JP2004291189A - Cutting device and cutting method - Google Patents

Cutting device and cutting method Download PDF

Info

Publication number
JP2004291189A
JP2004291189A JP2003089427A JP2003089427A JP2004291189A JP 2004291189 A JP2004291189 A JP 2004291189A JP 2003089427 A JP2003089427 A JP 2003089427A JP 2003089427 A JP2003089427 A JP 2003089427A JP 2004291189 A JP2004291189 A JP 2004291189A
Authority
JP
Japan
Prior art keywords
drill
outer diameter
coaxiality
diameter portion
stage
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2003089427A
Other languages
Japanese (ja)
Inventor
Haruji Hagi
春二 萩
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Kyocera Corp
Original Assignee
Kyocera Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kyocera Corp filed Critical Kyocera Corp
Priority to JP2003089427A priority Critical patent/JP2004291189A/en
Publication of JP2004291189A publication Critical patent/JP2004291189A/en
Pending legal-status Critical Current

Links

Images

Landscapes

  • Drilling And Boring (AREA)
  • Drilling Tools (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a tool for a semiconductor manufacturing device that eliminates displacement of coaxiality of a vacuum chuck or the like, uniformly sucks a sucking surface of a Si wafer, and firmly fixes it. <P>SOLUTION: The tool is a device for punching a ceramic body before burning by cutting. The tool comprises a multi-axis tool for rotating a plurality of parallel shafts by rotation of a spindle and two-stage shaped drills mounted to respective shafts. The coaxiality of the greater diameter section and the smaller diameter section of each two-stage shaped drill is 0.02 mm or less. <P>COPYRIGHT: (C)2005,JPO&NCIPI

