JP2004292587A - Method for forming electrically conductive thin film on plastic molded product - Google Patents

Method for forming electrically conductive thin film on plastic molded product Download PDF

Info

Publication number
JP2004292587A
JP2004292587A JP2003085926A JP2003085926A JP2004292587A JP 2004292587 A JP2004292587 A JP 2004292587A JP 2003085926 A JP2003085926 A JP 2003085926A JP 2003085926 A JP2003085926 A JP 2003085926A JP 2004292587 A JP2004292587 A JP 2004292587A
Authority
JP
Japan
Prior art keywords
plastic molded
molded product
thin film
conductive
conductive thin
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2003085926A
Other languages
Japanese (ja)
Inventor
Yutaka Shimoda
裕 下田
Masanobu Tamura
雅信 田村
Kimihiko Nishiwaki
公彦 西脇
Shuichiro Wada
周一郎 和田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nichias Corp
Original Assignee
Nichias Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nichias Corp filed Critical Nichias Corp
Priority to JP2003085926A priority Critical patent/JP2004292587A/en
Publication of JP2004292587A publication Critical patent/JP2004292587A/en
Pending legal-status Critical Current

Links

Images

Landscapes

  • Laminated Bodies (AREA)
  • Chemical Vapour Deposition (AREA)
  • Non-Insulated Conductors (AREA)
  • Manufacturing Of Electric Cables (AREA)
  • Coating Of Shaped Articles Made Of Macromolecular Substances (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a method for easily forming an electrically conductive thin film of high durability on a plastic molded product in high adhesion. <P>SOLUTION: The method for forming an electrically conductive thin film on the plastic molded product comprises the following practice: The surface of the plastic molded product is subjected to glow discharge plasma treatment in a reactive gas atmosphere and then coated with an electrically conductive polymer-containing solution followed by drying. <P>COPYRIGHT: (C)2005,JPO&NCIPI

