JP2004289914A - Ultrasonic motor - Google Patents

Ultrasonic motor Download PDF

Info

Publication number
JP2004289914A
JP2004289914A JP2003077535A JP2003077535A JP2004289914A JP 2004289914 A JP2004289914 A JP 2004289914A JP 2003077535 A JP2003077535 A JP 2003077535A JP 2003077535 A JP2003077535 A JP 2003077535A JP 2004289914 A JP2004289914 A JP 2004289914A
Authority
JP
Japan
Prior art keywords
ultrasonic
ultrasonic transducers
ultrasonic motor
driven body
angle
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2003077535A
Other languages
Japanese (ja)
Inventor
Ryoichi Fukunaga
了一 福永
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Taiheiyo Cement Corp
Original Assignee
Taiheiyo Cement Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Taiheiyo Cement Corp filed Critical Taiheiyo Cement Corp
Priority to JP2003077535A priority Critical patent/JP2004289914A/en
Publication of JP2004289914A publication Critical patent/JP2004289914A/en
Pending legal-status Critical Current

Links

Images

Landscapes

  • General Electrical Machinery Utilizing Piezoelectricity, Electrostriction Or Magnetostriction (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To offer an ultrasonic motor which can move a driven element in multiple directions. <P>SOLUTION: The ultrasonic motor 10 possesses a head 13 which contacts with the driven element 15, three pieces of bar-shaped ultrasonic oscillators 51a and 51b which are equipped with piezoelectric plates 24a and 24b, and retaining members 12 which retain the ultrasonic oscillators 11a, 11b and, 11c. The head 13 has a substantially globular shoe 13a which contacts with the driven element 15, and three pieces of feet 13b, 13c, and 13d which are connected severally with the three pieces of ultrasonic oscillators 11a-11c. This ultrasonic motor shifts the driven element 15 in multiple directions within an X-Y plane by driving at least two of the ultrasonic oscillators 11a-11c with voltages with their phases shifted. <P>COPYRIGHT: (C)2005,JPO&NCIPI

