JP2004294383A - Surface for detecting intermolecular mutual reactive action - Google Patents

Surface for detecting intermolecular mutual reactive action Download PDF

Info

Publication number
JP2004294383A
JP2004294383A JP2003090356A JP2003090356A JP2004294383A JP 2004294383 A JP2004294383 A JP 2004294383A JP 2003090356 A JP2003090356 A JP 2003090356A JP 2003090356 A JP2003090356 A JP 2003090356A JP 2004294383 A JP2004294383 A JP 2004294383A
Authority
JP
Japan
Prior art keywords
detection
thin film
detecting
molecules
metal thin
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2003090356A
Other languages
Japanese (ja)
Other versions
JP4288982B2 (en
Inventor
Michihiro Onishi
通博 大西
Takayoshi Mamine
隆義 眞峯
Hiroshi Yubi
啓 由尾
Yasuhiro Sakamoto
安広 坂本
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sony Corp
Original Assignee
Sony Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sony Corp filed Critical Sony Corp
Priority to JP2003090356A priority Critical patent/JP4288982B2/en
Publication of JP2004294383A publication Critical patent/JP2004294383A/en
Application granted granted Critical
Publication of JP4288982B2 publication Critical patent/JP4288982B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Landscapes

  • Apparatus Associated With Microorganisms And Enzymes (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To prevent reaction efficiency from being reduced by steric hindrance during mutual reactive actions among molecules by fixing detecting molecules in moderate density. <P>SOLUTION: A detection surface 1 is formed on a substrate 2 facing a reaction region R which provides an intermolecular mutual reactive action field between detecting molecules D, having a thiol group (-SH) or a disulfide group (-S-S-) and target molecules T for specifically reacting with the detecting molecules D. Island-like metal thin film 11 of, such as gold, are formed scattered on the detection surface 1 with intervals, and the detection surface 1 of the mutual reactive action between the molecules is provided so as to fix the detecting molecules D to the metal thin film 11 via the mercapto group or the disulfide group. <P>COPYRIGHT: (C)2005,JPO&NCIPI

