JP2004294801A - Liquid crystal display - Google Patents

Liquid crystal display Download PDF

Info

Publication number
JP2004294801A
JP2004294801A JP2003087528A JP2003087528A JP2004294801A JP 2004294801 A JP2004294801 A JP 2004294801A JP 2003087528 A JP2003087528 A JP 2003087528A JP 2003087528 A JP2003087528 A JP 2003087528A JP 2004294801 A JP2004294801 A JP 2004294801A
Authority
JP
Japan
Prior art keywords
light
liquid crystal
crystal display
incident
plate
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2003087528A
Other languages
Japanese (ja)
Other versions
JP4325241B2 (en
Inventor
Kunpei Kobayashi
君平 小林
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Casio Computer Co Ltd
Original Assignee
Casio Computer Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Casio Computer Co Ltd filed Critical Casio Computer Co Ltd
Priority to JP2003087528A priority Critical patent/JP4325241B2/en
Publication of JP2004294801A publication Critical patent/JP2004294801A/en
Application granted granted Critical
Publication of JP4325241B2 publication Critical patent/JP4325241B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Landscapes

  • Liquid Crystal (AREA)
  • Planar Illumination Modules (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To heighten the luminosity and contrast of reflection display utilizing illumination light from a surface light source disposed on the front side of a reflection type liquid crystal display element and to display a luminous image having satisfactory contrast also when reflection display utilizing external light is performed. <P>SOLUTION: A surface light source 11 consisting of a light guide plate 12 wherein an incident end surface 13 is formed by at least one end surface of a transparent plate, an emission surface 14 is formed by one of two plate surfaces of the transparent plate and a reflection surface 15 to totally reflecting light made incident from the incident end surface 13 at the interface with open air and emitting the light from the emission surface 14 is formed by the other plate surface and of a light source part 17 emitting light toward the incident end surface 13 of the light guide plate 12 is disposed on the front side of the reflection type liquid crystal display element 1 so that the emission surface 14 of the light guide plate 12 is opposed to the liquid crystal display element 1 and a polarization element 26 transmitting one linearly polarized light component of two linearly polarized light components of the incident light orthogonal to each other substantially parallel to the transmission axis 8a of a polarizing plate 8 of the liquid crystal display element 1 and absorbing a linearly polarized light component orthogonal thereto is disposed on the front side of the light guide plate 12. <P>COPYRIGHT: (C)2005,JPO&NCIPI