Description

【0001】
【発明の属する技術分野】
本発明は、各種機械の駆動装置として使用される超音波モータに関する。
【0002】
【従来の技術】
図4に示すように、個々に圧電素子を備えた2個の超音波振動子101a・101bと、超音波振動子101a・101bを所定の角度(例えば、90度)で保持する保持部材102と、略V字型の形状を有し、その頂点部で被駆動体であるロータ105と接し、その翼部(V字型に開いている方)で超音波振動子101a・101bと接続されたヘッド103と、を備えた共振型の超音波モータ100が知られている(例えば、特許文献1参照)。なお、ヘッド103の2つの翼部はそれぞれ超音波振動子101a・101bの構成要素でもある。
【0003】
この超音波モータ100では、超音波振動子101a・101bの各圧電素子に位相が約90度ずれた共振周波数の電圧を印加して各圧電素子を伸縮させて、超音波振動子101a・101bを振動させることにより、ヘッド103の先端部に楕円運動を生じさせる。こうして楕円運動するヘッド103を一定の力でロータ105の端面に押し付けると、ヘッド103とロータ105との間に生ずる摩擦力によってロータ105の外周の接線方向へ力が加わるために、ロータ105を回転させることができる。
【0004】
【特許文献1】
特開2000−152671号公報(第24〜29段落、第1図)
【0005】
【発明が解決しようとする課題】
しかしながら、超音波モータ100ではヘッド103と接する被駆動体を一軸方向にしか移動させることができない。例えば、図4に示すロータ105をX−Yステージで置き換え、このX−Yステージの裏面にヘッド103が接する構成とした場合には、X−YステージをY方向にしか移動させることができない。このため、X−Yステージを紙面に垂直な方向であるX方向に動かすためには、超音波モータ100が2台必要となる。
【0006】
この場合には、2台の超音波モータ100をV字型に開いた方向を直交させて配置する必要があるために、2台の超音波モータ100のヘッド103は必然的に一定の距離を空けて配置されることとなる。ここで、2台の超音波モータ100のヘッド103は常にX−Yステージに接している状態としなければならないので、X−Yステージを動かすことができる範囲は、X−Yステージの面積よりも狭くなる。換言すれば、所望する面積の範囲でX−Yステージを移動させるためには、実際には、この所望する面積よりも広い面積のステージが必要となるために、装置が大型化する。
【0007】
本発明はかかる事情に鑑みてなされたものであり、被駆動体を多方向で移動させることができる超音波モータを提供することを目的とする。
【0008】
【課題を解決するための手段】
本発明によれば、多角錐状に所定の角度で配置され、個々に圧電素子を備えた略棒状の3本以上の超音波振動子と、
前記3本以上の超音波振動子とそれぞれ接続される3以上の脚部と、被駆動体に接する接頭部を有する接頭部材と、
前記3本以上の超音波振動子を保持する保持部材と、
を具備し、
前記3本以上の超音波振動子のうち少なくとも2本の超音波振動子の各圧電素子に所定の位相差を有する交流電圧を印加して前記超音波振動子を振動させることにより前記接頭部に所定の楕円運動を生じさせて、前記被駆動体を動かすことを特徴とする超音波モータ、が提供される。
【0009】
このような超音波モータによれば、被駆動体を二次元面内において多方向に移動させることができる。3本の超音波振動子のうちの2本の超音波振動子が交差する角度は全て等しく、かつ、その角度は15度以上175度以下とすることが好ましい。この交差角度が小さい場合には駆動力が大きくなり、この交差角度が大きい場合には被駆動体の駆動速度を上げることができる。
【0010】
超音波振動子としては、板状でその略中心部に孔部を有し、その表裏面に電極が形成された圧電素子と、圧電素子の孔部に挿通して配置される軸部材と、前記軸部材の両端に圧電素子を所定の力で締め付けるように取り付けられる第1および第2の締結部材と、を有するものが挙げられる。ここで接頭部材を第2の締結部材とすることができる。
【0011】
【発明の実施の形態】
以下、本発明の実施の形態について図面を参照しながら説明する。図1は超音波モータ10の概略構成を示す斜視図であり、図2は超音波モータ10の概略平面図であり、図3は超音波モータ10を構成する超音波振動子11aの断面図である。超音波モータ10は、被駆動体15と接するヘッド(接頭部材)13と、三角錐状に配置された棒状の3本の超音波振動子11a・11b・11cと、超音波振動子11a・11b・11cを保持する保持部材12と、有している。
【0012】
ヘッド13は、被駆動体15と接する略球状の接頭部13aと、3本の超音波振動子11a・11b・11cとそれぞれ接続される3本の脚部13b・13c・13dと、を有している。3本の脚部13b・13c・13dのうちの2本が交差する角度θ(脚部の長手方向が交差する角度)はそれぞれ等しくなっており、この角度θは3本の超音波振動子11a・11b・11cのうち2本が交差する角度でもある。脚部13b・13c・13dのそれぞれの端部にはボルト部13eが形成されており、このボルト部13eと超音波振動子11a・11b・11cの第2ナット23とがネジ止めされることによって、ヘッド13と超音波振動子11a・11b・11cが接続される。
【0013】
超音波振動子11a〜11cは全て同じ構造を有するので、超音波振動子11aを例に挙げてその構造を詳しく説明する。超音波振動子11aは、両端がネジ切りされたボルト21と、ボルト21の一方のネジ溝に嵌合するネジ穴を有する第1ナット22と、ボルト21の他方のネジ溝に嵌合するネジ穴およびヘッド13の脚部13b〜13dが具備するボルト部13eのネジ溝に嵌合するネジ穴を有する第2ナット23と、ボルト21を挿通させることができる2枚のリング状の圧電板24a・24bと、ボルト21を挿通させることができるリング状の電極板(金属板)25a・25b・25cと、から構成される。なお、圧電板24a・24bの表裏面には電極(図示せず)が形成されている。
【0014】
保持部材12は三つ又の形状を有し、各超音波振動子11a〜11cのボルト21を挿通させるための孔部が設けられている。保持部材12は、第1ナット22と第2ナット23との間が所定の力で締め付けられることによって、超音波振動子11a〜11cを保持する。
【0015】
超音波振動子11a〜11cのうちの2本が交差する角度、つまりヘッド13の3本の脚部13b〜13dのうちの2本が交差する角度θは、好ましくは15度〜175度とされる。この角度θが小さい場合には、接頭部13aから被駆動体15に作用するZ方向の力が強くなるために、被駆動体15を動かす駆動力を大きくとることができる。逆に、角度θを大きくするとZ方向と直交する方向の力が大きくなるので、被駆動体15の移動速度を速くすることができるようになる。なお、保持部材12の形状は、この角度θによって定められる超音波振動子11a〜11cの位置に応じて、適宜、適切な形状に設定する。
【0016】
超音波モータ10は次のようにして組み立てられる。最初に、ヘッド13の脚部13b〜13dに第2ナット23を取り付ける。次に、保持部材12に設けられた3箇所の孔部のそれぞれにボルト21を通し、これらのボルト21のそれぞれに圧電板24a・24bが電極板25a〜25cに挟まれるように交互に通して、各ボルト21の一端を各第2ナット23に軽くねじ込む。続いて、各ボルト21を各第2ナット23に所定の力でねじ込んで固定する。さらに、各ボルト21の他端に第1ナット22を所定の力で締め付けて固定する。これによって圧電板24a・24bは所定の力で締め付けられ、ランジュバン型の超音波振動子11a・11b・11cが角度θで配置された超音波モータ10が得られる。
【0017】
圧電板24a・24bには、チタン酸ジルコン酸鉛(PZT)系の圧電セラミックスが好適に用いられる。圧電板24a・24bの分極の向きは、圧電板24a・24bの間に挟まれている電極板25bについて対称となっている。また、電極板25a・25cは互いに電気的に接続されている。したがって、電極板25bと電極板25cとの間に電圧を印加すると、圧電板24a・24bには同じ位相で変位(振動)が生ずる。つまり、圧電板24a・24bがその厚み方向に共に伸び、または、共に縮む。
【0018】
通常、ボルト21と第1ナット22と保持部材12には金属材料が用いられる。この場合には電極板25a・25cは保持部材12を介して第1ナット22と導通する。このため、保持部材12または超音波振動子11aの第1ナット22を圧電板24a・24bを駆動するための接地電極として用いると、超音波振動子11b・11cの圧電板24a・24bを駆動する際のアースを同時にとることができる。
【0019】
ヘッド13には、耐摩耗性に優れる材料、例えば、ステンレスや超硬合金等の金属材料が用いられる。ヘッド13が金属製である場合には、ヘッド13は電極板25aと導通するために、保持部材12または超音波振動子11a・11b・11cの第1ナット22のいずれかを接地すれば、ヘッド13もまた接地される。なお、ヘッド13の接頭部13aの表面に耐摩耗材料、例えば、窒化ケイ素等のコーティングを施すことも好ましい。
【0020】
保持部材12には押圧機構14が取り付けられており、この押圧機構14によってヘッド13の接頭部13aは被駆動体15に所定の力で押し付けられている。押圧機構14としては、例えば、エアーシリンダや油圧シリンダ、スプリングコイル等が用いられる。被駆動体15はX方向およびY方向に移動自在な機構(図示せず)に保持されている。
【0021】
このような構造を有する超音波モータ10の駆動方法としては、3本の超音波振動子11a〜11cのうち2本を駆動する方法と、3本の超音波振動子11a〜11c全てを駆動する方法とがある。
【0022】
例えば、超音波振動子11aと超音波振動子11bとを位相が約90度ずれた共振周波数またはその近傍の周波数の交流電圧で駆動し、超音波振動子11cを駆動しない場合には、図2の直線Pで示される方向、つまり、超音波振動子11a・11bを含む平面とX−Y平面とが交わる直線Pの長手方向で、被駆動体15を移動させることができる。より具体的に例を挙げれば、超音波振動子11aの電極板25bにV=Vsin(2πft)(V;ゼロ−ピーク電圧、f;周波数、t;時間)の交流電圧を印加し、これと同時に超音波振動子11bの電極板25bにV=Vcos(2πft)の交流電圧を印加すると、接頭部13aに生ずる楕円運動によって被駆動体15は矢印P1の向きに移動する。超音波振動子11a・11bを駆動する電圧を逆にすると、被駆動体15を矢印P2の方向へ移動させることができる。
【0023】
同様に、超音波振動子11b・11cを位相が約90度ずれた共振周波数またはその近傍の周波数の交流電圧で駆動すると、被駆動体15を直線Qの方向、つまりX方向で移動させることができる。また、超音波振動子11c・11aを位相が約90度ずれた共振周波数またはその近傍の周波数の交流電圧で駆動すると、被駆動体15を直線Rの方向で移動させることができる。
