JP2004289892A - In-vehicle power supply system - Google Patents

In-vehicle power supply system Download PDF

Info

Publication number
JP2004289892A
JP2004289892A JP2003076148A JP2003076148A JP2004289892A JP 2004289892 A JP2004289892 A JP 2004289892A JP 2003076148 A JP2003076148 A JP 2003076148A JP 2003076148 A JP2003076148 A JP 2003076148A JP 2004289892 A JP2004289892 A JP 2004289892A
Authority
JP
Japan
Prior art keywords
power storage
storage device
vehicle
power supply
supply system
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2003076148A
Other languages
Japanese (ja)
Inventor
Makoto Taniguchi
真 谷口
Hiroaki Ono
博明 小野
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Denso Corp
Original Assignee
Denso Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Denso Corp filed Critical Denso Corp
Priority to JP2003076148A priority Critical patent/JP2004289892A/en
Priority to DE200410011688 priority patent/DE102004011688A1/en
Publication of JP2004289892A publication Critical patent/JP2004289892A/en
Pending legal-status Critical Current

Links

Images

Classifications

    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J7/00Circuit arrangements for charging or depolarising batteries or for supplying loads from batteries
    • H02J7/14Circuit arrangements for charging or depolarising batteries or for supplying loads from batteries for charging batteries from dynamo-electric generators driven at varying speed, e.g. on vehicle
    • H02J7/1423Circuit arrangements for charging or depolarising batteries or for supplying loads from batteries for charging batteries from dynamo-electric generators driven at varying speed, e.g. on vehicle with multiple batteries
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J7/00Circuit arrangements for charging or depolarising batteries or for supplying loads from batteries
    • H02J7/0047Circuit arrangements for charging or depolarising batteries or for supplying loads from batteries with monitoring or indicating devices or circuits
    • H02J7/0048Detection of remaining charge capacity or state of charge [SOC]
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J9/00Circuit arrangements for emergency or stand-by power supply, e.g. for emergency lighting
    • H02J9/04Circuit arrangements for emergency or stand-by power supply, e.g. for emergency lighting in which the distribution system is disconnected from the normal source and connected to a standby source
    • H02J9/06Circuit arrangements for emergency or stand-by power supply, e.g. for emergency lighting in which the distribution system is disconnected from the normal source and connected to a standby source with automatic change-over, e.g. UPS systems

Landscapes

  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Charge And Discharge Circuits For Batteries Or The Like (AREA)
  • Control Of Charge By Means Of Generators (AREA)
  • Control Of Eletrric Generators (AREA)
  • Secondary Cells (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To offer an in-vehicle power supply system which can obtain the initial value of the initial state of an emergency storage battery with precision so as to stably supply emergency power. <P>SOLUTION: The in-vehicle power supply system is equipped with a generator 12 for a vehicle, a main battery 10 which is charged by the generator 12 for the vehicle, a sub battery 20, and a controller 40 which detects a discharge current and a sub battery terminal voltage by periodically discharging the sub battery and computes the internal resistance of the sub battery and resets the amount of summation of the charging and discharging currents. <P>COPYRIGHT: (C)2005,JPO&NCIPI

