JP2004296041A - Optical head device - Google Patents

Optical head device Download PDF

Info

Publication number
JP2004296041A
JP2004296041A JP2003090249A JP2003090249A JP2004296041A JP 2004296041 A JP2004296041 A JP 2004296041A JP 2003090249 A JP2003090249 A JP 2003090249A JP 2003090249 A JP2003090249 A JP 2003090249A JP 2004296041 A JP2004296041 A JP 2004296041A
Authority
JP
Japan
Prior art keywords
light
wavelength
respect
head device
optical
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2003090249A
Other languages
Japanese (ja)
Other versions
JP4218393B2 (en
JP2004296041A5 (en
Inventor
Rie Kimata
理恵 木全
Koichi Murata
浩一 村田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
AGC Inc
Original Assignee
Asahi Glass Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Asahi Glass Co Ltd filed Critical Asahi Glass Co Ltd
Priority to JP2003090249A priority Critical patent/JP4218393B2/en
Publication of JP2004296041A publication Critical patent/JP2004296041A/en
Publication of JP2004296041A5 publication Critical patent/JP2004296041A5/ja
Application granted granted Critical
Publication of JP4218393B2 publication Critical patent/JP4218393B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Abstract

<P>PROBLEM TO BE SOLVED: To obtain an optical head device, by which the stable information recording/reproducing operation is carried out in the optical head device compatible with three wavelengths of 785/660/410 nm conformed to CD/DVD/next-generation optical disk, by transmitting a linear polarization of a 660 nm wavelength band in this polarized state and mounting a phase unit on the device to rotate the polarizing direction by 90°. <P>SOLUTION: The phase unit is manufactured in such a manner that two double refraction plates 101, 102 having the phase difference of an integral multiple of the wavelength with respect to the light of 660 nm are laminated so that each optical axis is intersected with respect to the polarizing direction of the linear polarization of 785 nm while forming the angle decided in accordance with the phase difference of the double refraction plates 101, 102, then this phase unit is installed on the optical head device. <P>COPYRIGHT: (C)2005,JPO&NCIPI

Description

【0001】
【発明の属する技術分野】
本発明は、光源から出射された異なる波長の光の偏光状態を制御する位相子を搭載した光ヘッド装置に関する。
【0002】
【従来の技術】
CDやDVDなどの光ディスクおよび光磁気ディスクなどの光記録媒体の情報の記録・再生を行う光ヘッド装置において、光源である半導体レーザからの出射光は対物レンズにより光記録媒体上に集光され、光記録媒体で反射され戻り光となる。この戻り光はビームスプリッタを用いて光検出器である受光素子へ導かれ、光記録媒体の情報が電気信号に変換される。
【0003】
同一の光ヘッド装置を用いて、規格の異なる光記録媒体であるCDおよびDVDの情報の記録および/または再生を行うため、CDとDVDとの互換光ヘッド装置が製品化されている。CDに対しては785nm波長帯の半導体レーザが用いられ、DVDには660nm波長帯の半導体レーザが用いられる。
【0004】
また、410nm波長帯の青紫色半導体レーザを用いて、従来用いられている660nm波長帯の赤色半導体レーザと比べ、記録密度を3倍以上に向上させる次世代DVD光ヘッド装置が提案されているが、前記CDとDVDとの互換光ヘッド装置が普及していることから、特にDVDおよびCDの記録および/または再生も行える、3波長帯に対する互換性を有する次世代光ヘッド装置が提案されている。
【0005】
上記3波長帯に対する互換性を有する次世代光ヘッド装置において、660nm(λ)波長帯の直線偏光に対しては偏光状態を変えることなく透過し、785nm(λ)波長帯の直線偏光に対しては偏光面を90°回転させ透過する位相子が望まれている。
【0006】
従来の技術においては、前記のような効果を持つ位相子として、例えば、660nm(λ)波長帯の直線偏光に対してはmλ(mは自然数)の位相差を発生させ、同時に785nm(λ)波長帯の直線偏光に対しては(m−1/2)λ(mは自然数)の位相差を発生させるよう、リタデーション値の調整された1枚の複屈折板が考えられる。上記のようにして実現される位相子には、材料のリタデーション値に波長分散性があるために、波長分散が所望のものでない場合、両波長帯の光について期待する効果を得ることが困難である問題があった。
【0007】
例えば、一般的な有機複屈折材料として、660nm波長帯でのリタデーション値R(660nm)に対する785nm波長帯でのリタデーション値R(785nm)の比R(785nm)/R(660nm)がおよそ0.95であるものを考える。660nm波長帯の光に対して1980nm(=660×3、m=3)のリタデーション値を持つとき、785nm波長帯の光に対しては波長の5/2倍(m=3)に近いリタデーション値を有するものの、直線偏光で入射した785nm波長帯の光は、位相子を透過後楕円率が約0.34の楕円偏光となって、直線偏光が得られない。
【0008】
また、より高次の、すなわち5λ/2ではなく7λ/2、9λ/2などの位相子とすることで所望の特性を得ることができる場合もあるが、高次になるに従い種々の問題が発生する。すなわち、偏光に与える位相差などの位相子が有する効果の波長依存性は大きくなり、また製造工程において位相子のリタデーション値の精度を保持することが困難となって、生産歩留まりが低下して位相子のコストが上昇する、などの問題である。
【0009】
【特許文献1】
特開2002−14228号公報
【0010】
【発明が解決しようとする課題】
本発明の目的は、従来技術が有する前述の問題を解消することにある。
【0011】
【課題を解決するための手段】
本発明は、少なくとも2つの異なる波長の光をそれぞれ出射する複数の光源と、光源から出射する光を光ディスクに集光するための対物レンズと、集光されて光ディスクにより反射された光を検出するための光検出器とを備えた光ヘッド装置において、複数の光源と光ディスクとの間の少なくとも2つの光が共有する光路中に、それぞれの光学軸方向が異なる2つの複屈折板より構成される位相子が設置されており、2つの複屈折板の1つの波長の光に対する位相差は前記1つの波長のそれぞれ自然数倍であって、前記1つの波長の光に対して位相子は偏光状態を変化させず、前記1つの波長とは異なる波長の光に対して位相子は偏光状態を変化させることを特徴とする光ヘッド装置を提供する。
【0012】
また、前記光源から出射し位相子を透過する光の波長がλおよびλの2つであり、波長λの前記位相子を透過する光は偏光状態を変化させず、一方直線偏光として前記位相子に入射した波長λの光は、前記位相子を直線偏光として透過し、その透過光の偏光方向は入射光の偏光方向に対してφの角度を成しており、かつ前記位相子を構成する2つの複屈折板の波長λの光に対する、それぞれの複屈折板の位相差RおよびRは等しく、かつ前記2つの複屈折板のそれぞれの光学軸方向は、波長λの入射光の偏光方向とθおよびθの角度を成し、θおよびθの和はφとなっている上記の光ヘッド装置を提供する。
【0013】
また、直線偏光として前記位相子に入射した波長λの光は、前記位相子を直線偏光として出射し、その出射光の偏光方向は入射光の偏光方向に対して90°の角度を成しており、波長λの光に対する前記2つの複屈折板のそれぞれの位相差がλおよび2λであり、かつ位相差が2λである複屈折板の光学軸方向が波長λの入射光の偏光方向に対して35から55°までの角度を成している上記の光ヘッド装置を提供する。
【0014】
また、直線偏光として前記位相子に入射した波長λの光が、前記位相子を円偏光として出射し、波長λの光に対する前記2つの複屈折板のそれぞれの位相差が等しくλであり、かつ光の出射側の複屈折板の光学軸方向が波長λの入射光の偏光方向に対し40から60°までの角度を成している上記の光ヘッド装置を提供する。
【0015】
また、前記位相子に入射する2つの波長λおよびλの光は、それぞれ660nm波長帯および785nm波長帯の光であり、前記2つの複屈折板の660nm波長帯および785nm波長帯の光に対するリターデーション値の比がいずれも0.9から0.99までの値である上記の光ヘッド装置を提供する。
【0016】
さらに、前記2つの複屈折板が、貼り合わせられ一体化されている上記の光ヘッド装置を提供する。
【0017】
【発明の実施の形態】
本発明の光ヘッド装置は、少なくとも2つの異なる波長の光をそれぞれ出射する複数の光源と、光源から出射する光を光ディスクに集光するための対物レンズと、集光されて光ディスクにより反射された光を検出するための光検出器とを備えた光ヘッド装置であって、複数の光源と光ディスクとの間の少なくとも2つ光が共有する光路中に、それぞれの光学軸方向が異なる2つの複屈折板より構成される位相子が設置されている光ヘッド装置である。
【0018】
上記の位相子を構成する2つの複屈折板の1つの波長の光に対する位相差は前記1つの波長のそれぞれ自然数倍であって、前記1つの波長の光に対して位相子は偏光状態を変化させない。すなわち、前記1つの波長の光に対する、2つの複屈折板がそれぞれに有する位相差は、前記1つの波長のそれぞれ自然数倍である。そして、位相子は前記1つの波長とは異なる他の波長の光に対して、偏光状態を変化させる光ヘッド装置である。
【0019】
以下図に基づいて本発明の光ヘッド装置を説明する。
図1は、本発明の光ヘッド装置の基本構成の一例を示す概念的断面図であり、透過する光の偏光状態を制御する位相子101が、少なくとも2つ以上の異なる波長の光を出射する多波長の光源ユニット104と対物レンズ105との間に置かれている。
【0020】
光源ユニット104から出射された少なくとも2つ以上の異なる波長の光は、位相子103を透過し対物レンズ105を通って光ディスク106へと集光された後、光ディスク106で反射され、戻り光となって光検出器系へと向かう。図1において光検出器系は省略しているが、実際の設置位置としては、位相子103から見て、多波長の光源ユニット104の側にあってもよいし、光ディスク106側にあってもよい。前者の場合、光源ユニット104から出射された光は光ディスクへ向かうその往路と光ディスクから戻る復路の両方において位相子103を透過し、後者の場合、光源ユニットから光ディスク106へと向かう往路においてのみ位相子103を透過する。また、光ディスクで反射され光検出器系へと向かう復路の戻り光のみが透過する位置に位相子103を設置してもよい。
【0021】
本発明の光ヘッド装置に搭載される位相子103を構成する、2つの複屈折板101および102の位相差は、1つの波長の光については偏光状態を変化させず、その他の波長の光に対してはその偏光状態を変化させるように設計されている。そのため、前記1つの波長の光はその偏光状態を変えることなく位相子103を透過し、前記1つの波長とは異なる他の波長の光は偏光状態を変化されて位相子101を透過する。具体的には、上記2枚の複屈折板の位相差は、波長λの光に対してmλ、mλ(m、mは自然数)となるよう選択されており、波長λの光に対してはほとんど偏光状態を変化させず、λ以外の光に対してのみ偏光状態を変化させることができる。また、m、mは1または2、たかだか3までの値をとる。
【0022】
以下、本発明の光ヘッド装置に搭載する位相子について、位相子を透過する光は波長λ、λの2つの光であるとして説明するが、光ヘッド装置中に3つ以上の異なる波長の光を出射する光源ユニットが置かれてもよく、また3つ以上の異なる波長の光が位相子を透過する場合でももちろん使用できる。3つの異なる波長の光が透過する場合、1つの波長については偏光状態を変化させず透過し、他の2波長の光の偏光状態を変化させて位相子を透過することができる。本発明の光ヘッド装置は、CD、DVDおよび次世代光ディスクに対応するものであるため、上記波長としては、785nm波長帯、660nm波長帯、410nm波長帯などがある。ここで波長帯とは±10nmの幅を意味し、例えば660nm波長帯の波長とは、650から670nmまでの波長をいう。
【0023】
図2は本発明の光ヘッド装置における位相子の構成例を示す断面図であり、(a)は2枚の複屈折板201と202のみが積層されているもの、(b)は積層された2枚の複屈折板201と202の片側に透明基板213を貼り合わせたもの、(c)は2枚の透明基板203と204によって複屈折板201と202を挟んだもの、である。複屈折板と複屈折板との間、または複屈折板と透明基板との間に、接着層または粘着層があってもよいし、なくてもよい。また、2枚の複屈折板が一体化されている構成でも、いない構成でもよい。しかし、2枚の複屈折板が貼り合わされて一体化されている方が取り扱い上好ましい。
【0024】
位相子を構成する複屈折板としては、ポリカーボネート、アクリル、ポリエステルなどの有機材料を延伸させることにより延伸方向に光学軸の揃った複屈折性膜を用いることができる。また、所望の配向処理の施された高分子液晶を用いることもできるし、水晶基板、ニオブ酸リチウムなどの基板自身が複屈折性を有するものでもよい。
【0025】
図2に示す透明基板203、204として、ガラス基板や石英ガラス基板などの光学的等方性媒質を用いることが、透過光に複屈折性などの影響を与えず好ましい。
2つの複屈折板の、波長λの光に対する位相差は、m、mを自然数として光(レーザ光)の入射側から順にそれぞれmλ、mλであり、波長λに対しての位相差は、n、nを整数でない正の数としておのおのR=nλ、R=nλである。このとき、複屈折板の位相差(について、波長λの光に対する波長λの光のリタデーション値の比をk、kと表すと、複屈折板それぞれでn=k×mλ/λ、n=k×mλ/λとなる。また、交差する2枚の複屈折板の光学軸(進相軸)方向は、波長λの入射光の偏光方向を基準としてレーザ光が入射する順にそれぞれθ、θ(−90°≦θ、θ≦90°)とする。図3に、位相子を構成する2つの複屈折板の光学軸方向を示す概念図を示す。
【0026】
このように構成された位相子は、波長λの光に対しては、2つの複屈折板のリタデーション値がλの整数倍であるため偏光状態を変化させないが、波長λの光に対しては一般にλ≠kλ(i=1、2)であるため、偏光状態を変化させる。
【0027】
また、上記したように光源から出射し位相子を透過する光の波長がλおよびλの2つであり、さらに波長λの位相子を透過する光は偏光状態を変化せず、一方直線偏光として位相子に入射した波長λの光は、位相子を直線偏光として透過し、その透過光の偏光方向は入射光の偏光方向に対してφの角度を成している。かつ、位相子を構成する2つの複屈折板の波長λの光に対する、それぞれの複屈折板の位相差RおよびRは等しい。また、2つの複屈折板のそれぞれの光学軸方向は、波長λの入射光の偏光方向とθおよびθの角度を成し、θおよびθの和はφとなっているの光ヘッド装置とすることが好ましい。
【0028】
すなわち、上記位相子の2つの複屈折板の、波長λに対する位相差RとRがほぼ等しくなるよう調整され、θとして、下記の(式1)に従ってλに対する位相差Rと、ある角度φとから決められる値(θ1c)を選び、θとしてθ2c=φ−θ1cなる値をとるとき、直線偏光で入射した波長λの光の出射時の偏光方向を、入射した偏光方向に対して角度φだけ回転できることがわかった。
【0029】
【数1】