【0024】
3本の超音波振動子11a〜11cを全て駆動する例としては、例えば、超音波振動子11a〜11cのうちの2本を位相差のない同じ電圧で駆動し、残りの1本を位相が約90度ずれた電圧で駆動する場合が挙げられる。より具体的には、超音波振動子11b・11cを電圧V=Vsin(2πft)で駆動し、超音波振動子11aを電圧V=Vcos(2πft)で駆動する場合が一例と挙げられる。この場合には、超音波振動子11b・11cに生ずる振動のX方向成分は互いに打ち消され、Y方向成分どうしが重なり合い、またZ方向成分も重なり合う。一方、超音波振動子11aの振動は、Y方向成分とZ方向成分のみを有している。したがって、超音波振動子11a〜11cの振動による接頭部13aの楕円運動はY−Z面内で生じ、これによって、被駆動体15を直線Sで示される方向、つまりY方向で移動させることができる。
【0025】
同様に、超音波振動子11c・11aを1組として、これらと超音波振動子11bとを位相が約90度ずれた電圧で駆動することによって、被駆動体15を図2中の直線Tで示す方向で移動させることができる。また、超音波振動子11a・11bを1組として、これらと超音波振動子11cを位相が約90度ずれた電圧で駆動することによって、被駆動体15を図2中の直線Uで示す方向で移動させることができる。
【0026】
以上、本発明の超音波モータの実施の形態について説明してきたが、本発明はこのような形態に限定されるものではない。例えば、ヘッド13の脚部13b〜13dと第2ナット23とは一体であってもよい。つまり、ヘッド13の脚部13b〜13dにボルト21を固定するためのネジ穴を設けて、脚部13b〜13dと第1ナット22によって、圧電板24a・24bを所定の力で締め付ける構造としてもよい。
【0027】
また、超音波振動子11a〜11cのうちの2本が交差する角度θが全て同じである超音波モータ10について説明したが、超音波振動子11a・11bの交差角度と、超音波振動子11b・11cの交差角度と、超音波振動子11c・11aの交差角度は、それぞれ異なっていてもよい。さらに、2枚の圧電板24a・24bを備えた超音波振動子11a〜11cを示したが、圧電板は1枚でもよく3枚以上であってもよい。さらに、セラミックグリーンシートを用いた同時焼成法(一体焼成法)により作製された、圧電セラミック薄板と電極とが交互に積層された積層型圧電素子を圧電板24a等として用いてもよい。さらにまた、1個の超音波モータを構成する超音波振動子の数は3本に限定されるものではない。例えば、4本の超音波振動子が略四角錐型となるように配置された超音波モータや、6本の超音波動子が略六角錐型となるように配置された超音波モータであってもよい。このような超音波モータにおいても、少なくとも2本の超音波振動子を位相差を設けて駆動することによって、被駆動体を多方向に移動させることができる。
【0028】
【発明の効果】
上述の通り、本発明によれば、被駆動体を二次元面内において多方向に移動させることができる。このため、をX−Yステージ等の少なくとも2方向に動かすことが必要とされる装置の駆動源として本発明の超音波モータを用いることによって、装置を小型化することができる。
【図面の簡単な説明】
【図1】本発明に係る超音波モータの一実施形態を示す概略斜視図。
【図2】図1に示す超音波モータの概略平面図。
【図3】図1に示す超音波モータを構成する超音波振動子の概略断面図。
【図4】従来の超音波モータの概略の構造を示す説明図。
【符号の説明】
10;超音波モータ
11a・11b・11c;超音波振動子
12;保持部材
13;ヘッド
13a;接頭部
13b・13c・13d;脚部
14;押圧機構
15;被駆動体
21;ボルト
22;第1ナット
23;第2ナット
24a・24b;圧電板
25a〜25c;電極板
100;超音波モータ
101a・101b;超音波振動子
102;保持部材
103;ヘッド
105;ロータ
[0001]
TECHNICAL FIELD OF THE INVENTION
The present invention relates to an ultrasonic motor used as a driving device for various machines.
[0002]
[Prior art]
As shown in FIG. 4, two ultrasonic vibrators 101a and 101b each having a piezoelectric element, and a holding member 102 for holding the ultrasonic vibrators 101a and 101b at a predetermined angle (for example, 90 degrees) , Having a substantially V-shaped shape, the vertex of which is in contact with the rotor 105 as a driven body, and whose wings (the ones that are open in a V-shape) are connected to the ultrasonic transducers 101a and 101b. A resonance type ultrasonic motor 100 including a head 103 is known (for example, see Patent Document 1). The two wings of the head 103 are also components of the ultrasonic transducers 101a and 101b.
[0003]
In the ultrasonic motor 100, a voltage of a resonance frequency having a phase shifted by about 90 degrees is applied to each of the piezoelectric elements of the ultrasonic transducers 101a and 101b to expand and contract each piezoelectric element. By causing the head 103 to vibrate, an elliptical motion is generated at the tip of the head 103. When the head 103 that moves in an elliptical manner is pressed against the end face of the rotor 105 with a constant force, a force is applied in a tangential direction on the outer periphery of the rotor 105 due to a frictional force generated between the head 103 and the rotor 105, and the rotor 105 Can be done.
[0004]
[Patent Document 1]
JP-A-2000-152671 (paragraphs 24-29, FIG. 1)
[0005]
[Problems to be solved by the invention]
However, the ultrasonic motor 100 can only move the driven body in contact with the head 103 in one axial direction. For example, if the rotor 105 shown in FIG. 4 is replaced with an XY stage and the head 103 is in contact with the back surface of the XY stage, the XY stage can be moved only in the Y direction. Therefore, two ultrasonic motors 100 are required to move the XY stage in the X direction, which is a direction perpendicular to the plane of the paper.
[0006]
In this case, since the two ultrasonic motors 100 need to be arranged so that the directions in which they are opened in a V-shape are orthogonal to each other, the heads 103 of the two ultrasonic motors 100 necessarily have a fixed distance. It will be arranged in a space. Here, since the heads 103 of the two ultrasonic motors 100 must always be in contact with the XY stage, the range in which the XY stage can be moved is larger than the area of the XY stage. Narrows. In other words, in order to move the XY stage within a desired area range, a stage having an area larger than the desired area is actually required, so that the size of the apparatus is increased.
[0007]
The present invention has been made in view of such circumstances, and has as its object to provide an ultrasonic motor that can move a driven body in multiple directions.
[0008]
[Means for Solving the Problems]
According to the present invention, three or more substantially rod-shaped ultrasonic vibrators arranged at a predetermined angle in a polygonal pyramid shape and individually provided with piezoelectric elements,