Description

【0001】
【発明の属する技術分野】
本発明は、Siウエハ−あるいはGaAsなどの化合物半導体ウエハ−の研磨工程で使用されるセラミックス製ポリッシングプレ−ト等の焼成前に貫通孔を形成するための切削加工装置及び製造方法に関する。
【0002】
【従来の技術】
図7の焼成前製品9は半導体製造装置用治具であり、Siウエーハの真空チャックとして吸着面を均一にすることを目的とし、図7の座ぐり孔11a側より吸引し、孔11側で吸着固定するものである。
【0003】
以下は、従来の半導体製造装置用治具の焼成前製品9におけるセラミックス体の孔加工で、図6(A)の外径R3が1.2mmの超硬切刃4cを備えたドリル2a、図6(B)の外径R4が0.6mmの超硬切刃4dを備えたドリル2bをそれぞれ、図5(A)のチャッキング装置18に順次取り付け、マシニングセンタ−にて、セラミックス焼成前加工を行っていた。
【0004】
また、図7に示すセラミックスの焼成前製品9を、マシニングセンター(不図示)にて加工する際、焼成前製品9の表面より外径T2、深さD1の座ぐり孔11aを加工し、次に焼成前製品9の裏面より同一箇所に外径T1、深さD2の孔11を座グリ孔11aまで貫通させる工程で孔加工を行っていた(特許文献1参照)。
【特許文献1】
特開平11―216720号公報
【0005】
【発明が解決しようとする課題】
しかしながら、従来の特許文献1によると、図7に示すように焼成前製品9が肉厚の為、一方向からの孔加工では、切粉10が上がって来ず、焼成前製品9のクラック、ドリル2a,2bの折れ等が発生することから一方向からの加工はできなかった。
【0006】
例えば、孔数5000個の表面加工を行い、次に孔位置に印を付け、焼成前製品9を反転させて反対面の加工を行う為、加工時間にかなりの時間が必要とし、またセットに時間を取られていた。また、焼成前製品9を反転させて反対面の加工を行う際、同軸度のズレが多発していた。
【0007】
従ってズレの確認が必要となり、5000個の孔11、11aを1つ1つずつピンゲ−ジにて確認する必要があり、上記加工時間に加え、検査工程に非常に多くの時間を必要とする問題があった。
【0008】
【課題を解決するための手段】
上記に鑑みて本発明は、焼成前のセラミックス体に切削により孔加工を施す装置であって、主軸の回転により複数の平行な軸を回転させる多軸ツ−ルと、各軸に取り付けられた2段形状ドリルからなり、該2段形状ドリルの大径部と小径部の同軸度が0.02mm以下であることを特徴とするものである。
【0009】
また、上記2段形状ドリルはダイヤモンド切刃を有し、小径部の外径が0.5〜0.8mm、大径部の外径が1.2〜2mmであることを特徴とするものである。
【0010】
これにより、各ドリルを回転させながら、焼成前のセラミックス体に押し当てることによって、段形状の孔を形成することを特徴とするものである。
【0011】
【発明の実施の形態】
以下本発明の実施形態を図を用いて説明する。
【0012】
図1(A)に示すチャッキング装置8に、図2に示すような大径部20bと小径部20aを備えた2段形状ドリル1をチャッキングする。
【0013】
図4に示すように、主軸6により軸7aを回転させ、平行な軸7bを特徴とする多軸ツ−ル5により各2段形状ドリル1を回転させながら焼成前製品9に押し当てることにより、焼成前製品9を反転せずに、片側より内径の異なる2種類の孔を連続して加工することができる。
【0014】
このとき、2段形状ドリル1の同軸度K1が0.02mm以下であることにより、孔加工された半導体製造装置用冶具、例えば真空チャックはSiウエ−ハの吸着面を均一に吸着して、強固に固定をすることができる。
【0015】
また、上記2段形状ドリル1の各先端が、外径R2が0.5〜0.8mmの小径部20aのダイヤモンド切刃3a、外径R1が1.2〜2mmの大径部20bのダイヤモンド切刃3bとすることにより、製品の肉厚に対応して加工することができ、上記2種類の孔の外径の同軸度K2のズレが全く起こらず、また加工時間、検査時間を短縮することができる。
【0016】
以下に本発明の実施形態の詳細を図を用いて示す。
【0017】