Description

【0001】
【発明の属する技術分野】
本発明は、プラスチック成形品への導電性薄膜の成膜方法に関する。
【0002】
【従来の技術】
食品分野や医療分野、半導体ウエハ保存容器材料、更には電子部品や半導体デバイス等の超微細加工を行う製造工場における床材や壁材は、帯電による塵埃の付着や、付着した塵埃の落下や再分散による二次汚染を防ぐために高度に帯電防止されたプラスチック材料が使用されている。このような帯電防止処理を施したプラスチック成形品としては、カーボンブラックやカーボンファイバー等の導電性フィラーを充填したプラスチック成形品が一般的にあるが、表面に導電性薄膜が成膜されたプラスチック成形品も用いられている。
【0003】
このような表面に導電性薄膜が成膜されたプラスチック成形品の製造方法としては、例えば、フッ素樹脂成形品の表面にスパッタエッチング処理を施した後、イミノ−p−フェニレン構造単位を繰り返し単位として有するポリアニリン含有溶液を塗布し、その後、乾燥して得られた薄膜をプロトン酸と酸化剤とを溶解させたドープ液で処理する方法(特許文献1参照)、プラスチック成形品の表面にプラズマ処理を施した後、導電性塗料を塗布する方法(特許文献2、特許文献3参照)等が知られている。
【特許文献1】
特開平6−248096号公報
【特許文献2】
特開平9−208729号公報
【特許文献3】
特開平10−101824号公報
【0004】
【発明が解決しようとする課題】
しかしながら、特許文献1(特開平6−248096号公報)に記載の方法では、フッ素樹脂成形品の表面に凹凸が形成されるもの、スパッタエッチング処理の処理ガスが不活性ガスや酸素中、窒素であることから、被覆用の導電性材料を含有する溶液との濡れ性が不十分で、導電性薄膜が均一になり難く、特に水溶液の場合に顕著となる。また、導電性塗料を成膜する方法では、塗料中の導電性物質の離脱が経時的に起こり、汚染源となり得るため好ましくない。
【0005】
本発明はこのような状況に鑑みてなされたものであり、プラスチック成形品との密着性に優れ、耐久性に優れた導電性被膜を容易に形成できる方法を提供することを目的とする。
【0006】
【課題を解決するための手段】
上記の目的を達成するために、本発明は、プラスチック成形品の表面を不活性ガスを主成分とする雰囲気中でグロー放電プラズマ処理した後、導電性高分子含有溶液を塗布し、乾燥することにより前記プラスチック成形品の表面に導電性薄膜を成膜することを特徴とするプラスチック成形品への導電性薄膜の成膜方法を提供する。
【0007】
【発明の実施の形態】
以下、本発明に関して詳細に説明する。
【0008】
本発明において、プラスチック成形品には制限がなく、各種樹脂からなる成形品が対象となり得る。例えば、食品分野や医療分野、半導体ウエハ保存容器材料等で一般に使用されている塩化ビニル系樹脂、ポリカーボネート樹脂、ポリメタクリレート系樹脂、ABS(アクリロニトリル−ブタジエン−スチレン)系樹脂、ポリイミド樹脂、ポリフェニレンサルファイド樹脂、ポリエーテルエーテルケトン樹脂、ポリエーテルサルフォン樹脂、ポリサルフォン樹脂、ポリイミド樹脂、ポリエーテルイミド樹脂、ポリテトラフルオエチレンやテトラフルオロエチレン−パーフルオロアルコキシエチレン共重合体等のフッ素系樹脂等からなるプラスチック成形品を例示できる。中でも、フッ素系樹脂やポリエーテルエーテルケトン樹脂は、他の樹脂に比べて耐熱性、耐薬品性、耐紫外線劣化性等に優れることから、特にフッ素系樹脂成形品やポリエーテルエーテルケトン樹脂成形品は好ましいといえる。また、成形品の形状にも制限がなく、任意の三次元形状の他、プレートやシート、フィルム等であってもよい。
【0009】
本発明の導電性薄膜の成膜方法では、先ず、上記プラスチック成形品の導電性薄膜の成膜領域にグロー放電プラズマ処理を施す。また、処理に先立ち、アセトンによる脱脂等の表面清浄化処理を施すことが好ましい。処理条件はプラスチック成形品の種類や形状等により適宜設定されるが、例えば、以下とすることができる。
【0010】
処理ガスとして、反応性ガスを用いる。反応性ガスとしてはアンモニア、水蒸気、水素、酸素が好ましく、必要に応じて、不活性ガスを併用してもよい。また、雰囲気のガス圧としては、1×10−4〜100Torr、好ましくは1×10−2〜100Torrが適当である。雰囲気のガス圧が100Torrを超えると、グロー放電プラズマが破壊され、熱プラズマとなり、更にはアーク放電に移行するため、特に耐熱性の低いプラスチックプレートもしくはシートには不適であり、更にはプラスチック成形品の処理面が均一に処理されなくなる等の不都合が発生して好ましくない。一方、雰囲気のガス圧を1×10−4Torr未満にするためには、高価な真空チャンバーや大出力の真空排気装置を必要とする等経済性が問題となる。
【0011】
尚、グロー放電プラズマ処理装置には制限がなく、一般的な装置をそのまま使用することができる。また、処理時間は、使用される処理ガスの種類、印加電圧の大きさ及びプラスチック成形品の種類や形状、寸法等により適宜設定される。
【0012】
上記の反応性ガス雰囲気中でのグロー放電プラズマ処理により、プラスチック表面が適度に粗面化されるとともに、活性が高まり、更には親水性や親油性も高められて、後述される導電性高分子を含有する溶液の濡れ性が大きく向上する。特に、フッ素系樹脂からなるプラスチック成形体は親水性が低いため、導電性高分子が水溶性の場合に、導電性高分子を含有するし溶液を均一に成膜できないが、本発明によれば反応性ガス雰囲気中でのグロー放電プラズマ処理により親水性が付与され、導電性高分子からなる薄膜を均一に成膜することができる、
【0013】
上記のグロー放電プラズマ処理の後、プラスチック成形品のプラズマ処理された領域に、導電性高分子を含有する溶液を塗布する。溶剤は導電性高分子の種類に応じて選択される。塗布方法には制限が無く、浸漬、スピンコート、スプレーコート、ロールコート、バーコート等の公知の方法で構わず、プラスチック成形品の形状により選択される。
【0014】
導電性高分子としては、例えば下記に示す繰り返し単位を有する高分子を例示することができる。
【0015】
【化1】