Three or more legs respectively connected to the three or more ultrasonic transducers, and a prefix member having a prefix in contact with the driven body,
A holding member for holding the three or more ultrasonic transducers,
With
By applying an AC voltage having a predetermined phase difference to each of the piezoelectric elements of at least two of the three or more ultrasonic transducers to cause the ultrasonic transducer to vibrate, An ultrasonic motor is provided, in which a predetermined elliptical motion is caused to move the driven body.
[0009]
According to such an ultrasonic motor, the driven body can be moved in multiple directions in a two-dimensional plane. It is preferable that the angles at which two ultrasonic transducers of the three ultrasonic transducers intersect are all equal and that the angle is 15 degrees or more and 175 degrees or less. When the intersection angle is small, the driving force increases, and when the intersection angle is large, the driving speed of the driven body can be increased.
[0010]
As the ultrasonic transducer, a piezoelectric element having a plate-like shape having a hole in a substantially central portion thereof, electrodes formed on the front and back surfaces thereof, and a shaft member inserted through the hole of the piezoelectric element and First and second fastening members attached to both ends of the shaft member so as to fasten the piezoelectric element with a predetermined force. Here, the prefix member can be a second fastening member.
[0011]
BEST MODE FOR CARRYING OUT THE INVENTION
Hereinafter, embodiments of the present invention will be described with reference to the drawings. FIG. 1 is a perspective view showing a schematic configuration of the ultrasonic motor 10, FIG. 2 is a schematic plan view of the ultrasonic motor 10, and FIG. 3 is a cross-sectional view of an ultrasonic vibrator 11a constituting the ultrasonic motor 10. is there. The ultrasonic motor 10 includes a head (prefix member) 13 in contact with the driven body 15, three rod-shaped ultrasonic transducers 11a, 11b, and 11c arranged in a triangular pyramid shape, and ultrasonic transducers 11a and 11b. A holding member 12 for holding 11c;
[0012]
The head 13 has a substantially spherical prefix 13a in contact with the driven body 15, and three legs 13b, 13c, and 13d connected to the three ultrasonic transducers 11a, 11b, and 11c, respectively. ing. The angle θ at which two of the three legs 13b, 13c, and 13d intersect (the angle at which the longitudinal directions of the legs intersect) is equal, and the angle θ is equal to the three ultrasonic transducers 11a. It is also the angle at which two of 11b and 11c intersect. A bolt 13e is formed at each end of the legs 13b, 13c, 13d, and the bolt 13e is screwed to the second nut 23 of the ultrasonic transducers 11a, 11b, 11c. The head 13 and the ultrasonic transducers 11a, 11b, 11c are connected.
[0013]
Since the ultrasonic transducers 11a to 11c all have the same structure, the structure will be described in detail by taking the ultrasonic transducer 11a as an example. The ultrasonic vibrator 11a includes a bolt 21 having both ends threaded, a first nut 22 having a screw hole fitted into one thread groove of the bolt 21, and a screw fitted into the other thread groove of the bolt 21. A second nut 23 having a hole and a screw hole to be fitted in a screw groove of a bolt portion 13e provided in the leg portion 13b to 13d of the head 13, and two ring-shaped piezoelectric plates 24a through which the bolt 21 can be inserted. 24b and ring-shaped electrode plates (metal plates) 25a, 25b, 25c through which the bolts 21 can be inserted. Note that electrodes (not shown) are formed on the front and back surfaces of the piezoelectric plates 24a and 24b.
[0014]
The holding member 12 has a three-pronged shape, and is provided with a hole through which the bolt 21 of each of the ultrasonic transducers 11a to 11c is inserted. The holding member 12 holds the ultrasonic vibrators 11a to 11c by tightening the space between the first nut 22 and the second nut 23 with a predetermined force.
[0015]
The angle at which two of the ultrasonic transducers 11a to 11c intersect, that is, the angle θ at which two of the three legs 13b to 13d of the head 13 intersect, is preferably 15 to 175 degrees. You. When the angle θ is small, the force in the Z direction acting on the driven body 15 from the prefix 13a increases, so that the driving force for moving the driven body 15 can be increased. Conversely, when the angle θ is increased, the force in the direction orthogonal to the Z direction increases, so that the moving speed of the driven body 15 can be increased. The shape of the holding member 12 is appropriately set in accordance with the positions of the ultrasonic transducers 11a to 11c determined by the angle θ.