図2は本発明の、ダイヤモンド切刃3a、3bを持つ2段形状ドリル1の形状図を示している。図2は2種類の外径R1、R2の超硬切刃4a、4bをもつ大径部20bと小径部20a同軸上に備えた2段形状ドリル1であり、超硬切刃4a、4bの各先端部にダイヤモンド切刃3a、3bをロ−付けし、小径部20aの外径R2が0.5〜0.8mm、大径部20bの外径R1が1.2〜2mmとし、この同軸度K1を0.02mm以下とする。
【0018】
ここで、ダイヤモンド切刃3a、3bとはダイヤモンド微粉の焼結体で耐摩耗性に富み、しかもダイヤモンド本来の耐摩耗性を兼ね備え焼結層全部が安定した均一なものを指す。
【0019】
超硬切刃は非常に優れた耐衝撃性を持っているが、ダイヤモンド切刃に比較して軟らかく耐摩耗係数が小さいため、この超硬切刃4a、4bの各先端に上記ダイヤモンド切刃3a、3bが備えられている。
【0020】
図3は、本発明の半導体製造装置用治具の焼成前製品9における孔加工の実施形態を示し、8はチャッキング装置、1は2段形状ドリルを示している。
【0021】
まず2段形状ドリル1を、多軸ツ−ル5に取り付け、焼成前製品9を反転させずに、孔11まで貫通させる孔加工を行う。
【0022】
図4に示すように、多軸ツール5の駆動原理は、主軸6により軸7a、7bを回転させるものである。この際、軸間のピッチ12の公差は、0.03mm以下とする。
【0023】
このような多軸ツ−ル5を使用することにより、焼成前製品9を反転せず片側より外径T1、外径T2の異なる2種類の孔11、及び座グリ孔11aを連続して加工し、その同軸度K2が0.1mm以下であることにより、Siウエ−ハの吸着面を均一に吸着して、しっかりとした固定することができる半導体製造装置用治具を提供ができる。
【0024】
ここで、同軸度K2が0.1mmを超えてしまうと、外径T1と外径T2がズレている為、Siウエ−ハの吸着力が弱まり、吸着が均一でなく、ウエ−ハ面(不図示)への平行、平坦が出ない等その機能を果たさないので、2段形状ドリル1の同軸度K1は0.02mm以下とする必要がある。
【0025】
また、従来の図6(B)外径R4が0.6mmのドリル2bでは、焼成前製品9の肉厚に対しては、このドリル2bが細い為加工出来なかったのに対し、図2の一体形状ドリル1外径R1が1.2〜2mm、外径R2が0.5〜0.8mm2段形状ドリル1とすることにより、切粉10が除去されやすくなるため、焼成前製品9の肉厚に対応して片方から加工することができ、同軸度K2のズレが全く起こらない。
【0026】
また加工時間、検査時間を短縮することができる。
【0027】
ここで、外径R2が0.5mm未満では、軸が弱いため軸が振れて焼成前製品9にクラックが発生する可能性がある。
【0028】
外径R2が0.8mmを超えると、バキューム用の孔としては大きすぎて適用できない。
【0029】
また、外径R2が0.5〜0.8mmと、外径R1が1.2mm未満の場合、肉厚の焼成前製品9には、軸が弱い為軸のふれで焼成前製品9にクラックがはいる恐れがある。
【0030】
また、外径R2が0.5〜0.8mm、外径R1が2mmを超える場合は、切れ性に問題はないが、バキューム用孔としては大きすぎて適用出来ない。
【0031】
【実施例】
次に、ドリルをマシニングセンター(不図示)にセットし、セット回数、同軸度、回転数を変化させて、加工時間、ドリルの摩耗、被加工物の検査の要、不要について調査を行った。
【0032】
従来法として、焼成前製品9の表面より図6(A)の外径R3が1.2mmの超硬切刃4cを備えたドリル2aで焼成前製品9の図7の座グリ孔11aを深さ30mmまで加工終了後、焼成前製品9を反転して、外径R4が0.6mmの超硬切刃4dを備えたドリル2bで裏面より孔11を貫通させる。
【0033】
次に本発明による方法として、図2(B)の2段形状ドリル1を4本同時に図1の真空チャック8に使用し、一方向より図3の座グリ孔11a及び孔11の連続して加工を行った結果を表1に示す。
【0034】
ここで、2段形状ドリルは実施例として同軸度K1を0.02mmとしたものと比較例として同軸度K1を0.03mmとしたものを用意した。
【0035】
表1より、2段形状ドリル1は、ドリル2a、2bより、加工時間の大幅な短縮が可能となり、同軸度K2の精度も高い。
【0036】
又、検査時間も不要となり経費、時間共に大幅な改善となる。
【0037】
【表1】