Figure 2004296041
【0030】
そのため、波長λの光の偏光状態は変化させず、直線偏光で入射した波長λの光を、偏光方向が角度φだけ回転したほぼ直線偏光で出射させたい場合、前記位相子を構成する2つの複屈折板の、波長λに対する位相差RとRはほぼ等しくし、光学軸方向θ、θとしては上述のθ1c、θ2cを選ぶことが、期待する最良の効果を得るためには好ましいが、複屈折板のリタデーション値Rに対してθ=θ1c±10°、θ=θ+(φ−2θ1c)であれば、上記λの光の偏光方向を角度φだけ回転させる効果を得ることができる。
【0031】
例えば、波長λが660nmかつ波長λが785nmであり、m=m=1、k=k=0.95である複屈折板を選んだ場合、(θ、θ)=(23°、6°)のときλの偏光方向はほぼ29°回転し楕円率は0.004である。k=k=0.93である複屈折板の場合は、(θ、θ)=(19°、10°)とすることで、ほぼ29°偏光方向の回転した楕円率0.002の出射光を得ることができる。すなわち、いずれの場合もθ+θ=29°で回転角度29°と一致し、ほぼ直線となってている。
上述の位相子は、使用する複屈折板のリタデーション値に応じて光学軸を調整し作製できるため、既存の複屈折板を用いて容易に所望の効果を有する位相子を実現できる。
【0032】
以下、位相子を透過する前記2つの波長について、波長λが660nmを波長帯の光であり、波長λが785nm波長帯の光であるとして説明する。
また、直線偏光として位相子に入射した波長λの光は、位相子を直線偏光として出射し、その出射光の偏光方向は入射光の偏光方向に対して90°の角度を成している。そして、波長λの光に対する2つの複屈折板のそれぞれの位相差がλおよび2λであり、かつ位相差が2λである複屈折板の光学軸方向が波長λの入射光の偏光方向に対して35から55°までの角度を成している光ヘッド装置、とすることが好ましい。
【0033】
すなわち、上記位相子は、入射した波長λの直線偏光を、偏光方向が入射偏光方向に対し90°回転したほぼ直線偏光として出射でき、波長λの光に対し1/2λ板として機能できる。2枚の複屈折板の位相差について、波長λの光に対し、光の入射側から順にλ、2λ(m=1、m=2)となるよう選択する。複屈折板のλに対するλの波長分散を表すk、kがともに0.9〜0.99の間であるように選択する。このとき、波長λの光に対する位相差は順にR=k×λ、R=2×k×λ(≒2R)である。
【0034】
さらに、位相差が2λである第2の複屈折板の光学軸(進相軸)θについては、λの光の入射偏光方向に対し35から55°までの角度をなすように設計し、θについては、(式2)から決まる値θ1cに対して±10°の範囲に選ぶことで、波長λの直線偏光を、直線性を保持しつつ偏光方向を90°回転させることができる。さらに、θについては(式3)から決まる値とし、θについては上記θ1cに対し±5°、±3°と精度を上げると、よりよく直線性が保持され、かつ回転角が90°に近づくため、好ましい。
【0035】
【数2】
Figure 2004296041
【0036】
【数3】
Figure 2004296041
【0037】
このように構成された位相子は、波長λの光の偏光状態はほとんど変化させず、波長λの直線偏光に対しては、直線性をほぼ保持したまま偏光方向のみをほぼ90°回転させて透過する。
【0038】
例えば、2枚の複屈折板としてk=k=0.95の同じ材料を用いた場合(上記位相子を構成する複屈折板の、波長λの光に対する位相差は、光の入射順に627nm、1257nm)、光学軸方向の組がほぼ(θ、θ)=(18°、50°)または(72°、40°)のとき上記の効果を最も良く発現し、直線偏光で入射した波長λの光は、偏光方向が約89.4°回転した、楕円率が約0.002のほぼ直線偏光として出射する。
【0039】
同じ波長分散(k=0.95)を有する複屈折板1枚を用いると、例えば、波長λの光に対して3λの位相差を有する複屈折板のとき、ほぼ直線偏光で入射した波長λの光の位相子透過後の楕円率はおよそ0.33であり、直線性の保持はよくない。また、前記2枚の複屈折板から成る位相子において、k=0.93、k=0.96という2種類の材料を用いた場合は、ほぼ最適な光学軸方向の組は(θ、θ)=(20.5°、51.5°)または(69.5°、38.5°)であり、偏光方向が約89.6°回転した、楕円率が約0.003のほぼ直線偏光が出射光として得られる。
【0040】
このように、2つの複屈折板の光学軸を調整することにより、波長分散を有する複屈折板のリタデーション値の調整のみでは所望の効果に対し不充分な性能しか得られない場合にも、充分な性能を有する位相子を実現できる。
【0041】
また、上述の本発明における位相子において、入射する直線偏光の偏光方向が同じであれば裏表の区別はなく、例えば図2(c)の位相子について複屈折板201と202のいずれの側から光を入射させても同じ効果を得ることができる。
【0042】
図5は、本発明の光ヘッド装置の構成の他の例を示す概念的断面図である。すなわち、上述の660nm波長帯の光は偏光状態を変化させず、直線偏光で入射した785nm波長帯の光は偏光方向を90°回転させて出射する、2波長用位相子を搭載した、3波長互換光ヘッド装置の構成の一例である。2波長用の位相子は、例えば図4に表されるような構成となっている。ここで、図4は本発明における位相子に2つの異なる波長λ、λの直線偏光が透過するときの偏光状態の変化の様子を示す断面図である。
【0043】
3つの異なる波長の光源として、785nm波長帯、660nm波長帯、410nm波長帯の光を出射する半導体レーザ411A、411B、411Cと、上述の660nm波長帯と785nm波長帯の2波長用位相子410を備えている。
【0044】
半導体レーザ411Aを出射した785nm波長帯の直線偏光(図4において紙面に平行)は、1/2λ板412を透過して偏光方向を90°回転した後、偏光ビームスプリッタ413で反射し、2波長用位相子410を透過して偏光方向をさらに90°回転して再び紙面に平行な直線偏光となり偏光ビームスプリッタ414を透過する。660nm波長帯と785nm波長帯についての広帯域1/4λ板415を透過して円偏光となり、410nm波長帯の光を反射し、785nm波長帯と660波長帯の光を透過する波長選択性ビームスプリッタ418を透過した後、対物レンズ419によって光ディスク420の情報記録面上に集光する。
【0045】
光ディスク420を反射した戻り光は、対物レンズ419、波長選択性ビームスプリッタ418、660nmおよび785nm用の広帯域1/4λ板415を透過して往路光に対し偏光方向が直交した直線偏光になった後、偏光ビームスプリッタ414で反射して光検出器421に集光する。
【0046】
半導体レーザ411Bを出射した660nm波長帯の直線偏光(図4において紙面に平行)は、偏光ビームスプリッタ413、2波長用位相子410、偏光ビームスプリッタ414を、偏光状態を変えることなく透過した後、660nmおよび785nm用の広帯域1/4λ板415、波長選択性ビームスプリッタ418、対物レンズ419を透過して光ディスク420の情報記録面上に集光する。
【0047】
光ディスク420を反射した戻り光は、対物レンズ419、波長選択性ビームスプリッタ418、660nmおよび785nm用の広帯域1/4λ板415を透過して往路光に対し偏光方向が直交した直線偏光となり、偏光ビームスプリッタ414で反射して光検出器421に集光する。
【0048】
一方、半導体レーザ411Cを出射した410nm波長帯の直線偏光(図4において紙面に平行)は、偏光ビームスプリッタ416、410nm波長帯用の1/4λ板417を透過し円偏光となった後、波長選択性ビームスプリッタ418により反射し進行方向を90°変えて進み、対物レンズ419を透過して光ディスク420の情報記録面上に集光する。
【0049】
光ディスク420を反射した戻り光は、対物レンズ419、波長選択性ビームスプリッタ418、410nm波長帯用の1/4λ板417を透過して偏光方向が往路光に対し直交した直線偏光となり、偏光ビームスプリッタ416で反射して光検出器422に集光する。
【0050】
本発明の光ヘッド装置においては、2波長用位相子410を用いることにより、波長選択性ビームスプリッタの使用を1個に抑えて偏光ビームスプリッタが用いられるため、偏光方向に依存する全透過・全反射を利用でき、光量損失を抑制できる。また、光記録媒体(光ディスク)の情報の記録時および/または再生時に、各波長帯の半導体レーザからの出射光と光記録媒体からの戻り光の偏光方向を直交させるため、往路光・復路光の間の不要な干渉を防止できる。
【0051】
特に、2波長用位相子410を用いることによって、偏光の直線性および偏光方向の角度を精度よく制御できるため、上記の利点をより効果的に利用でき、したがって、より安定した情報の記録と再生を行える3波長互換光ヘッド装置を実現できる。また、偏光ビームスプリッタは波長選択性のものに比べ設計および製造が容易で性能も安定しているため、コスト削減につながる。また、660nm波長帯の光と785nm波長帯の光に対して1つの光検出器を用いることができるため、光ヘッド装置の部品数を減らすことができ、コスト削減および装置の小型化に有利である。
【0052】
また、直線偏光として位相子に入射した波長λの光が、位相子を円偏光として出射し、波長λの光に対する2つの複屈折板のそれぞれの位相差が等しくλである。また、光の出射側の複屈折板の光学軸方向が波長λの入射光の偏光方向に対し40から60°までの角度を成している光ヘッド装置とすることが好ましい。
【0053】
すなわち、本発明における位相子は、入射した波長λの直線偏光を、円偏光として出射できる、すなわち、λの光に対し1/4λ板として機能できる。2枚の複屈折板の位相差について、波長λの光に対し、ともにλ(m=1、m=1)となるよう選択する。複屈折板のλに対するλの波長分散を表すk、kがともに0.9〜0.99の間であるように選択する。このとき、波長λの光に対する位相差は順にR=k×λ、R=k×λ(≒R)である。
【0054】
さらに、光の出射側の第2の複屈折板の光学軸θについては、λの光の入射偏光方向に対し40から60°までの角度をなすように設計し、θについては、(式4)から決まる値θcを中心に前後10°の範囲に選ぶことで、直線偏光で入射した波長λの光を、ほぼ円偏光とできる。さらに、θについては(式5)から決まる値の近傍をとるように選ぶと、直線偏光を円偏光へと変換する効果を最大限得ることができ、好ましい。
【0055】
【数4】
Figure 2004296041
【0056】
【数5】
Figure 2004296041
【0057】
このように構成された位相子は、波長λの光の偏光状態はほとんど変化させず、波長λの直線偏光は概ね円偏光へと変化させて透過する。
例えば、2枚の複屈折板にk=k=0.95の同じ材料を用いた場合、ほぼ(θ、θ)=(9°、51°)または(81°、39°)のとき上記の効果を最もよく発現し、直線偏光で入射した波長λの光は位相子を透過後、楕円率がおよそ0.99のほぼ円となる。同じ波長分散(0.95)を有する複屈折板1枚の場合、およそ0.7程度の楕円率しか得ることができず、好ましくない。一方でまた、k=0.93、k=0.96という2種類の材料を用いた場合、最適な光学軸の組は(θ、θ)=(10.5°、53.5°)または(79.5°、36.5°)であり、このときも楕円率はほぼ0.99である。
【0058】
このように、2つの複屈折板の光学軸を調整することにより、波長分散を有する複屈折板のリタデーション値の調整のみでは所望の効果に対し不充分な性能しか得られない場合にも、充分な性能を有する位相子を実現できる。
【0059】
図6は、本発明における他の例の位相子の構成と、位相子に波長λの直線偏光が往復するとき、偏光状態に変化のない様子を示す断面図である。図7は、図6に示したものと同じ位相子に直線偏光で入射した波長λの光が円偏光として出射し、円偏光で入射した光は偏光方向を90度変えて直線偏光となって回折されて出射する様子を示す断面図である。透明基板504に積層した上述の複屈折板501、502よりなる2波長用位相子511を、偏光選択性の回折機能が付加された透明基板503に充填接着剤506で固定した構成である(以下、まとめて位相子512と呼ぶ)。
【0060】
上記偏光選択性の回折機能は、例えば以下のようにして回折素子506を透明基板503上に形成することで実現できる。透明基板503上に所望の配向処理を施した後、複屈折材料である液晶モノマーの溶液を塗布し、光重合用の光源光を照射することで液晶モノマーを高分子化して高分子液晶とする。この高分子液晶に対して、フォトリソグラフィ、エッチングなどの技術により、断面形状が矩形、鋸歯、階段などの周期格子を加工することで、回折素子506を形成する。
この格子間を光学的に等方性の接着剤505によって充填することにより、偏光選択性の回折機能を実現できる。
【0061】
断面形状は、回折させたい光の波長と目標回折効率、高分子液晶の常光・異常光屈折率と充填接着剤の屈折率との差から決定される。充填接着剤505としては、例えば、常光で入射した直線偏光は直進透過し、異常光で入射した直線偏光は回折する回折機能が要求される場合、硬化後の接着剤の屈折率が、高分子液晶の常光屈折率と概ね等しいものを選ぶことは、所望の回折機能を発現できるため好ましい。逆に、充填剤として、硬化後の屈折率が高分子液晶の異常光屈折率と概ね等しいものを選ぶと、異常光として入射した直線偏光は直進透過し、常光で入射した直線偏光は回折する機能を備えさせることできる。
【0062】
このように構成された位相子512に対して、常光として入射した波長λの直線偏光は、往路・復路ともに偏光選択性の回折素子506を回折せず直進透過し、同じく常光として入射した波長λの直線偏光は、往路においては回折素子506で回折することなく位相子502を透過して円偏光となり、復路では異常光となって回折素子506に入射するため、回折して進む。したがって、位相子512は、波長選択性回折格子の機能を有する。ここで、2波長用位相子511と偏光選択性回折格子506とを一体化せず、直列に並べて用いても得られる効果は同じである。
【0063】
波長選択性の回折機能を有する位相子512において、前述の2波長用位相子511を用いることにより、2つの波長の光に対し精度よく偏光状態を制御できるため、波長選択性の回折格子としてより安定した性能を得ることができる。
【0064】
【実施例】
「例1」
本例は、図5に示した、波長660nmと785nmに対する2波長用位相子410を搭載した3波長互換光ヘッド装置の具体例である。
【0065】
まず、2波長用位相子410を、以下のようにして作製した。
屈折率がおよそ1.5の透明基板403に、ポリカーボネートを延伸させて複屈折性を発現させた複屈折板401である有機物薄膜を、ポリエステル系のUV硬化型接着剤により固定した(図4参照)。この有機物薄膜のリタデーション値は、DVD系光ディスク用の660nm波長帯の光に対して660nmであり、CD系光ディスク用の785nm波長帯の光に対しては627(=660×0.95)nmであった。
【0066】
続いて、透明基板403と同じ材質の透明基板404に、配向膜用のポリイミドを塗布し、所望の配向処理を施した後、複屈折材料である液晶モノマーの溶液を塗布し、光重合用のUV光を照射することで液晶モノマーを高分子化して高分子液晶膜として複屈折板402とした。この高分子液晶膜のリタデーション値Rは、DVD系光ディスク用の660nm波長帯の光に対して1230nmであり、CD系光ディスク用の785nm波長帯の光に対しては1257(=660×2×0.95)であった。
【0067】
さらに、有機物薄膜と高分子液晶膜とを、ポリエステル系のUV硬化型接着剤を用いて接着することにより、図4に示すような位相子410を作製した。このとき、複屈折板401(有機物薄膜)の光学軸に対する複屈折板402(高分子液晶膜)の光学軸の角度が32°となるように固定した。
【0068】
上述のように作製された位相子410を搭載する、図5に示す光ヘッド装置において、半導体レーザ411A、411B、411Cは、おのおのCD系用の785nm波長帯、DVD系の660nm波長帯、次世代光ディスク用の410nm波長帯の光を発振するレーザであり、それぞれの直線偏光の偏光方向が平行になるように設置されている。位相子410は、660nm波長帯、785nm波長帯の2つの直線偏光が共有する光路中の偏光ビームスプリッタ413と414の間に、複屈折板401の側から両波長帯の光が垂直に入射するよう配置した。
このとき、複屈折板401の光学軸が、直線偏光の偏光方向に対して18°の角度を成すよう調整することで、785nm波長帯の直線偏光を、直線性をほぼ維持したまま偏光方向をほぼ90°回転させることができた。
【0069】
または、位相子410を、複屈折板402の側から光が入射するよう配置し、複屈折板402の光学軸が直線偏光の偏光方向に対し−50°の角度をなすように調整しても、同様の効果を得ることができた。ここで、角度は入射光を発振する半導体レーザ側から位相子を見て、左周りを正、右周りを負とした。
【0070】
本例の光ヘッド装置では、光学軸の異なる2枚の複屈折板から構成される位相子410を搭載することにより、より安定した光ディスクの情報の記録・再生を行うことができた。また、波長選択性ビームスプリッタの使用を1個に抑え偏光ビームスプリッタを用いることができ、さらに、2つの波長の光に対し1つの光検出器を用いることができるため、装置を小型化し、コストを削減できた。
【0071】
【発明の効果】
本発明の光ヘッド装置に搭載する位相子は、入射する2つ以上の異なる波長の光に対し、1つの波長の光については偏光状態をほとんど変化させることなく透過し、他の波長の光については偏光状態を変化させて透過させることができる。
例えば、位相子に2つの異なる波長の直線偏光が入射する場合、一方の光についてのみ偏光方向を回転させて出射できる。または、一方の光についてのみ円偏光に変化させて出射できる。特に、所望する効果に対し、2つの複屈折板の交差する光学軸を適切に選ぶことにより、位相子に用いる複屈折板の有するリタデーション値の調整のみでは充分な特性が得られない場合でも、充分な特性を有する位相子を実現できる。
【0072】
また、本発明の3波長互換光ヘッド装置においては、660nm波長帯の光はほぼそのまま透過し、785nm波長帯の直線偏光の偏光方向を90°回転させて透過する位相子を搭載することにより、光出力の損失を抑え、安定した情報の記録と再生を行うことができる。
【図面の簡単な説明】
【図1】本発明の光ヘッド装置の構成の一例を示す概念的断面図。
【図2】本発明の光ヘッド装置における位相子の構成例を示す断面図で、(a)は2枚の複屈折板201と202のみが積層されているもの、(b)は積層された2枚の複屈折板201と202の片側に透明基板213を貼り合わせたもの、(c)は2枚の透明基板203と204によって複屈折板201と202を挟んだもの。
【図3】本発明の光ヘッド装置における位相子を構成する2つの複屈折板の光学軸方向を示す概念図。
【図4】本発明における位相子に2つの異なる波長λ、λの直線偏光が透過するときの偏光状態の変化の様子を示す断面図。
【図5】本発明の光ヘッド装置の構成の他の例を示す概念的断面図。
【図6】本発明における他の例の位相子に波長λの直線偏光が往復するとき、偏光状態の変化のない様子を示す断面図。
【図7】図6に示す位相子に波長λの直線偏光が往復するとき生じる偏光状態の変化(直線偏光と円偏光)の様子を示す断面図。
【符号の説明】
101、102、201、202、401、402、501、502:複屈折板103:位相子
104:光源ユニット、105、419:対物レンズ
106、420:光ディスク
203、204、403、404、503、504:透明基板
410、511:2波長用位相子
411A、411B、411C:半導体レーザ
412:1/2λ板
413、414、416:偏光ビームスプリッタ
415:広帯域λ/4板
417:410nm波長帯用1/4λ板、
418:波長選択性ビームスプリッタ
421、422:光検出器、
505:充填接着剤、
506:回折素子
512:位相子[0001]
BACKGROUND OF THE INVENTION
The present invention relates to an optical head device equipped with a phaser that controls the polarization state of light of different wavelengths emitted from a light source.
[0002]
[Prior art]
In an optical head device that records and reproduces information on an optical recording medium such as an optical disk such as a CD or DVD and a magneto-optical disk, light emitted from a semiconductor laser that is a light source is condensed on the optical recording medium by an objective lens, It is reflected by the optical recording medium and becomes return light. This return light is guided to a light receiving element which is a photodetector using a beam splitter, and information on the optical recording medium is converted into an electric signal.
[0003]
In order to record and / or reproduce information of CDs and DVDs, which are optical recording media of different standards, using the same optical head device, compatible optical head devices for CD and DVD have been commercialized. A semiconductor laser with a wavelength of 785 nm is used for CD, and a semiconductor laser with a wavelength of 660 nm is used for DVD.
[0004]
In addition, a next-generation DVD optical head device has been proposed that uses a blue-violet semiconductor laser in the 410 nm wavelength band to improve the recording density by three times or more compared to a red semiconductor laser in the 660 nm wavelength band that has been conventionally used. Since the compatible optical head device for CD and DVD is widespread, a next-generation optical head device having compatibility with three wavelength bands, which can record and / or reproduce DVDs and CDs in particular, has been proposed. .