Description

【0001】
【発明の属する技術分野】
本発明は、ハイブリダイゼーションその他の分子間相互反応作用を検出するための検出表面に関する。より詳しくは、検出用分子が固定される金属薄膜部を、間隔を置いて形成して、前記検出用分子を適度な密度で固定し、これにより、分子間相互反応作用の際の立体障害による反応効率低下を防止するように工夫した分子間相互反応作用検出表面に関する。
【0002】
【従来の技術】
現在、マイクロアレイ技術によって所定のDNAが微細配列された、いわゆるDNAチップ又はDNAマイクロアレイ(以下、「DNAチップ」と総称。)と呼ばれるバイオアッセイ用の集積基板が、遺伝子の変異解析、SNPs(一塩基多型)分析、遺伝子発現頻度解析等に利用されており、創薬、臨床診断、薬理ジェノミクス、法医学その他の分野において広範囲に活用され始めている。
【0003】
このDNAチップは、ガラス基板やシリコン基板上に多種・多数のDNAオリゴ鎖やcDNA(complementary DNA)等が集積されていることから、ハイブリダイゼーション等の分子間相互反応の網羅的解析が可能となる点が特徴とされている。
【0004】
ここで、特許文献1には、フォトリソグラフィ技術及びエッチング技術を用いて、金属基板を含む基板の表面のプローブ生体分子を付着させたい特定部位のみに、アビジン分子を単層に固定した固相化膜を形成した表面処理基板が開示されている。
【0005】
また、特許文献2には、検査対象物質の検出に用いるプローブを予め微粒子に捕捉して、この微粒子を基板の表面に格子状に区画された部分に固定し、各区画にプローブを捕捉した前記微粒子を単層で細密に固定する技術が開示されている。
また、添付した従来技術を模式的に示す図7に示すように、合成樹脂等の基板100の表面全体に、金等の金属薄膜101を形成し、この金属薄膜101に対して、この金属に化学結合する検出用分子を固定化することが一般に行われている。
【0006】
【特許文献1】
特開2002−153272号報
【特許文献2】
特開2002−253232号報
【0007】
【発明が解決しようとする課題】
しかしながら、上記した従来のDNAチップ技術では、DNAプローブ等の検出用ヌクレオチド鎖は、検出表面部位(スポット部位)にランダムコイル状に絡まったり、丸まったり等して固定化され、なおかつ集積密度が高いので、標的分子とのハイブリダイゼーションその他の相互反応作用の際に立体障害が発生している。
【0008】
このため、前記相互反応作用の効率が悪く、反応にも長時間を要し、更には、擬陽性又は偽陰性を示してしまう可能性があるという問題があった。とくに、検出表面全体に検出用分子を固定化する技術(図7参照)では、該検出用分子の集積密度が高いので前記問題が顕著であった。
【0009】
そこで、本発明は、検出用分子が固定される金属薄膜部を、検出表面に間隔を置いて形成して、前記検出用分子を適度な密度で固定することにより、分子間の相互反応作用の際における立体障害による反応効率低下を防止することを主な目的とする。
【0010】
【課題を解決するための手段】
上記技術的課題を解決するために、本願においては、まず、メルカプト基(−SH)又はジスルフィド基(−S−S−)を有する検出用分子と標的分子との間の分子間相互反応作用の場を提供する反応領域に臨む基板上の検出表面であって、前記基板上に、金属薄膜部を間隔を置いて設け、この金属薄膜部に前記メルカプト基又はジスルフィド基を介して前記検出用分子を固定するように工夫した分子間相互反応作用検出表面及び該検出表面を備える分子間相互反応作用検出基板を提供する。
【0011】
即ち、本発明に係る分子間相互反応作用検出表面においては、この検出表面の全体に前記検出用分子が固定化される構成を採用するのではなく、前記検出表面上に、島の如きに点在するように、間隔を置いて形成された金属薄膜部(の表面)にのみ前記検出用分子が固定化されるように工夫している。
【0012】
この結果、検出表面上における(固定化された)検出用分子の集積密度を低く抑制することができるため、ランダムコイル状に絡まったり、丸まったり等している検出用分子に対して、後に添加又は送られてくる標的分子が接近し易い反応場環境が形成される。即ち、分子間の反応の際に、立体障害の影響が少ない環境が形成されるので、検出用分子と標的分子との間のハイブリダイゼーションその他の相互反応作用が効率良く進行することになる。
【0013】
本発明の分子間相互反応作用検出表面では、検出表面上に形成された金属薄膜部一個当りの面積と検出表面単位面積あたりの金属薄膜部の形成個数とを調整することにより、検出表面における固定化検出用分子の集積密度を自在に調整することができる。
【0014】
前記金属薄膜部は、メルカプト基(−SH)又はジスルフィド基(−S−S−)と反応する金属材料で薄膜状に形成すればよく、例えば、金薄膜から形成することができる。金等の金属は、メルカプト基(−SH)又はジスルフィド基(−S−S−)と反応して、いわゆるメルカプチドを形成し、検出用分子を化学吸着して固定化するという機能を有する。
【0015】
この金属薄膜部は、前記検出表面上に、蒸着又はスパッタリングのいずれかの手法を用いて、金属薄膜部が間隔を置いて島様に点在させる工程を少なくとも含む分子間相互反応作用検出表面の製造方法によって形成できる。即ち、前記金属薄膜部は、前記製造方法によって、島様に点在する金属蒸着膜又は金属スパッタ膜として形成される。なお、この金属薄膜部が形成される基板は、メルカプト基(−SH)又はジスルフィド基(−S−S−)と結合しない、ステアリン酸単結晶基板その他の有機化合物結晶基板で形成することもできる。
【0016】
金属蒸着膜からなる金属薄膜部は、公知の種々の蒸着技術を適宜選択して形成すればよく、例えば、エピタキシー現象を用いた蒸着も好適に採用できる。前記エピタキシー現象を使用すると、検出表面上に略規則正しく配列された金属薄膜部(エピタキシャル膜)を形成できるため、検出用分子を検出表面上にむらなく(規則正しく)、均一に固定化できるという利点がある。
【0017】
ここで、本願における主たる技術用語の定義付けを行う。まず、本願における「分子間相互反応作用検出表面」は、検出用分子を固定化できる機能を有する、基板上の表面領域を意味する。
【0018】
「検出用分子」は、前記検出表面に固定化される、DNAプローブその他のヌクレオチド鎖、ペプチド、タンパク質、脂質等を含むプローブ分子である。なお、前記ヌクレオチド鎖とは、プリンまたはピリミジン塩基と糖がグリコシド結合したヌクレオシドのリン酸エステルの重合体を意味し、DNAプローブを含むオリゴヌクレオチド、ポリヌクレオチド、プリンヌクレオチドとピリミジンヌクレオチオドが重合したDNA(全長あるいはその断片)、逆転写により得られるcDNA(cDNAプローブ)、RNA、ポリアミドヌクレオチド誘導体(PNA)等を広く含む。
【0019】
「標的分子」は、前記検出用分子と特異的に反応する性質を有する分子である。例えば、前記検出用ヌクレオチド鎖と相補的な塩基配列を備えるヌクレオチド鎖であって、場合によっては、蛍光物質等により標識される。
【0020】
「分子間相互反応作用」とは、相補的な塩基配列構造を備えるヌクレオチド鎖間の相補鎖(二重鎖)形成反応であるハイブリダイゼーション、抗原抗体反応、酵素応答反応その他の分子間(高分子、低分子を問わない。)の相互反応作用等を、化学的な反応形式を問わず広く含む。
【0021】
「反応領域」は、主に液相中でのハイブリダイゼーションその他の前記分子間相互反応作用の場を提供できる試料溶液貯留領域であり、基板上に形成された検出表面上に形成される空間又は領域である。
【0022】
「立体障害(steric hindrance)」は、分子内の反応中心等の近傍に嵩高い置換基の存在や反応分子の姿勢や立体構造(高次構造)によって、反応相手の分子の接近が困難になることによって、所望の分子間相互反応作用が起こりにくくなる現象を意味する。
【0023】
【発明の実施の形態】
以下、添付図面に基づいて、本発明に係る分子間相互反応作用検出表面(以下、単に「検出表面」と言う。)の好適な実施形態について説明する。まず、図1は、本発明に係る検出表面の構成を示す斜視図、図2は、同検出表面部分の断面図である。符号1で示された検出表面は、ガラス、石英、シリコン等の材料によって形成された基板2上に形成され、分子間相互反応作用の検出部の一部を構成する。
【0024】
この検出表面1には、金等からなる金属薄膜部11が、島様に点在するように形成されており、検出表面1の上方領域には、分子間の相互反応作用の反応場を提供する反応領域Rが設けられる(図2参照)。
【0025】
検出表面1における金属薄膜部11の形成方法は、本発明においては特に限定されることない。即ち、金属薄膜部11を検出表面1全体にではなく、島の如きに点在するように形成できる方法であれば適宜採用可能である。
【0026】
例えば、基板1上に予めメルカプト基またはジスルフィド基のパターンを形成しておいてから、このパターン上に、金等の金属のナノ粒子、マイクロ粒子を化学吸着させて形成することができる。
【0027】
また、図3(A)に示すように、検出表面1の全面に金属Xを、エピタキシー蒸着その他の蒸着又はスパッタすることによって積層しておき、その後、この金属Xを公知のエッチング技術によって部分的に剥がすことによって、検出表面1に金属薄膜部11を島様に分布させることができる(図3(B)参照)。なお、金属薄膜部11の形成の際には、蒸着またはスパッタの量を調整したり、基板1を冷却したりしても良い。また、濡れ性が悪い基板2を用いても良い。
【0028】
ここで、金属薄膜部11が島様に分布した上記構成を備える検出表面1は、図4(A)に模式的に例示した、メルカプト基を有する一本鎖の検出用ヌクレオチド分子D又はジスルフィド基を有する一本鎖の検出用ヌクレオチド分子Dを、金属薄膜部11の表面に選択的に化学吸着させて、固定化させることができる。この固定化された状態を、図5(A)に模式的に示している。なお、図5(B)は、金属薄膜部11に固定化された一本鎖の前記検出用ヌクレオチド分子D(又はD)に対して、一本鎖の標的ヌクレオチド分子Tがハイブリダイゼーションして、二本鎖(相補鎖)を形成している様子を模式的に示している。
【0029】
また、図4(B)に模式的に示した、メルカプト基を有する二本鎖の検出用ヌクレオチド分子D又はジスルフィド基を有する二本鎖の検出用ヌクレオチド分子Dを、金属薄膜部11の表面に選択的に化学吸着させて、固定化させることができる。この固定化された状態を、図6に模式的に示す。なお、二本鎖の検出用ヌクレオチド分子Dは、固定化後に二本鎖のまま使用して酵素応答反応等の検出用分子として用いてもよく、あるいは固定化後に変性して一本鎖とした後にハイブリダイゼーション反応等を検出するための検出用分子として用いてもよい。
【0030】
なお、検出用分子Dは、一本鎖又は二本鎖のヌクレオチド分子(D〜D)に限定されるものではなく、金属薄膜部11に化学吸着するメルカプト基又はジスルフィド基を有する分子であれば、高分子、低分子を問わず選択可能である。
【0031】
図5、図6に示されているように、本発明に係る検出表面1では、検出用分子D(D〜D)が、検出表面1上に島様に点在するように形成された金属薄膜部11にだけ固定化されている結果、検出表面1全体に検出用分子Dが固定化されている場合と比較して、検出表面1上における検出用分子Dの集積密度が低い。
【0032】
このため、反応領域Rに対して後から添加又は送り込まれてくる標的分子Tが、固定化された検出用分子Dに接近する際の立体障害の影響が少ない。この結果、ハイブリダイゼーションその他の分子間相互反応作用の効率を向上させることができる。即ち、反応時間を短縮できる。
【0033】
検出表面1の金属薄膜部11に固定化された検出用分子Dが、リン酸イオンを有し陰電荷に荷電しているヌレオチド鎖である場合には、反応領域Rに図示しない対向電極を配置しておき、これに高周波電圧を印加して対向電極間の反応領域Rに均一電界(電気力線が一部に集中しない電界)を形成する構成も採用できる。この電界の作用によって検出用分子Dを伸長させることができるので、集積密度を低くする構成に加えて、更に立体障害の影響を排除することが可能なる。
【0034】