Description

【0001】
【発明の属する技術分野】
この発明は、表示の観察側に面光源を備えた液晶表示装置に関する。
【0002】
【従来の技術】
液晶表示装置として、反射表示を行なう反射型液晶表示素子の前側、つまり表示の観察側に、前記液晶表示素子に向けて照明光を出射する面光源を配置したものがある。
【0003】
この液晶表示装置の面光源は、透明板の少なくとも一つの端面が、光が入射される入射端面を形成し、前記透明板の2つの板面の一方が前記透明板内に導かれた光を出射する出射面を、他方の板面が前記入射端面から入射した光を外気との界面で全反射して前記出射面から出射させる反射面を形成する導光板と、前記導光板の入射端面に向けて光を出射する光源部とからなっており、前記反射型液晶表示素子の前側に、前記導光板の出射面を前記液晶表示素子に対向させて配置されている(特許文献1参照)。
【0004】
この液晶表示装置は、明るい環境下ではその環境の光である外光を利用する反射表示を行ない、充分な明るさの外光が得られないときに、前記面光源から照明光を出射させることにより、その照明光と外光とを併用する反射表示または前記照明光のみを利用する反射表示を行なうものであり、外光を利用する反射表示のときは、表示の観察側から入射した外光が前記面光源の導光板を透過して前記反射型液晶表示素子に入射し、この液晶表示素子の明表示部からの出射光が前記導光板を透過して観察側に出射する。
【0005】
また、前記面光源からの照明光を利用する反射表示のときは、前記面光源の光源部から出射し、前記導光板により導かれてその出射面から出射した照明光が前記反射型液晶表示素子に入射し、この液晶表示素子の明表示部からの出射光が前記導光板を透過して観察側に出射する。
【0006】
【特許文献1】
特開2000−112380号公報
【0007】
【発明が解決しようとする課題】
しかし、前記面光源は、前記光源部から出射し、前記導光板にその入射端面から入射した光のうち、この導光板の反射面に対して全反射角で入射した光を前記反射面と外気との界面により全反射するが、前記反射面に対して全反射角外の入射角で入射した光は、前記界面を透過して前記反射面から外部に漏れる。
【0008】
そのため、反射型液晶表示素子の前側に前記面光源を配置した液晶表示装置は、前記面光源からの照明光を利用する反射表示のときに、前記反射型液晶表示素子の明表示部からの出射光と、前記導光板の反射面からの全体的に略同じ輝度の漏れ光との両方が観察側に出射し、前記液晶表示素子の暗表示部に対応する暗表示の暗さが浮き上がって、表示画像のコントラストが低下する。
【0009】
この発明は、反射型液晶表示素子の前側に配置された面光源からの照明光を利用する反射表示の明るさとコントラストを高くし、しかも外光を利用する反射表示のときも、明るくコントラストの良い画像を表示することができる液晶表示装置を提供することを目的としたものである。
【0010】
【課題を解決するための手段】
この発明の液晶表示装置は、表示の観察側である前側の基板とこの前側基板と対向する後側基板との間に液晶層が設けられ、少なくとも前記前側基板の前側に偏光板が配置され、前記液晶層よりも後側に、前側からの入射光を反射する反射手段が設けられた反射型液晶表示素子と、
透明板の少なくとも一つの端面が、光が入射される入射端面を形成し、前記透明板の前記入射端面を挟んで配置する2つの板面の一方が前記透明板内に導かれた光を出射する出射面を、他方の板面が前記入射端面から入射した光を外気との界面で全反射して前記出射面から出射させる反射面を形成する導光板と、前記導光板の入射端面に向けて光を出射する光源部とからなり、前記液晶表示素子の前側に、前記導光板の出射面を前記液晶表示素子に対向させて配置された面光源と、
前記面光源の導光板の前側に配置され、入射光の互いに直交する2つの直線偏光成分のうち、前記液晶表示素子の前側の偏光板の透過軸と実質的に平行な直線偏光成分を透過させ、それと直交する直線偏光成分を吸収する偏光素子とを備えたことを特徴とする。
【0011】
この液晶表示装置は、反射型液晶表示素子の前側に配置された面光源の導光板の前側に、前記液晶表示素子の前側の偏光板の透過軸と実質的に平行な直線偏光成分を透過させ、それと直交する直線偏光成分を吸収する偏光素子を配置したものであるため、前記面光源からの照明光を利用する反射表示のときに前記導光板の反射面から出射する漏れ光のうち、前記液晶表示素子の前側の偏光板の透過軸と直交する直線偏光成分の光が前記偏光素子により吸収される。
【0012】
また、前記反射型液晶表示素子の明表示部からの出射光は、前記面光源の導光板を透過し、さらに前記偏光素子を高い透過率で透過して観察側に出射する。
【0013】
そのため、この液晶表示装置によれば、前記反射型液晶表示素子の明表示部に対応する明表示が明るく、しかも、前記液晶表示素子の暗表示部に対応する暗表示の暗さの浮き上がりを無くすことができ、したがって、前記面光源からの照明光を利用する反射表示の明るさとコントラストを高くすることができる。
【0014】
また、この液晶表示装置は、前記面光源の前側に前記偏光素子を配置しているため、外光を利用する反射表示のときは、表示の観察側から入射した外光がまず前記偏光素子に入射し、この偏光素子を透過した光が前記面光源の導光板を透過して前記反射型液晶表示素子に入射するが、前記偏光素子は、入射光の互いに直交する2つの直線偏光成分のうち、前記液晶表示素子の前側の偏光板の透過軸と実質的に平行な直線偏光成分を透過させるため、前記偏光素子を透過した光は前記液晶表示素子の前側の偏光板を高い透過率で透過して液晶層に入射し、また、前記液晶表示素子の明表示部から出射した光も前記偏光素子を高い透過率で透過して観察側に出射する。
【0015】
したがって、この液晶表示装置によれば、外光を利用する反射表示のときも、明るくコントラストの良い画像を表示することができる。
【0016】
このように、この発明の液晶表示装置は、反射型液晶表示素子の前側に、透明板の少なくとも一つの端面が、光が入射される入射端面を形成し、前記透明板の2つの板面の一方が前記透明板内を導かれた光を出射する出射面を、他方の板面が前記入射端面から入射した光を外気との界面で全反射して前記出射面から出射させる反射面を形成する導光板と、前記導光板の入射端面に向けて光を出射する光源部とからなる面光源を、前記導光板の出射面を前記液晶表示素子に対向させて配置し、前記面光源の導光板の前側に、入射光の互いに直交する2つの直線偏光成分のうち、前記液晶表示素子の前側の偏光板の透過軸と実質的に平行な直線偏光成分を透過させ、それと直交する直線偏光成分を吸収する偏光素子を配置することにより、前記面光源からの照明光を利用する反射表示の明るさとコントラストを高くし、しかも外光を利用する反射表示のときも、明るくコントラストの良い画像を表示することができるようにしたものである。
【0017】
【発明の実施の形態】
図1〜図3はこの発明の一実施例を示しており、図1は液晶表示装置の分解斜視図、図2は前記液晶表示装置の側面図、図3は前記液晶表示装置の一部分のハッチングを省略した拡大断面図である。
【0018】
この液晶表示装置は、反射型液晶表示素子1と、この液晶表示素子1の前側に配置された面光源11と、前記面光源11の前側に配置された偏光素子26とを備えている。
【0019】
前記反射型液晶表示素子1は、表示の観察側である前側の透明基板2とこの前側基板2と対向する後側の透明基板3とが枠状のシール材4を介して接合され、これらの基板2,3間の前記シール材4により囲まれた領域に液晶層5が設けられ、前記前側基板2と後側基板3の対向する内面に、互いに対向する領域により複数の画素を形成する透明電極6,7が設けられるとともに、前記前側基板2と後側基板3の外面にそれぞれ偏光板8,9が配置され、さらに、後側の偏光板9の後側に反射板10が配置された構成となっている。
【0020】
この液晶表示素子1は、例えばTFT(薄膜トランジスタ)をアクティブ素子をするアクティブマトリックス型のものであり、一方の基板、例えば後側基板3の内面に設けられた電極7は、行方向及び列方向にマトリックス状に配列する複数の画素電極、他方の基板である前側基板2の内面に設けられた電極6は、前記複数の画素電極7とそれぞれ対向する領域により複数の画素を形成する一枚膜状の対向電極である。
【0021】
なお、図では省略しているが、前記後側基板3の内面には、前記複数の画素電極7にそれぞれ接続された複数のTFTと、各行のTFTにそれぞれゲート信号を供給する複数のゲート配線と、各列のTFTにそれぞれデータ信号を供給する複数のデータ配線とが設けられている。
【0022】
さらに、図では省略しているが、前記前側基板2の内面には、前記複数の画素にそれぞれ対応する複数の色、例えば赤、緑、青の3色のカラーフィルタが設けられており、前記対向電極6は前記カラーフィルタの上に形成されている。また、両基板2,3の内面にはそれぞれ、前記電極6,7を覆って配向膜が設けられている。
【0023】
この液晶表示素子1は、例えばノーマリーホワイトモードのTN(ツイステッドネマティック)型液晶表示素子であり、前記液晶層5の液晶分子は、前後の基板2,3間において実質的に90度の捩れ角でツイスト配向しており、前側の偏光板8は、その透過軸8aを前記前側基板2の近傍における液晶分子配向方向と実質的に直交させるか或いは平行にして配置され、後側の偏光板9は、その透過軸(図示せず)を前記前側の偏光板8の透過軸8aと実質的に直交させて配置されている。
【0024】
また、前記面光源11は、導光板12と、この導光板12の側方に配置された光源部17と、前記導光板12と光源部17との間に配置された拡散層25とからなっている。
【0025】
前記導光板12は、アクリル系樹脂板等の透明板からなっており、その一つの端面が、光が入射される入射端面13を形成し、前記透明板の前記入射端面13を挟んで配置する2つの板面の一方が前記透明板に導かれた光を出射する平坦な出射面14を、他方の板面が前記入射端面13から入射した光を外気(空気)との界面で全反射して前記出射面14から出射させる反射面15を形成している。
【0026】
この導光板12の反射面15は、前記透明板の他方の板面の全域に密に並べて互いに平行に形成され、前記入射端面13から入射した光を前記出射面14の法線に対する角度が小さくなる方向に向けて全反射させる複数のプリズム部16からなっている。
【0027】
前記複数のプリズム部16は、前記入射端面13と平行で、且つ前記透明板の他方の板面の全幅にわたる長さを有する細長プリズム部であり、これらのプリズム部16の両側面のうち、入射端面13側の側面は、前記出射面14に対して垂直に近い急角度面に形成され、他方の側面は、前記反射面15の外面側に向かって入射端面13の方向に、前記出射面14に対して30〜60度(好ましくは略45度)の角度で傾いた傾斜面に形成されている。
【0028】
なお、図では前記複数のプリズム部16を大きく誇張して示しているが、これらのプリズム部16は、前記液晶表示素子1の画素ピッチ(100〜250μm程度)よりも小さいピッチで形成されている。
【0029】
すなわち、前記導光板12は、その入射端面13から入射した光を導いて出射面14から出射するものであり、この導光板12に前記入射端面13から入射した光は、図3に矢線で示したように、導光板12内を直進するか或いは前記出射面14と外気との界面で全反射されて前記反射面15の複数の細長プリズム部16のいずれかの傾斜面に入射し、その傾斜面と外気との界面により前記出射面14の法線に対する角度が小さくなる方向に全反射され、前記出射面14の全域から出射する。
【0030】
なお、前記導光板12にその入射端面13から入射した光のうち、この導光板12の反射面15の複数の細長プリズム部16の傾斜面に対して全反射角で入射した光は、このプリズム部16の傾斜面と外気との界面により全反射するが、前記細長プリズム部16の傾斜面に対して全反射角外の入射角で入射した光は、図3に矢線で示したように前記界面を透過して前記反射面15から外部に漏れる。
【0031】
一方、前記導光板12の側方に配置された光源部17は、導光部材18と、この導光部材18の両端部の側方にそれぞれ配置された発光素子24とにより構成されている。
【0032】
この光源部17の導光部材18は、前記導光板12の入射端面13に対応する長さを有する角棒状の細長透明材(例えばアクリル系樹脂材)からなっており、その両端面がそれぞれ光が入射される入射端面19を形成し、前記細長透明材の一つの側面が光を出射する細長出射面20を、この細長出射面20と対峙する他の側面が前記入射端面19から入射した光を外気(空気)との界面で全反射させて前記細長出射面20から出射させる反射面21を形成している。
【0033】
この導光部材18の反射面21は、前記細長透明材の他側面の全域に密に並べて互いに平行に形成され、前記入射端面19から入射した光を前記細長出射面20の法線に対する角度が小さくなる方向に向けて全反射させる複数のプリズム部22からなっている。
【0034】
前記複数のプリズム部22は、前記入射端面19と平行で、且つ前記細長透明材の他側面の全幅にわたる長さを有する細長プリズム部であり、これらのプリズム部22の両側面はそれぞれ、前記細長出射面20に対して30〜60度(好ましくは略45度)の角度で傾いた傾斜面に形成されている。
【0035】
なお、図では前記複数のプリズム部22を大きく誇張して示しているが、これらのプリズム部22は、前記導光板の反射面15を形成する複数のプリズム部16のピッチと同程度のピッチで形成されている。
【0036】
すなわち、前記導光部材18は、その両端の入射端面19から入射した光をそれぞれ導いて一側面の細長出射面20から出射するものであり、この導光部材18に前記入射端面19から入射した光は、この導光部材18内を直進するか或いは前記細長出射面20と外気との界面で全反射されて前記反射面21の複数の細長プリズム部22のいずれかに入射し、その細長プリズム部22のいずれかの側面と外気との界面で前記細長出射面20の法線に対する角度が小さくなる方向に全反射され、前記細長出射面20の全域から出射する。
【0037】
なお、前記導光部材18にその入射端面19から入射した光のうち、この導光部材18の反射面21の複数の細長プリズム部22の側面に対して全反射角で入射した光は、このプリズム部22の側面と外気との界面により全反射するが、前記細長プリズム部22の側面に対して全反射角外の入射角で入射した光は、前記界面を透過して前記反射面21から外部に漏れる。
【0038】
そのため、この実施例では、前記導光部材18の外側に、前記反射面21とこの反射面21に対して直交する2つの側面とを抱えるように形成された反射板23を被せ、前記反射面21からの漏れ光を前記反射板23により反射して導光部材18内に戻し、前記細長出射面20から出射させるようにしている。
【0039】
また、前記発光素子24は、例えば、赤色光を発する赤色LED(発光ダイオード)と、緑色光を発する緑色LEDと、青色光を発する青色LEDとを透明樹脂によりモールドし、これらのLEDが発する赤、緑、青の光を混色させた白色光を出射する固体発光素子であり、前記導光部材18の両端の入射端面19にそれぞれ対向させて配置されている。
【0040】
さらに、前記導光板12と光源部17との間に配置された拡散層25は、例えば、光散乱粒子を混入した透明樹脂板からなっており、この拡散層25は、前記導光板12の入射端面13に、その全体にわたって貼付けられ、前記導光部材18は、その細長出射面20を前記導光板12の入射端面13に、前記拡散層25との間に空間(空気層)を確保して対向させるとともに、前記細長出射面20を前記導光板12の入射端面13と平行にして配置されている。
【0041】
前記面光源11は、前記光源部17の固体発光素子24を点灯させることにより、この固体発光素子24からの出射光を前記導光部材18にその入射端面19から入射させ、その光を前記導光部材18の細長出射面20の全域から出射させるとともに、その光を前記拡散層25により拡散させて前記導光板12にその入射端面13から入射させ、その光を前記導光板12の出射面14の全域から均一な強度分布で出射させるようにしたものである。
【0042】
そして、この面光源11は、前記反射型液晶表示素子1の前側に、前記導光板12の出射面14を前記液晶表示素子1の前面に対向させ、且つ前記導光板12の出射面14と液晶表示素子1の前面との間に空間(空気層)を確保して配置されている。
【0043】
一方、前記面光源11の前側に配置された偏光素子26は、入射光の互いに直交する2つの直線偏光成分のうち、前記反射型液晶表示素子1の前側の偏光板8の透過軸8aと実質的に平行な振動面をもった直線偏光成分を透過させ、それと直交する振動面をもった直線偏光成分を吸収する特性を有している。
【0044】
この実施例では、前記偏光素子26として、前記液晶表示素子1の前後に配置した偏光板8.9と同じ偏光板を用いている。
【0045】
すなわち、この偏光素子26は、互いに直交する方向に透過軸26aと吸収軸(図示せず)とを有し、入射光の互いに直交する2つの直線偏光成分のうち、前記吸収軸に平行な振動面をもった直線偏光成分を吸収し、前記透過軸26aに平行な振動面をもった直線偏光成分を透過させる吸収偏光板である。
【0046】
この偏光素子26は、前記面光源11の導光板12の前側に、その透過軸26aを前記液晶表示素子1の前側の偏光板8の透過軸8aと実質的に平行にし、且つ前記導光板12の反射面15との間に空間(空気層)を確保して配置されている。
【0047】
この液晶表示装置は、明るい環境下ではその環境の光である外光を利用する反射表示を行ない、充分な明るさの外光が得られないときに、前記面光源11から照明光を出射させることにより、その照明光と外光とを併用する反射表示または前記照明光のみを利用する反射表示を行なうものであり、いずれの表示のときも、前記反射型液晶表示素子1は、その前側から入射した光のうち、無電界画素に入射した光を反射板10により反射して前側に出射し、電界印加画素に入射した光を後側偏光板9により吸収して画像を表示する。
【0048】
すなわち、前記反射型液晶表示素子1は、その前側から前側偏光板8を透過して入射した光(前側偏光板の透過軸8aに平行な振動面をもった直線偏光)のうち、液晶層5の液晶分子が初期のツイスト配向状態にある無電界画素に入射し、前記液晶層5を実質的に90度旋光されて透過した光を、後側偏光板9を透過させて反射板10により反射し、その反射光を前記後側偏光板9と液晶層5と前側偏光板8とを再び透過させて前側に出射し、液晶分子が基板2,3面に対して実質的に垂直に立ち上がり配向した電界印加画素に入射し、前記液晶層5を偏光状態を変えることなく透過した光を前記後側偏光板9により吸収する。
【0049】
前記液晶表示装置による面光源11からの照明光を利用する反射表示について説明すると、このときは、前記面光源11の光源部17から出射し、図3に矢線で示したように導光板12により導かれてその出射面14から出射した照明光が前記反射型液晶表示素子1に入射する。
【0050】
そして、前記液晶表示素子1に入射した光のうち、この液晶表示素子1の暗表示部(電界印加画素)に入射した光は前記後側偏光板9により吸収され、明表示部(無電界画素)に入射した光が前記反射板10により反射されて液晶表示素子1の前側に出射し、この明表示部からの出射光が、前記導光板12を透過し、さらに前記偏光素子26を透過して観察側に出射する。
【0051】
一方、前記面光源11は、上述したように、前記導光板12にその入射端面13から入射した光のうち、この導光板12の反射面15(複数の細長プリズム部16の傾斜面)に対して全反射角で入射した光を前記反射面15と外気との界面により全反射するが、前記反射面15に対して全反射角外の入射角で入射した光は、前記界面を透過して前記反射面15から外部に漏れる。
【0052】
しかし、この液晶表示装置では、前記面光源11の前側に前記偏光素子26を配置しているため、面光源11からの照明光を利用する反射表示のときに前記導光板12の反射面15から出射する漏れ光のうち、前記反射型液晶表示素子1の明表示部からの出射光(液晶表示素子1の前側偏光板8の透過軸8aと平行な直線偏光)と同じ直線偏光成分の光が、前記偏光素子26を透過して観察側に出射し、それと直交する直線偏光成分の光は前記偏光素子26により吸収される。
【0053】
また、前記反射型液晶表示素子1の明表示部からの出射光は、前記面光源11の導光板12を透過し、さらに前記偏光素子26を高い透過率で透過して観察側に出射する。
【0054】
そのため、前記反射型液晶表示素子1の明表示部(無電界画素)に対応する明表示が明るく、しかも、前記液晶表示素子1の暗表示部(電界印加画素)に対応する暗表示の暗さの浮き上がりを無くすことができ、したがって、前記面光源11からの照明光を利用する反射表示の明るさとコントラストを高くすることができる。
【0055】
次に、外光を利用する反射表示について説明すると、この液晶表示装置は、前記面光源11の前側に前記偏光素子26を配置したものであるため、外光を利用する反射表示のときは、表示の観察側から図3に破矢線で示したように入射した外光が、まず面光源11の前側に配置された偏光素子26に入射し、その光のうち、前記偏光素子26の吸収軸に平行な直線偏光成分がこの偏光素子26により吸収され、前記偏光素子26の透過軸26aに平行な直線偏光成分がこの偏光素子26を透過する。
【0056】
前記偏光素子26を透過した光、つまり前記偏光素子26の透過軸26aに平行な直線偏光は、前記面光源11の導光板12を透過して反射型液晶表示素子1に入射する。
【0057】
そして、前記液晶表示素子1に入射した光のうち、この液晶表示素子1の暗表示部(電界印加画素)に入射した光は前記後側偏光板9により吸収され、明表示部(無電界画素)に入射した光が前記反射板10により反射されて液晶表示素子1の前側に出射し、この明表示部からの出射光が、前記導光板12を透過し、さらに前記偏光素子26を透過して観察側に出射する。
【0058】
このように、外光を利用する反射表示のときは、表示の観察側から入射した外光が、前記偏光素子26と面光源11の導光板12とを透過して反射型液晶表示素子1に入射し、この液晶表示素子1の明表示部からの出射光が、前記導光板12と偏光素子26とを透過して観察側に出射する。
【0059】
しかし、前記偏光素子26は、入射光の互いに直交する2つの直線偏光成分のうち、前記液晶表示素子1の前側偏光板8の透過軸8aと実質的に平行な直線偏光成分を透過させるため、前記偏光素子26を透過した光(偏光素子26の透過軸26aに平行な直線偏光)は、前記液晶表示素子1の前側偏光板8を高い透過率で透過して液晶層5に入射し、また、液晶表示素子1の明表示部から出射した光(前側偏光板8aの透過軸8aに平行な直線偏光)も、前記偏光素子26を高い透過率で透過して観察側に出射する。
【0060】
そのため、この液晶表示装置は、面光源11の前側に偏光素子26を配置したものであるが、表示の観察側から入射した外光を、前記偏光素子26を備えない場合とほとんど変わらない入射率で反射型液晶表示素子1の液晶層5に入射させ、また、前記液晶表示素子1の明表示部からの出射光を、前記偏光素子26を備えない場合とほとんど変わらない出射率で観察側に出射させることができる。
【0061】
したがって、この液晶表示装置によれば、反射型液晶表示素子1の前側に配置された面光源11からの照明光を利用する反射表示の明るさとコントラストを高くし、しかも外光を利用する反射表示のときも、明るくコントラストの良い画像を表示することができる。
【0062】
なお、上記実施例で用いた反射型液晶表示素子1は、前後に偏光板8,9を備え、後側偏光板9の後側に反射板10を配置したものであるが、反射型液晶表示素子は、前側の基板2と偏光板8との間または後側の基板3と偏光板9との間に、表示のコントラストを向上させるための位相差板をさらに配置したものでもよい。
【0063】