Figure 2004292587
【0016】
これらの多くは、導電性を発現するためにドーパントである電子供与体や電子受容性体との錯体化が必要である。電子供与体としてはCl、I、Br、ICl、ICl、IBr、IF等のハロゲン分子、AsF、SbF、FeCl、AlCl、ZrCl、PF、SO等のルイス酸、HSO、CFSOH、ClSOH、HClO等のプロトン酸、テトラシアノキシジメタン、クロラニル、DDQ等の有機化合物を使用できる。また、電子受容体としてはLi、Na、K、Rb、Cs等のアルカリ金属、Ca、Sr、Ba等のアルカリ土類金属、Eu等のランタノイド、R、R、RAs、アセチルコリン等を使用できる。
【0017】
ドーパントは、通常、導電性高分子からなる導電性被膜を成膜した後に適用されるため、ドーパントの導入作業が必要になる。そのため、ドーパントを内在する自己ドープ型の導電性高分子を用いることが好ましい。具体的には、分子鎖中にスルホン酸基やカルボキシル基を有するポリマーであり、三菱レイヨン(株)製「aqua PASS」(ポリアニリンスルホン酸)、ナガセケムテックス(株)製「デナトロン」(ポリエチレンジオキシチオフェン・ポリスチレンスルホン酸塩)等を市場から入手可能である。また、これらの導電性高分子は水溶性であることから、溶媒に水を使用することができ、この点でも好ましい。
【0018】
上記の導電性高分子を含有する溶液を塗布した後、乾燥することにより、導電性薄膜を成膜したプラスチック成形品が得られる。導電性高分子の被膜量は、導電性を確保できる範囲であれば制限されるものではなく、適宜選択できる。例えば、帯電防止には10〜1012Ω/□の表面抵抗値が必要であることが知られており、この範囲の導電性が確保できるように導電性薄膜の被膜量を調整する。
【0019】
このようにして得られる導電性薄膜を成膜したプラスチック成形品は、導電性高分子による導電性薄膜との密着性が良好で、しかも導電性薄膜が導電性高分子であることから、導電性塗料のように導電性物質の脱離も無く、外部を汚染することも無い。
【0020】
【実施例】
以下に実施例を挙げて本発明を更に説明するが、本発明はこれにより何ら制限されるものではない。尚、下記において、サンプルの表面抵抗は、9.9×10Ω/□以下は三菱油化(株)製「Loresta AP MCP−T400(四端子四探針方式、端子電圧20V)」を用い、10Ω/□以上は横河・ヒューレット・パッカード社製「High Resistance Meter 4329A(チャージ電圧500V、チャージ時間1分)」を用いて測定した。
【0021】
(実施例1)
厚さ0.1mmのポリテトラフルオロエチレン製シート(以下、「PTFEシート」という)をアセトンで脱脂し、アンモニアガス中でグロー放電プラズマ処理を行った。この処理により、PTFEシートの表面は、水に対する接触角が10°以下まで親水性が向上した。次いで、このPTFEシートをゴム製のコーティグ用台座に固定し、シート端部にナガセケムテックス(株)製「デナトロンP−502RD」を水に溶解した導電性溶液Aを数mL滴下し、番手#2のバーコーターで引き伸ばしてコーティングした。そして、コーティング後のPTFEシートを電気炉にて乾燥させ、サンプルAを得た。このようにして得たサンプルAの表面抵抗を測定したところ、1.0×10Ω/□であった。尚、未処理のPTFEシートの表面抵抗は1.0×1015Ω/□以上であった。
【0022】
(実施例2)
実施例1と同様に、アセトンで脱脂し、アンモニアガス中でのグロー放電プラズマ処理を施したPTFEシートに、日東電工(株)製ポリアニリン「アニリードSB−50」をNMP(N−メチル−2−ピロリロン)に溶解した導電性溶液Bをコーティングし、プロトン酸水溶液(PSN)浸漬によるドーピングを行いサンプルBを得た。このようにして得たサンプルBの表面抵抗を測定したところ、1.0×10Ω/□であった。
【0023】
(実施例3)
厚さ0.5mmのポリエーテルエーテル製シート(以下、「PEEKシート」という)をアセトンで脱脂し、アンモニアガス中でグロー放電プラズマ処理を行った。この処理により、PEEKシートの表面は、水に対する接触角が5°以下まで親水性が向上した。次いで、このPEEKシートに実施例1と同様にして導電性溶液Aをコーティングし、電気炉にて乾燥させてサンプルCを得た。このようにして得たサンプルCの表面抵抗を測定したところ、1.0×10Ω/□であった。
【0024】
(比較例1)
PTFEシートをアセトンで脱脂した後、その表面に実施例2で用いた導電性溶液Bをコーティングしたが、導電性溶液Bがはじかれて均一に成膜できなかった。また、ドーピングした後に表面抵抗を測定したところ、1.0×1015Ω/□以上であった。
【0025】
(比較例2)
PEEKシートをアセトンで脱脂した後、その表面に実施例1で用いた導電性溶液Aをコーティングしたが、導電性溶液Bがはじかれて均一に成膜できなかった。また、ドーピングした後に表面抵抗を測定したところ、1.0×1015Ω/□以上であった。
【0026】
(実施例4)
厚さ0.1mmのテトラフルオロエチレン−パーフルオロアルコキシエチレン共重合体製シート(以下、「PFAシート」という)をアセトンで脱脂し、アンモニアガス中でグロー放電プラズマ処理した後、実施例1で用いた導電性溶液AをコーティングしてサンプルDを得た。また、同じくアセトンで脱脂し、アンモニアガス中でのグロー放電プラズマ処理を施したPFAシートに、実施例2で用いた導電性溶液BをコーティングしてサンプルEを得た。
【0027】
そして、サンプルD及びサンプルEを常温下に放置し、所定時間毎に表面抵抗値を測定した。結果を図1に示すが、サンプルD及びサンプルEともに表面抵抗値の経時変化が見られない。
【0028】
また、サンプルD及びサンプルEを電気炉に入れ、温度を上昇させたときの表面抵抗の変化を調べた。結果を図2に示すが、サンプルD及びサンプルEともに150℃までは表面抵抗値の変化が見られず、このことから耐熱性に優れる導電性薄膜が得られることがわかる。
【0029】
更に、サンプルD及びサンプルEを60℃、95RHの高温・湿潤雰囲気中に放置し、所定時間毎に表面抵抗値を測定した。結果を図3に示すが、サンプルD及びサンプルEともに表面抵抗値の経時変化が見られず、このことから耐湿性に導電性薄膜が得られることがわかる。
【0030】
また、導電性薄膜の耐水性及び耐薬品性を評価するために、サンプルD及びサンプルEについて碁盤目試験を行った。即ち、サンプルD、サンプルEを水、10%塩酸水溶液、10%水酸化ナトリウム水溶液、アセトンにそれぞれ常温で24時間浸漬し、その後乾燥させて表面抵抗値を測定し、更にJIS K5400に規定の碁盤目テープ法により密着性を評価した。結果を表1及び表2に示す。
【0031】
【表1】
Figure 2004292587
【0032】
【表2】
Figure 2004292587
【0033】
表1及び表2から、アルカリに対する耐久性が若干劣るものの、酸や有機溶媒、水に対する耐久性は十分に優れていることがわかる。また、密着性にも優れている。
【0034】
【発明の効果】
以上説明したように、本発明によれば、プラスチック成形品の表面を反応性ガス雰囲気中でグロー放電プラズマ処理を行うことで、プラスチック成形品の表面が粗面化とともに、活性化され、導電性高分子含有溶液との群れ性が向上して均一で、密着性の高い導電性薄膜が成膜される。
【図面の簡単な説明】
【図1】実施例4で得たサンプルD及びサンプルEの表面抵抗値の経時変化を示すグラフである。
【図2】実施例4で得たサンプルD及びサンプルEの表面抵抗値の温度変化を示すグラフである。
【図3】実施例4で得たサンプルD及びサンプルEの表面抵抗値の高温・湿潤雰囲気での経時変化を示すグラフである。[0001]
TECHNICAL FIELD OF THE INVENTION
The present invention relates to a method for forming a conductive thin film on a plastic molded product.
[0002]
[Prior art]
Floor materials and wall materials used in the food and medical fields, semiconductor wafer storage container materials, and ultra-fine processing of electronic components and semiconductor devices in manufacturing factories are subject to the adhesion of dust due to electrification, the fall and re-attachment of the attached dust. Highly antistatic plastic materials are used to prevent cross-contamination due to dispersion. As a plastic molded product subjected to such antistatic treatment, there is generally a plastic molded product filled with a conductive filler such as carbon black or carbon fiber, but a plastic molded product having a conductive thin film formed on the surface thereof. Goods are also used.
[0003]
As a method for manufacturing a plastic molded article having a conductive thin film formed on such a surface, for example, after performing a sputter etching treatment on the surface of a fluororesin molded article, an imino-p-phenylene structural unit is used as a repeating unit. A method in which a polyaniline-containing solution is applied, and then the thin film obtained by drying is treated with a dope solution in which a protonic acid and an oxidizing agent are dissolved (see Patent Document 1). A method of applying a conductive paint after the application (see Patent Documents 2 and 3) and the like are known.