なお、対向電極の電界の条件は、約1×10V/m、約1MHzという条件が、好適である(Masao Washizu and Osamu Kurosawa:“Electrostatic Manipulation of DNA in Microfabricated Structures”,IEEE Transaction on Industrial Application Vol.26,No.26,p.1165−1172(1990)参照)。
【0035】
上記構成の検出表面1は、DNAチップ(マイクロアレイ)や分子間の相互反応作用を検出するための各種センサーチップの基板2上に設けることができる。
なお、検出表面1に固定化された検出用分子Dと標的分子Tとの間に相互反応作用があったか否かの検出は、光学的方法、水晶発振子原理、表面プラズモン共鳴原理等の公知慣用の方法によって実施すればよい。標識された蛍光色素や二重鎖ヌクレオチドの塩基間に特異的に結合するPOPO−1やTOTO−3等の蛍光インターカレータに励起光を照射し、得られる蛍光を慣用のディテクタを用いて検出することもできる。
【0036】
例えば、レーザー光(例えば、青色レーザー光)を照射して反応領域Rを励起し、蛍光強度の大きさを検出器(図示せず。)によって検出し、検出用分子Dと標的分子Tとの間のハイブリダイゼーションの状態を判断する。最後に、各反応領域Rに対する蛍光強度をA/D変換し、結合反応割合をコンピュータの画面に分布表示することによって、視覚化することができる。
【0037】
【発明の効果】
本発明によれば、基板の検出表面上に固定化される検出用分子の集積密度を低く抑えることができる結果、検出表面上の反応領域における検出用分子と標的分子との間のハイブリダイゼーションその他の分子間相互反応作用を高効率化することができる。
【0038】
検出用分子の検出表面での集積密度の制御は反応時間を短縮することでも可能であるが、反応時間による制御では反応温度や反応環境の厳密な制御が必要である。このため、検出用分子が固定化される検出表面での相互反応作用間を制御する方がより容易である。本発明では、検出表面での金属薄膜部の島様パターンの面積や形成密度によって検出用分子の分布を制御できる構成であるので、検出表面上に任意の集積密度で検出用分子を固定化できる。
【0039】
本発明は、DNAチップ等のセンサーチップの検出表面において、ハイブリダイゼーションその他の分子間相互反応作用の効率の向上、反応時間の短縮、偽陽性又は偽陰性の発生防止等を確実に達成できる。
【0040】
本発明は、遺伝子の変異解析、SNPs(一塩基多型)分析、遺伝子発現頻度解析等において必須となるハイブリダイゼーションの検出や抗原抗体反応等を含む分子間相互反応作用の検出を、効率良く実施できるので、創薬、臨床診断、薬理ジェノミクス、法医学その他の関連産業界に提供するという技術的意義を有している。
【図面の簡単な説明】
【図1】本発明に係る検出表面(1)の構成を示す斜視図
【図2】同検出表面(1)部分の断面図
【図3】(A)検出表面1の全面に金属Xを蒸着又はスパッタして積層した状態を示す図
(B)前記金属Xを公知のエッチング技術によって部分的に剥がした後の状態を示す図
【図4】(A)メルカプト基を有する一本鎖の検出用ヌクレオチド分子D又はジスルフィド基を有する一本鎖の検出用ヌクレオチド分子Dを模式的に示す図
(B)メルカプト基を有する二本鎖の検出用ヌクレオチド分子D又はジスルフィド基を有する二本鎖の検出用ヌクレオチド分子Dを模式的に示す図
【図5】(A)一本鎖の検出用ヌクレオチド分子(D)が検出表面(1)上に島様に点在するように形成された金属薄膜部(11)に固定化されている様子を示す図
(B)固定化された一本鎖の前記検出用ヌクレオチド分子(D又はD)に対して、一本鎖の標的ヌクレオチド分子Tがハイブリダイゼーションして、二本鎖(相補鎖)を形成している様子を模式的に示す図。
【図6】二本鎖の検出用ヌクレオチド分子(D)が検出表面(1)上に島様に点在するように形成された金属薄膜部(11)に固定化されている様子を示す図
【図7】従来の検出表面の構成を模式的に示す図(断面図)
【符号の説明】
1 検出表面
2 基板
11 金属薄膜部
D 検出用分子
R 反応領域
T 標的分子
[0001]
TECHNICAL FIELD OF THE INVENTION
The present invention relates to detection surfaces for detecting hybridization and other intermolecular interactions. More specifically, metal thin film portions to which detection molecules are immobilized are formed at intervals, and the detection molecules are immobilized at an appropriate density, thereby causing steric hindrance during the intermolecular interaction. The present invention relates to an intermolecular interaction detecting surface devised so as to prevent a reduction in reaction efficiency.
[0002]
[Prior art]
At present, an integrated substrate for a bioassay called a DNA chip or a DNA microarray (hereinafter, collectively referred to as “DNA chip”) in which predetermined DNAs are finely arranged by microarray technology is used for gene mutation analysis, SNPs (single nucleotide). (Polymorphism) analysis, gene expression frequency analysis, etc., and have begun to be widely used in drug discovery, clinical diagnosis, pharmacogenomics, forensic medicine and other fields.
[0003]
This DNA chip has a large number of DNA oligo chains and cDNA (complementary DNA) integrated on a glass substrate or a silicon substrate, so that comprehensive analysis of intermolecular reactions such as hybridization can be performed. It is characterized by points.
[0004]
Here, Patent Literature 1 discloses a solid-phase immobilization method in which avidin molecules are immobilized in a single layer only on a specific portion of a surface of a substrate including a metal substrate to which probe biomolecules are to be attached, using a photolithography technique and an etching technique. A surface-treated substrate having a film formed thereon is disclosed.
[0005]
Further, in Patent Document 2, a probe used for detecting a substance to be inspected is previously captured by fine particles, and the fine particles are fixed to a portion partitioned in a grid on the surface of the substrate, and the probe is captured in each partition. A technique for finely fixing fine particles in a single layer is disclosed.
Further, as shown in FIG. 7 schematically showing the attached prior art, a metal thin film 101 such as gold is formed on the entire surface of a substrate 100 made of synthetic resin or the like. It is common practice to immobilize detection molecules that are chemically bonded.
[0006]
[Patent Document 1]
Japanese Patent Application Laid-Open No. 2002-153272 [Patent Document 2]
Japanese Patent Application Laid-Open No. 2002-253232
[Problems to be solved by the invention]
However, in the above-described conventional DNA chip technology, a nucleotide chain for detection such as a DNA probe is fixed to a detection surface site (spot site) by being entangled or rounded in a random coil shape and has a high integration density. Therefore, steric hindrance occurs during hybridization or other interaction with the target molecule.
[0008]
For this reason, there was a problem that the efficiency of the interaction was low, the reaction took a long time, and there was a possibility that a false positive or false negative was shown. In particular, in the technique of immobilizing detection molecules on the entire detection surface (see FIG. 7), the above problem was remarkable because the integration density of the detection molecules was high.
[0009]
Therefore, the present invention provides a metal thin film portion to which detection molecules are fixed, formed at intervals on the detection surface, and fixes the detection molecules at an appropriate density, thereby reducing the interaction between the molecules. The main object is to prevent a reduction in reaction efficiency due to steric hindrance at the time.