また、反射型液晶表示素子は、後側の偏光板を反射偏光板(入射光の互いに直交する2つの直線偏光成分のうち、一方の直線偏光成分を透過させ、それと直交する直線偏光成分を反射する偏光板)とし、この反射偏光板に反射手段を兼ねさせたものでも、或いは、前側だけに1枚の偏光板を備え、後側基板の内面または外面に反射手段を設けたものでもよい。なお、前記後側基板の内面に反射手段を設ける場合は、この後側基板の内面の電極を高反射率の金属膜により形成し、その電極に反射手段を兼ねさせてもよい。
【0064】
さらに、反射型液晶表示素子は、TN型に限らず、STN(スーパーツイステッドネマティック)型、捩れのないホモジニアス配向型の液晶表示素子や、強誘電性または反強誘電性液晶表示素子等でもよく、また、ノーマリーブラックモードのものでも、単純マトリックス型のものでもよい。
【0065】
また、上記実施例で用いた面光源11は、一端面が入射端面13に形成された透明板からなる導光板12を備えたものであるが、面光源は、両端面がそれぞれ入射端面に形成された透明板からなる導光板を備え、この導光板の両端の入射端面にそれぞれ対向させて光源部を配置した構成としてもよい。
【0066】
さらに、実施例では、前記面光源11の光源部17を、両端面がそれぞれ入射端面19に形成された細長透明材からなる導光部材18と、この導光部材18の両端の入射端面19にそれぞれ対向させて配置された2つの固体発光素子24とにより構成しているが、面光源の光源部は、一端面が入射端面に形成された細長透明材からなる導光部材の前記入射端面に対向させて1つの固体発光素子を配置した構成としてもよく、また、前記導光板12の入射端面13の全長にわたる長さの直管状冷陰極管を前記入射端面13と平行に配置して光源部としてもよい。
【0067】
また、上記実施例では、面光源11の前側に、反射型液晶表示素子1の偏光板8.9と同じ偏光板(吸収偏光板)からなる偏光素子26を配置しているが、面光源11の前側に配置する偏光素子は、偏光板に限らず、入射光の互いに直交する2つの直線偏光成分のうち、反射型液晶表示素子1の前側の偏光板8の透過軸8aと実質的に平行な振動面をもった直線偏光成分を透過させ、それと直交する振動面をもった直線偏光成分を吸収する特性を有するものであればよい。
【0068】
【発明の効果】
この発明の液晶表示装置は、反射型液晶表示素子の前側に、透明板の少なくとも一つの端面が光が入射される入射端面を形成し、前記透明板の2つの板面の一方が前記透明板内を導かれた光を出射する出射面を、他方の板面が前記入射端面から入射した光を外気との界面で全反射して前記出射面から出射させる反射面を形成する導光板と、前記導光板の入射端面に向けて光を出射する光源部とからなる面光源を、前記導光板の出射面を前記液晶表示素子に対向させて配置し、前記面光源の導光板の前側に、入射光の互いに直交する2つの直線偏光成分のうち、前記液晶表示素子の前側の偏光板の透過軸と実質的に平行な直線偏光成分を透過させ、それと直交する直線偏光成分を吸収する偏光素子を配置したものであるため、前記面光源からの照明光を利用する反射表示の明るさとコントラストを高くし、しかも外光を利用する反射表示のときも、明るくコントラストの良い画像を表示することができる。
【図面の簡単な説明】
【図1】この発明の一実施例を示す液晶表示装置の分解斜視図。
【図2】前記液晶表示装置の側面図。
【図3】前記液晶表示装置の一部分のハッチングを省略した拡大断面図。
【符号の説明】
1…反射型液晶表示素子、2,3…基板、5…液晶層、6,7…電極、8…前側偏光板、8a…透過軸、9…後側偏光板、10…反射板、11…面光源、12…導光板、13…入射端面、14…出射面、15…反射面、17…光源部、25…拡散層、26…偏光素子、26a…透過軸。
[0001]
TECHNICAL FIELD OF THE INVENTION
The present invention relates to a liquid crystal display device having a surface light source on a display observation side.
[0002]
[Prior art]
2. Description of the Related Art As a liquid crystal display device, there is a liquid crystal display device in which a surface light source that emits illumination light toward the liquid crystal display element is arranged in front of a reflective liquid crystal display element that performs reflective display, that is, on a display observation side.
[0003]
In the surface light source of this liquid crystal display device, at least one end surface of the transparent plate forms an incident end surface on which light is incident, and one of the two plate surfaces of the transparent plate transmits light guided into the transparent plate. A light guide plate that forms a reflection surface that emits light from the output surface by totally reflecting light incident on the other end surface from the incident end surface at an interface with the outside air, and an output end surface on which the light exits. And a light source unit that emits light toward the liquid crystal display device. The light guide plate is disposed in front of the reflective liquid crystal display element such that an emission surface of the light guide plate faces the liquid crystal display element (see Patent Document 1).
[0004]
This liquid crystal display device performs reflection display using external light which is light of the environment in a bright environment, and emits illumination light from the surface light source when external light of sufficient brightness cannot be obtained. The reflection display using the illumination light and the external light together or the reflection display using only the illumination light is performed. In the case of the reflection display using the external light, the external light incident from the observation side of the display is used. Is transmitted through the light guide plate of the surface light source and is incident on the reflective liquid crystal display element. Light emitted from the bright display portion of the liquid crystal display element is transmitted through the light guide plate and emitted to the observation side.
[0005]
In the case of a reflective display using illumination light from the surface light source, the illumination light emitted from the light source unit of the surface light source, guided by the light guide plate and emitted from the emission surface is the reflection type liquid crystal display element. And the light emitted from the bright display portion of the liquid crystal display element passes through the light guide plate and exits to the observation side.
[0006]
[Patent Document 1]
JP-A-2000-112380
[0007]
[Problems to be solved by the invention]
However, among the light emitted from the light source unit and incident on the light guide plate from its incident end face, the surface light source transmits light incident on the reflection surface of the light guide plate at a total reflection angle to the reflection surface and outside air. Although the light is totally reflected by the interface with the reflecting surface, the light incident on the reflecting surface at an incident angle outside the total reflection angle passes through the interface and leaks outside from the reflecting surface.
[0008]
Therefore, the liquid crystal display device in which the surface light source is disposed in front of the reflection type liquid crystal display element, emits light from the bright display section of the reflection type liquid crystal display element when performing the reflection display using the illumination light from the surface light source. Both the emitted light and the leak light having substantially the same luminance from the reflection surface of the light guide plate are emitted to the observation side, and the darkness of the dark display corresponding to the dark display portion of the liquid crystal display element is raised, The contrast of the displayed image decreases.
[0009]
The present invention increases the brightness and contrast of a reflective display using illumination light from a surface light source disposed on the front side of a reflective liquid crystal display element, and has a high brightness and contrast even in a reflective display using external light. It is an object of the present invention to provide a liquid crystal display device capable of displaying an image.
[0010]
[Means for Solving the Problems]
In the liquid crystal display device of the present invention, a liquid crystal layer is provided between a front substrate that is a display observation side and a rear substrate facing the front substrate, and a polarizing plate is disposed at least in front of the front substrate, On the rear side of the liquid crystal layer, a reflection type liquid crystal display element provided with a reflection unit for reflecting incident light from the front side,
At least one end surface of the transparent plate forms an incident end surface on which light is incident, and one of two plate surfaces disposed on both sides of the incident end surface of the transparent plate emits light guided into the transparent plate. A light guide plate that forms a reflection surface that causes the other plate surface to totally reflect light incident from the incident end surface at the interface with the outside air and emits the light from the exit surface, and an incident end surface of the light guide plate. A light source unit that emits light at the front side of the liquid crystal display element, a surface light source disposed with the light emitting surface of the light guide plate facing the liquid crystal display element,
Of the two linearly polarized light components of the incident light that are arranged in front of the light guide plate of the surface light source, the linearly polarized light components that are substantially parallel to the transmission axis of the polarizing plate on the front side of the liquid crystal display element are transmitted. And a polarizing element that absorbs a linearly polarized light component orthogonal thereto.
[0011]
This liquid crystal display device transmits a linearly polarized light component substantially parallel to the transmission axis of a polarizing plate on the front side of the liquid crystal display element to the front side of a light guide plate of a surface light source disposed on the front side of a reflective liquid crystal display element. Since a polarizing element that absorbs a linearly polarized light component orthogonal to it is disposed, among the leaked light emitted from the reflecting surface of the light guide plate during reflective display using illumination light from the surface light source, Light of a linear polarization component orthogonal to the transmission axis of the polarizing plate on the front side of the liquid crystal display element is absorbed by the polarizing element.
[0012]
Further, light emitted from the bright display portion of the reflective liquid crystal display element transmits through the light guide plate of the surface light source, and further transmits through the polarizing element with a high transmittance and is emitted to the observation side.
[0013]
Therefore, according to this liquid crystal display device, the bright display corresponding to the bright display portion of the reflective liquid crystal display element is bright, and the rise of the darkness of the dark display corresponding to the dark display portion of the liquid crystal display element is eliminated. Therefore, the brightness and contrast of the reflective display using the illumination light from the surface light source can be increased.
[0014]
Further, in this liquid crystal display device, since the polarizing element is arranged on the front side of the surface light source, in the case of reflective display using external light, external light incident from the viewing side of the display first enters the polarizing element. The incident light and the light transmitted through the polarizing element are transmitted through the light guide plate of the surface light source and incident on the reflective liquid crystal display element. In order to transmit a linearly polarized light component substantially parallel to the transmission axis of the polarizing plate on the front side of the liquid crystal display element, light transmitted through the polarizing element transmits through the polarizing plate on the front side of the liquid crystal display element with high transmittance. Then, the light incident on the liquid crystal layer and also emitted from the bright display portion of the liquid crystal display element is transmitted through the polarizing element with a high transmittance and emitted to the observation side.
[0015]