[0016]
The ultrasonic motor 10 is assembled as follows. First, the second nut 23 is attached to the legs 13b to 13d of the head 13. Next, bolts 21 are passed through each of the three holes provided in the holding member 12, and the piezoelectric plates 24a and 24b are alternately passed through each of the bolts 21 so as to be sandwiched between the electrode plates 25a to 25c. Then, one end of each bolt 21 is lightly screwed into each second nut 23. Subsequently, each bolt 21 is screwed into each second nut 23 with a predetermined force and fixed. Further, the first nut 22 is fixed to the other end of each bolt 21 by a predetermined force. As a result, the piezoelectric plates 24a and 24b are tightened with a predetermined force, and the ultrasonic motor 10 in which the Langevin type ultrasonic transducers 11a, 11b and 11c are arranged at an angle θ is obtained.
[0017]
For the piezoelectric plates 24a and 24b, lead zirconate titanate (PZT) -based piezoelectric ceramics are preferably used. The polarization directions of the piezoelectric plates 24a and 24b are symmetric with respect to the electrode plate 25b sandwiched between the piezoelectric plates 24a and 24b. The electrode plates 25a and 25c are electrically connected to each other. Therefore, when a voltage is applied between the electrode plate 25b and the electrode plate 25c, displacement (vibration) occurs in the piezoelectric plates 24a and 24b in the same phase. That is, the piezoelectric plates 24a and 24b both expand or contract in the thickness direction.
[0018]
Usually, a metal material is used for the bolt 21, the first nut 22, and the holding member 12. In this case, the electrode plates 25 a and 25 c are electrically connected to the first nut 22 via the holding member 12. Therefore, when the holding member 12 or the first nut 22 of the ultrasonic vibrator 11a is used as a ground electrode for driving the piezoelectric plates 24a and 24b, the piezoelectric plates 24a and 24b of the ultrasonic vibrators 11b and 11c are driven. The ground can be taken at the same time.
[0019]
For the head 13, a material having excellent wear resistance, for example, a metal material such as stainless steel or cemented carbide is used. In the case where the head 13 is made of metal, the head 13 is electrically connected to the electrode plate 25a, so that either the holding member 12 or the first nut 22 of the ultrasonic transducers 11a, 11b, 11c is grounded. 13 is also grounded. It is also preferable to apply a coating of a wear-resistant material, for example, silicon nitride, on the surface of the prefix 13a of the head 13.
[0020]
A pressing mechanism 14 is attached to the holding member 12, and the prefix 13 a of the head 13 is pressed against the driven body 15 by a predetermined force by the pressing mechanism 14. As the pressing mechanism 14, for example, an air cylinder, a hydraulic cylinder, a spring coil, or the like is used. The driven body 15 is held by a mechanism (not shown) movable in the X and Y directions.
[0021]
As a driving method of the ultrasonic motor 10 having such a structure, a method of driving two of the three ultrasonic transducers 11a to 11c and a method of driving all the three ultrasonic transducers 11a to 11c are used. There is a way.
[0022]
For example, when the ultrasonic transducer 11a and the ultrasonic transducer 11b are driven by an AC voltage having a resonance frequency whose phase is shifted by about 90 degrees or a frequency near the resonance frequency and the ultrasonic transducer 11c is not driven, FIG. , That is, the driven body 15 can be moved in the longitudinal direction of the straight line P where the plane including the ultrasonic transducers 11a and 11b and the XY plane intersect. To give a more specific example, the ultrasonic transducer 11a of the electrode plate 25b to V = V 0 sin (2πft) (V 0; Zero - peak voltage, f; frequency, t; time) AC voltage is applied At the same time, when an AC voltage of V = V 0 cos (2πft) is applied to the electrode plate 25b of the ultrasonic transducer 11b, the driven body 15 moves in the direction of the arrow P1 due to the elliptical motion generated in the prefix 13a. When the voltage for driving the ultrasonic transducers 11a and 11b is reversed, the driven body 15 can be moved in the direction of the arrow P2.
[0023]
Similarly, when the ultrasonic transducers 11b and 11c are driven by an AC voltage having a resonance frequency whose phase is shifted by about 90 degrees or a frequency near the resonance frequency, the driven body 15 can be moved in the direction of the straight line Q, that is, in the X direction. it can. Further, when the ultrasonic transducers 11c and 11a are driven by an AC voltage having a resonance frequency whose phase is shifted by about 90 degrees or a frequency near the resonance frequency, the driven body 15 can be moved in the direction of the straight line R.