[0005]
In the next-generation optical head device having compatibility with the three wavelength bands, 660 nm (λ 1 ) Linearly polarized light in the wavelength band is transmitted without changing the polarization state, and 785 nm (λ 2 ) For linearly polarized light in the wavelength band, a phase shifter that rotates the plane of polarization by 90 ° and transmits it is desired.
[0006]
In the conventional technique, for example, 660 nm (λ 1 ) M for linearly polarized light in the wavelength band 1 λ 1 (M 1 Is a natural number), and at the same time, 785 nm (λ 2 For linearly polarized light in the wavelength band (m 2 -1/2) λ 2 (M 2 Can be considered as one birefringent plate whose retardation value is adjusted so as to generate a phase difference of (natural number). The phase shifter realized as described above has wavelength dispersion in the retardation value of the material. Therefore, when wavelength dispersion is not desired, it is difficult to obtain the expected effect for light in both wavelength bands. There was a problem.
[0007]
For example, as a general organic birefringent material, the ratio R (785 nm) / R (660 nm) of the retardation value R (785 nm) in the 785 nm wavelength band to the retardation value R (660 nm) in the 660 nm wavelength band is about 0.95. Think about what is. 1980 nm (= 660 × 3, m for light in the 660 nm wavelength band 1 = 3) When the retardation value is 5/5 times the wavelength (m 2 Although the retardation value is close to 3), the light in the 785 nm wavelength band incident as linearly polarized light becomes elliptically polarized light having an ellipticity of about 0.34 after passing through the phase shifter, and linearly polarized light cannot be obtained.
[0008]
Further, there are cases where desired characteristics can be obtained by using higher order, that is, a phase shifter such as 7λ / 2 or 9λ / 2 instead of 5λ / 2. Occur. That is, the wavelength dependency of the effect of the phase retarder, such as the phase difference given to the polarization, increases, and it becomes difficult to maintain the accuracy of the retardation value of the phase retarder in the manufacturing process, resulting in a decrease in production yield and phase. The problem is that the cost of the child increases.
[0009]
[Patent Document 1]
Japanese Patent Laid-Open No. 2002-14228
[0010]
[Problems to be solved by the invention]
The object of the present invention is to eliminate the above-mentioned problems of the prior art.
[0011]
[Means for Solving the Problems]
The present invention detects a plurality of light sources that respectively emit light of at least two different wavelengths, an objective lens that condenses the light emitted from the light sources onto an optical disc, and the light that is collected and reflected by the optical disc In the optical head device provided with the photodetector for the optical head, the optical head device includes two birefringent plates having different optical axis directions in an optical path shared by at least two lights between the plurality of light sources and the optical disk. A phase shifter is provided, and the phase difference for light of one wavelength of the two birefringent plates is a natural number multiple of the one wavelength, and the phase shifter is in a polarization state with respect to the light of the one wavelength. An optical head device is provided in which a phase shifter changes a polarization state with respect to light having a wavelength different from the one wavelength without changing the wavelength.
[0012]
The wavelength of light emitted from the light source and transmitted through the phase shifter is λ 1 And λ 2 And the wavelength λ 1 The light transmitted through the phase shifter does not change the polarization state, while the wavelength λ incident on the phase shifter as linearly polarized light 2 Is transmitted through the phaser as linearly polarized light, and the polarization direction of the transmitted light forms an angle of φ with respect to the polarization direction of incident light, and two birefringent plates constituting the phaser Wavelength λ 2 Phase difference R of each birefringent plate for the light of 1 And R 2 Are equal, and the optical axis direction of each of the two birefringent plates is the wavelength λ 2 Direction of incident light and θ 1 And θ 2 The angle of θ 1 And θ 2 The above-mentioned optical head device in which the sum is φ is provided.
[0013]
The wavelength λ incident on the phase shifter as linearly polarized light 2 The light exits the phase shifter as linearly polarized light, and the polarization direction of the emitted light forms an angle of 90 ° with respect to the polarization direction of the incident light, and the wavelength λ 1 The phase difference of each of the two birefringent plates with respect to 1 And 2λ 1 And the phase difference is 2λ 1 The optical axis direction of the birefringent plate is the wavelength λ 1 The optical head device is provided with an angle of 35 to 55 ° with respect to the polarization direction of the incident light.
[0014]
The wavelength λ incident on the phase shifter as linearly polarized light 2 Light exits the phase shifter as circularly polarized light and has a wavelength λ 1 The phase difference of each of the two birefringent plates is equal to λ 1 And the optical axis direction of the birefringent plate on the light exit side is the wavelength λ 1 The optical head device is provided with an angle of 40 to 60 ° with respect to the polarization direction of the incident light.
[0015]
Further, two wavelengths λ incident on the phase shifter 1 And λ 2 The light of 660 nm and 785 nm, respectively, and the ratio of the retardation values of the two birefringent plates to the light of 660 nm and 785 nm are both from 0.9 to 0.99. An optical head device having the above value is provided.
[0016]
Furthermore, the optical head device is provided in which the two birefringent plates are bonded and integrated.
[0017]
DETAILED DESCRIPTION OF THE INVENTION
An optical head device of the present invention includes a plurality of light sources that respectively emit at least two light beams having different wavelengths, an objective lens that condenses light emitted from the light sources onto an optical disc, and is collected and reflected by the optical disc An optical head device comprising a photodetector for detecting light, wherein two optical axes having different optical axis directions are shared in an optical path shared by at least two lights between a plurality of light sources and an optical disk. This is an optical head device in which a phaser composed of a refracting plate is installed.
[0018]
The phase difference with respect to the light of one wavelength of the two birefringent plates constituting the above phaser is a natural number multiple of the one wavelength, and the phaser has a polarization state with respect to the light of the one wavelength. Do not change. That is, the phase difference of the two birefringent plates with respect to the light of one wavelength is a natural number multiple of the one wavelength. The phase shifter is an optical head device that changes the polarization state with respect to light of another wavelength different from the one wavelength.
[0019]
The optical head device of the present invention will be described below with reference to the drawings.
FIG. 1 is a conceptual cross-sectional view showing an example of the basic configuration of the optical head device of the present invention. A phase shifter 101 that controls the polarization state of transmitted light emits light of at least two or more different wavelengths. It is placed between the multi-wavelength light source unit 104 and the objective lens 105.
[0020]
Lights of at least two or more different wavelengths emitted from the light source unit 104 are transmitted through the phase shifter 103, are condensed on the optical disk 106 through the objective lens 105, and then are reflected by the optical disk 106 to become return light. Then head to the photodetector system. Although the photodetector system is omitted in FIG. 1, the actual installation position may be on the multi-wavelength light source unit 104 side or the optical disk 106 side as viewed from the phase shifter 103. Good. In the former case, the light emitted from the light source unit 104 is transmitted through the phase shifter 103 both in the forward path toward the optical disk and in the return path returning from the optical disk. 103 is transmitted. Further, the phase shifter 103 may be installed at a position where only return light reflected from the optical disk and returning to the photodetector system is transmitted.
[0021]
The phase difference between the two birefringent plates 101 and 102 constituting the phase shifter 103 mounted on the optical head device of the present invention does not change the polarization state for light of one wavelength, but changes to light of other wavelengths. On the other hand, it is designed to change its polarization state. Therefore, the light of one wavelength passes through the phase shifter 103 without changing its polarization state, and the light of another wavelength different from the one wavelength passes through the phase shifter 101 with the polarization state changed. Specifically, the phase difference between the two birefringent plates is the wavelength λ. 1 M for light 1 λ 1 , M 2 λ 1 (M 1 , M 2 Is a natural number) and the wavelength λ 1 For most light beams, the polarization state is hardly changed. 1 The polarization state can be changed only with respect to other light. M 1 , M 2 Takes values up to 1 or 2, up to 3.
[0022]
Hereinafter, for the phaser mounted in the optical head device of the present invention, the light transmitted through the phaser has a wavelength λ 1 , Λ 2 However, a light source unit that emits light of three or more different wavelengths may be placed in the optical head device, and light of three or more different wavelengths is transmitted through the phase shifter. Of course, you can use it. When light of three different wavelengths is transmitted, it is possible to transmit one wavelength without changing the polarization state, and to transmit the phase shifter while changing the polarization state of the other two wavelengths of light. Since the optical head device of the present invention is compatible with CDs, DVDs, and next-generation optical discs, the wavelengths include a 785 nm wavelength band, a 660 nm wavelength band, a 410 nm wavelength band, and the like. Here, the wavelength band means a width of ± 10 nm. For example, the wavelength of the 660 nm wavelength band means a wavelength from 650 to 670 nm.