Therefore, according to the liquid crystal display device, a bright and high-contrast image can be displayed even in the case of the reflective display using external light.
[0016]
Thus, in the liquid crystal display device of the present invention, at least one end face of the transparent plate forms an incident end face on which light is incident on the front side of the reflection type liquid crystal display element, and the two plate faces of the transparent plate are formed. One surface forms an exit surface for emitting light guided through the transparent plate, and the other plate surface forms a reflection surface that totally reflects light incident from the incident end surface at an interface with the outside air and emits the light from the exit surface. A light guide plate that emits light toward an incident end face of the light guide plate, and a light source that emits light toward the incident end face of the light guide plate. On the front side of the light plate, of the two linearly polarized light components orthogonal to each other of the incident light, the linearly polarized light component substantially parallel to the transmission axis of the polarizing plate on the front side of the liquid crystal display element is transmitted, and the linearly polarized light component is orthogonal to the transmitted light By disposing a polarizing element that absorbs By increasing the brightness and contrast of the reflective display utilizing illumination light from a source, moreover also when the reflective display utilizing external light, in which to be able to display a good image with bright contrast.
[0017]
BEST MODE FOR CARRYING OUT THE INVENTION
1 to 3 show an embodiment of the present invention. FIG. 1 is an exploded perspective view of a liquid crystal display device, FIG. 2 is a side view of the liquid crystal display device, and FIG. 3 is hatching of a part of the liquid crystal display device. FIG.
[0018]
This liquid crystal display device includes a reflective liquid crystal display element 1, a surface light source 11 arranged in front of the liquid crystal display element 1, and a polarizing element 26 arranged in front of the surface light source 11.
[0019]
In the reflection type liquid crystal display element 1, a front transparent substrate 2, which is a display observation side, and a rear transparent substrate 3, which is opposed to the front substrate 2, are joined via a frame-shaped sealing material 4. A liquid crystal layer 5 is provided in a region surrounded by the sealant 4 between the substrates 2 and 3, and a plurality of pixels are formed on opposing inner surfaces of the front substrate 2 and the rear substrate 3 by the regions facing each other. Electrodes 6 and 7 were provided, and polarizing plates 8 and 9 were disposed on the outer surfaces of the front substrate 2 and the rear substrate 3, respectively. Further, a reflecting plate 10 was disposed behind the rear polarizing plate 9. It has a configuration.
[0020]
The liquid crystal display element 1 is of an active matrix type in which, for example, a TFT (thin film transistor) is used as an active element. An electrode 7 provided on one substrate, for example, an inner surface of a rear substrate 3 is arranged in a row direction and a column direction. A plurality of pixel electrodes arranged in a matrix and an electrode 6 provided on the inner surface of the front substrate 2 as the other substrate are formed in a single film form in which a plurality of pixels are formed by regions respectively facing the plurality of pixel electrodes 7. Are the opposite electrodes.
[0021]
Although not shown in the figure, a plurality of TFTs connected to the plurality of pixel electrodes 7 and a plurality of gate wirings for supplying gate signals to the TFTs in each row are provided on the inner surface of the rear substrate 3. And a plurality of data lines for supplying data signals to the TFTs in each column.
[0022]
Further, although not shown in the drawing, a plurality of color filters corresponding to the plurality of pixels, for example, three color filters of red, green, and blue, respectively, are provided on the inner surface of the front substrate 2, The counter electrode 6 is formed on the color filter. An alignment film is provided on the inner surfaces of the substrates 2 and 3 to cover the electrodes 6 and 7, respectively.
[0023]
The liquid crystal display element 1 is, for example, a normally white mode TN (twisted nematic) liquid crystal display element. The liquid crystal molecules of the liquid crystal layer 5 have a twist angle of substantially 90 degrees between the front and rear substrates 2 and 3. The front polarizing plate 8 is disposed so that its transmission axis 8a is substantially perpendicular to or parallel to the liquid crystal molecule alignment direction near the front substrate 2, and the rear polarizing plate 9 is twisted. Is arranged so that its transmission axis (not shown) is substantially orthogonal to the transmission axis 8a of the front polarizing plate 8.
[0024]
The surface light source 11 includes a light guide plate 12, a light source unit 17 disposed on a side of the light guide plate 12, and a diffusion layer 25 disposed between the light guide plate 12 and the light source unit 17. ing.
[0025]
The light guide plate 12 is made of a transparent plate such as an acrylic resin plate, and one end surface of the light guide plate 12 forms an incident end surface 13 on which light is incident, and is disposed so as to sandwich the incident end surface 13 of the transparent plate. One of the two plate surfaces totally reflects the flat exit surface 14 for emitting the light guided to the transparent plate, and the other plate surface totally reflects the light incident from the incident end surface 13 at the interface with the outside air (air). Thus, a reflection surface 15 for emitting light from the emission surface 14 is formed.
[0026]
The reflection surface 15 of the light guide plate 12 is densely arranged in parallel with each other over the entire surface of the other plate surface of the transparent plate, and the angle of the light incident from the incident end surface 13 with respect to the normal line of the emission surface 14 is small. It is composed of a plurality of prism portions 16 that totally reflect in a certain direction.
[0027]
The plurality of prism portions 16 are elongated prism portions having a length parallel to the incident end face 13 and extending over the entire width of the other plate surface of the transparent plate. The side surface on the side of the end face 13 is formed at a steep angle surface which is almost perpendicular to the emission surface 14, and the other side surface is formed in the direction of the incidence end surface 13 toward the outer surface side of the reflection surface 15. Is formed at an angle of 30 to 60 degrees (preferably approximately 45 degrees).
[0028]
Although the plurality of prism portions 16 are greatly exaggerated in the drawing, these prism portions 16 are formed at a pitch smaller than the pixel pitch of the liquid crystal display element 1 (about 100 to 250 μm). .
[0029]
That is, the light guide plate 12 guides light incident from the incident end face 13 and emits the light from the exit face 14. Light incident on the light guide plate 12 from the incident end face 13 is indicated by an arrow in FIG. As shown, the light travels straight through the light guide plate 12 or is totally reflected at the interface between the light exit surface 14 and the outside air, and enters one of the inclined surfaces of the plurality of elongated prism portions 16 of the reflection surface 15. The light is totally reflected by the interface between the inclined surface and the outside air in a direction in which the angle with respect to the normal line of the emission surface 14 becomes smaller, and is emitted from the entire area of the emission surface 14.
[0030]
Among the light incident on the light guide plate 12 from the incident end face 13, the light incident on the inclined surfaces of the plurality of elongated prism portions 16 of the reflection surface 15 of the light guide plate 12 at a total reflection angle is the prism. Although the light is totally reflected by the interface between the inclined surface of the portion 16 and the outside air, the light incident on the inclined surface of the elongated prism portion 16 at an incident angle outside the total reflection angle is as shown by the arrow in FIG. The light passes through the interface and leaks from the reflection surface 15 to the outside.
[0031]
On the other hand, the light source unit 17 disposed on the side of the light guide plate 12 includes a light guide member 18 and light emitting elements 24 disposed on both sides of the light guide member 18.
[0032]
The light guide member 18 of the light source unit 17 is made of a rectangular rod-shaped elongated transparent material (for example, an acrylic resin material) having a length corresponding to the incident end face 13 of the light guide plate 12, and both end faces of the light guide member 18 are respectively made of light. Is formed, and one side surface of the elongated transparent material emits light into the elongated emission surface 20, and the other side surface facing the elongated emission surface 20 receives light incident from the incident end surface 19. Is totally reflected at the interface with the outside air (air) to form a reflecting surface 21 that is emitted from the elongated emission surface 20.
[0033]
The reflection surface 21 of the light guide member 18 is densely arranged and parallel to each other over the entire area of the other side surface of the elongated transparent material, and the light incident from the incident end face 19 has an angle with respect to the normal line of the elongated emission surface 20. It is composed of a plurality of prism portions 22 that totally reflect the light in the direction in which it becomes smaller.
[0034]
The plurality of prism portions 22 are elongated prism portions that are parallel to the incident end face 19 and have a length that is equal to the entire width of the other side surface of the elongated transparent material. It is formed on an inclined surface inclined at an angle of 30 to 60 degrees (preferably approximately 45 degrees) with respect to the emission surface 20.
[0035]