[Patent Document 1]
JP-A-6-248096 [Patent Document 2]
Japanese Patent Application Laid-Open No. 9-208729 [Patent Document 3]
JP 10-101824 A
[Problems to be solved by the invention]
However, in the method described in Patent Document 1 (Japanese Patent Application Laid-Open No. 6-248096), even when irregularities are formed on the surface of a fluororesin molded product, the processing gas for the sputter etching treatment is an inert gas, oxygen, or nitrogen. For this reason, the wettability with the solution containing the conductive material for coating is insufficient, and the conductive thin film is difficult to be uniform, particularly in the case of an aqueous solution. Further, the method of forming a conductive coating film is not preferable because the conductive substance in the coating material may be released over time and become a source of contamination.
[0005]
The present invention has been made in view of such circumstances, and an object of the present invention is to provide a method capable of easily forming a conductive film having excellent adhesion to a plastic molded product and excellent durability.
[0006]
[Means for Solving the Problems]
In order to achieve the above object, the present invention provides a method for applying a conductive polymer-containing solution to a surface of a plastic molded product after applying a glow discharge plasma treatment in an atmosphere containing an inert gas as a main component, followed by drying. The present invention provides a method for forming a conductive thin film on a plastic molded product, comprising forming a conductive thin film on the surface of the plastic molded product.
[0007]
BEST MODE FOR CARRYING OUT THE INVENTION
Hereinafter, the present invention will be described in detail.
[0008]
In the present invention, the plastic molded product is not limited, and may be a molded product composed of various resins. For example, a vinyl chloride resin, a polycarbonate resin, a polymethacrylate resin, an ABS (acrylonitrile-butadiene-styrene) resin, a polyimide resin, a polyphenylene sulfide resin generally used in a food field, a medical field, a semiconductor wafer storage container material and the like. Plastic molding of polyetheretherketone resin, polyethersulfone resin, polysulfone resin, polyimide resin, polyetherimide resin, fluorine resin such as polytetrafluoroethylene or tetrafluoroethylene-perfluoroalkoxyethylene copolymer Products can be exemplified. Above all, fluororesin and polyetheretherketone resin are more excellent in heat resistance, chemical resistance, UV deterioration resistance, etc. than other resins, so especially fluororesin molded products and polyetheretherketone resin molded products Is preferred. The shape of the molded product is not limited, and may be a plate, a sheet, a film, or the like in addition to an arbitrary three-dimensional shape.
[0009]
In the method for forming a conductive thin film of the present invention, first, a glow discharge plasma treatment is performed on a region where the conductive thin film of the plastic molded product is formed. Prior to the treatment, it is preferable to perform a surface cleaning treatment such as degreasing with acetone. The processing conditions are appropriately set according to the type, shape, and the like of the plastic molded product.
[0010]
A reactive gas is used as a processing gas. As the reactive gas, ammonia, steam, hydrogen, and oxygen are preferable, and an inert gas may be used in combination, if necessary. Further, the gas pressure of the atmosphere is 1 × 10 −4 to 100 Torr, preferably 1 × 10 −2 to 100 Torr. If the gas pressure of the atmosphere exceeds 100 Torr, the glow discharge plasma is destroyed and becomes thermal plasma, and further shifts to arc discharge. Therefore, it is not suitable for a plastic plate or sheet having low heat resistance. However, such a problem that the processing surface is not uniformly processed occurs, which is not preferable. On the other hand, in order to reduce the gas pressure of the atmosphere to less than 1 × 10 −4 Torr, there is a problem of economic efficiency such as the necessity of an expensive vacuum chamber and a high-output vacuum exhaust device.
[0011]
The glow discharge plasma processing apparatus is not limited, and a general apparatus can be used as it is. The processing time is appropriately set according to the type of processing gas used, the magnitude of the applied voltage, and the type, shape, dimensions, and the like of the plastic molded product.
[0012]