Description

【0001】
【発明の属する技術分野】
本発明は、複数の蓄電装置を備える車載電源システムに関する。
【0002】
【従来の技術】
近年、各種の車載装置の電子制御化、電動化が進んでおり、その内容もますます高度になっている。このような背景から、車載電源には、大容量化とともに信頼性向上が要求されている。これらの要求に応える従来技術としては、蓄電装置を複数備えて電源の2重化を図った車載電源システムが知られている(例えば、特許文献1、2、3参照。)。
【0003】
電源を2重化する目的は電源を冗長化して信頼度を上げることを主眼に置いている。しかしながら蓄電装置、特に電気化学反応に基づいた電池には内部構成部材の劣化に起因する寿命が存在し、寿命期間を外れての冗長化は困難である。
【0004】
そこで電気化学式蓄電装置の状態検出を併用して寿命末期を早期に検出して電池交換を促す技術が知られている(例えば、特許文献4参照。)。
【0005】
【特許文献1】
特開2000−308275号公報(第2−4頁、図1−2)
【特許文献2】
特開2001−69683号公報(第3−5頁、図1−3)
【特許文献3】
特開昭63−56135号公報(第2−4頁、図1−5)
【特許文献4】
特許第2508767号
【0006】
【発明が解決しようとする課題】
ところで、特許文献4に開示されているように電池の充放電量を積算して電池残量の逐次値を追跡する方法では、積算開始時点からの残量の相対変化分はわかるものの積算開始時点での絶対的な残量が分からない。
【0007】
始動装置が接続される蓄電池に対してはエンジン始動時に必ず放電機会が存在するので始動のタイミングで電圧−電流特性等を測定して積算開始前残量初期値を確定することができるが、冗長用電池などは普段は殆ど放電する機会がなく主電池もしくは車載発電機が破綻した際にのみにしか放電する機会がないので冗長用電池の残量予測は困難であった。
【0008】
本発明は、このような点に鑑みて創作されたものであり、その目的は、冗長用電池の残量を確実に算定可能にし、非常用電力の供給を安定的に行うことができる車載電源システムを提供することにある。
【0009】
【課題を解決するための手段】
上述した課題を解決するために、本発明の車載電源システムは、車両用発電機と、車両用発電機によって充電されイグニッションON時には常時使用される電気装置に接続される第1の蓄電装置と、前記第1の蓄電装置に断続的に接続される第2の蓄電装置と、第1の蓄電装置の状態量および車両用発電機の状態量の少なくとも一方に基づいて、第2の蓄電装置の充放電動作を制御する充放電制御装置とを備え、
前記第2の蓄電装置を定期的に放電させて電圧−電流特性を測定する。
【0010】
これにより放電機会の少ない冗長用としての第2の蓄電装置の残量の絶対値を定期的に把握することができるため、従来の充放電電流値の積算方式を適用しても、前記放電のタイミングで積算量をリセットして残量絶対値を積算の初期値として常に精度良く電池残量を把握することができる。
【0011】
また、電圧−電流特性から第2の蓄電装置の内部抵抗を算出し、第2の特電装置の寿命に関する状態量を検知して、前記状態量が所定値を下回ったら警報する。このように監視・警報することで第2の蓄電装置の交換時期を運転者に知らしめることができ第2の蓄電装置を常に良好な状態に維持できる。
【0012】
また、前記電圧−電流を測定する方法は、前記第2の蓄電装置から前記第1の蓄電装置に接続された特定の電気装置に電流供給可能に定期的に接続し、該特定電気装置を稼動させる。このように構成することで放電専用の電気装置を設けることなく第2の蓄電装置の放電機会を得ることができる。
【0013】
好適には、第1の電気装置と第2の電気装置をDC/DCコンバータで接続し、第2の蓄電装置から特定電気装置に放電する際には前記DC/DCコンバータを短絡する。このように構成すれば、DC/DCコンバータは第2の蓄電装置への充電専用コンバータとすることができ、充電を定電流充電とし充電電流を小さく設定することで、安定充電できるとともにDC/DCコンバータの容量を低減できるのでコンバータの信頼性が向上できる。
【0014】
また、前記電圧−電流を測定する方法は、前記第1の蓄電装置には接続されない電気抵抗値固定の抵抗体を、定期的に前記第2の蓄電装置に接続する。このように構成することで第2の蓄電装置の放電電流値は前記抵抗体の両端電圧に比例して得られるので、抵抗体の両端電圧を検出することで高精度に検知でき、ホール式や磁気抵抗式などの高価な電流センサを不要とできる。更に、このように専用抵抗を持つことで、いつ稼動するか分からない特定電気装置の放電に依存するのではなく自身の管理下にて放電機会を設定できるので好都合である。
【0015】
また、上述した充放電制御装置は、エンジン始動期間、即ち始動モータが稼動している期間、には前記第2蓄電装置の放電を禁止することが望ましい。始動時には始動モータに大電力が第1蓄電装置から供給される、かつエンジン始動前なのでエンジンで駆動される発電機は発電することができないので第1蓄電装置の充電状態量は極端に低下してしまう。このようなときに第2蓄電装置を放電させると、放電量も大きくなり、第2蓄電装置の充電状態を回復させるのに時間がかかる。本発明はこのような危険な状態を回避し、常時第2蓄電装置の充電状態を良好に保つことができる。
【0016】
また、上述した第1の蓄電装置は主電源として、第2の蓄電装置は補助電源としてそれぞれ用いられ、第1のおよび第2の蓄電装置から並行して電力供給が行われる電気装置をさらに備えることが望ましい。これにより、電気装置に対する電力供給を確実に行うことが可能になる。
【0017】
また、上述した第1の蓄電装置は、車両のエンジンルーム内に搭載され、第2の蓄電装置は、車室内あるいは車両のトランクルーム内に搭載されることが望ましい。エンジンルーム内に搭載されて温度変化が大きい第1の蓄電装置の端子電圧は大きく変動するが、このような場合であっても第2の蓄電装置の良好な充電状態を維持することが可能になる。また、第2の蓄電装置をトランクルーム内に搭載することにより、第2の蓄電装置の端子電圧の変動を低減することが可能になり、充電状態が良好な第2の蓄電装置による電力の供給をさらに安定させることができる。
【0018】
また、上述した第1および第2の蓄電装置は、定格電圧が等しいことが望ましい。これにより、車載の各電気負荷に対する電力供給を行うために電圧変換器のような複雑な構成の電力変換装置が不要になり、構成の簡略化が可能になる。
【0019】
また、上述した第2の蓄電装置は、第1の蓄電装置を用いて充電されることが望ましい。このような構成とすることにより、第1の蓄電装置の充電状態が良好なときに第2の蓄電装置に対する充電を行うとともに、第1の蓄電装置の充電状態が悪化しても第2の蓄電装置の充電状態を良好に維持することが可能になり、第2の蓄電装置による電力供給を安定的に行うことが可能になる。
【0020】
【発明の実施の形態】
以下、本発明を適用した一実施形態の車載電源システムについて、図面に基づいて詳細に説明する。
【0021】
〔第1の実施形態〕
図1は、本発明を適用した第1の実施形態の車載電源システムの全体構成を示す図である。図1に示す本実施形態の車載電源システムは、メインバッテリ10、車両用発電機(G)12、スタータ(S)14、常用電気負荷16、緊急用電気装置18、特定電気負荷56、サブバッテリ20、電力変換装置22、電流センサ24、52、温度センサ26、ダイオード28、スイッチ30、32、54、制御装置40を含んで構成されている。
【0022】
車両用発電機12は、エンジン(図示せず)によって回転駆動されて、主電源としてのメインバッテリ10の充電電力や常用電気負荷16の動作電力を発生する。スタータ14は、エンジンのクランクシャフトを回転させてエンジンを始動する。常用電気負荷16は、通常の車両走行において使用される照明やエアコン等の電気機器である。緊急用電気装置18は、緊急時に稼働させる必要のある電気機器であり、通常の車両走行において待機状態にある。特定電気装置とは運転者が必要に応じて不定期に稼動させる電気装置でありヒータやエアコン等の比較的電力容量の大きな電気負荷である。
【0023】
サブバッテリ20は、緊急用電気装置18に対する給電がメインバッテリ10から正常に行われないときに、代わりに緊急用電気装置18に動作電力を供給する補助電源である。電力変換装置22は、メインバッテリ10から印加される電圧をほぼ一定の所定の電圧に変換する。このほぼ一定の出力電圧がサブバッテリ20の端子に印加され、サブバッテリ20に対する充電が行われる。
【0024】
サブバッテリへの充電はサブバッテリの充電状態、即ち残存容量を電流センサ52による充放電電流値の積算量にて算出し、該積算量を適正値になるように制御する。積算量が過剰ぎみであれば電力変換装置を休止し、積算量が不足気味であれば電力変換装置を稼動させる。
【0025】
電流センサ24はメインバッテリ10の端子に入出力される充放電電流を、電流センサ52はサブバッテリ20の端子に入出力される充放電電流を各々検出する。温度センサ26は、メインバッテリ10の所定位置に設置されており、メインバッテリ10の温度を検出する。
【0026】
ダイオード28は、緊急用電気装置18の配線を経由してメインバッテリ10からサブバッテリ20に直接流れ込む電流を阻止するためのものであり、サブバッテリ20と緊急用電気装置18との間を接続する配線に挿入されている。スイッチ30は、イグニッションキーに連動するイグニッションスイッチであり、閉成したときにスタータ14に動作電力が供給される。スイッチ32は、ダイオード28に直列に接続されており、閉成したときにサブバッテリ20から緊急用電気装置18に動作電力を供給する。
【0027】
スイッチ54はサブバッテリ20を直接特定電気負荷56に接続しサブバッテリ20から負荷56に電力供給するスイッチである。
【0028】
制御装置40は、スイッチ32を閉成あるいは開成することにより、サブバッテリ20の放電状態を制御する。この充放電状態の制御は、直接検出されるメインバッテリ10の端子電圧と、電流センサ24によって検出した充放電電流値に基づいて判定されるメインバッテリ10の充電状態と、温度センサ26によって検出したメインバッテリ10の温度とに基づいて行われる。
【0029】
更に、該制御装置40は前記スイッチ54の開閉制御を司り、特定電気負荷56が稼動開始したらスイッチ54を閉成し、前記サブバッテリ20の放電電流値、放電電圧値を計測しそのときのサブバッテリ20の内部抵抗値を算出してその時点でのサブバッテリの残存容量を初期値として算出する。同時に今までのサブバッテリの充放電電流の積算量をリセットし積算量ゼロから前記初期値に加算してゆく。
【0030】
上述したメインバッテリ10が第1の蓄電装置に、サブバッテリ20が第2の蓄電装置に、制御装置40が充放電制御装置にそれぞれ対応する。
【0031】
本実施形態の車載電源システムはこのような構成を有しており、次に、制御装置40によってサブバッテリ20の残存容量検出ロジックについて説明する。
【0032】
図2は、制御装置40の制御項目のうちサブバッテリの残存容量を検出する動作手順を示す流れ図である。
【0033】
キースイッチ(図示せず)が投入されると、まず、制御装置40は、特定の電気負荷56が稼動しているか否かを判定する(ステップ102)。特定電気負荷が稼動している場合にはサブバッテリを放電させるためにスイッチ54を閉成する(ステップ104)。サブバッテリの放電電流値、電圧値を検出する(ステップ106、108)。もとめた電圧−電流関係よりサブバッテリの内部抵抗を算出する。蓄電池は一般的に内部抵抗値が電池構成部材の劣化度合いに応じて上昇してゆく傾向があり、したがって電池内部抵抗値を算出することで、サブバッテリの劣化度合い、即ち残存容量を一義的に算定できる。その値を現時点での初期値SOC0と設定する(ステップ110)。残存容量初期値が確定したらスイッチ54を開成する(ステップ112)。以降はサブバッテリの充電放電電流値を規定のサンプリング間隔△tで検出し(ステップ114)、前記初期値に随時電流検出値にサンプリング間隔時間を乗じた値を加算(ステップ116)してゆくことでサブバッテリの残存容量の瞬時値を追跡することができる。尚、ステップ102で特定負荷54が稼動していないと判断されたらステップ104〜ステップ112までをスキップしてステップ114を実行する。この場合、加算前のSOC値は前回走行時の最終値を記憶しておき、その値を利用する。