[0024]
As an example of driving all three ultrasonic transducers 11a to 11c, for example, two of the ultrasonic transducers 11a to 11c are driven at the same voltage without a phase difference, and the remaining one is driven with the same phase. There is a case of driving with a voltage shifted by about 90 degrees. More specifically, the case where the ultrasonic transducers 11b and 11c are driven at a voltage V = V 0 sin (2πft) and the ultrasonic transducer 11a is driven at a voltage V = V 0 cos (2πft) is an example. Can be In this case, the X-direction components of the vibrations generated in the ultrasonic transducers 11b and 11c are canceled each other, the Y-direction components overlap, and the Z-direction components also overlap. On the other hand, the vibration of the ultrasonic transducer 11a has only a Y-direction component and a Z-direction component. Therefore, the elliptical motion of the prefix 13a due to the vibration of the ultrasonic transducers 11a to 11c occurs in the YZ plane, whereby the driven body 15 can be moved in the direction indicated by the straight line S, that is, in the Y direction. it can.
[0025]
Similarly, the driven body 15 is represented by a straight line T in FIG. 2 by driving the ultrasonic transducers 11c and 11a as a set and driving them and the ultrasonic transducer 11b with voltages having phases shifted by about 90 degrees. It can be moved in the direction shown. Further, by driving the ultrasonic transducers 11a and 11b as one set and driving them and the ultrasonic transducer 11c with voltages having phases shifted by about 90 degrees, the driven body 15 is moved in a direction indicated by a straight line U in FIG. Can be moved.
[0026]
The embodiment of the ultrasonic motor according to the present invention has been described above, but the present invention is not limited to such an embodiment. For example, the legs 13b to 13d of the head 13 and the second nut 23 may be integrated. That is, a screw hole for fixing the bolt 21 is provided in the legs 13b to 13d of the head 13, and the piezoelectric plates 24a and 24b are tightened with a predetermined force by the legs 13b to 13d and the first nut 22. Good.
[0027]
Also, the ultrasonic motor 10 in which two of the ultrasonic transducers 11a to 11c intersect at the same angle θ has been described, but the intersection angle between the ultrasonic transducers 11a and 11b and the ultrasonic transducer 11b The intersection angle of the ultrasonic transducers 11c and 11a may be different from each other. Furthermore, although the ultrasonic transducers 11a to 11c having two piezoelectric plates 24a and 24b are shown, the number of piezoelectric plates may be one or three or more. Further, a laminated piezoelectric element in which piezoelectric ceramic thin plates and electrodes are alternately laminated, which is manufactured by a simultaneous firing method (integrated firing method) using ceramic green sheets, may be used as the piezoelectric plate 24a or the like. Furthermore, the number of ultrasonic transducers constituting one ultrasonic motor is not limited to three. For example, an ultrasonic motor in which four ultrasonic transducers are arranged in a substantially quadrangular pyramid shape, or an ultrasonic motor in which six ultrasonic transducers are arranged in a substantially hexagonal pyramid shape. You may. Also in such an ultrasonic motor, the driven body can be moved in multiple directions by driving at least two ultrasonic transducers with a phase difference provided therebetween.
[0028]
【The invention's effect】
As described above, according to the present invention, a driven body can be moved in multiple directions in a two-dimensional plane. Therefore, the size of the apparatus can be reduced by using the ultrasonic motor of the present invention as a drive source of the apparatus that needs to be moved in at least two directions, such as an XY stage.
[Brief description of the drawings]
FIG. 1 is a schematic perspective view showing an embodiment of an ultrasonic motor according to the present invention.
FIG. 2 is a schematic plan view of the ultrasonic motor shown in FIG.
FIG. 3 is a schematic sectional view of an ultrasonic vibrator constituting the ultrasonic motor shown in FIG. 1;
FIG. 4 is an explanatory view showing a schematic structure of a conventional ultrasonic motor.
[Explanation of symbols]
10; ultrasonic motors 11a, 11b, 11c; ultrasonic vibrator 12, holding member 13, head 13a, prefixes 13b, 13c, 13d; legs 14, pressing mechanism 15, driven body 21, bolt 22, first. Nut 23; second nuts 24a and 24b; piezoelectric plates 25a to 25c; electrode plate 100; ultrasonic motors 101a and 101b; ultrasonic vibrator 102; holding member 103;