[0023]
2A and 2B are cross-sectional views showing a configuration example of a phase shifter in the optical head device of the present invention. FIG. 2A is a view in which only two birefringent plates 201 and 202 are stacked, and FIG. The transparent substrate 213 is bonded to one side of the two birefringent plates 201 and 202, and (c) shows the birefringent plates 201 and 202 sandwiched between the two transparent substrates 203 and 204. There may or may not be an adhesive layer or an adhesive layer between the birefringent plate and the birefringent plate, or between the birefringent plate and the transparent substrate. Moreover, the structure with which the birefringent plate of 2 sheets was integrated, or the structure which is not may be sufficient. However, it is preferable for handling that two birefringent plates are bonded and integrated.
[0024]
As the birefringent plate constituting the retarder, a birefringent film having an optical axis aligned in the stretching direction by stretching an organic material such as polycarbonate, acrylic, or polyester can be used. In addition, a polymer liquid crystal that has been subjected to a desired alignment treatment can be used, or the substrate itself such as a quartz substrate or lithium niobate may have birefringence.
[0025]
It is preferable to use an optically isotropic medium such as a glass substrate or a quartz glass substrate as the transparent substrates 203 and 204 shown in FIG.
Wavelength λ of two birefringent plates 1 The phase difference for light is m 1 , M 2 M as a natural number in order from the incident side of light (laser light). 1 λ 1 , M 2 λ 1 And wavelength λ 2 The phase difference for is n 1 , N 2 Each as a non-integer positive number 1 = N 1 λ 2 , R 2 = N 2 λ 2 It is. At this time, the phase difference of the birefringent plate (with respect to the wavelength λ 1 Wavelength λ for light 2 The ratio of the light retardation value of k 1 , K 2 Is expressed as n for each birefringent plate 1 = K 1 × m 1 λ 1 / Λ 2 , N 2 = K 2 × m 2 λ 1 / Λ 2 It becomes. In addition, the direction of the optical axis (fast axis) of the two birefringent plates intersecting each other has a wavelength λ 2 Θ in the order in which the laser beams are incident on the basis of the polarization direction of the incident light. 1 , Θ 2 (-90 ° ≦ θ 1 , Θ 2 ≦ 90 °). In FIG. 3, the conceptual diagram which shows the optical axis direction of the two birefringent plates which comprise a phase element is shown.
[0026]
The phase shifter thus configured has a wavelength λ 1 The retardation value of the two birefringent plates is λ 1 The polarization state is not changed because it is an integral multiple of 2 In general, for light of λ 2 ≠ k i λ 1 Since (i = 1, 2), the polarization state is changed.
[0027]
Further, as described above, the wavelength of the light emitted from the light source and transmitted through the phase shifter is λ 1 And λ 2 And the wavelength λ 1 The light transmitted through the phase shifter does not change its polarization state, whereas the wavelength λ incident on the phase shifter as linearly polarized light 2 The light passes through the phase shifter as linearly polarized light, and the polarization direction of the transmitted light forms an angle φ with respect to the polarization direction of the incident light. And the wavelength λ of the two birefringent plates constituting the phase shifter 2 Phase difference R of each birefringent plate for the light of 1 And R 2 Are equal. Also, the optical axis direction of each of the two birefringent plates has a wavelength λ 2 Direction of incident light and θ 1 And θ 2 The angle of θ 1 And θ 2 Preferably, the optical head device has a sum of φ.
[0028]
That is, the wavelength λ of the two birefringent plates of the above phaser 2 Phase difference R with respect to 1 And R 2 Are adjusted to be approximately equal, θ 1 According to (Equation 1) 2 A value (θ determined from a phase difference R with respect to and an angle φ 1c ) And select θ 2 As θ 2c = Φ-θ 1c The wavelength λ incident with linearly polarized light 2 It was found that the polarization direction at the time of emission of the light can be rotated by an angle φ with respect to the incident polarization direction.
[0029]
[Expression 1]
Figure 2004296041
[0030]
Therefore, wavelength λ 1 The wavelength λ of the incident light is linearly polarized without changing the polarization state of the light. 2 Of the two birefringent plates constituting the phase shifter, the wavelength λ 2 Phase difference R with respect to 1 And R 2 Are approximately equal and the optical axis direction θ 1 , Θ 2 Is the above-mentioned θ 1c , Θ 2c Is preferable in order to obtain the best expected effect, but θ with respect to the retardation value R of the birefringent plate 1 = Θ 1c ± 10 °, θ 2 = Θ 1 + (Φ-2θ 1c ) 2 The effect of rotating the polarization direction of the light by the angle φ can be obtained.
[0031]
For example, wavelength λ 1 Is 660 nm and wavelength λ 2 Is 785 nm and m 1 = M 2 = 1, k 1 = K 2 When a birefringent plate with 0.95 is selected, (θ 1 , Θ 2 ) = (23 °, 6 °) λ 2 The direction of polarization of the light rotates approximately 29 ° and the ellipticity is 0.004. k 1 = K 2 = 0.93 for a birefringent plate (θ 1 , Θ 2 ) = (19 °, 10 °), it is possible to obtain outgoing light with an ellipticity of 0.002 rotated in a polarization direction of approximately 29 °. That is, in either case, θ 1 + Θ 2 = 29 ° coincides with the rotation angle 29 °, and is almost a straight line.
Since the above-described phase shifter can be prepared by adjusting the optical axis according to the retardation value of the birefringent plate to be used, a phase shifter having a desired effect can be easily realized using an existing birefringent plate.
[0032]
Hereinafter, for the two wavelengths transmitted through the phase shifter, the wavelength λ 1 Is light in the wavelength band of 660 nm, and the wavelength λ 2 Is assumed to be light in the 785 nm wavelength band.
The wavelength λ incident on the phase shifter as linearly polarized light 2 The light exits the phase shifter as linearly polarized light, and the polarization direction of the emitted light forms an angle of 90 ° with respect to the polarization direction of the incident light. And wavelength λ 1 The phase difference of each of the two birefringent plates for the light of λ is λ 1 And 2λ 1 And the phase difference is 2λ 1 The optical axis direction of the birefringent plate is the wavelength λ 1 Preferably, the optical head device forms an angle of 35 to 55 ° with respect to the polarization direction of the incident light.
[0033]
That is, the above phaser has an incident wavelength λ 2 Can be emitted as a substantially linearly polarized light whose polarization direction is rotated by 90 ° with respect to the incident polarization direction. 2 It can function as a 1 / 2λ plate with respect to the light. For the phase difference between the two birefringent plates, the wavelength λ 1 For light of λ in order from the light incident side 11 (M 1 = 1, m 2 = 2). Λ of birefringent plate 1 Λ for 2 K representing the chromatic dispersion of 1 , K 2 Are selected to be between 0.9 and 0.99. At this time, wavelength λ 2 The phase difference with respect to the light is R in order. 1 = K 1 × λ 1 , R 2 = 2 × k 2 × λ 1 (≒ 2R 1 ).
[0034]
Furthermore, the phase difference is 2λ 1 The optical axis (fast axis) θ of the second birefringent plate 2 For λ 2 Designed to make an angle of 35 to 55 ° with respect to the incident polarization direction of 1 Is the value θ determined from (Equation 2) 1c By selecting a range of ± 10 ° with respect to the wavelength λ 2 The polarization direction can be rotated by 90 ° while maintaining linearity. Furthermore, θ 2 Is a value determined from (Equation 3), and θ 1 For the above θ 1c On the other hand, increasing the accuracy to ± 5 ° and ± 3 ° is preferable because the linearity is better maintained and the rotation angle approaches 90 °.
[0035]
[Expression 2]
Figure 2004296041
[0036]
[Equation 3]
Figure 2004296041
[0037]
The phase shifter thus configured has a wavelength λ 1 The polarization state of the light of the 2 With respect to the linearly polarized light, only the polarization direction is rotated by approximately 90 ° while the linearity is substantially maintained.
[0038]
For example, k as two birefringent plates 1 = K 2 = 0.95 when the same material is used (wavelength λ of the birefringent plate constituting the above phaser) 2 The phase difference with respect to the light is 627 nm and 1257 nm in the order of incidence of light, and the set in the optical axis direction is almost (θ 1 , Θ 2 ) = (18 °, 50 °) or (72 °, 40 °), the above-mentioned effect is best exhibited, and the wavelength λ is incident as linearly polarized light. 2 Is emitted as substantially linearly polarized light having an ellipticity of about 0.002 and having a polarization direction rotated by about 89.4 °.
[0039]
When one birefringent plate having the same wavelength dispersion (k = 0.95) is used, for example, the wavelength λ 1 3λ for light 1 For a birefringent plate having a phase difference of 2 The ellipticity of the light after passing through the phase shifter is about 0.33, and the linearity is not well maintained. In the phaser composed of the two birefringent plates, k 1 = 0.93, k 2 When two types of materials of 0.96 are used, the almost optimal set in the optical axis direction is (θ 1 , Θ 2 ) = (20.5 °, 51.5 °) or (69.5 °, 38.5 °), the polarization direction is rotated by about 89.6 °, and the ellipticity is about 0.003. Is obtained as outgoing light.
[0040]
Thus, by adjusting the optical axes of the two birefringent plates, the adjustment of the retardation value of the birefringent plate having wavelength dispersion alone is sufficient even if the performance is insufficient for the desired effect. It is possible to realize a phaser having excellent performance.