Figure 2004291189
【0038】
また、従来の加工方法と本発明の加工方法により、各種条件で試験を行い、同軸度のテストを10回行った。
【0039】
従来の加工方法としては、図6(A)外径R3が1.2mmの超硬切刃4cを備えたドリル2aで深さ30mmまで加工、製品反転後、図6(B)の外径R4が0.6mmの超硬切刃4dを備えたドリル2bで貫通させた。
【0040】
一方、本発明の加工方法では、2段形状ドリル1を4本同時に図1のチャッキング装置8に使用して加工する。
【0041】
上記加工を行った後、ピンゲ−ジを挿入し、チェックを行い、投影機にて同軸度K2の測定をおこなった測定結果を表2に示す。
【0042】
【表2】
Figure 2004291189
【0043】
表2より、本発明の2段形状ドリル1で加工したものは、同軸度K2が0.1mm以下となったが、従来のドリル2a、2bのものは殆どの同軸度K2が0.1mm以上となってしまった。
【0044】
【発明の効果】
本発明により、主軸の回転により平行な軸を回転させる多軸ツ−ルにより、焼成前製品を反転せず片側より内径の異なる2種類の孔を連続して加工し、該2種類の孔の同軸度を0.1mm以下とすることを可能にして、半導体製造装置用冶具として、例えば真空チャックがSiウエ−ハの吸着面を均一に吸着して、しっかり固定できる孔加工をすることができる。
【0045】
また、上記多軸ツールに搭載される2種類の外径の超硬切刃を同軸上に備えた2段形状ドリルの各先端が、外径0.5〜0.8mmの小径部のダイヤモンド切刃、外径1.2〜2mmの大径部のダイヤモンド切刃であることにより、製品の肉厚に対応して加工することができ、孔の同軸度のズレが全く起こさず、また加工時間、検査時間を短縮することができる。
【図面の簡単な説明】
【図1】(A)は本発明の多軸ツールを内臓したチャッキング装置の正面図、(B)はその側面図である。
【図2】本発明の2段形状ドリルを示す概略図である。
【図3】本発明による焼成前のセラミック体の孔加工を示す断面図である。
【図4】本発明の、多軸ツールを示す断面図である。
【図5】(A)は従来のチャッキング装置の側面図、(B)はその正面図である。
【図6】(A)、(B)は超硬ドリルを示す概略図である。
【図7】従来の焼成前のセラミック体の孔加工を示す断面図である。
【符号の説明】
1:2段形状ドリル
2a、2b:ドリル
3a、3b:ダイヤモンド切刃
4a〜4d:超硬切刃
5:多軸ツ−ル
6:主軸
7a,7b:軸
8:チャッキング装置
9:焼成前製品
10:切粉
11b:孔
11a:座グリ孔
12:ピッチ
18:チャッキング装置
20a:小径部
20b:大径部
D1、D2:深さ
T1、T2:外径
K1、K2:同軸度
R1〜R4:外径[0001]
TECHNICAL FIELD OF THE INVENTION
The present invention relates to a cutting apparatus and a manufacturing method for forming a through hole before firing a ceramic polishing plate or the like used in a polishing process of a Si wafer or a compound semiconductor wafer such as GaAs.
[0002]
[Prior art]
The pre-fired product 9 in FIG. 7 is a jig for a semiconductor manufacturing apparatus, and is intended to make the suction surface uniform as a vacuum chuck for a Si wafer, and is sucked from the counterbore hole 11a side in FIG. It is to be fixed by suction.
[0003]
The following is a drilling of a ceramic body in a pre-fired product 9 of a conventional jig for a semiconductor manufacturing apparatus, a drill 2a having a carbide cutting edge 4c having an outer diameter R3 of 1.2 mm in FIG. Drills 2b each having a carbide cutting edge 4d having an outer diameter R4 of 0.6 mm of FIG. 6 (B) are sequentially attached to the chucking device 18 of FIG. 5 (A), and a pre-ceramic firing process is performed by a machining center. I was going.
[0004]
Further, when the ceramic pre-fired product 9 shown in FIG. 7 is processed by a machining center (not shown), a counterbore hole 11a having an outer diameter T2 and a depth D1 is processed from the surface of the pre-fired product 9, and then Hole processing was performed in a step of penetrating a hole 11 having an outer diameter T1 and a depth D2 at the same location from the back surface of the pre-fired product 9 up to the counterbore hole 11a (see Patent Document 1).
[Patent Document 1]
Japanese Patent Application Laid-Open No. H11-216720
[Problems to be solved by the invention]
However, according to the conventional patent document 1, as shown in FIG. 7, since the product 9 before firing is thick, the chips 10 do not come up in the hole drilling from one direction, and cracks of the product 9 before firing occur. Since the drills 2a and 2b were broken, processing from one direction was not possible.
[0006]
For example, to process the surface of 5000 holes, then mark the position of the holes, turn over the product 9 before firing, and process the opposite surface. I was taking time. Further, when the pre-fired product 9 is turned over and the opposite surface is processed, misalignment of the coaxiality frequently occurs.
[0007]
Therefore, it is necessary to confirm the displacement, and it is necessary to confirm each of the 5,000 holes 11, 11a one by one with a pin gauge, and in addition to the processing time described above, an extremely long time is required for the inspection process. There was a problem.
[0008]
[Means for Solving the Problems]
In view of the above, the present invention is an apparatus for forming a hole in a ceramic body before firing by cutting, and is attached to each axis with a multi-axis tool for rotating a plurality of parallel axes by rotation of a main axis. The drill comprises a two-stage drill, and the large-diameter portion and the small-diameter portion of the two-stage drill have a coaxiality of 0.02 mm or less.
[0009]
Further, the two-stage drill has a diamond cutting edge, the outer diameter of the small diameter portion is 0.5 to 0.8 mm, and the outer diameter of the large diameter portion is 1.2 to 2 mm. is there.
[0010]
Thus, a step-shaped hole is formed by pressing each of the drills against the ceramic body before firing while rotating.
[0011]
BEST MODE FOR CARRYING OUT THE INVENTION
Hereinafter, embodiments of the present invention will be described with reference to the drawings.
[0012]
A two-stage drill 1 having a large diameter portion 20b and a small diameter portion 20a as shown in FIG. 2 is chucked in a chucking device 8 shown in FIG.
[0013]