The glow discharge plasma treatment in the above-mentioned reactive gas atmosphere makes the surface of the plastic moderately rough, increases the activity, and further increases the hydrophilicity and lipophilicity. Greatly improves the wettability of the solution containing. In particular, since the plastic molded body made of a fluororesin has low hydrophilicity, when the conductive polymer is water-soluble, the conductive polymer is contained and the solution cannot be uniformly formed. Hydrophilicity is imparted by glow discharge plasma treatment in a reactive gas atmosphere, and a thin film made of a conductive polymer can be uniformly formed.
[0013]
After the above-described glow discharge plasma treatment, a solution containing a conductive polymer is applied to the plasma-treated region of the plastic molded product. The solvent is selected according to the type of the conductive polymer. The coating method is not limited, and may be a known method such as dipping, spin coating, spray coating, roll coating, or bar coating, and is selected according to the shape of the plastic molded product.
[0014]
As the conductive polymer, for example, a polymer having a repeating unit shown below can be exemplified.
[0015]
Embedded image
Figure 2004292587
[0016]
Many of these require complexation with an electron donor or an electron acceptor as a dopant in order to exhibit conductivity. Examples of the electron donor include halogen molecules such as Cl 2 , I 2 , Br 2 , ICl, ICl 3 , IBr, and IF; Lewis such as AsF 5 , SbF 5 , FeCl 3 , AlCl 3 , ZrCl 4 , PF 5 , and SO 3. Acids, protonic acids such as H 2 SO 4 , CF 3 SO 3 H, ClSO 3 H, HClO 4 and the like, and organic compounds such as tetracyanodimethane, chloranil, DDQ and the like can be used. Examples of the electron acceptor include alkali metals such as Li, Na, K, Rb and Cs; alkaline earth metals such as Ca, Sr and Ba; lanthanoids such as Eu; R 4 N + , R 4 P + and R 4. As + , acetylcholine and the like can be used.
[0017]
Since the dopant is usually applied after forming a conductive film made of a conductive polymer, an operation for introducing the dopant is required. Therefore, it is preferable to use a self-doping type conductive polymer containing a dopant. Specifically, it is a polymer having a sulfonic acid group or a carboxyl group in the molecular chain, such as "aqua PASS" (polyaniline sulfonic acid) manufactured by Mitsubishi Rayon Co., Ltd. and "Denatron" (polyethylene disulfide) manufactured by Nagase ChemteX Corporation. Oxythiophene / polystyrene sulfonate) is commercially available. In addition, since these conductive polymers are water-soluble, water can be used as a solvent, which is also preferable in this respect.
[0018]
A plastic molded article having a conductive thin film formed thereon is obtained by applying the solution containing the above conductive polymer and then drying it. The amount of the conductive polymer film is not limited as long as the conductivity can be ensured, and can be appropriately selected. For example, it is known that a surface resistance value of 10 6 to 10 12 Ω / □ is required for antistatic, and the amount of the conductive thin film is adjusted so as to secure conductivity in this range.
[0019]
The plastic molded article on which the conductive thin film thus obtained is formed has good adhesion to the conductive thin film by the conductive polymer, and since the conductive thin film is a conductive polymer, There is no desorption of the conductive material like paint, and no pollution of the outside.
[0020]
【Example】
Hereinafter, the present invention will be further described with reference to Examples, but the present invention is not limited thereto. In the following, the surface resistance of the sample is 9.9 × 10 7 Ω / □ or less, using “Loresta AP MCP-T400 (four-terminal four-probe method, terminal voltage 20 V)” manufactured by Mitsubishi Yuka Co., Ltd. The value of 10 8 Ω / □ or more was measured using “High Resistance Meter 4329A (charge voltage 500 V, charge time 1 minute)” manufactured by Yokogawa Hewlett-Packard Company.
[0021]
(Example 1)
A 0.1 mm-thick polytetrafluoroethylene sheet (hereinafter, referred to as a "PTFE sheet") was degreased with acetone, and subjected to glow discharge plasma treatment in ammonia gas. By this treatment, the hydrophilicity of the surface of the PTFE sheet was improved to a contact angle with water of 10 ° or less. Next, this PTFE sheet was fixed to a rubber coating base, and several milliliters of a conductive solution A obtained by dissolving "Denatron P-502RD" manufactured by Nagase ChemteX Corp. in water was dropped onto the end of the sheet. It was stretched and coated with a bar coater No. 2. Then, the coated PTFE sheet was dried in an electric furnace to obtain a sample A. When the surface resistance of the sample A thus obtained was measured, it was 1.0 × 10 6 Ω / □. The untreated PTFE sheet had a surface resistance of 1.0 × 10 15 Ω / □ or more.
[0022]
(Example 2)