[0010]
[Means for Solving the Problems]
In order to solve the above technical problem, in the present application, first, the intermolecular interaction between a detection molecule having a mercapto group (-SH) or a disulfide group (-SS-) and a target molecule is described. A detection surface on a substrate facing a reaction region providing a field, wherein a metal thin film portion is provided at intervals on the substrate, and the detection molecule is provided on the metal thin film portion via the mercapto group or the disulfide group. To provide a surface for detecting an intermolecular interaction and a substrate for detecting an intermolecular interaction provided with the detection surface designed to fix the surface.
[0011]
That is, in the intermolecular interaction detecting surface according to the present invention, instead of adopting a configuration in which the detection molecules are immobilized on the whole of the detection surface, a dot such as an island is formed on the detection surface. The detection molecules are devised so as to be immobilized only on (the surface of) the metal thin film portion formed at intervals.
[0012]
As a result, the integration density of (immobilized) detection molecules on the detection surface can be suppressed to a low level, so that the detection molecules that are entangled or rounded in a random coil shape are added later. Alternatively, a reaction field environment in which the sent target molecule is easily accessible is formed. That is, an environment in which the influence of steric hindrance is small is formed at the time of the reaction between the molecules, so that the hybridization and other interaction between the detection molecule and the target molecule proceed efficiently.
[0013]
In the intermolecular interaction detection surface of the present invention, by fixing the area per one metal thin film portion formed on the detection surface and the number of metal thin film portions formed per unit area of the detection surface, fixation on the detection surface It is possible to freely adjust the integration density of the molecules for detection of activation.
[0014]
The metal thin film portion may be formed of a metal material that reacts with a mercapto group (-SH) or a disulfide group (-SS-), and can be formed, for example, from a gold thin film. A metal such as gold has a function of reacting with a mercapto group (-SH) or a disulfide group (-SS-) to form a so-called mercaptide, and chemically adsorbing and immobilizing a detection molecule.
[0015]
The metal thin film portion is formed on the detection surface by any one of vapor deposition or sputtering, and the metal thin film portion has at least a step of interspersing it in islands at intervals. It can be formed by a manufacturing method. That is, the metal thin film portion is formed as a metal vapor-deposited film or a metal sputtered film scattered like islands by the manufacturing method. The substrate on which the metal thin film portion is formed can also be formed of a stearic acid single crystal substrate or another organic compound crystal substrate that does not bind to a mercapto group (-SH) or a disulfide group (-SS-). .
[0016]
The metal thin film portion made of a metal vapor-deposited film may be formed by appropriately selecting various known vapor-deposition techniques. For example, vapor deposition using an epitaxy phenomenon can be suitably employed. By using the epitaxy phenomenon, it is possible to form a metal thin film portion (epitaxial film) that is arranged substantially regularly on the detection surface, so that there is an advantage that the molecules for detection can be uniformly (regularly) uniformly immobilized on the detection surface. is there.
[0017]
Here, the main technical terms in the present application are defined. First, the “intermolecular interaction reaction detection surface” in the present application means a surface region on a substrate that has a function of immobilizing detection molecules.
[0018]
The “detection molecule” is a probe molecule including a DNA probe and other nucleotide chains, peptides, proteins, lipids, and the like, immobilized on the detection surface. Incidentally, the nucleotide chain means a polymer of a phosphate ester of a nucleoside in which a purine or pyrimidine base and a sugar are glycoside-linked, and an oligonucleotide including a DNA probe, a polynucleotide, a DNA in which a purine nucleotide and a pyrimidine nucleotide are polymerized. (Full length or fragments thereof), cDNA obtained by reverse transcription (cDNA probe), RNA, polyamide nucleotide derivative (PNA) and the like.
[0019]
The “target molecule” is a molecule having a property of specifically reacting with the detection molecule. For example, it is a nucleotide chain having a base sequence complementary to the detection nucleotide chain, and in some cases, is labeled with a fluorescent substance or the like.
[0020]
The term “intermolecular interaction” refers to hybridization, antigen-antibody reaction, enzyme response reaction, or other intermolecular (polymeric) reaction in which a complementary strand (duplex) is formed between nucleotide chains having a complementary base sequence structure. , Small molecules) regardless of the chemical reaction form.
[0021]
The `` reaction region '' is a sample solution storage region capable of providing a field for hybridization or other intermolecular interaction mainly in a liquid phase, and a space or a space formed on a detection surface formed on a substrate. Area.