As shown in FIG. 4, the shaft 7a is rotated by the main shaft 6, and the two-stage drills 1 are rotated by the multi-axis tool 5 characterized by the parallel shaft 7b and pressed against the product 9 before firing. In addition, two types of holes having different inner diameters from one side can be continuously processed without inverting the pre-fired product 9.
[0014]
At this time, when the coaxiality K1 of the two-stage drill 1 is 0.02 mm or less, the jig for the semiconductor manufacturing apparatus having the hole drilled, for example, the vacuum chuck uniformly sucks the suction surface of the Si wafer. Can be firmly fixed.
[0015]
Further, each tip of the two-stage drill 1 has a diamond cutting blade 3a having a small diameter portion 20a having an outer diameter R2 of 0.5 to 0.8 mm and a diamond having a large diameter portion 20b having an outer diameter R1 of 1.2 to 2 mm. By using the cutting edge 3b, it is possible to perform processing in accordance with the thickness of the product, there is no deviation of the coaxiality K2 between the outer diameters of the two types of holes, and the processing time and the inspection time are reduced. be able to.
[0016]
Hereinafter, details of the embodiment of the present invention will be described with reference to the drawings.
[0017]
FIG. 2 shows a shape diagram of a two-stage drill 1 having diamond cutting edges 3a and 3b according to the present invention. FIG. 2 shows a two-stage drill 1 provided coaxially with a large diameter portion 20b and a small diameter portion 20a having two types of carbide cutting edges 4a and 4b having outer diameters R1 and R2. Diamond cutting blades 3a and 3b are soldered to the respective tip portions, and the outer diameter R2 of the small diameter portion 20a is 0.5 to 0.8 mm and the outer diameter R1 of the large diameter portion 20b is 1.2 to 2 mm. The degree K1 is set to 0.02 mm or less.
[0018]
Here, the diamond cutting blades 3a and 3b are diamond fine powder sintered bodies that are rich in wear resistance, have the inherent wear resistance of diamond, and have a stable and uniform sintered layer.
[0019]
The cemented carbide cutting edge has a very high impact resistance, but is softer and has a lower wear resistance than the diamond cutting blade. Therefore, the diamond cutting edge 3a is attached to each end of the cemented carbide cutting edges 4a and 4b. , 3b.
[0020]
FIG. 3 shows an embodiment of drilling a pre-fired product 9 of a jig for a semiconductor manufacturing apparatus according to the present invention, wherein 8 is a chucking device, and 1 is a two-stage drill.
[0021]
First, the two-stage drill 1 is attached to the multi-axis tool 5, and a hole processing is performed to penetrate the unfired product 9 to the hole 11 without inverting the product 9.
[0022]
As shown in FIG. 4, the driving principle of the multi-axis tool 5 is to rotate the shafts 7a and 7b by the main shaft 6. At this time, the tolerance of the pitch 12 between the shafts is set to 0.03 mm or less.
[0023]
By using such a multi-axis tool 5, the two types of holes 11 having different outer diameters T1 and T2 and counterbored holes 11a are continuously processed from one side without reversing the product 9 before firing. When the coaxiality K2 is 0.1 mm or less, it is possible to provide a jig for a semiconductor manufacturing apparatus capable of uniformly adsorbing the adsorption surface of the Si wafer and firmly fixing the same.
[0024]
Here, if the coaxiality K2 exceeds 0.1 mm, since the outer diameter T1 and the outer diameter T2 are shifted, the suction force of the Si wafer is weakened, the suction is not uniform, and the wafer surface ( (Not shown), the coaxiality K1 of the two-stage drill 1 needs to be 0.02 mm or less.
[0025]
Further, in the conventional drill 2b having an outer diameter R4 of 0.6 mm as shown in FIG. 6B, the drill 2b was too thin for the thickness of the product 9 before firing. Since the integrated drill 1 has a two-stage drill 1 having an outer diameter R1 of 1.2 to 2 mm and an outer diameter R2 of 0.5 to 0.8 mm, the chips 10 are easily removed. It can be processed from one side corresponding to the thickness, and no deviation of the coaxiality K2 occurs at all.
[0026]
Further, processing time and inspection time can be reduced.
[0027]
Here, when the outer diameter R2 is less than 0.5 mm, the shaft is weak because the shaft is weak, and there is a possibility that cracks may occur in the product 9 before firing.
[0028]
When the outer diameter R2 exceeds 0.8 mm, it is too large for a vacuum hole and cannot be applied.
[0029]
When the outer diameter R2 is 0.5 to 0.8 mm and the outer diameter R1 is less than 1.2 mm, the thick pre-fired product 9 has a weak shaft, so that the shaft 9 runs out and cracks. There is a risk of entering.
[0030]
When the outer diameter R2 exceeds 0.5 to 0.8 mm and the outer diameter R1 exceeds 2 mm, there is no problem in cutting performance, but it is too large for a vacuum hole and cannot be applied.