Although the plurality of prism portions 22 are greatly exaggerated in the drawing, these prism portions 22 have a pitch substantially equal to the pitch of the plurality of prism portions 16 forming the reflection surface 15 of the light guide plate. Is formed.
[0036]
That is, the light guide member 18 guides light incident from the incident end faces 19 at both ends thereof and emits the light from the elongated exit face 20 on one side face, and enters the light guide member 18 from the incident end face 19. The light travels straight through the light guide member 18 or is totally reflected at the interface between the elongated emission surface 20 and the outside air, and enters one of the elongated prism portions 22 of the reflection surface 21. At the interface between any side surface of the portion 22 and the outside air, the light is totally reflected in a direction in which the angle with respect to the normal line of the elongated emission surface 20 becomes smaller, and is emitted from the entire area of the elongated emission surface 20.
[0037]
Of the light incident on the light guide member 18 from the incident end face 19 thereof, the light incident on the side surfaces of the plurality of elongated prism portions 22 of the reflection surface 21 of the light guide member 18 at a total reflection angle is this Although the light is totally reflected by the interface between the side surface of the prism portion 22 and the outside air, the light incident on the side surface of the elongated prism portion 22 at an incident angle outside the total reflection angle passes through the interface and from the reflection surface 21. Leak outside.
[0038]
For this reason, in this embodiment, a reflection plate 23 formed so as to have the reflection surface 21 and two side surfaces orthogonal to the reflection surface 21 is placed on the outside of the light guide member 18 and the reflection surface 21 is provided. The light leaking from 21 is reflected by the reflection plate 23, returned to the light guide member 18, and emitted from the elongated emission surface 20.
[0039]
The light emitting element 24 is formed by molding a red LED (light emitting diode) that emits red light, a green LED that emits green light, and a blue LED that emits blue light with a transparent resin. , A solid-state light-emitting element that emits white light in which green and blue light are mixed, and is disposed to face the incident end faces 19 at both ends of the light guide member 18.
[0040]
Further, the diffusion layer 25 disposed between the light guide plate 12 and the light source unit 17 is made of, for example, a transparent resin plate into which light scattering particles are mixed. The light guide member 18 is attached to the entire end face 13, and the light guide member 18 secures a space (air layer) between the elongated exit face 20 on the incident end face 13 of the light guide plate 12 and the diffusion layer 25. They are arranged so as to face each other and the elongated emission surface 20 is parallel to the incident end surface 13 of the light guide plate 12.
[0041]
The surface light source 11 turns on the solid-state light-emitting element 24 of the light source unit 17 so that light emitted from the solid-state light-emitting element 24 is incident on the light guide member 18 through the incident end face 19 and the light is guided to the light guide member 18. The light is emitted from the entire elongated emission surface 20 of the light member 18, and the light is diffused by the diffusion layer 25 to be incident on the light guide plate 12 from the incident end face 13, and the light is emitted from the emission surface 14 of the light guide plate 12. Are emitted with a uniform intensity distribution from the entire region of the above.
[0042]
The surface light source 11 is arranged such that the light exit surface 14 of the light guide plate 12 faces the front surface of the liquid crystal display device 1 in front of the reflection type liquid crystal display device 1 and that the light exit surface 14 of the light guide plate 12 is A space (air layer) is secured between the display element 1 and the front surface.
[0043]
On the other hand, the polarizing element 26 disposed on the front side of the surface light source 11 is substantially the same as the transmission axis 8a of the polarizing plate 8 on the front side of the reflection type liquid crystal display element 1 among the two linearly polarized light components of the incident light that are orthogonal to each other. It has a characteristic of transmitting a linearly polarized light component having a vibrating plane parallel to the optical axis and absorbing a linearly polarized light component having a vibrating plane perpendicular to the vibrating plane.
[0044]
In this embodiment, the same polarizing plate as the polarizing plate 8.9 disposed before and after the liquid crystal display element 1 is used as the polarizing element 26.
[0045]
That is, the polarizing element 26 has a transmission axis 26a and an absorption axis (not shown) in directions orthogonal to each other, and among two linearly polarized light components orthogonal to each other of incident light, vibrations parallel to the absorption axis. This is an absorption polarizer that absorbs a linearly polarized light component having a plane and transmits a linearly polarized light component having a vibration plane parallel to the transmission axis 26a.
[0046]
The polarizing element 26 has its transmission axis 26a substantially parallel to the transmission axis 8a of the polarizing plate 8 on the front side of the liquid crystal display element 1 on the front side of the light guide plate 12 of the surface light source 11; And a space (air layer) is secured between them and the reflection surface 15.
[0047]
This liquid crystal display device performs reflection display using external light which is light of the environment in a bright environment, and emits illumination light from the surface light source 11 when external light of sufficient brightness cannot be obtained. Thereby, the reflective display using the illumination light and the external light together or the reflective display using only the illumination light is performed, and in any case of the display, the reflective liquid crystal display element 1 is provided from the front side thereof. Of the incident light, the light incident on the non-electric field pixel is reflected by the reflection plate 10 and emitted to the front side, and the light incident on the electric field application pixel is absorbed by the rear polarizing plate 9 to display an image.
[0048]
That is, the reflection-type liquid crystal display element 1 includes the liquid crystal layer 5 of the light transmitted through the front polarizer 8 from the front side (linearly polarized light having a vibration plane parallel to the transmission axis 8a of the front polarizer). Liquid crystal molecules are incident on the non-electric field pixel in the initial twist alignment state, and the light that has been rotated by substantially 90 degrees through the liquid crystal layer 5 and transmitted therethrough is reflected by the rear polarizer 9 and reflected by the reflector 10. The reflected light is transmitted again through the rear polarizer 9, the liquid crystal layer 5, and the front polarizer 8 and emitted to the front side, and the liquid crystal molecules rise substantially vertically to the substrates 2 and 3 and are aligned. The light incident on the applied electric field applied pixel and transmitted through the liquid crystal layer 5 without changing the polarization state is absorbed by the rear polarizer 9.
[0049]
The reflection display using the illumination light from the surface light source 11 by the liquid crystal display device will be described. In this case, the light is emitted from the light source unit 17 of the surface light source 11 and the light guide plate 12 as shown by an arrow in FIG. And the illumination light emitted from the emission surface 14 is incident on the reflective liquid crystal display element 1.
[0050]
Then, of the light incident on the liquid crystal display element 1, the light incident on the dark display section (electric field application pixel) of the liquid crystal display element 1 is absorbed by the rear polarizer 9, and the bright display section (electric fieldless pixel). ) Is reflected by the reflection plate 10 and is emitted to the front side of the liquid crystal display element 1. The light emitted from the bright display portion is transmitted through the light guide plate 12 and further transmitted through the polarization element 26. Out to the observation side.
[0051]
On the other hand, as described above, the surface light source 11 makes the light incident on the light guide plate 12 from the incident end face 13 thereof with respect to the reflection surface 15 of the light guide plate 12 (the inclined surface of the plurality of elongated prism portions 16). The light incident at an angle of total reflection is totally reflected by the interface between the reflection surface 15 and the outside air, but the light incident on the reflection surface 15 at an angle of incidence outside the total reflection angle is transmitted through the interface. It leaks from the reflection surface 15 to the outside.
[0052]
However, in this liquid crystal display device, since the polarizing element 26 is disposed in front of the surface light source 11, the light from the reflection surface 15 of the light guide plate 12 at the time of reflection display using illumination light from the surface light source 11. Among the outgoing leakage light, light having the same linear polarization component as light emitted from the bright display portion of the reflective liquid crystal display element 1 (linearly polarized light parallel to the transmission axis 8a of the front polarizing plate 8 of the liquid crystal display element 1) Then, the light passes through the polarizing element 26 and exits to the observation side, and light of a linearly polarized light component orthogonal to the light is absorbed by the polarizing element 26.
[0053]
The light emitted from the bright display portion of the reflective liquid crystal display element 1 passes through the light guide plate 12 of the surface light source 11 and further passes through the polarizing element 26 with a high transmittance and exits to the observation side.
[0054]