【0034】
このように定期的にサブバッテリを放電させることで積算量をリセットすることで電流センサの誤差そのものが蓄積される積算誤差の影響を容易に排除できる。
【0035】
従って緊急用途のサブバッテリの交換時期を運転者に知らせることができ、システムが破綻することを抑止できる。
【0036】
〔第2の実施形態〕
上述した第1の実施形態では、放電先を車載の特定電気装置に供給したが、これではどのタイミングで放電されるかわからないので、変形例では放電タイミングも管理下におくために放電専用の抵抗値既知の抵抗体58を備える。該抵抗体58を接続するスイッチ60の制御は制御装置40Aで実行する。抵抗既知の抵抗体を使用する理由は放電電流値が端子電圧として検出できるので専用電流センサが不要とできる。
【0037】
前記スイッチの閉成タイミングは例えば始動完了後に数秒間接続し、電池電圧、放電電流値を測定完了したら前記スイッチを開成する。
【0038】
始動工程中は主電源である第1バッテリから始動モータに大容量放電をしている最中であるから、この間にサブバッテリを放電させるのは待機電源としての機能を考えると適当ではないので、始動完了後にサブバッテリの放電を開始することが望ましい。
【0039】
このように設定すれば必ず一回の走行中に残存容量の初期値を確定できる。
【0040】
こうして得られたサブバッテリの残存容量がある所定値を下回ったら運転者にサブバッテリの交換を促すシグナルを発信する。例えばインジケータランプを点灯、点滅したり、メッセージを表示する。このような監視を実施することでサブバッテリが破綻する前に交換完了して、非常用電源の安定供給可能状態で待機させることができる。
【0041】
なお、本発明は上記実施形態に限定されるものではなく、本発明の要旨の範囲内において種々の変形実施が可能である。例えば、上述した実施形態では、メインバッテリ10やサブバッテリ20の搭載場所については特に言及していないが、メインバッテリ10をエンジンルーム内に搭載し、サブバッテリ20をトランクルーム内に搭載するようにしてもよい。エンジンルーム内に搭載されて温度変化が大きいメインバッテリ10の端子電圧は大きく変動するが、このような場合であってもサブバッテリ20の良好な充電状態を維持することが可能になる。また、サブバッテリ20をトランクルーム内に搭載することにより、サブバッテリ20の端子電圧の変動を低減することが可能になり、充電状態が良好なサブバッテリ20による電力の供給をさらに安定させることができる。
【0042】
なお、所定期間内(例えば、1週間)に少なくとも1回、サブバッテリ20の放電を行うようにすればよい。
【図面の簡単な説明】
【図1】第1の実施形態の車載電源システムの全体構成を示す図である。
【図2】制御装置の動作手順を示す流れ図である。
【図3】第2の実施形態の車載電源システムの全体構成を示す図である。
【符号の説明】
10…メインバッテリ
12…車両用発電機(G)
14…スタータ(S)
16…電気負荷
18…緊急用電気装置
20…サブバッテリ
22…電力変換装置
24、52…電流センサ
26…温度センサ
28…ダイオード
30、54、60…スイッチ
40、40A…制御装置
[0001]
TECHNICAL FIELD OF THE INVENTION
The present invention relates to an in-vehicle power supply system including a plurality of power storage devices.
[0002]
[Prior art]
In recent years, electronic control and electrification of various in-vehicle devices have been advanced, and the contents thereof have become increasingly sophisticated. From such a background, the on-vehicle power supply is required to have higher capacity and higher reliability. As a conventional technology that meets these demands, an in-vehicle power supply system that includes a plurality of power storage devices and achieves dual power supplies is known (for example, see Patent Documents 1, 2, and 3).
[0003]
The purpose of duplexing the power supply is to increase the reliability by making the power supply redundant. However, a power storage device, particularly a battery based on an electrochemical reaction, has a lifetime due to deterioration of internal components, and it is difficult to achieve redundancy beyond the lifetime.
[0004]
Therefore, a technique is known in which the end of life is detected early by using the state detection of the electrochemical power storage device at the same time to prompt battery replacement (for example, see Patent Document 4).
[0005]
[Patent Document 1]
JP-A-2000-308275 (pages 2-4, FIG. 1-2)
[Patent Document 2]
JP 2001-69683 A (page 3-5, FIG. 1-3)
[Patent Document 3]
JP-A-63-56135 (pages 2-4, FIG. 1-5)
[Patent Document 4]
Patent No. 2508767 [0006]
[Problems to be solved by the invention]
By the way, as disclosed in Patent Document 4, in the method of accumulating the charge / discharge amount of the battery and tracking the sequential value of the remaining amount of the battery, the relative change in the remaining amount from the time of the start of the integration is known, but the time of the start of the integration is known. I do not know the absolute remaining amount at
[0007]
For the storage battery to which the starting device is connected, there is always an opportunity to discharge when the engine is started, so the voltage-current characteristics and the like can be measured at the start timing to determine the initial value of the remaining amount before the start of integration. It is difficult to predict the remaining amount of the redundant battery because the battery for use usually has almost no opportunity to be discharged and has only a chance to be discharged only when the main battery or the onboard generator fails.
[0008]
The present invention has been made in view of the above points, and an object thereof is to provide an in-vehicle power supply capable of reliably calculating the remaining amount of a redundant battery and stably supplying emergency power. It is to provide a system.
[0009]
[Means for Solving the Problems]
In order to solve the above-described problems, an on-vehicle power supply system according to the present invention includes a vehicle power generator, a first power storage device that is connected to an electric device that is charged by the vehicle power generator and is always used when the ignition is turned on, A second power storage device intermittently connected to the first power storage device, and a charging of the second power storage device based on at least one of a state quantity of the first power storage apparatus and a state quantity of the vehicle generator. A charge and discharge control device that controls a discharge operation,
The second power storage device is periodically discharged to measure voltage-current characteristics.
[0010]
This makes it possible to periodically grasp the absolute value of the remaining amount of the second power storage device for redundancy, which has a small number of discharge opportunities. The integrated amount is reset at the timing, and the remaining amount of the battery can be always accurately grasped with the absolute value of the remaining amount as an initial value of the integration.