[0031]
【Example】
Next, the drill was set on a machining center (not shown), and the number of times of setting, the coaxiality, and the number of revolutions were changed to investigate the processing time, the wear of the drill, and the necessity and unnecessary of the inspection of the workpiece.
[0032]
As a conventional method, the counterbored hole 11a in FIG. 7 of the product 9 before firing is deepened from the surface of the product 9 before firing with a drill 2a having a carbide cutting edge 4c having an outer diameter R3 of 1.2 mm in FIG. After finishing the processing to a thickness of 30 mm, the pre-fired product 9 is inverted, and the hole 11 is penetrated from the back surface with a drill 2 b having a carbide cutting edge 4 d having an outer diameter R4 of 0.6 mm.
[0033]
Next, as a method according to the present invention, four two-stage drills 1 shown in FIG. 2 (B) are simultaneously used for the vacuum chuck 8 shown in FIG. 1, and the counterbored holes 11a and holes 11 shown in FIG. Table 1 shows the results of the processing.
[0034]
Here, two-stage drills were prepared in which the coaxiality K1 was 0.02 mm as an example and the coaxiality K1 was 0.03 mm as a comparative example.
[0035]
As shown in Table 1, the two-stage drill 1 can significantly reduce the processing time compared to the drills 2a and 2b, and the accuracy of the coaxiality K2 is high.
[0036]
In addition, no inspection time is required, and the cost and time are greatly improved.
[0037]
[Table 1]
Figure 2004291189
[0038]
In addition, tests were performed under various conditions by the conventional processing method and the processing method of the present invention, and the coaxiality test was performed 10 times.
[0039]
As a conventional processing method, an outer diameter R3 shown in FIG. 6B is machined to a depth of 30 mm with a drill 2a having a carbide cutting edge 4c having an outer diameter R3 of 1.2 mm, and after turning over the product, an outer diameter R4 shown in FIG. Pierced with a drill 2b having a carbide cutting edge 4d of 0.6 mm.
[0040]
On the other hand, in the processing method of the present invention, four two-stage drills 1 are simultaneously processed by using the chucking device 8 in FIG.
[0041]
After the above processing, a pin gauge is inserted, a check is performed, and the measurement result of the coaxiality K2 measured by the projector is shown in Table 2.
[0042]
[Table 2]
Figure 2004291189
[0043]
As shown in Table 2, the coaxiality K2 of the drill drilled with the two-stage drill 1 of the present invention was 0.1 mm or less, but the coaxiality K2 of the conventional drills 2a and 2b was 0.1 mm or more. It has become.
[0044]
【The invention's effect】
According to the present invention, a multi-axis tool that rotates a parallel axis by rotation of a main shaft continuously processes two types of holes having different inner diameters from one side without reversing the product before firing, and The coaxiality can be reduced to 0.1 mm or less, and as a jig for a semiconductor manufacturing apparatus, for example, a vacuum chuck can uniformly perform suction on a suction surface of a Si wafer and perform hole processing for firmly fixing the suction surface. .
[0045]
In addition, each tip of a two-stage drill having two types of outer diameter carbide cutting blades coaxially mounted on the above-mentioned multi-axis tool has a small-diameter portion having an outer diameter of 0.5 to 0.8 mm. Since the cutting edge is a diamond cutting blade with a large diameter portion with an outer diameter of 1.2 to 2 mm, it can be processed according to the wall thickness of the product, no deviation in the coaxiality of the hole occurs, and the processing time In addition, the inspection time can be reduced.
[Brief description of the drawings]
FIG. 1A is a front view of a chucking device incorporating a multi-axis tool of the present invention, and FIG. 1B is a side view thereof.
FIG. 2 is a schematic view showing a two-stage drill of the present invention.
FIG. 3 is a cross-sectional view illustrating a drilling of a ceramic body before firing according to the present invention.
FIG. 4 is a cross-sectional view showing a multi-axis tool of the present invention.
5A is a side view of a conventional chucking device, and FIG. 5B is a front view thereof.
FIGS. 6A and 6B are schematic diagrams showing a carbide drill.
FIG. 7 is a cross-sectional view showing a conventional drilling of a ceramic body before firing.
[Explanation of symbols]
1: Two-stage drills 2a, 2b: Drills 3a, 3b: Diamond cutting edges 4a to 4d: Carbide cutting edges 5: Multi-axis tools 6: Spindles 7a, 7b: Axis 8: Chucking device 9: Before firing Product 10: Chip 11b: Hole 11a: Counterbore Hole 12: Pitch 18: Chucking device 20a: Small diameter portion 20b: Large diameter portion D1, D2: Depth T1, T2: Outer diameter K1, K2: Coaxiality R1 R4: Outer diameter