[0041]
Further, in the above-described phase shifter according to the present invention, there is no distinction between the front and back as long as the polarization direction of the incident linearly polarized light is the same. For example, the phase shifter of FIG. The same effect can be obtained even if light is incident.
[0042]
FIG. 5 is a conceptual cross-sectional view showing another example of the configuration of the optical head device of the present invention. That is, the above-mentioned light of 660 nm wavelength band does not change the polarization state, and light of 785 nm wavelength band incident as linearly polarized light is mounted with a two-wavelength phaser that emits by rotating the polarization direction by 90 °. It is an example of a structure of a compatible optical head apparatus. The two-wavelength phase shifter has a configuration as shown in FIG. 4, for example. Here, FIG. 4 shows two different wavelengths λ for the phaser in the present invention. 1 , Λ 2 It is sectional drawing which shows the mode of a change of a polarization state when the linearly polarized light of this transmits.
[0043]
As light sources of three different wavelengths, semiconductor lasers 411A, 411B, and 411C that emit light in the 785 nm wavelength band, 660 nm wavelength band, and 410 nm wavelength band, and the above-described two-wavelength phaser 410 in the 660 nm wavelength band and the 785 nm wavelength band are provided. I have.
[0044]
The 785 nm wavelength linearly polarized light emitted from the semiconductor laser 411A (parallel to the paper surface in FIG. 4) is transmitted through the ½λ plate 412 and rotated by 90 ° in the polarization direction, and then reflected by the polarization beam splitter 413 to have two wavelengths. The light is transmitted through the phase retarder 410 and the polarization direction is further rotated by 90 ° to be linearly polarized again parallel to the paper surface, and transmitted through the polarization beam splitter 414. A wavelength-selective beam splitter 418 that passes through the broadband λλ plate 415 for the 660 nm wavelength band and the 785 nm wavelength band to become circularly polarized light, reflects light in the 410 nm wavelength band, and transmits light in the 785 nm wavelength band and 660 wavelength band. Then, the light is condensed on the information recording surface of the optical disc 420 by the objective lens 419.
[0045]
The return light reflected from the optical disk 420 passes through the objective lens 419, the wavelength selective beam splitter 418, the broadband λλ plate 415 for 660 nm and 785 nm, and becomes linearly polarized light whose polarization direction is orthogonal to the forward light. The light is reflected by the polarization beam splitter 414 and condensed on the photodetector 421.
[0046]
The linearly polarized light in the 660 nm wavelength band emitted from the semiconductor laser 411B (parallel to the paper surface in FIG. 4) passes through the polarizing beam splitter 413, the two-wavelength phaser 410, and the polarizing beam splitter 414 without changing the polarization state. The light passes through the broadband ¼λ plate 415 for 660 nm and 785 nm, the wavelength selective beam splitter 418, and the objective lens 419, and is condensed on the information recording surface of the optical disc 420.
[0047]
The return light reflected from the optical disc 420 passes through the objective lens 419, the wavelength selective beam splitter 418, the broadband λλ plate 415 for 660 nm and 785 nm, and becomes linearly polarized light whose polarization direction is orthogonal to the forward light, and is polarized light. The light is reflected by the splitter 414 and condensed on the photodetector 421.
[0048]
On the other hand, the linearly polarized light in the 410 nm wavelength band emitted from the semiconductor laser 411C (parallel to the paper surface in FIG. 4) passes through the polarizing beam splitter 416 and the 1 / 4λ plate 417 for the 410 nm wavelength band and becomes circularly polarized light. The light is reflected by the selective beam splitter 418 and travels by changing the traveling direction by 90 °, passes through the objective lens 419, and is condensed on the information recording surface of the optical disc 420.
[0049]
The return light reflected from the optical disk 420 is transmitted through the objective lens 419, the wavelength selective beam splitter 418, and the 1 / 4λ plate 417 for the 410 nm wavelength band, and becomes linearly polarized light whose polarization direction is orthogonal to the forward light, and the polarization beam splitter. The light is reflected at 416 and condensed on the photodetector 422.
[0050]
In the optical head device of the present invention, by using the two-wavelength phase shifter 410, the polarization beam splitter is used with only one wavelength selective beam splitter being used. Reflection can be used and light loss can be suppressed. Further, when recording and / or reproducing information on the optical recording medium (optical disk), the outgoing light and the backward light are made orthogonal to the polarization direction of the light emitted from the semiconductor laser of each wavelength band and the return light from the optical recording medium. Unnecessary interference between the two can be prevented.
[0051]
In particular, since the linearity of polarization and the angle of the polarization direction can be accurately controlled by using the two-wavelength phase shifter 410, the above advantages can be used more effectively, and thus more stable recording and reproduction of information. A three-wavelength compatible optical head device capable of performing In addition, the polarization beam splitter is easier to design and manufacture and has a more stable performance than a wavelength selective one, leading to cost reduction. In addition, since one photodetector can be used for light in the 660 nm wavelength band and light in the 785 nm wavelength band, the number of components of the optical head device can be reduced, which is advantageous for cost reduction and size reduction of the device. is there.
[0052]
The wavelength λ incident on the phase shifter as linearly polarized light 2 Light exits as a circularly polarized wave with a wavelength λ 1 The phase difference of each of the two birefringent plates is equal to λ 1 It is. Also, the optical axis direction of the birefringent plate on the light exit side is the wavelength λ 1 It is preferable that the optical head device has an angle of 40 to 60 ° with respect to the polarization direction of the incident light.
[0053]
That is, the phaser in the present invention has an incident wavelength λ 2 Can be emitted as circularly polarized light, that is, λ 2 It can function as a 1 / 4λ plate for the light of. For the phase difference between the two birefringent plates, the wavelength λ 1 For both light 1 (M 1 = 1, m 2 = 1). Λ of birefringent plate 1 Λ for 2 K representing the chromatic dispersion of 1 , K 2 Are selected to be between 0.9 and 0.99. At this time, wavelength λ 2 The phase difference with respect to the light is R in order. 1 = K 1 × λ 1 , R 2 = K 2 × λ 1 (≒ R 1 ).
[0054]
Further, the optical axis θ of the second birefringent plate on the light exit side 2 For λ 2 Designed to form an angle of 40 to 60 ° with respect to the incident polarization direction of 1 Is the value θ determined from (Equation 4) 1 The wavelength λ incident with linearly polarized light is selected by selecting a range of 10 ° around c. 2 Can be made almost circularly polarized light. Furthermore, θ 2 Is preferably selected to take the vicinity of the value determined from (Equation 5), because the effect of converting linearly polarized light into circularly polarized light can be maximized.
[0055]
[Expression 4]
Figure 2004296041
[0056]
[Equation 5]
Figure 2004296041
[0057]
The phase shifter thus configured has a wavelength λ 1 The polarization state of the light of the 2 The linearly polarized light is changed into circularly polarized light and transmitted.
For example, k birefringence plates 1 = K 2 = 0.95 when the same material is used, approximately (θ 1 , Θ 2 ) = (9 °, 51 °) or (81 °, 39 °), the above-mentioned effect is best exhibited, and the wavelength λ incident as linearly polarized light 2 After passing through the phase shifter, the light becomes an approximately circle with an ellipticity of approximately 0.99. In the case of one birefringent plate having the same wavelength dispersion (0.95), an ellipticity of only about 0.7 can be obtained, which is not preferable. On the other hand, k 1 = 0.93, k 2 = 0.96, the optimal optical axis set is (θ 1 , Θ 2 ) = (10.5 °, 53.5 °) or (79.5 °, 36.5 °). At this time, the ellipticity is approximately 0.99.
[0058]
In this way, by adjusting the optical axes of the two birefringent plates, the adjustment of the retardation value of the birefringent plate having wavelength dispersion alone is sufficient even when the performance is insufficient for the desired effect. It is possible to realize a phaser having excellent performance.
[0059]
FIG. 6 shows the structure of another example of the phase shifter according to the present invention and the wavelength λ in the phase shifter. 1 It is sectional drawing which shows a mode that a polarization state does not change, when linearly polarized light of this is reciprocating. FIG. 7 shows the wavelength λ incident as linearly polarized light on the same phaser as shown in FIG. 2 FIG. 5 is a cross-sectional view showing a state in which the light emitted as circularly polarized light is incident on the circularly polarized light and is diffracted and emitted as linearly polarized light by changing the polarization direction by 90 degrees. A two-wavelength phase shifter 511 composed of the above-described birefringent plates 501 and 502 laminated on a transparent substrate 504 is fixed to a transparent substrate 503 to which a polarization-selective diffraction function is added with a filling adhesive 506 (hereinafter, referred to as “a polarizing plate”). , Collectively referred to as a phaser 512).
[0060]