[0011]
Further, the internal resistance of the second power storage device is calculated from the voltage-current characteristics, the state quantity relating to the life of the second power storage device is detected, and an alarm is issued when the state quantity falls below a predetermined value. By monitoring and alarming in this manner, the driver can be informed of the replacement time of the second power storage device, and the second power storage device can always be maintained in a good state.
[0012]
Also, the method of measuring the voltage-current is such that the second power storage device is periodically connected to a specific electric device connected to the first power storage device so that current can be supplied, and the specific electric device is operated. Let it. With such a configuration, a discharge opportunity of the second power storage device can be obtained without providing an electric device dedicated to discharge.
[0013]
Preferably, the first electric device and the second electric device are connected by a DC / DC converter, and when discharging from the second power storage device to the specific electric device, the DC / DC converter is short-circuited. According to this structure, the DC / DC converter can be a dedicated converter for charging the second power storage device. By setting the charging to a constant current charging and setting the charging current to a small value, the DC / DC converter can perform stable charging and perform DC / DC charging. Since the capacity of the converter can be reduced, the reliability of the converter can be improved.
[0014]
In the method for measuring a voltage-current, a resistor having a fixed electric resistance value and not connected to the first power storage device is periodically connected to the second power storage device. With this configuration, the discharge current value of the second power storage device can be obtained in proportion to the voltage between both ends of the resistor. Therefore, by detecting the voltage between both ends of the resistor, detection can be performed with high accuracy. An expensive current sensor such as a magnetoresistive type can be eliminated. Furthermore, having such a dedicated resistor is advantageous in that a discharge opportunity can be set under its own management rather than relying on the discharge of a specific electric device whose operation is unknown.
[0015]
Further, it is preferable that the above-described charge / discharge control device prohibits the discharge of the second power storage device during an engine start period, that is, a period during which the start motor is operating. At the time of starting, large power is supplied to the starting motor from the first power storage device, and since the engine is not started, the generator driven by the engine cannot generate power, so the state of charge of the first power storage device is extremely reduced. I will. If the second power storage device is discharged in such a case, the amount of discharge increases, and it takes time to recover the state of charge of the second power storage device. According to the present invention, such a dangerous state can be avoided and the state of charge of the second power storage device can always be kept good.
[0016]
Further, the first power storage device described above is used as a main power supply, and the second power storage device is used as an auxiliary power supply, respectively, and further includes an electric device that is supplied with power from the first and second power storage devices in parallel. It is desirable. This makes it possible to reliably supply power to the electric device.
[0017]
Preferably, the first power storage device described above is mounted in an engine room of the vehicle, and the second power storage device is mounted in a vehicle room or a trunk room of the vehicle. Although the terminal voltage of the first power storage device mounted in the engine room and having a large temperature change greatly fluctuates, even in such a case, it is possible to maintain a good charge state of the second power storage device. Become. In addition, by mounting the second power storage device in the trunk room, it is possible to reduce fluctuations in the terminal voltage of the second power storage device, and supply power from the second power storage device having a good charge state. Further stabilization is possible.
[0018]
It is desirable that the first and second power storage devices have the same rated voltage. This eliminates the need for a power converter having a complicated configuration such as a voltage converter to supply power to each of the electric loads mounted on the vehicle, thereby simplifying the configuration.
[0019]
In addition, it is preferable that the above-described second power storage device be charged using the first power storage device. With such a configuration, the second power storage device is charged when the charge status of the first power storage device is good, and the second power storage is performed even when the charge status of the first power storage device deteriorates. It is possible to maintain a good state of charge of the device, and it is possible to stably supply power by the second power storage device.