In the same manner as in Example 1, Nitto Denko Corporation's polyaniline "Anilead SB-50" was NMP (N-methyl-2-)-coated on a PTFE sheet degreased with acetone and subjected to glow discharge plasma treatment in ammonia gas. Sample B was obtained by coating a conductive solution B dissolved in (pyrrolilone) and doping by immersion in a protonic acid aqueous solution (PSN). When the surface resistance of the sample B thus obtained was measured, it was 1.0 × 10 5 Ω / □.
[0023]
(Example 3)
A 0.5 mm thick polyetherether sheet (hereinafter referred to as a “PEEK sheet”) was degreased with acetone, and subjected to glow discharge plasma treatment in ammonia gas. By this treatment, the hydrophilicity of the surface of the PEEK sheet was improved to a contact angle with water of 5 ° or less. Next, this PEEK sheet was coated with the conductive solution A in the same manner as in Example 1, and dried in an electric furnace to obtain a sample C. When the surface resistance of the sample C thus obtained was measured, it was 1.0 × 10 6 Ω / □.
[0024]
(Comparative Example 1)
After the PTFE sheet was degreased with acetone, the surface thereof was coated with the conductive solution B used in Example 2, but the conductive solution B was repelled and a uniform film could not be formed. Further, the surface resistance was measured after doping and found to be 1.0 × 10 15 Ω / □ or more.
[0025]
(Comparative Example 2)
After the PEEK sheet was degreased with acetone, the surface thereof was coated with the conductive solution A used in Example 1. However, the conductive solution B was repelled, and a uniform film could not be formed. Further, the surface resistance was measured after doping and found to be 1.0 × 10 15 Ω / □ or more.
[0026]
(Example 4)
A sheet made of a tetrafluoroethylene-perfluoroalkoxyethylene copolymer having a thickness of 0.1 mm (hereinafter, referred to as a “PFA sheet”) is degreased with acetone and subjected to glow discharge plasma treatment in ammonia gas. The conductive solution A was coated to obtain a sample D. A sample E was obtained by coating the conductive solution B used in Example 2 on a PFA sheet similarly degreased with acetone and subjected to glow discharge plasma treatment in ammonia gas.
[0027]
Then, Sample D and Sample E were allowed to stand at room temperature, and the surface resistance was measured at predetermined time intervals. Although the results are shown in FIG. 1, no change in the surface resistance value with time was observed in both Sample D and Sample E.
[0028]
In addition, samples D and E were placed in an electric furnace, and changes in surface resistance when the temperature was increased were examined. The results are shown in FIG. 2. As shown in FIG. 2, no change in the surface resistance was observed in both samples D and E up to 150 ° C., indicating that a conductive thin film having excellent heat resistance was obtained.
[0029]
Further, Sample D and Sample E were left in a high-temperature and humid atmosphere of 60 ° C. and 95 RH, and the surface resistance was measured at predetermined intervals. The results are shown in FIG. 3, and there is no change in the surface resistance value over time in both Sample D and Sample E. This indicates that a conductive thin film having moisture resistance can be obtained.
[0030]
Further, in order to evaluate the water resistance and chemical resistance of the conductive thin film, a cross-cut test was performed on Sample D and Sample E. That is, Samples D and E were immersed in water, a 10% aqueous hydrochloric acid solution, a 10% aqueous sodium hydroxide solution, and acetone at room temperature for 24 hours, and then dried to measure the surface resistance value. The adhesiveness was evaluated by the eye tape method. The results are shown in Tables 1 and 2.
[0031]
[Table 1]
Figure 2004292587
[0032]
[Table 2]
Figure 2004292587
[0033]
Tables 1 and 2 show that the durability to acids, organic solvents, and water is sufficiently excellent although the durability to alkali is slightly inferior. Also, it has excellent adhesion.
[0034]
【The invention's effect】
As described above, according to the present invention, by performing glow discharge plasma treatment on the surface of a plastic molded product in a reactive gas atmosphere, the surface of the plastic molded product is activated while being roughened. The flocculation property with the polymer-containing solution is improved, and a uniform, highly adherent conductive thin film is formed.
[Brief description of the drawings]
FIG. 1 is a graph showing the change over time in the surface resistance values of samples D and E obtained in Example 4.
FIG. 2 is a graph showing temperature changes of surface resistance values of samples D and E obtained in Example 4.
FIG. 3 is a graph showing the change over time in the surface resistance value of Sample D and Sample E obtained in Example 4 in a high-temperature and humid atmosphere.