Therefore, the bright display corresponding to the bright display portion (electric fieldless pixel) of the reflective liquid crystal display element 1 is bright, and the darkness of the dark display corresponding to the dark display portion (electric field applied pixel) of the liquid crystal display element 1 is obtained. Can be eliminated, and therefore, the brightness and contrast of the reflective display using the illumination light from the surface light source 11 can be increased.
[0055]
Next, a reflection display using external light will be described. Since the liquid crystal display device has the polarizing element 26 disposed in front of the surface light source 11, when the reflection display using external light is used, External light that has entered from the observation side of the display as shown by broken lines in FIG. 3 first enters the polarizing element 26 disposed in front of the surface light source 11, and of the light, the absorption of the polarizing element 26 is performed. The linearly polarized light component parallel to the axis is absorbed by the polarizing element 26, and the linearly polarized light component parallel to the transmission axis 26 a of the polarizing element 26 passes through the polarizing element 26.
[0056]
Light transmitted through the polarizing element 26, that is, linearly polarized light parallel to the transmission axis 26 a of the polarizing element 26 passes through the light guide plate 12 of the surface light source 11 and enters the reflective liquid crystal display element 1.
[0057]
Then, of the light incident on the liquid crystal display element 1, the light incident on the dark display section (electric field application pixel) of the liquid crystal display element 1 is absorbed by the rear polarizer 9, and the bright display section (electric fieldless pixel). ) Is reflected by the reflection plate 10 and is emitted to the front side of the liquid crystal display element 1. The light emitted from the bright display portion is transmitted through the light guide plate 12 and further transmitted through the polarization element 26. Out to the observation side.
[0058]
As described above, in the case of reflective display using external light, external light incident from the viewing side of the display transmits through the polarizing element 26 and the light guide plate 12 of the surface light source 11 to the reflective liquid crystal display element 1. The incident light is emitted from the bright display portion of the liquid crystal display element 1 and passes through the light guide plate 12 and the polarizing element 26 and exits to the observation side.
[0059]
However, the polarizing element 26 transmits a linearly polarized light component substantially parallel to the transmission axis 8a of the front polarizer 8 of the liquid crystal display element 1 among two linearly polarized light components of the incident light that are orthogonal to each other. The light transmitted through the polarizing element 26 (linearly polarized light parallel to the transmission axis 26a of the polarizing element 26) transmits through the front polarizing plate 8 of the liquid crystal display element 1 with a high transmittance and enters the liquid crystal layer 5, and Light emitted from the bright display portion of the liquid crystal display element 1 (linearly polarized light parallel to the transmission axis 8a of the front polarizing plate 8a) also passes through the polarizing element 26 with a high transmittance and is emitted to the observation side.
[0060]
Therefore, in this liquid crystal display device, the polarizing element 26 is disposed in front of the surface light source 11, and the external light incident from the viewing side of the display can be converted into an incident light that is almost the same as the case where the polarizing element 26 is not provided. To make the light enter the liquid crystal layer 5 of the reflection type liquid crystal display element 1, and output the light emitted from the bright display portion of the liquid crystal display element 1 to the observation side at almost the same emission rate as when the polarizing element 26 is not provided. It can be emitted.
[0061]
Therefore, according to this liquid crystal display device, the brightness and contrast of the reflective display using the illumination light from the surface light source 11 disposed in front of the reflective liquid crystal display element 1 are increased, and the reflective display using the external light is used. In this case, a bright and high-contrast image can be displayed.
[0062]
The reflection type liquid crystal display element 1 used in the above embodiment has polarizing plates 8 and 9 on the front and rear sides and a reflection plate 10 disposed on the rear side of the rear polarizing plate 9. The device may further include a retardation plate for improving display contrast between the front substrate 2 and the polarizing plate 8 or between the rear substrate 3 and the polarizing plate 9.
[0063]
In addition, the reflection type liquid crystal display element uses a rear polarizing plate as a reflection polarizing plate (which transmits one linear polarization component of two linear polarization components of incident light that are orthogonal to each other and reflects a linear polarization component orthogonal thereto). The reflective polarizing plate may also serve as a reflecting means, or a single polarizing plate may be provided only on the front side, and the reflecting means may be provided on the inner or outer surface of the rear substrate. When the reflection means is provided on the inner surface of the rear substrate, an electrode on the inner surface of the rear substrate may be formed of a metal film having high reflectivity, and the electrode may also serve as the reflection means.
[0064]
Further, the reflection type liquid crystal display element is not limited to the TN type, but may be a STN (super twisted nematic) type, a liquid crystal display element of a homogeneous alignment type without twist, a ferroelectric or antiferroelectric liquid crystal display element, etc. Further, it may be a normally black mode or a simple matrix type.
[0065]
In addition, the surface light source 11 used in the above embodiment has the light guide plate 12 made of a transparent plate having one end face formed on the incident end face 13, and the surface light source has both end faces formed on the incident end face, respectively. A light guide plate made of a transparent plate may be provided, and a light source unit may be arranged so as to face the incident end faces at both ends of the light guide plate.
[0066]
Further, in the embodiment, the light source unit 17 of the surface light source 11 is connected to the light guide member 18 made of an elongated transparent material having both end faces formed on the incident end face 19 and the incident end faces 19 at both ends of the light guide member 18. The light source section of the surface light source has one end face formed on the incident end face of the light guide member made of an elongated transparent material and formed on the incident end face. One solid-state light-emitting element may be arranged to face each other, and a straight tubular cold-cathode tube having a length extending over the entire length of the incident end face 13 of the light guide plate 12 is arranged in parallel with the incident end face 13 to form a light source section. It may be.
[0067]
In the above embodiment, the polarizing element 26 made of the same polarizing plate (absorbing polarizing plate) as the polarizing plate 8.9 of the reflective liquid crystal display element 1 is arranged in front of the surface light source 11. Is not limited to a polarizing plate, but is substantially parallel to the transmission axis 8a of the polarizing plate 8 on the front side of the reflective liquid crystal display element 1 among the two linearly polarized light components of the incident light that are orthogonal to each other. Any material may be used as long as it has a characteristic of transmitting a linearly polarized light component having a vibrating surface and absorbing a linearly polarized light component having a vibrating surface orthogonal thereto.
[0068]
【The invention's effect】
In the liquid crystal display device of the present invention, at least one end face of the transparent plate has an incident end face on which light is incident on the front side of the reflective liquid crystal display element, and one of the two plate faces of the transparent plate is the transparent plate. A light guide plate that forms a reflection surface that emits light guided inside, and the other plate surface totally reflects light incident from the incident end surface at an interface with the outside air and emits the light from the emission surface, A surface light source comprising a light source unit that emits light toward the incident end face of the light guide plate, an emission surface of the light guide plate is arranged to face the liquid crystal display element, and in front of the light guide plate of the surface light source, A polarizing element that transmits a linearly polarized light component that is substantially parallel to the transmission axis of a polarizing plate on the front side of the liquid crystal display element and absorbs a linearly polarized light component that is orthogonal to the two linearly polarized light components of the incident light that are orthogonal to each other. Are arranged, so that the By increasing the brightness and contrast of the reflection display utilizing the bright light, even yet when the reflective display utilizing external light, it is possible to display a good image with bright contrast.
[Brief description of the drawings]
FIG. 1 is an exploded perspective view of a liquid crystal display device according to an embodiment of the present invention.
FIG. 2 is a side view of the liquid crystal display device.
FIG. 3 is an enlarged sectional view of a part of the liquid crystal display device, in which hatching is omitted.
[Explanation of symbols]
DESCRIPTION OF SYMBOLS 1 ... Reflection type liquid crystal display element, 2,3 ... Substrate, 5 ... Liquid crystal layer, 6,7 ... Electrode, 8 ... Front polarizing plate, 8a ... Transmission axis, 9 ... Back polarizing plate, 10 ... Reflecting plate, 11 ... Surface light source, 12: light guide plate, 13: incident end surface, 14: emission surface, 15: reflection surface, 17: light source unit, 25: diffusion layer, 26: polarizing element, 26a: transmission axis.