[0020]
BEST MODE FOR CARRYING OUT THE INVENTION
Hereinafter, an in-vehicle power supply system according to an embodiment of the present invention will be described in detail with reference to the drawings.
[0021]
[First Embodiment]
FIG. 1 is a diagram showing an overall configuration of a vehicle-mounted power supply system according to a first embodiment to which the present invention is applied. The on-vehicle power supply system of the present embodiment shown in FIG. 1 includes a main battery 10, a vehicle generator (G) 12, a starter (S) 14, a regular electric load 16, an emergency electric device 18, a specific electric load 56, a sub-battery. 20, a power converter 22, current sensors 24 and 52, a temperature sensor 26, a diode 28, switches 30, 32 and 54, and a controller 40.
[0022]
The vehicle generator 12 is driven to rotate by an engine (not shown) to generate charging power for the main battery 10 as a main power source and operating power for the regular electric load 16. The starter 14 starts the engine by rotating the crankshaft of the engine. The service electric load 16 is an electric device such as a lighting and an air conditioner used in normal vehicle running. The emergency electric device 18 is an electric device that needs to be operated in an emergency, and is in a standby state during normal vehicle running. The specific electric device is an electric device that the driver operates irregularly as needed, and is an electric load having a relatively large power capacity such as a heater or an air conditioner.
[0023]
The sub-battery 20 is an auxiliary power supply that supplies operating power to the emergency electric device 18 when power supply to the emergency electric device 18 is not performed normally from the main battery 10. Power conversion device 22 converts a voltage applied from main battery 10 to a substantially constant predetermined voltage. This substantially constant output voltage is applied to the terminal of the sub-battery 20, and the sub-battery 20 is charged.
[0024]
In charging the sub-battery, the state of charge of the sub-battery, that is, the remaining capacity is calculated based on the integrated amount of the charge / discharge current value by the current sensor 52, and the integrated amount is controlled to be an appropriate value. If the amount of integration is excessive, the power converter is stopped, and if the amount of integration is short, the power converter is operated.
[0025]
The current sensor 24 detects a charge / discharge current input / output to / from the terminal of the main battery 10, and the current sensor 52 detects a charge / discharge current input / output to / from the terminal of the sub-battery 20. The temperature sensor 26 is provided at a predetermined position of the main battery 10 and detects the temperature of the main battery 10.
[0026]
The diode 28 is for preventing a current flowing directly from the main battery 10 to the sub-battery 20 via the wiring of the emergency electric device 18, and connects between the sub-battery 20 and the emergency electric device 18. Inserted in wiring. The switch 30 is an ignition switch linked to an ignition key, and when closed, the operating power is supplied to the starter 14. The switch 32 is connected in series with the diode 28 and supplies operating power from the sub-battery 20 to the emergency electric device 18 when closed.
[0027]
The switch 54 is a switch that connects the sub-battery 20 directly to the specific electric load 56 and supplies power from the sub-battery 20 to the load 56.
[0028]
The control device 40 controls the discharge state of the sub-battery 20 by closing or opening the switch 32. The control of the charge / discharge state is performed by directly detecting the terminal voltage of the main battery 10, the charge state of the main battery 10 determined based on the charge / discharge current value detected by the current sensor 24, and the temperature sensor 26. This is performed based on the temperature of the main battery 10.
[0029]
Further, the control device 40 controls opening and closing of the switch 54, closes the switch 54 when the specific electric load 56 starts operating, measures a discharge current value and a discharge voltage value of the sub-battery 20, and measures the sub-current at that time. The internal resistance value of the battery 20 is calculated, and the remaining capacity of the sub-battery at that time is calculated as an initial value. At the same time, the integrated amount of the charging / discharging current of the sub-battery is reset and the integrated amount is added to the initial value from zero.
[0030]
The above-described main battery 10 corresponds to the first power storage device, the sub-battery 20 corresponds to the second power storage device, and the control device 40 corresponds to a charge / discharge control device.
[0031]
The in-vehicle power supply system of the present embodiment has such a configuration. Next, the remaining capacity detection logic of the sub-battery 20 by the control device 40 will be described.
[0032]
FIG. 2 is a flowchart showing an operation procedure for detecting the remaining capacity of the sub-battery among the control items of the control device 40.
[0033]
