bonded magnet,and device comprising the bonded magnet
WO2013084606A1 (en) Thick rare earth magnet film, and low-temperature solidification molding method
WO1998035364A1 (en) Method of manufacturing thin plate magnet having microcrystalline structure
Sugimoto et al. Magnetic properties of Sm-Fe-N thick film magnets prepared by the aerosol deposition method
JP2013161829A (en) Rare earth magnet compact and manufacturing method of the same, and magnet motor with rare earth magnet
JP4055709B2 (en) Manufacturing method of nanocomposite magnet by atomizing method
TW501147B (en) Method of manufacturing magnet material, ribbon-shaped magnet material, magnetic powder and bonded magnet
JP2003257763A (en) Manufacturing method for rare earth permanent magnet
JP4560619B2 (en) Permanent magnet membrane
WO1998036428A1 (en) Thin plate magnet having microcrystalline structure
JPH11288807A (en) Flat leaf-like rare earth-iron-boron magnet alloy particle powder for bonded magnet, manufacture thereof and the bonded magnet
JP3728396B2 (en) Manufacturing method of magnet material
JP2013042004A (en) METHOD OF MANUFACTURING α-Fe/R2TM14B SYSTEM NANOCOMPOSITE MAGNET
JP3861276B2 (en) Cooling roll, magnet material manufacturing method, ribbon magnet material, magnet powder, and bonded magnet
JP2015198170A (en) Magnet molded body and method for manufacturing magnet molded body
JP2005209669A (en) Rare-earth magnet and magnetic circuit using it
JP4089304B2 (en) Nanocomposite bulk magnet and method for producing the same
KR100453422B1 (en) Cooling roll, production method for magnet material, thin-band-like magnet material, magnet powder and bond magnet
JP3991660B2 (en) Iron-based permanent magnet and method for producing the same
JP2004273101A (en) Thin film magnetic recording medium
JP2003257764A (en) Manufacturing method for rare earth permanent magnet
JP5660566B2 (en) Magnetic particles and method for producing the same
JP2002270417A (en) Permanent magnet particle, its manufacturing method, and permanent magnet

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20041124

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20060516

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20060714

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20060822

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20061219

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20100215

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20100603

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

R150 Certificate of patent or registration of utility model

Ref document number: 4560619

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

EXPY Cancellation because of completion of term