[0022]
"Steric hindrance" means that the presence of a bulky substituent in the vicinity of a reaction center or the like in a molecule or the posture or steric structure (higher-order structure) of a reactive molecule makes it difficult for a molecule of a reaction partner to approach. This means that the desired intermolecular interaction is unlikely to occur.
[0023]
BEST MODE FOR CARRYING OUT THE INVENTION
Hereinafter, a preferred embodiment of a surface for detecting an interaction between molecules (hereinafter, simply referred to as a “detection surface”) according to the present invention will be described with reference to the accompanying drawings. First, FIG. 1 is a perspective view showing a configuration of a detection surface according to the present invention, and FIG. 2 is a cross-sectional view of the detection surface portion. The detection surface indicated by reference numeral 1 is formed on a substrate 2 formed of a material such as glass, quartz, silicon, or the like, and constitutes a part of a detection unit for an intermolecular interaction.
[0024]
On the detection surface 1, metal thin film portions 11 made of gold or the like are formed so as to be scattered like islands, and a region above the detection surface 1 provides a reaction field of an interaction between molecules. A reaction region R is provided (see FIG. 2).
[0025]
The method for forming the metal thin film portion 11 on the detection surface 1 is not particularly limited in the present invention. That is, any method that can form the metal thin film portion 11 not in the entire detection surface 1 but in a dotted manner like an island can be employed.
[0026]
For example, after a pattern of a mercapto group or a disulfide group is formed on the substrate 1 in advance, nanoparticles or microparticles of a metal such as gold can be chemically adsorbed on the pattern.
[0027]
Further, as shown in FIG. 3A, a metal X is laminated on the entire surface of the detection surface 1 by epitaxy vapor deposition or other vapor deposition or sputtering, and then the metal X is partially applied by a known etching technique. Thus, the metal thin film portion 11 can be distributed like an island on the detection surface 1 (see FIG. 3B). When forming the metal thin film portion 11, the amount of vapor deposition or sputtering may be adjusted, or the substrate 1 may be cooled. Further, the substrate 2 having poor wettability may be used.
[0028]
Here, the detection surface 1 having the above configuration in which the metal thin film portions 11 are distributed like islands is a single-stranded nucleotide molecule D 1 for detection or a disulfide having a mercapto group, which is schematically illustrated in FIG. the detecting nucleotide molecule D 2 of the single strand having a group, by selectively chemically adsorbed on the surface of the metal thin film portion 11, it can be immobilized. This fixed state is schematically illustrated in FIG. FIG. 5B shows that the single-stranded target nucleotide molecule T is hybridized with the single-stranded detection nucleotide molecule D 1 (or D 2 ) immobilized on the metal thin film portion 11. Thus, a state in which a double strand (complementary strand) is formed is schematically shown.
[0029]
Furthermore, schematically shown in FIG. 4 (B), the detecting nucleotide molecules D 4 of duplexes with detecting nucleotide molecule D 3 or a disulfide group of duplexes with mercapto groups, of the metal thin film portion 11 It can be immobilized by selective chemisorption on the surface. This fixed state is schematically shown in FIG. The detection nucleotide molecules D 4 duplexes, and single-stranded denatured even better, or after immobilization using as a detection molecule such as an enzyme response reaction and used as a double-stranded after immobilization After that, it may be used as a detection molecule for detecting a hybridization reaction or the like.
[0030]
The detection molecule D is not limited to a single-stranded or double-stranded nucleotide molecule (D 1 to D 4 ), and may be a molecule having a mercapto group or a disulfide group that is chemically adsorbed to the metal thin film portion 11. If so, it can be selected regardless of whether it is a high molecule or a low molecule.
[0031]
As shown in FIGS. 5 and 6, in the detection surface 1 according to the present invention, the detection molecules D (D 1 to D 4 ) are formed so as to be scattered like islands on the detection surface 1. As a result, the density of the detection molecules D on the detection surface 1 is lower than that in the case where the detection molecules D are immobilized on the entire detection surface 1.
[0032]
Therefore, the influence of steric hindrance when the target molecule T added or fed to the reaction region R later approaches the immobilized detection molecule D is small. As a result, the efficiency of hybridization and other intermolecular interactions can be improved. That is, the reaction time can be shortened.
[0033]