When a key switch (not shown) is turned on, first, the control device 40 determines whether or not a specific electric load 56 is operating (step 102). If the specific electric load is operating, the switch 54 is closed to discharge the sub-battery (step 104). The discharge current value and voltage value of the sub-battery are detected (steps 106 and 108). The internal resistance of the sub-battery is calculated from the obtained voltage-current relationship. In general, a storage battery tends to have an internal resistance value that rises in accordance with the degree of deterioration of a battery constituent member. Can be calculated. The value is set as the current initial value SOC0 (step 110). When the remaining capacity initial value is determined, the switch 54 is opened (step 112). Thereafter, the charging / discharging current value of the sub-battery is detected at a specified sampling interval Δt (step 114), and a value obtained by multiplying the current detection value by the sampling interval time is added to the initial value (step 116). Thus, the instantaneous value of the remaining capacity of the sub-battery can be tracked. If it is determined in step 102 that the specific load 54 is not operating, steps 114 to 112 are skipped and step 114 is executed. In this case, as the SOC value before the addition, the final value of the previous traveling is stored, and that value is used.
[0034]
As described above, by resetting the integrated amount by discharging the sub-battery periodically, the influence of the integrated error in which the error itself of the current sensor is accumulated can be easily eliminated.
[0035]
Therefore, it is possible to notify the driver of the replacement time of the sub-battery for emergency use, and it is possible to prevent the system from breaking down.
[0036]
[Second embodiment]
In the above-described first embodiment, the discharge destination is supplied to the specific electric device mounted on the vehicle. However, since it is not known at which timing the discharge is performed, in a modified example, a discharge-only resistor is used to control the discharge timing. A resistor 58 having a known value is provided. The control of the switch 60 for connecting the resistor 58 is executed by the control device 40A. The reason for using a resistor having a known resistance is that the discharge current value can be detected as a terminal voltage, so that a dedicated current sensor becomes unnecessary.
[0037]
The closing timing of the switch is, for example, connected for several seconds after the start is completed, and the switch is opened when the measurement of the battery voltage and the discharge current value is completed.
[0038]
During the starting process, since the large capacity discharge is being performed from the first battery, which is the main power source, to the starting motor, discharging the sub-battery during this time is not appropriate considering the function as a standby power source. It is desirable to start discharging the sub-battery after the start is completed.
[0039]
With this setting, the initial value of the state of charge can be always determined during one run.
[0040]
When the remaining capacity of the sub-battery thus obtained falls below a predetermined value, a signal is transmitted to prompt the driver to replace the sub-battery. For example, an indicator lamp is turned on and blinks, and a message is displayed. By performing such monitoring, the replacement can be completed before the sub-battery breaks down, and standby can be performed in a state where the emergency power supply can be stably supplied.
[0041]
Note that the present invention is not limited to the above embodiment, and various modifications can be made within the scope of the present invention. For example, in the above-described embodiment, the mounting location of the main battery 10 and the sub-battery 20 is not particularly described, but the main battery 10 is mounted in the engine room, and the sub-battery 20 is mounted in the trunk room. Is also good. Although the terminal voltage of the main battery 10 mounted in the engine room and having a large temperature change greatly fluctuates, even in such a case, it is possible to maintain the good charged state of the sub-battery 20. Further, by mounting the sub-battery 20 in the trunk room, it is possible to reduce the fluctuation of the terminal voltage of the sub-battery 20 and to further stabilize the power supply by the sub-battery 20 having a good charge state. .
[0042]
Note that the sub-battery 20 may be discharged at least once within a predetermined period (for example, one week).
[Brief description of the drawings]
FIG. 1 is a diagram illustrating an overall configuration of a vehicle-mounted power supply system according to a first embodiment.
FIG. 2 is a flowchart showing an operation procedure of the control device.
FIG. 3 is a diagram illustrating an overall configuration of a vehicle-mounted power supply system according to a second embodiment;
[Explanation of symbols]
10: Main battery 12: Vehicle generator (G)
14 ... Starter (S)
DESCRIPTION OF SYMBOLS 16 ... Electrical load 18 ... Emergency electric device 20 ... Sub-battery 22 ... Power conversion device 24, 52 ... Current sensor 26 ... Temperature sensor 28 ... Diodes 30, 54, 60 ... Switches 40 and 40A ... Control device