Claims (1)

表示の観察側である前側の基板とこの前側基板と対向する後側基板との間に液晶層が設けられ、少なくとも前記前側基板の前側に偏光板が配置され、前記液晶層よりも後側に、前側からの入射光を反射する反射手段が設けられた反射型液晶表示素子と、
透明板の少なくとも一つの端面が、光が入射される入射端面を形成し、前記透明板の前記入射端面を挟んで配置する2つの板面の一方が前記透明板内に導かれた光を出射する出射面を、他方の板面が前記入射端面から入射した光を外気との界面で全反射して前記出射面から出射させる反射面を形成する導光板と、前記導光板の入射端面に向けて光を出射する光源部とからなり、前記液晶表示素子の前側に、前記導光板の出射面を前記液晶表示素子に対向させて配置された面光源と、
前記面光源の導光板の前側に配置され、入射光の互いに直交する2つの直線偏光成分のうち、前記液晶表示素子の前側の偏光板の透過軸と実質的に平行な直線偏光成分を透過させ、それと直交する直線偏光成分を吸収する偏光素子とを備えたことを特徴とする液晶表示装置。
A liquid crystal layer is provided between a front substrate which is a display observation side and a rear substrate opposed to the front substrate, and a polarizing plate is arranged at least on the front side of the front substrate, and behind the liquid crystal layer. A reflection type liquid crystal display element provided with a reflection means for reflecting incident light from the front side,
At least one end surface of the transparent plate forms an incident end surface on which light is incident, and one of two plate surfaces disposed on both sides of the incident end surface of the transparent plate emits light guided into the transparent plate. A light guide plate that forms a reflection surface that causes the other plate surface to totally reflect light incident from the incident end surface at the interface with the outside air and emits the light from the exit surface, and an incident end surface of the light guide plate. A light source unit that emits light at the front side of the liquid crystal display element, a surface light source disposed with the light emitting surface of the light guide plate facing the liquid crystal display element,
Of the two linearly polarized light components of the incident light that are arranged in front of the light guide plate of the surface light source, the linearly polarized light components that are substantially parallel to the transmission axis of the polarizing plate on the front side of the liquid crystal display element are transmitted. And a polarizing element that absorbs a linearly polarized light component orthogonal to the liquid crystal display.
JP2003087528A 2003-03-27 2003-03-27 Liquid crystal display Expired - Fee Related JP4325241B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2003087528A JP4325241B2 (en) 2003-03-27 2003-03-27 Liquid crystal display