Claims (4)

多角錐状に所定の角度で配置され、個々に圧電素子を備えた略棒状の3本以上の超音波振動子と、
前記3本以上の超音波振動子とそれぞれ接続される3本以上の脚部と、被駆動体に接する接頭部を有する接頭部材と、
前記3本以上の超音波振動子を保持する保持部材と、
を具備し、
前記3本以上の超音波振動子のうち少なくとも2本の超音波振動子の各圧電素子に所定の位相差を有する交流電圧を印加して前記超音波振動子を振動させることにより前記接頭部に所定の楕円運動を生じさせて、前記被駆動体を動かすことを特徴とする超音波モータ。
Three or more substantially rod-shaped ultrasonic vibrators arranged at a predetermined angle in a polygonal pyramid shape and individually provided with piezoelectric elements,
Three or more legs respectively connected to the three or more ultrasonic transducers, and a prefix member having a prefix in contact with the driven body,
A holding member for holding the three or more ultrasonic transducers,
With
By applying an AC voltage having a predetermined phase difference to each of the piezoelectric elements of at least two of the three or more ultrasonic transducers to cause the ultrasonic transducer to vibrate, An ultrasonic motor, wherein the driven body is moved by generating a predetermined elliptical motion.
前記3本以上の超音波振動子のうちの2本の超音波振動子が交差する角度は全て等しく、かつ、その角度は15度以上175度以下であることを特徴とする請求項1に記載の超音波モータ。The angle at which two ultrasonic transducers among the three or more ultrasonic transducers intersect is all equal, and the angle is 15 degrees or more and 175 degrees or less. Ultrasonic motor. 前記超音波振動子は、
板状で略中心部に孔部を有し、その表裏面に電極が設けられた圧電素子と、
前記圧電素子の孔部に挿通して配置される軸部材と、
前記軸部材の両端に前記圧電素子を所定の力で締め付けるように取り付けられる第1および第2の締結部材と、
を有することを特徴とする請求項1または請求項2に記載の超音波モータ。
The ultrasonic transducer,
A piezoelectric element having a plate-like shape having a hole in a substantially central portion thereof, and electrodes provided on the front and back surfaces thereof,
A shaft member inserted through the hole of the piezoelectric element,
First and second fastening members attached to both ends of the shaft member so as to fasten the piezoelectric element with a predetermined force;
The ultrasonic motor according to claim 1, wherein the ultrasonic motor has:
前記接頭部材が前記第2の締結部材であることを特徴とする請求項3に記載の超音波モータ。The ultrasonic motor according to claim 3, wherein the prefix member is the second fastening member.
JP2003077535A 2003-03-20 2003-03-20 Ultrasonic motor Pending JP2004289914A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2003077535A JP2004289914A (en) 2003-03-20 2003-03-20 Ultrasonic motor