Claims (11)

車両用発電機と、
前記車両用発電機によって充電され、イグニッションON時に常時使用される電気装置に接続される第1の蓄電装置と、
前記第1の蓄電装置に断続的に接続される第2の蓄電装置と、
前記第1の蓄電装置の状態量および前記車両用発電機の状態量の少なくとも一方に基づいて、前記第2の蓄電装置の充放電動作を制御する充放電制御装置とを備え、
前記第2の蓄電装置を定期的に放電させて電圧−電流特性を測定することを特徴とする車載電源システム。
A generator for the vehicle,
A first power storage device that is charged by the vehicle generator and connected to an electric device that is always used when an ignition is turned on;
A second power storage device intermittently connected to the first power storage device;
A charge / discharge control device that controls a charge / discharge operation of the second power storage device based on at least one of a state amount of the first power storage device and a state amount of the vehicle generator,
A vehicle-mounted power supply system characterized in that the second power storage device is periodically discharged to measure a voltage-current characteristic.
請求項1において、
前記電圧−電流特性から前記第2の蓄電装置の内部インピーダンスを算出して第2の蓄電装置の寿命に関する状態量を検出し、該状態量が所定値を下回った場合に警報することを特徴とする車載電源システム。
In claim 1,
Calculating an internal impedance of the second power storage device from the voltage-current characteristic to detect a state quantity relating to the life of the second power storage device, and issuing an alarm when the state quantity falls below a predetermined value. In-vehicle power supply system.
請求項1において、
前記第2の蓄電装置を第1の蓄電装置に断続的に接続する手段はDC/DCコンバータとし、互いを遮断する場合にDC/DCコンバータを停止することを特徴とする車載電源システム。
In claim 1,
A vehicle-mounted power supply system, wherein the means for intermittently connecting the second power storage device to the first power storage device is a DC / DC converter, and the DC / DC converter is stopped when the two power storage devices are disconnected from each other.
請求項1において、
前記電圧−電流を測定する方法は、前記第2の蓄電装置から前記第1の蓄電装置に接続された特定の電気装置に電流供給可能に定期的に接続し、該特定電気装置を稼動させることを特徴とする車載電源システム。
In claim 1,
The method of measuring the voltage-current may include periodically connecting the second power storage device to a specific electrical device connected to the first power storage device so that current can be supplied, and operating the specific electrical device. An in-vehicle power supply system characterized by the following.
請求項1において、
前記電圧−電流を測定する方法は、前記第1の蓄電装置には接続されない電気抵抗値固定の抵抗体を、定期的に前記第2の蓄電装置に接続することを特徴とする車載電源システム。
In claim 1,
The on-vehicle power supply system according to claim 1, wherein the voltage-current measurement method includes periodically connecting a resistor having a fixed electric resistance value that is not connected to the first power storage device to the second power storage device.
請求項3において、
前記第2の蓄電装置から前記第1の蓄電装置に接続された特定の電気装置に電流供給可能に接続する手段は前記DC/DCコンバータを短絡させることを特徴とする車載電源システム。
In claim 3,
A vehicle-mounted power supply system, wherein the means for connecting the second power storage device to a specific electric device connected to the first power storage device so as to be able to supply a current short-circuits the DC / DC converter.
請求項1〜6のいずれかにおいて、
エンジン始動期間には前記第2の蓄電装置の放電を禁止することを特徴とする車載電源システム。
In any one of claims 1 to 6,
An in-vehicle power supply system, wherein discharging of the second power storage device is prohibited during an engine start period.
請求項1〜7のいずれかにおいて、
前記第1の蓄電装置は主電源として、前記第2の蓄電装置は補助電源としてそれぞれ用いられ、
前記第1のおよび第2の蓄電装置から並行して電力供給が行われる電気装置をさらに備えることを特徴とする車載電源システム。
In any one of claims 1 to 7,
The first power storage device is used as a main power supply, and the second power storage device is used as an auxiliary power supply,
The in-vehicle power supply system further includes an electric device that is supplied with power from the first and second power storage devices in parallel.
請求項1〜8のいずれかにおいて、
前記第1の蓄電装置は、車両のエンジンルーム内に搭載され、前記第2の蓄電装置は、車室内あるいは車両のトランクルーム内に搭載されることを特徴とする車載電源システム。
In any one of claims 1 to 8,
The first power storage device is mounted in an engine room of a vehicle, and the second power storage device is mounted in a vehicle room or a trunk room of the vehicle.
請求項1〜9のいずれかにおいて、
前記第1および第2の蓄電装置は、定格電圧が等しいことを特徴とする車載電源システム。
In any one of claims 1 to 9,
The first and second power storage devices have the same rated voltage.
請求項1〜10のいずれかにおいて、
前記第2の蓄電装置は、前記第1の蓄電装置を用いて充電されることを特徴とする車載電源システム。
In any one of claims 1 to 10,
The in-vehicle power supply system, wherein the second power storage device is charged using the first power storage device.
JP2003076148A 2003-03-19 2003-03-19 In-vehicle power supply system Pending JP2004289892A (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
JP2003076148A JP2004289892A (en) 2003-03-19 2003-03-19 In-vehicle power supply system
DE200410011688 DE102004011688A1 (en) 2003-03-19 2004-03-10 On-board electrical supply system has charging and discharging device that periodically discharges second energy storage device and determines its voltage-current characteristic