Claims (3)

プラスチック成形品の表面を、反応性ガス雰囲気中でグロー放電プラズマ処理した後、導電性高分子含有溶液を塗布し、乾燥することにより前記プラスチック成形品の表面に導電性薄膜を成膜することを特徴とするプラスチック成形品への導電性薄膜の成膜方法。After performing glow discharge plasma treatment in a reactive gas atmosphere on the surface of the plastic molded product, a conductive polymer-containing solution is applied and dried to form a conductive thin film on the surface of the plastic molded product. Characteristic method of forming a conductive thin film on a plastic molded product. 前記導電性高分子が、ドーパントを内在する自己ドープ型ポリチオフェン系導電性高分子またはポリアニリン系導電性高分子であることを特徴とする請求項1記載のプラスチック成形品への導電性薄膜の成膜方法。2. The method according to claim 1, wherein the conductive polymer is a self-doped polythiophene-based conductive polymer or a polyaniline-based conductive polymer containing a dopant. Method. 前記プラスチック成形品が、フッ素系樹脂またはポリエーテルエーテルケトンからなることを特徴とする請求項1または2記載の導電性被膜を有するプラスチック成形品への導電性薄膜の成膜方法。3. The method for forming a conductive thin film on a plastic molded article having a conductive coating according to claim 1, wherein the plastic molded article is made of a fluorine-based resin or polyetheretherketone.
JP2003085926A 2003-03-26 2003-03-26 Method for forming electrically conductive thin film on plastic molded product Pending JP2004292587A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2003085926A JP2004292587A (en) 2003-03-26 2003-03-26 Method for forming electrically conductive thin film on plastic molded product