When the detection molecule D immobilized on the metal thin film portion 11 on the detection surface 1 is a nucleotide chain having a phosphate ion and negatively charged, a counter electrode (not shown) is disposed in the reaction region R. In addition, a configuration in which a high-frequency voltage is applied thereto to form a uniform electric field (an electric field in which the lines of electric force are not partially concentrated) in the reaction region R between the opposed electrodes can be adopted. Since the detection molecule D can be elongated by the action of the electric field, it is possible to further eliminate the influence of steric hindrance in addition to the configuration of lowering the integration density.
[0034]
The conditions of the electric field of the counter electrode are preferably about 1 × 10 6 V / m and about 1 MHz. Vol.26, No.26, p.1165-1172 (1990)).
[0035]
The detection surface 1 having the above configuration can be provided on a substrate 2 of a DNA chip (microarray) or various sensor chips for detecting an interaction between molecules.
The detection of whether or not there is an interaction between the detection molecule D immobilized on the detection surface 1 and the target molecule T is performed by a known method such as an optical method, a quartz oscillator principle, and a surface plasmon resonance principle. It may be carried out by the method described above. A fluorescent intercalator such as POPO-1 or TOTO-3 that specifically binds between labeled fluorescent dyes or bases of double-stranded nucleotides is irradiated with excitation light, and the resulting fluorescence is detected using a conventional detector. You can also.
[0036]
For example, the reaction region R is excited by irradiating a laser beam (for example, a blue laser beam), and the magnitude of the fluorescence intensity is detected by a detector (not shown). The state of hybridization between them is determined. Finally, the fluorescence intensity for each reaction region R is A / D converted, and the binding reaction ratio can be visualized by distributing and displaying the ratio on a computer screen.
[0037]
【The invention's effect】
ADVANTAGE OF THE INVENTION According to this invention, since the accumulation density of the detection molecule | numerator immobilized on the detection surface of a board | substrate can be suppressed low, hybridization between a detection molecule and a target molecule in the reaction area on a detection surface, etc. Can increase the efficiency of the intermolecular interaction.
[0038]
Control of the integration density of detection molecules on the detection surface can be achieved by shortening the reaction time, but control by the reaction time requires strict control of the reaction temperature and reaction environment. For this reason, it is easier to control the interaction between the detection surfaces on which the detection molecules are immobilized. In the present invention, since the distribution of the detection molecules can be controlled by the area and the formation density of the island-like pattern of the metal thin film portion on the detection surface, the detection molecules can be immobilized on the detection surface at an arbitrary integration density. .
[0039]
INDUSTRIAL APPLICABILITY The present invention can reliably achieve the improvement of the efficiency of hybridization and other intermolecular interactions, the reduction of reaction time, the prevention of false positive or false negative, etc. on the detection surface of a sensor chip such as a DNA chip.
[0040]
INDUSTRIAL APPLICABILITY The present invention efficiently carries out detection of hybridization and intermolecular interaction including antigen-antibody reaction, which are essential in gene mutation analysis, SNPs (single nucleotide polymorphism) analysis, gene expression frequency analysis and the like. It has the technical significance of providing to drug discovery, clinical diagnosis, pharmacogenomics, forensic and other related industries.
[Brief description of the drawings]
FIG. 1 is a perspective view showing the configuration of a detection surface (1) according to the present invention. FIG. 2 is a cross-sectional view of the detection surface (1). FIG. 3 (A) Metal X is deposited on the entire surface of the detection surface 1. FIG. 4B shows a state after the metal X is partially peeled off by a known etching technique. FIG. 4A shows a state after the metal X is partially peeled off by a known etching technique. duplexes with two detecting nucleotide molecule D 3 or a disulfide group of chains having a schematically shown FIG. (B) a mercapto group of detecting nucleotide molecule D 2 of the single strand having a nucleotide molecule D 1 or disulfide group is formed so as FIGS 5A and 5B showing a detecting nucleotide molecules D 4 of schematically (a) detecting nucleotide molecule single-stranded (D 1) are scattered in an island-like on the detection surface (1) Fixed to the thin metal film part (11) Against diagram showing how (B) the detecting nucleotide molecule single-stranded immobilized (D 1 or D 2), the target nucleotide molecule T of the single-stranded by hybridization duplexes (complementary FIG. 2 is a view schematically showing a state in which a chain is formed.
FIG. 6 shows that a double-stranded nucleotide molecule for detection (D 2 ) is immobilized on a metal thin film portion (11) formed on the detection surface (1) so as to be dotted like islands. FIG. 7 is a diagram (cross-sectional view) schematically showing the configuration of a conventional detection surface.
[Explanation of symbols]
DESCRIPTION OF SYMBOLS 1 Detection surface 2 Substrate 11 Metal thin film part D Detection molecule R Reaction area T Target molecule