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2003076148A JP2004289892A (en) 2003-03-19 2003-03-19 In-vehicle power supply system

Publications (1)

Publication Number Publication Date
JP2004289892A true JP2004289892A (en) 2004-10-14

Family

ID=32923688

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2003076148A Pending JP2004289892A (en) 2003-03-19 2003-03-19 In-vehicle power supply system

Country Status (2)

Country Link
JP (1) JP2004289892A (en)
DE (1) DE102004011688A1 (en)

Cited By (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007125915A (en) * 2005-11-01 2007-05-24 Honda Motor Co Ltd Vehicular power supply device
JP2008162342A (en) * 2006-12-27 2008-07-17 Fuji Heavy Ind Ltd Power source device for vehicle
JP2008221958A (en) * 2007-03-12 2008-09-25 Honda Motor Co Ltd Power supply device for vehicle
JP2009120159A (en) * 2007-11-19 2009-06-04 Jtekt Corp Electric power steering device
JP2011004556A (en) * 2009-06-22 2011-01-06 Mitsubishi Electric Corp Power supply device for vehicle
US8047316B2 (en) 2006-06-13 2011-11-01 Kabushiki Kaisha Toshiba Storage battery system, on-vehicle power supply system, vehicle and method for charging storage battery system
JP2014230343A (en) * 2013-05-21 2014-12-08 カルソニックカンセイ株式会社 Battery state determination device
JP2017032569A (en) * 2012-09-11 2017-02-09 ジャガー・ランド・ローバー・リミテッドJaguar Land Rover Limited Method of determining charge in vehicle battery
CN109075597A (en) * 2016-05-31 2018-12-21 株式会社自动网络技术研究所 Relay-set and power supply device
CN110481468A (en) * 2019-08-16 2019-11-22 重庆长安汽车股份有限公司 Automobile double power-supply system and vehicle for L3 grades of automatic Pilots
US11047916B2 (en) 2018-03-12 2021-06-29 Toyota Jidosha Kabushiki Kaisha Battery diagnosis device and battery diagnosis method

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE102006043907A1 (en) * 2006-09-19 2008-04-03 Siemens Ag Electrical supply system for motor vehicle, has thermal generator provided beside rechargeable battery and partially converting heat resulting from combustion process of internal combustion engine into electricity
CN107425599B (en) * 2017-09-13 2023-06-27 重庆大及电子科技有限公司 Surge protection circuit for power supply compensator

Cited By (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4680032B2 (en) * 2005-11-01 2011-05-11 本田技研工業株式会社 Vehicle power supply
JP2007125915A (en) * 2005-11-01 2007-05-24 Honda Motor Co Ltd Vehicular power supply device
US8047316B2 (en) 2006-06-13 2011-11-01 Kabushiki Kaisha Toshiba Storage battery system, on-vehicle power supply system, vehicle and method for charging storage battery system
JP2008162342A (en) * 2006-12-27 2008-07-17 Fuji Heavy Ind Ltd Power source device for vehicle
JP2008221958A (en) * 2007-03-12 2008-09-25 Honda Motor Co Ltd Power supply device for vehicle
JP2009120159A (en) * 2007-11-19 2009-06-04 Jtekt Corp Electric power steering device
JP2011004556A (en) * 2009-06-22 2011-01-06 Mitsubishi Electric Corp Power supply device for vehicle
JP2017032569A (en) * 2012-09-11 2017-02-09 ジャガー・ランド・ローバー・リミテッドJaguar Land Rover Limited Method of determining charge in vehicle battery
JP2014230343A (en) * 2013-05-21 2014-12-08 カルソニックカンセイ株式会社 Battery state determination device
CN109075597A (en) * 2016-05-31 2018-12-21 株式会社自动网络技术研究所 Relay-set and power supply device
CN109075597B (en) * 2016-05-31 2022-04-12 株式会社自动网络技术研究所 Relay device and power supply device
US11047916B2 (en) 2018-03-12 2021-06-29 Toyota Jidosha Kabushiki Kaisha Battery diagnosis device and battery diagnosis method
US11435406B2 (en) 2018-03-12 2022-09-06 Toyota Jidosha Kabushiki Kaisha Battery diagnosis device and battery diagnosis method
CN110481468A (en) * 2019-08-16 2019-11-22 重庆长安汽车股份有限公司 Automobile double power-supply system and vehicle for L3 grades of automatic Pilots

Also Published As

Publication number Publication date
DE102004011688A1 (en) 2004-09-30

Similar Documents

Publication Publication Date Title
US8669741B2 (en) Battery management system and driving method thereof
US7276880B2 (en) Devices and/or methods for determining the availability of electric energy, in particularly in vehicle electric systems comprising several energy accumulators
JP4057276B2 (en) Method and apparatus for determining the state of a secondary storage battery mounted on a vehicle
US7317300B2 (en) Automotive battery state monitor apparatus
US7742885B2 (en) Vehicle power supply device and its degradation judgment method
US9689367B2 (en) Device and method for determining the starting capability of an internal combustion engine
JPH04271236A (en) Method of controlling voltage while depending upon state of battery charge and controller
JP2004201484A (en) Vehicle-mounted battery monitor
US20150377979A1 (en) Method for testing an energy store in a motor vehicle
JPS6122786B2 (en)
JP2002543754A (en) Energy management system for automotive vehicles
JP6603888B2 (en) Battery type determination device and battery type determination method
JP2004289892A (en) In-vehicle power supply system
JPH10253682A (en) Judgment apparatus for failure of current sensor
JP2006296085A (en) Vehicular power supply control apparatus and power supply control system
WO2008029820A1 (en) Accumulator
JPWO2013027337A1 (en) Vehicle power supply
JP2751174B2 (en) Vehicle charging control device
JP2008053126A (en) Battery deterioration judgement device
US6590396B1 (en) Device and method for indicating in-use charging and abnormal discharging of a combustion engine battery following engine turn-off
JP2007261433A (en) Battery control device and battery control method
JP2001021630A (en) Battery charging device and detecting method full charge
JP2010188851A (en) Power source device for vehicle
JP2009095209A (en) Power storage apparatus
JP5277819B2 (en) Power storage device

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20050512

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20080110

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20080122

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20080603