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2003085926A JP2004292587A (en) 2003-03-26 2003-03-26 Method for forming electrically conductive thin film on plastic molded product

Publications (1)

Publication Number Publication Date
JP2004292587A true JP2004292587A (en) 2004-10-21

Family

ID=33400711

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2003085926A Pending JP2004292587A (en) 2003-03-26 2003-03-26 Method for forming electrically conductive thin film on plastic molded product

Country Status (1)

Country Link
JP (1) JP2004292587A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2022080454A1 (en) * 2020-10-14 2022-04-21 アウロステクノロジーズ合同会社 Film, multilayer body, and method for producing multilayer body

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2022080454A1 (en) * 2020-10-14 2022-04-21 アウロステクノロジーズ合同会社 Film, multilayer body, and method for producing multilayer body

Similar Documents

Publication Publication Date Title
Turkani et al. A highly sensitive printed humidity sensor based on a functionalized MWCNT/HEC composite for flexible electronics application
Hong et al. Effective doping by spin-coating and enhanced thermoelectric power factors in SWCNT/P3HT hybrid films
Kim et al. Fabrication of highly flexible, scalable, and high‐performance supercapacitors using polyaniline/reduced graphene oxide film with enhanced electrical conductivity and crystallinity
JP5519292B2 (en) High work function and high conductivity composition of conductive polymer
Lee et al. Heavily Doped poly (3, 4‐ethylenedioxythiophene) Thin Films with High Carrier Mobility Deposited Using Oxidative CVD: Conductivity Stability and Carrier Transport
JP4922569B2 (en) Antistatic coating composition, antistatic film formed by applying the composition, and method for producing the same
Hohnholz et al. Uniform thin films of poly-3, 4-ethylenedioxythiophene (PEDOT) prepared by in-situ deposition
JPH06298989A (en) Electrically conductive polyurethane foam and its production
JP2017022095A (en) Conductive film and manufacturing method therefor
Feng et al. How to Install TEMPO in Dielectric Polymers—Their Rational Design toward Energy‐Storable Materials
Iwan et al. Optical and electrical properties of graphene oxide and reduced graphene oxide films deposited onto glass and Ecoflex® substrates towards organic solar cells
Sansotera et al. Conductivity and superhydrophobic effect on PFPE-modified porous carbonaceous materials
Araźna et al. Investigation of surface properties of treated ITO substrates for organic light-emitting devices
KR101186801B1 (en) Post treatment processing method and its formulation of polymer solution for electric and thermal conductive thin film
JP2004292587A (en) Method for forming electrically conductive thin film on plastic molded product
Chen et al. Ultrahigh power output and durable flexible all-polymer triboelectric nanogenerators enabled by rational surface engineering
Li et al. Effect of attached peroxyacid on liquid phase depositional polymerization of EDOT over PI film with adsorbed ferric chloride
Bashir et al. Synthesis of electro‐active membranes by chemical vapor deposition (CVD) process
Chen et al. Oxidative graft polymerization of aniline on modified Si (100) surface
US20130092878A1 (en) Thermoplastic based electronic conductive inks and method of making the same
Lin et al. Electrical performance of the embedded-type surface electrodes containing carbon and silver nanowires as fillers and one-step organosoluble polyimide as a matrix
Sico et al. Improving the gravure printed PEDOT: PSS electrode by gravure printing DMSO post-treatment
JP3682233B2 (en)   Method for producing conductive resin film or sheet
Chiboub et al. Chemical and electrochemical grafting of polyaniline on aniline‐terminated porous silicon
KR101555103B1 (en) Porous polymer conductive sheet and preparation method thereof