The polarization selective diffraction function can be realized, for example, by forming the diffraction element 506 on the transparent substrate 503 as follows. After performing a desired alignment treatment on the transparent substrate 503, a liquid crystal monomer solution that is a birefringent material is applied, and the liquid crystal monomer is polymerized by irradiating light source light for photopolymerization to form a polymer liquid crystal. . The diffraction element 506 is formed on the polymer liquid crystal by processing a periodic grating having a cross-sectional shape of a rectangle, sawtooth, staircase, or the like by a technique such as photolithography or etching.
By filling the space between the gratings with an optically isotropic adhesive 505, a polarization selective diffraction function can be realized.
[0061]
The cross-sectional shape is determined from the difference between the wavelength of the light to be diffracted and the target diffraction efficiency, the ordinary light / abnormal light refractive index of the polymer liquid crystal, and the refractive index of the filling adhesive. As the filling adhesive 505, for example, when a diffraction function is required to linearly transmit linearly polarized light that is incident on ordinary light and diffracts linearly polarized light that is incident on extraordinary light, the refractive index of the cured adhesive has a high molecular weight. It is preferable to select a liquid crystal whose refractive index is approximately equal to the ordinary light refractive index because a desired diffraction function can be exhibited. On the other hand, if a filler having a refractive index after curing that is approximately equal to the extraordinary refractive index of the polymer liquid crystal is selected, the linearly polarized light incident as extraordinary light is transmitted straight, and the linearly polarized light incident as ordinary light is diffracted Can be equipped with functions.
[0062]
The wavelength λ incident as ordinary light on the thus configured phase shifter 512 1 The linearly polarized light of λ is transmitted through the polarization selective diffraction element 506 without being diffracted in both the forward path and the backward path, and is also incident on the wavelength λ as normal light. 2 The linearly polarized light passes through the phase shifter 502 without being diffracted by the diffractive element 506 in the forward path and becomes circularly polarized light, and enters the diffractive element 506 as extraordinary light in the return path. Therefore, the phase shifter 512 has a function of a wavelength selective diffraction grating. Here, the same effect can be obtained even if the two-wavelength phase shifter 511 and the polarization selective diffraction grating 506 are not integrated but arranged in series.
[0063]
In the phase shifter 512 having a wavelength-selective diffraction function, the polarization state can be accurately controlled with respect to light of two wavelengths by using the above-described two-wavelength phase shifter 511. Stable performance can be obtained.
[0064]
【Example】
"Example 1"
This example is a specific example of the three-wavelength compatible optical head device equipped with the two-wavelength phase shifter 410 for wavelengths 660 nm and 785 nm shown in FIG.
[0065]
First, the two-wavelength phase shifter 410 was produced as follows.
An organic thin film, which is a birefringent plate 401 made of polycarbonate stretched to develop birefringence, is fixed to a transparent substrate 403 having a refractive index of about 1.5 with a polyester UV curable adhesive (see FIG. 4). ). The retardation value of this organic thin film is 660 nm for light in the 660 nm wavelength band for DVD optical disks, and 627 (= 660 × 0.95) nm for light in the 785 nm wavelength band for CD optical disks. there were.
[0066]
Subsequently, a polyimide for alignment film is applied to a transparent substrate 404 made of the same material as that of the transparent substrate 403, and after a desired alignment treatment, a solution of a liquid crystal monomer that is a birefringent material is applied. The birefringent plate 402 was formed as a polymer liquid crystal film by polymerizing the liquid crystal monomer by irradiating UV light. The retardation value R of this polymer liquid crystal film is 1230 nm for light in the 660 nm wavelength band for DVD optical disks, and 1257 (= 660 × 2 × 0 for light in the 785 nm wavelength band for CD optical disks. .95).
[0067]
Furthermore, the organic substance thin film and the polymer liquid crystal film were bonded using a polyester-based UV curable adhesive to produce a phaser 410 as shown in FIG. At this time, the angle of the optical axis of the birefringent plate 402 (polymer liquid crystal film) with respect to the optical axis of the birefringent plate 401 (organic thin film) was fixed to 32 °.
[0068]
In the optical head device shown in FIG. 5 on which the phase shifter 410 manufactured as described above is mounted, the semiconductor lasers 411A, 411B, and 411C are 785 nm wavelength band for the CD system, 660 nm wavelength band for the DVD system, and the next generation. It is a laser that oscillates light in the 410 nm wavelength band for optical disks, and is installed so that the polarization directions of the respective linearly polarized light are parallel. In the phase shifter 410, light in both wavelength bands is vertically incident from the birefringent plate 401 side between the polarization beam splitters 413 and 414 in the optical path shared by the two linearly polarized lights in the 660 nm wavelength band and the 785 nm wavelength band. Arranged.
At this time, by adjusting the optical axis of the birefringent plate 401 to form an angle of 18 ° with respect to the polarization direction of the linearly polarized light, the polarization direction of the linearly polarized light in the 785 nm wavelength band is maintained while maintaining the linearity substantially. It was possible to rotate about 90 °.
[0069]
Alternatively, the phase shifter 410 may be arranged so that light enters from the birefringent plate 402 side, and adjusted so that the optical axis of the birefringent plate 402 forms an angle of −50 ° with respect to the polarization direction of linearly polarized light. The same effect could be obtained. Here, with respect to the angle, the left-handed rotation was positive and the right-handed rotation was negative, as viewed from the semiconductor laser side that oscillates incident light.
[0070]
In the optical head device of this example, it was possible to record and reproduce information on the optical disc more stably by mounting the phaser 410 composed of two birefringent plates having different optical axes. Further, the use of a wavelength selective beam splitter can be reduced to one, and a polarizing beam splitter can be used. Furthermore, since one photodetector can be used for light of two wavelengths, the apparatus can be reduced in size and cost. We were able to reduce.
[0071]
【The invention's effect】
The phaser mounted on the optical head device of the present invention transmits light of one wavelength with little change in the polarization state with respect to light of two or more incident wavelengths, and the light of other wavelengths. Can be transmitted with the polarization state changed.
For example, when two linearly polarized lights having different wavelengths are incident on the phase shifter, only one light can be emitted with its polarization direction rotated. Alternatively, only one light can be changed to circularly polarized light and emitted. In particular, for the desired effect, even if the characteristics of the birefringent plate used for the phase shifter are not adequately obtained by adequately selecting the optical axes at which the two birefringent plates intersect, A phaser having sufficient characteristics can be realized.
[0072]
Further, in the three-wavelength compatible optical head device of the present invention, by mounting a phaser that transmits light in the 660 nm wavelength band almost as it is and rotates by rotating the polarization direction of linearly polarized light in the 785 nm wavelength band by 90 °, The loss of optical output can be suppressed, and stable information recording and reproduction can be performed.
[Brief description of the drawings]
FIG. 1 is a conceptual cross-sectional view showing an example of the configuration of an optical head device of the present invention.
FIGS. 2A and 2B are cross-sectional views showing a configuration example of a phase shifter in the optical head device of the present invention, in which FIG. 2A is a view in which only two birefringent plates 201 and 202 are laminated, and FIG. The transparent substrate 213 is bonded to one side of the two birefringent plates 201 and 202, and (c) shows the birefringent plates 201 and 202 sandwiched between the two transparent substrates 203 and 204.
FIG. 3 is a conceptual diagram showing an optical axis direction of two birefringent plates constituting a phase shifter in the optical head device of the present invention.
FIG. 4 shows two different wavelengths λ for the phaser in the present invention. 1 , Λ 2 Sectional drawing which shows the mode of a change of a polarization state when the linearly polarized light of this transmits.
FIG. 5 is a conceptual cross-sectional view showing another example of the configuration of the optical head device of the present invention.
FIG. 6 shows another example of the phase shifter according to the present invention. 1 Sectional drawing which shows a mode that a polarization state does not change, when linearly polarized light of this goes back and forth.
7 shows a wavelength λ in the phaser shown in FIG. 2 Sectional drawing which shows the mode of the change of a polarization state (linearly polarized light and circularly polarized light) which arises when this linearly polarized light reciprocates.
[Explanation of symbols]
101, 102, 201, 202, 401, 402, 501, 502: birefringent plate 103: phase retarder
104: Light source unit, 105, 419: Objective lens
106, 420: Optical disc
203, 204, 403, 404, 503, 504: Transparent substrate
410, 511: Two-wavelength phase shifter
411A, 411B, 411C: Semiconductor laser
412: 1 / 2λ plate
413, 414, 416: Polarizing beam splitter
415: Broadband λ / 4 plate
417: 1 / 4λ plate for 410 nm wavelength band,
418: Wavelength selective beam splitter
421, 422: photodetectors,
505: Filling adhesive,
506: Diffraction element
512: Phaser