Claims (3)

焼成前のセラミックス体に切削により孔加工を施す装置であって、主軸の回転により複数の平行な軸を回転させる多軸ツ−ルと、各軸に取り付けられた大径部と小径部を有する2段形状ドリルとからなり、該2段形状ドリルの大径部と小径部の同軸度が0.02mm以下であることを特徴とする切削加工装置。A multi-axis tool that rotates a plurality of parallel shafts by rotating a main shaft, and a large-diameter portion and a small-diameter portion attached to each shaft. A cutting device comprising a two-stage drill, wherein the coaxiality of the large-diameter portion and the small-diameter portion of the two-stage drill is 0.02 mm or less. 上記2段形状ドリルはダイヤモンド切刃を有し、小径部の外径が0.5〜0.8mm、大径部の外径が1.2〜2mmであることを特徴とする請求項1に記載の切削加工装置。The two-stage drill has a diamond cutting edge, and the outer diameter of the small diameter portion is 0.5 to 0.8 mm, and the outer diameter of the large diameter portion is 1.2 to 2 mm. The cutting device as described. 請求項1または2記載の切削加工装置を用い、各ドリルを回転させながら、焼成前のセラミックス体に押し当てることによって、段形状の孔を形成することを特徴とする切削加工方法。A cutting method using the cutting apparatus according to claim 1 or 2, wherein a stepped hole is formed by pressing each drill while rotating the drill against a ceramic body before firing.
JP2003089427A 2003-03-27 2003-03-27 Cutting device and cutting method Pending JP2004291189A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2003089427A JP2004291189A (en) 2003-03-27 2003-03-27 Cutting device and cutting method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2003089427A JP2004291189A (en) 2003-03-27 2003-03-27 Cutting device and cutting method