Claims (8)

メルカプト基(−SH)又はジスルフィド基(−S−S−)を有する検出用分子と標的分子との間の分子間相互反応作用の場を提供する反応領域に臨む基板上に形成された検出表面であって、
前記検出表面には金属薄膜部が間隔を置いて設けられ、該金属薄膜部に前記メルカプト基又はジスルフィド基を介して前記検出用分子が固定化される分子間相互反応作用検出表面。
A detection surface formed on a substrate facing a reaction region that provides a field for an intermolecular interaction between a detection molecule having a mercapto group (-SH) or a disulfide group (-SS-) and a target molecule And
An intermolecular interaction detecting surface, wherein a metal thin film portion is provided at intervals on the detection surface, and the detection molecule is immobilized on the metal thin film portion via the mercapto group or the disulfide group.
前記金属薄膜部は、金薄膜から形成されたことを特徴とする請求項1記載の分子間相互反応作用検出表面。The surface for detecting an intermolecular interaction according to claim 1, wherein the metal thin film portion is formed of a gold thin film. 前記金属薄膜部は、金属蒸着膜又は金属スパッタ膜から形成されたことを特徴とする請求項2記載の分子間相互反応作用検出表面。The surface for detecting an interaction between molecules according to claim 2, wherein the metal thin film portion is formed from a metal deposition film or a metal sputtered film. 前記金属薄膜部は、メルカプト基(−SH)又はジスルフィド基(−S−S−)と結合しない有機化合物膜から形成された表面に形成されたことを特徴とする請求項1記載の分子間相互反応作用検出表面。2. The intermolecular interaction according to claim 1, wherein the metal thin film portion is formed on a surface formed from an organic compound film that is not bonded to a mercapto group (—SH) or a disulfide group (—SS—). 3. Reaction effect detection surface. 前記検出用分子は、一本鎖又は二本鎖のヌクレオチド分子であることを特徴とする請求項1記載の分子間相互反応作用検出表面。The intermolecular interaction detecting surface according to claim 1, wherein the detection molecule is a single-stranded or double-stranded nucleotide molecule. 前記分子間相互反応作用は、ハイブリダイゼーションであることを特徴とする請求項1記載の分子間相互反応作用検出表面。The surface for detecting an intermolecular interaction according to claim 1, wherein the intermolecular interaction is hybridization. 請求項1記載の分子間相互反応作用検出表面を少なくとも備えることを特徴とする分子間相互反応作用検出基板。A substrate for detecting an interaction between molecules, comprising at least the surface for detecting an interaction between molecules according to claim 1. 検出用分子と標的分子との間の分子間相互反応作用の場を提供する反応領域に臨む基板上に形成された検出表面上に、蒸着又はスパッタリングのいずれかの手法を用いて、金属薄膜部が間隔を置いて島様に点在させる工程を少なくとも含む分子間相互反応作用検出表面の製造方法。On the detection surface formed on the substrate facing the reaction region that provides a field of intermolecular interaction between the detection molecule and the target molecule, using either a vapor deposition or sputtering technique, a metal thin film part A method for producing a surface for detecting an intermolecular interaction, which comprises at least a step of scattering islands at intervals.
JP2003090356A 2003-03-28 2003-03-28 Surface for detecting intermolecular interactions Expired - Fee Related JP4288982B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2003090356A JP4288982B2 (en) 2003-03-28 2003-03-28 Surface for detecting intermolecular interactions