Claims (6)

少なくとも2つの異なる波長の光をそれぞれ出射する複数の光源と、光源から出射する光を光ディスクに集光するための対物レンズと、集光されて光ディスクにより反射された光を検出するための光検出器とを備えた光ヘッド装置において、複数の光源と光ディスクとの間の少なくとも2つの光が共有する光路中に、それぞれの光学軸方向が異なる2つの複屈折板より構成される位相子が設置されており、2つの複屈折板の1つの波長の光に対する位相差は前記1つの波長のそれぞれ自然数倍であって、前記1つの波長の光に対して位相子は偏光状態を変化させず、前記1つの波長とは異なる波長の光に対して位相子は偏光状態を変化させることを特徴とする光ヘッド装置。A plurality of light sources that respectively emit light of at least two different wavelengths, an objective lens for condensing the light emitted from the light source onto the optical disc, and light detection for detecting the light that is collected and reflected by the optical disc In the optical head device provided with an optical device, a phaser composed of two birefringent plates having different optical axis directions is installed in an optical path shared by at least two lights between a plurality of light sources and an optical disk. The phase difference of the two birefringent plates with respect to the light of one wavelength is a natural number multiple of the one wavelength, and the phase shifter does not change the polarization state with respect to the light of the one wavelength. The optical head device is characterized in that a phase shifter changes a polarization state with respect to light having a wavelength different from the one wavelength. 前記光源から出射し位相子を透過する光の波長がλおよびλの2つであり、波長λの前記位相子を透過する光は偏光状態を変化させず、一方直線偏光として前記位相子に入射した波長λの光は、前記位相子を直線偏光として透過し、その透過光の偏光方向は入射光の偏光方向に対してφの角度を成しており、かつ前記位相子を構成する2つの複屈折板の波長λの光に対する、それぞれの複屈折板の位相差RおよびRは等しく、かつ前記2つの複屈折板のそれぞれの光学軸方向は、波長λの入射光の偏光方向とθおよびθの角度を成し、θおよびθの和はφとなっている請求項1に記載の光ヘッド装置。The light emitted from the light source and transmitted through the phaser has two wavelengths, λ 1 and λ 2 , and the light transmitted through the phaser having the wavelength λ 1 does not change the polarization state, while the phase is converted into linearly polarized light. The light having the wavelength λ 2 incident on the child passes through the phase shifter as linearly polarized light, the polarization direction of the transmitted light forms an angle of φ with respect to the polarization direction of the incident light, and the phase shifter The phase differences R 1 and R 2 of the birefringent plates with respect to light of the wavelength λ 2 of the two birefringent plates constituting the same are equal, and the optical axis directions of the two birefringent plates are of the wavelength λ 2 . 2. The optical head device according to claim 1, wherein an angle of θ 1 and θ 2 is formed with a polarization direction of incident light, and a sum of θ 1 and θ 2 is φ. 直線偏光として前記位相子に入射した波長λの光は、前記位相子を直線偏光として出射し、その出射光の偏光方向は入射光の偏光方向に対して90°の角度を成しており、波長λの光に対する前記2つの複屈折板のそれぞれの位相差がλおよび2λであり、かつ位相差が2λである複屈折板の光学軸方向が波長λの入射光の偏光方向に対して35から55°までの角度を成している請求項1に記載の光ヘッド装置。The light of wavelength λ 2 incident on the phaser as linearly polarized light exits the phaser as linearly polarized light, and the polarization direction of the emitted light forms an angle of 90 ° with respect to the polarization direction of the incident light. , of each of the two birefringent plates for the wavelength lambda 1 of the light is phase difference lambda 1 and 2 [lambda] 1, and the phase difference is the direction of the optical axis of the birefringent plate is of a wavelength lambda 1 of the incident light is 2 [lambda] 1 The optical head device according to claim 1, wherein the optical head device forms an angle of 35 to 55 ° with respect to the polarization direction. 直線偏光として前記位相子に入射した波長λの光が、前記位相子を円偏光として出射し、波長λの光に対する前記2つの複屈折板のそれぞれの位相差が等しくλであり、かつ光の出射側の複屈折板の光学軸方向が波長λの入射光の偏光方向に対し40から60°までの角度を成している請求項1に記載の光ヘッド装置。The light of wavelength λ 2 incident on the phase shifter as linearly polarized light exits the phase shifter as circular polarization, and the phase difference of each of the two birefringent plates with respect to the light of wavelength λ 1 is equal to λ 1 , 2. The optical head device according to claim 1, wherein the optical axis direction of the birefringent plate on the light exit side forms an angle of 40 to 60 ° with respect to the polarization direction of the incident light having the wavelength λ 1 . 前記位相子に入射する2つの波長λおよびλの光は、それぞれ660nm波長帯および785nm波長帯の光であり、前記2つの複屈折板の660nm波長帯および785nm波長帯の光に対するリターデーション値の比がいずれも0.9から0.99までの値である請求項3または4記載の光ヘッド装置。The light of two wavelengths λ 1 and λ 2 incident on the phaser is light of 660 nm wavelength band and 785 nm wavelength band, respectively, and retardation of the two birefringent plates with respect to light of 660 nm wavelength band and 785 nm wavelength band 5. The optical head device according to claim 3, wherein the ratio of all values is from 0.9 to 0.99. 前記2つの複屈折板が、貼り合わせられ一体化されている請求項1から5に記載の光ヘッド装置。6. The optical head device according to claim 1, wherein the two birefringent plates are bonded and integrated.
JP2003090249A 2003-03-28 2003-03-28 Optical head device Expired - Fee Related JP4218393B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2003090249A JP4218393B2 (en) 2003-03-28 2003-03-28 Optical head device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2003090249A JP4218393B2 (en) 2003-03-28 2003-03-28 Optical head device