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2003087528A JP4325241B2 (en) 2003-03-27 2003-03-27 Liquid crystal display

Publications (2)

Publication Number Publication Date
JP2004294801A true JP2004294801A (en) 2004-10-21
JP4325241B2 JP4325241B2 (en) 2009-09-02

Family

ID=33401895

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2003087528A Expired - Fee Related JP4325241B2 (en) 2003-03-27 2003-03-27 Liquid crystal display

Country Status (1)

Country Link
JP (1) JP4325241B2 (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007095624A (en) * 2005-09-30 2007-04-12 Hitachi Lighting Ltd Backlight system and liquid crystal display
CN106444121A (en) * 2016-01-14 2017-02-22 友达光电股份有限公司 Display device
WO2023241268A1 (en) * 2022-06-15 2023-12-21 京东方科技集团股份有限公司 Front light source and display device

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007095624A (en) * 2005-09-30 2007-04-12 Hitachi Lighting Ltd Backlight system and liquid crystal display
JP4622787B2 (en) * 2005-09-30 2011-02-02 日立ライティング株式会社 Backlight system and liquid crystal display device
CN106444121A (en) * 2016-01-14 2017-02-22 友达光电股份有限公司 Display device
CN106444121B (en) * 2016-01-14 2019-04-05 友达光电股份有限公司 Display device
WO2023241268A1 (en) * 2022-06-15 2023-12-21 京东方科技集团股份有限公司 Front light source and display device

Also Published As

Publication number Publication date
JP4325241B2 (en) 2009-09-02

Similar Documents

Publication Publication Date Title
JP4048844B2 (en) Surface light source and display device using the same
KR100836434B1 (en) Display apparatus and mobile device using display appauatus
JP4900363B2 (en) Liquid crystal display
KR100393749B1 (en) Liquid crystal display apparatus using polarizing element transmitting one of two polarizing components crossing at right angles and reflecting the other component
US8269915B2 (en) Liquid crystal display apparatus
JPH11110131A (en) Liquid crystal display device
EP1570310A1 (en) Liquid crystal display device viewable from both surfaces and portable apparatus using same
JPH10161123A (en) Lighting device and display device
KR100812043B1 (en) Display apparatus and mobile device using display apparatus
JP2002098960A (en) Display device
JP4314890B2 (en) Liquid crystal display
JP4325241B2 (en) Liquid crystal display
JPH11133419A (en) Liquid crystal display device
JP3747751B2 (en) Liquid crystal display
JP3799981B2 (en) Liquid crystal display
JP4066771B2 (en) Liquid crystal display
JP2001194660A (en) Liquid crystal display device
JP2020112729A (en) Liquid crystal display device
KR20030007217A (en) Liquid crystal display device
JP2003177394A (en) Reflection polarizing element and liquid crystal display device using the same
JP4192553B2 (en) Surface light source
JP2000180835A (en) Liquid crystal display device
JP2004029694A (en) Liquid crystal display
JP2002006134A (en) Polarizing element and liquid crystal display device employing the same
JPH11109342A (en) Liquid crystal display device

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20051219

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20080508

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20080513

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20080711

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20090519

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20090601

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120619

Year of fee payment: 3

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120619

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130619

Year of fee payment: 4

LAPS Cancellation because of no payment of annual fees