Publications (1)

Publication Number Publication Date
JP2004291189A true JP2004291189A (en) 2004-10-21

Family

ID=33403275

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2003089427A Pending JP2004291189A (en) 2003-03-27 2003-03-27 Cutting device and cutting method

Country Status (1)

Country Link
JP (1) JP2004291189A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102773520A (en) * 2012-07-12 2012-11-14 昆山乔锐金属制品有限公司 Processing technology of intensive type tinier hole
US20180147641A1 (en) * 2015-05-28 2018-05-31 Kyocera Corporation Drill and method of manufacturing machined product

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102773520A (en) * 2012-07-12 2012-11-14 昆山乔锐金属制品有限公司 Processing technology of intensive type tinier hole
US20180147641A1 (en) * 2015-05-28 2018-05-31 Kyocera Corporation Drill and method of manufacturing machined product
US10315257B2 (en) * 2015-05-28 2019-06-11 Kyocera Corporation Drill and method of manufacturing machined product

Similar Documents

Publication Publication Date Title
JP2905142B2 (en) Drill
JPH07108523A (en) Drilling of hard and fragile material and machining device thereof
JPH1128662A (en) Working method for tubular ceramic molding
KR100845656B1 (en) Hole drilling method for plate material
JP2008254132A (en) Chuck table
CN101066563A (en) Error proofing apparatus for cutting tools
JP2004291189A (en) Cutting device and cutting method
JP2010245254A (en) Method of processing wafer
JP4960429B2 (en) Manufacturing method of scribing wheel
JP4348583B2 (en) Diamond drill and manufacturing method thereof
KR20160141650A (en) Method of manufacturing stylus and stylus
JP2004174627A (en) Cutting and grinding method and device for it
JP2017161749A (en) Pellicle frame and manufacturing method of pellicle frame
JP2003071662A (en) Method for working screw hole for spacer fitting of main spindle tip surface, and spacer fitting method
JP5075185B2 (en) Scribing wheel
JP2009248233A (en) Small-diameter drill for printed board and method of thinning shape processing thereof
TW200800498A (en) Processing device for card side-face
JP2002096222A (en) Drill shank
JP2002307220A (en) Method of machining workpiece, and printed circuit board boring machine
JP2002018623A (en) Cutting tool with level difference
JP2905202B2 (en) Drill
WO2021192481A1 (en) Method of manufacturing electrode plate for plasma processing device and electrode plate for plasma processing device
JP2002126948A (en) Tool retaining jig
JP2005096015A (en) Automatic six-face machining system
JP2005153131A (en) Drilling tool and drilling method