Publications (3)

Publication Number Publication Date
JP2004296041A true JP2004296041A (en) 2004-10-21
JP2004296041A5 JP2004296041A5 (en) 2006-03-23
JP4218393B2 JP4218393B2 (en) 2009-02-04

Family

ID=33403922

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2003090249A Expired - Fee Related JP4218393B2 (en) 2003-03-28 2003-03-28 Optical head device

Country Status (1)

Country Link
JP (1) JP4218393B2 (en)

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007256937A (en) * 2006-02-21 2007-10-04 Asahi Glass Co Ltd Broadband wave plate
CN100399440C (en) * 2005-02-03 2008-07-02 三星电子株式会社 Optical pickup which is compatible with multiple types of media
JP2008524773A (en) * 2004-12-16 2008-07-10 カラーリンク・インコーポレイテッド Composite quarter wave plate for optical disk pickup head
JP2009266257A (en) * 2008-04-21 2009-11-12 Asahi Glass Co Ltd Broadband wavelength plate and optical head device
JP2010231135A (en) * 2009-03-30 2010-10-14 Epson Toyocom Corp Laminated half-wave plate, optical pickup device, polarization converter, and projection display apparatus
JP2011003262A (en) * 2009-06-18 2011-01-06 Lms Co Ltd Polarization diffraction element

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001101700A (en) * 1999-09-30 2001-04-13 Asahi Glass Co Ltd Optical head device
JP2001307368A (en) * 2000-04-24 2001-11-02 Pioneer Electronic Corp Optical pickup device
JP2001311821A (en) * 2000-04-27 2001-11-09 Asahi Glass Co Ltd Phase shifter and optical head device
JP2002250815A (en) * 2001-02-22 2002-09-06 Asahi Glass Co Ltd Phase plate for two wavelengths and optical head device
JP2003037326A (en) * 2001-05-17 2003-02-07 Nippon Electric Glass Co Ltd Cap for semiconductor laser
WO2003091768A1 (en) * 2002-04-26 2003-11-06 Toyo Communication Equipment Co., Ltd. Laminate wavelength plate and optical pickup using it

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001101700A (en) * 1999-09-30 2001-04-13 Asahi Glass Co Ltd Optical head device
JP2001307368A (en) * 2000-04-24 2001-11-02 Pioneer Electronic Corp Optical pickup device
JP2001311821A (en) * 2000-04-27 2001-11-09 Asahi Glass Co Ltd Phase shifter and optical head device
JP2002250815A (en) * 2001-02-22 2002-09-06 Asahi Glass Co Ltd Phase plate for two wavelengths and optical head device
JP2003037326A (en) * 2001-05-17 2003-02-07 Nippon Electric Glass Co Ltd Cap for semiconductor laser
WO2003091768A1 (en) * 2002-04-26 2003-11-06 Toyo Communication Equipment Co., Ltd. Laminate wavelength plate and optical pickup using it

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008524773A (en) * 2004-12-16 2008-07-10 カラーリンク・インコーポレイテッド Composite quarter wave plate for optical disk pickup head
US8085644B2 (en) 2004-12-16 2011-12-27 Reald Inc. Achromatic polarization devices for optical disc pickup heads
CN100399440C (en) * 2005-02-03 2008-07-02 三星电子株式会社 Optical pickup which is compatible with multiple types of media
JP2007256937A (en) * 2006-02-21 2007-10-04 Asahi Glass Co Ltd Broadband wave plate
JP2009266257A (en) * 2008-04-21 2009-11-12 Asahi Glass Co Ltd Broadband wavelength plate and optical head device
JP2010231135A (en) * 2009-03-30 2010-10-14 Epson Toyocom Corp Laminated half-wave plate, optical pickup device, polarization converter, and projection display apparatus
JP2011003262A (en) * 2009-06-18 2011-01-06 Lms Co Ltd Polarization diffraction element

Also Published As

Publication number Publication date
JP4218393B2 (en) 2009-02-04

Similar Documents

Publication Publication Date Title
KR100569633B1 (en) Phase shifter and optical head device mounted with the same
TWI410965B (en) Optical pick-up apparatus
JP4341332B2 (en) Optical head device
US7564504B2 (en) Phase plate and an optical data recording/reproducing device
JP5353666B2 (en) Wire grid polarizer and optical head device
JP4560906B2 (en) Optical head device
JP4300784B2 (en) Optical head device
WO2011049144A1 (en) Reflection type wavelength plate and optical head device
JP2008268724A (en) Reflection diffraction polarizer and optical apparatus
JP4218393B2 (en) Optical head device
JP2001101700A (en) Optical head device
JP5316409B2 (en) Phase difference element and optical head device
WO2006030789A1 (en) Optical head
JP4622160B2 (en) Diffraction grating integrated optical rotator and optical head device
JP2003288733A (en) Aperture-limiting element and optical head device
JP4349335B2 (en) Optical head device
JP5131244B2 (en) Laminated phase plate and optical head device
JP4427877B2 (en) Aperture limiting element and optical head device
JP2004171644A (en) Optical pickup
JP2001344800A (en) Optical head device
JP4626026B2 (en) Optical head device
KR100990347B1 (en) Phase plate and optical information recording/reproducing device
JP3851253B2 (en) Diffraction grating and optical pickup
JP4876826B2 (en) Phase difference element and optical head device
JP2004069977A (en) Diffraction optical element and optical head unit

Legal Events

Date Code Title Description
A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20060202

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20060202

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20080811

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20080819

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20080926

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20081021

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20081103

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20111121

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20111121

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20111121

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20121121

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20121121

Year of fee payment: 4

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20121121

Year of fee payment: 4

R371 Transfer withdrawn

Free format text: JAPANESE INTERMEDIATE CODE: R371

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20121121

Year of fee payment: 4

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20131121

Year of fee payment: 5

LAPS Cancellation because of no payment of annual fees