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2003090356A JP4288982B2 (en) 2003-03-28 2003-03-28 Surface for detecting intermolecular interactions

Publications (2)

Publication Number Publication Date
JP2004294383A true JP2004294383A (en) 2004-10-21
JP4288982B2 JP4288982B2 (en) 2009-07-01

Family

ID=33404002

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2003090356A Expired - Fee Related JP4288982B2 (en) 2003-03-28 2003-03-28 Surface for detecting intermolecular interactions

Country Status (1)

Country Link
JP (1) JP4288982B2 (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007057466A (en) * 2005-08-26 2007-03-08 Matsushita Electric Ind Co Ltd Specimen reactor and target molecule detector
JP2007057467A (en) * 2005-08-26 2007-03-08 Matsushita Electric Ind Co Ltd Specimen reactor and target molecule detector
JP2007064638A (en) * 2005-08-29 2007-03-15 Matsushita Electric Ind Co Ltd Specimen reactor and target molecule detection device

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007057466A (en) * 2005-08-26 2007-03-08 Matsushita Electric Ind Co Ltd Specimen reactor and target molecule detector
JP2007057467A (en) * 2005-08-26 2007-03-08 Matsushita Electric Ind Co Ltd Specimen reactor and target molecule detector
JP4696782B2 (en) * 2005-08-26 2011-06-08 パナソニック株式会社 Sample reaction device and target molecule detection device
JP2007064638A (en) * 2005-08-29 2007-03-15 Matsushita Electric Ind Co Ltd Specimen reactor and target molecule detection device
JP4569420B2 (en) * 2005-08-29 2010-10-27 パナソニック株式会社 Sample reaction device and target molecule detection device

Also Published As

Publication number Publication date
JP4288982B2 (en) 2009-07-01

Similar Documents

Publication Publication Date Title
US20220195421A1 (en) Bistable polynucleotide devices for the sensing and quantification of molecular events
JP4328168B2 (en) Detection unit for interaction between substances using capillary phenomenon, method using the detection unit, and substrate for bioassay
US11391734B2 (en) Surface-immobilized bistable polynucleotide devices for the sensing and quantification of molecular events
CN107735497B (en) Assays for single molecule detection and uses thereof
EP3087181B1 (en) Structured substrates for improving detection of light emissions and methods relating to the same
JP3952042B2 (en) Hybridization detection unit including an electrode having a concave portion and a DNA chip including the detection unit
JP2003322653A (en) Support and carrier for fixing probe
US11162192B2 (en) Materials and methods relating to single molecule arrays
JP2003510065A (en) Particle structures with receptors for analyte detection
US20010053521A1 (en) Amplification of analyte detection by substrates having particle structures with receptors
JP4039201B2 (en) Hybridization detection unit, sensor chip, and hybridization method
WO2020197554A1 (en) Surface-immobilized bistable polynucleotide devices for the sensing and quantification of molecular events
Ng et al. Protein microarrays on ITO surfaces by a direct covalent attachment scheme
Chen et al. Parallel single nucleotide polymorphism genotyping by surface invasive cleavage with universal detection
JP4288982B2 (en) Surface for detecting intermolecular interactions
JP2004020386A (en) Hybridization method and hybridization apparatus for selectively coupling substance, and base for immobilizing the selectively coupling substance
JP4411931B2 (en) Method for detecting interaction between substances
Wang et al. Plasmonic Probing of Deoxyribonucleic Acid Hybridization at the Single Base Pair Resolution
JP4367441B2 (en) Hybridization method
Kasry et al. Comparison of methods for generating planar DNA-modified surfaces for hybridization studies
JP2006296279A (en) Method for detecting hybridization by using intercalator
JP4328167B2 (en) A part for detecting an interaction between substances using a protruding counter electrode and a substrate for bioassay provided with the part
JP2004132720A (en) Hybridization detection part, sensor chip and hybridization method
JP2006010621A (en) Method for preventing nonspecific adsorption, manufacturing method of substrate for bioassay by using the same method, interaction detection method, and reagent kit
JP2004264068A (en) Bio-sensor chip

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20060313

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20080306

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20080422

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20080623

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20080902

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20081020

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20090310

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20090323

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120410

Year of fee payment: 3

LAPS Cancellation because of no payment of annual fees