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2003077535A JP2004289914A (en) 2003-03-20 2003-03-20 Ultrasonic motor

Publications (1)

Publication Number Publication Date
JP2004289914A true JP2004289914A (en) 2004-10-14

Family

ID=33292264

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2003077535A Pending JP2004289914A (en) 2003-03-20 2003-03-20 Ultrasonic motor

Country Status (1)

Country Link
JP (1) JP2004289914A (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP2208643A1 (en) 2009-01-16 2010-07-21 Robert Bosch GmbH Adjusting device
CN102035432A (en) * 2010-12-23 2011-04-27 南京航空航天大学 Multidirectional vibration energy recovery structure
CN108390587A (en) * 2018-01-31 2018-08-10 南京航空航天大学 The double-driving foot door type linear ultrasonic motor and control method of single mode driving

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP2208643A1 (en) 2009-01-16 2010-07-21 Robert Bosch GmbH Adjusting device
CN102035432A (en) * 2010-12-23 2011-04-27 南京航空航天大学 Multidirectional vibration energy recovery structure
CN108390587A (en) * 2018-01-31 2018-08-10 南京航空航天大学 The double-driving foot door type linear ultrasonic motor and control method of single mode driving

Similar Documents

Publication Publication Date Title
US5200665A (en) Ultrasonic actuator
CN111464070B (en) Linear ultrasonic motor stator and electric excitation method thereof
JPS62247870A (en) Method of controlling drive of ultrasonic vibrator
JP4119903B2 (en) Flat plate piezoelectric ultrasonic motor
CN108429486A (en) Combined flat surface 3-freedom ultrasonic motor oscillator and its driving method
JPH05219764A (en) Rotary or linear motor, in which armature is driven by ultrasonic vibration
US8304962B2 (en) Ultrasonic motor
JPH07115782A (en) Vibration wave driver
JP2004289914A (en) Ultrasonic motor
JP2009027775A (en) Ultrasonic motor
JP2004304963A (en) Piezoelectric actuator
JP2008022662A (en) Ultrasonic motor drive unit
JP3029677B2 (en) Ultrasonic transducer, driving method thereof, and ultrasonic actuator
JP3118252B2 (en) Ultrasonic vibrating device and method, and driving device and method using the same
JPH08242592A (en) Ultrasonic actuator
JP2538033B2 (en) Planar ultrasonic actuator
JPH05252767A (en) Ultrasonic motor
JP4133486B2 (en) Ultrasonic motor
JP2004274898A (en) Ultrasonic motor
JP4275553B2 (en) Driving method of ultrasonic motor
JPS5989583A (en) Driving device using piezoelectric vibrator
EP0312409A2 (en) Ultrasonic driving device
JPH09271187A (en) Vibrator for ultrasonic actuator
JP2004304933A (en) Ultrasonic motor
JP2004248399A (en) Vibrator and ultrasonic motor