JP2004288462A - Plasma source - Google Patents

Plasma source Download PDF

Info

Publication number
JP2004288462A
JP2004288462A JP2003078556A JP2003078556A JP2004288462A JP 2004288462 A JP2004288462 A JP 2004288462A JP 2003078556 A JP2003078556 A JP 2003078556A JP 2003078556 A JP2003078556 A JP 2003078556A JP 2004288462 A JP2004288462 A JP 2004288462A
Authority
JP
Japan
Prior art keywords
plasma
antenna
microwave
gas
plasma chamber
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2003078556A
Other languages
Japanese (ja)
Other versions
JP3854238B2 (en
Inventor
Ryuichiro Isaki
隆一郎 伊崎
Susumu Sato
佐藤  進
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Japan Oxygen Co Ltd
Nippon Sanso Corp
ARIOS Inc
Original Assignee
Japan Oxygen Co Ltd
Nippon Sanso Corp
ARIOS Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Japan Oxygen Co Ltd, Nippon Sanso Corp, ARIOS Inc filed Critical Japan Oxygen Co Ltd
Priority to JP2003078556A priority Critical patent/JP3854238B2/en
Publication of JP2004288462A publication Critical patent/JP2004288462A/en
Application granted granted Critical
Publication of JP3854238B2 publication Critical patent/JP3854238B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Images

Landscapes

  • Drying Of Semiconductors (AREA)
  • Plasma Technology (AREA)
  • Physical Or Chemical Processes And Apparatus (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a plasma source generating a plasma by the supply of a microwave, not stained by metallic impurity, capable of downsizing the device. <P>SOLUTION: On a generation of the plasma by using a microwave as an excitation source, a spiral antenna 12 is arranged at the external periphery of a plasma chamber 11 made of insulation material, and the plasma is generated by directly supplying the microwave to the antenna. It is preferable that the antenna has a length longer than the wave length of the microwave, and a spiral pitch not shorter than 6 mm. <P>COPYRIGHT: (C)2005,JPO&NCIPI

Description

【0001】
【発明の属する技術分野】
本発明は、プラズマ源に関し、詳しくは、半導体製造装置、表面改質装置、薄膜生成装置等に用いられるプラズマ源であって、特に、小型で金属不純物による汚染が生じないプラズマ源に関する。
【0002】
【従来の技術】
従来から、13.56MHz帯の高周波を利用した誘導結合型のプラズマ源としては、様々な構成のものが提案され、実施されてきているが、2.45GHz帯のマイクロ波を励起源としてプラズマを生成する、マイクロ波励起型の場合、プラズマ室にマイクロ波を給電するためには、プラズマ室内に導電性のアンテナを突出させる方法(例えば特許文献1参照。)や、プラズマ室へ導波管によりマイクロ波を導く方法が知られている(例えば特許文献2参照。)。
【0003】
【特許文献1】
特開昭53−29076号公報
【0004】
【特許文献2】
特開平9−185999号公報
【0005】
【発明が解決しようとする課題】
しかし、プラズマ室内にアンテナを突出させる方法では、金属製のアンテナがプラズマ室内に露出しているため、アンテナがスパッタリングされ、金属不純物による汚染が発生してしまう。このとき、アンテナを絶縁物で覆うことにより、金属汚染を防止することは可能であるが、プラズマに曝されたアンテナが高温に加熱されるため、冷却装置を付加させることが必要となり、装置が大型化してしまう。一方、導波管により給電する方法では、導波管に遮断波長が存在することから、長辺が80mm以上となり、装置が大型化するという問題がある。
【0006】
そこで本発明は、マイクロ波給電によりプラズマを発生させるプラズマ源であって、金属不純物によるガスの汚染が発生せず、しかも、装置の小型化を図ることができるプラズマ源を提供することを目的としている。
【0007】
【課題を解決するための手段】
上記目的を達成するため、本発明のプラズマ源は、マイクロ波を励起源としたプラズマを生成するにあたり、絶縁物で形成されたプラズマ室の外周部にスパイラル状のアンテナを配置し、該アンテナにマイクロ波を直接給電してプラズマを生成することを特徴とし、特に、前記アンテナの長さが前記マイクロ波の1波長以上であること、該アンテナのスパイラルピッチが6mm以上であることを特徴としている。さらに、前記プラズマ室に磁場を印加する手段を設けることもできる。
【0008】
【発明の実施の形態】
図1は本発明の一形態例を示すプラズマ源の断面図である。このプラズマ源は、絶縁物で形成された筒状のプラズマ室11と、このプラズマ室11の外周部にスパイラル状に巻回されたアンテナ12と、このアンテナにマイクロ波を給電するためのマイクロ波電源13とを有するものであって、マイクロ波電源13からのマイクロ波は、同軸ケーブル14、チューナー(整合器)15、同軸ケーブル16、コネクター17を介して直接給電される。プラズマ室11の外部は、アルミニウム等からなる金属製ケースで囲い、マイクロ波の外部への漏洩を防止することが望ましい。また、この金属製ケースに冷却用ファンを設置することにより、プラズマ室11の温度制御を行うことができる。
【0009】
プラズマ室11は、アルミナ、石英、ガラスのように、マイクロ波を透過し、かつ、ガスを遮断して内外の圧力差に耐えられる誘電体により、筒状に形成されている。プラズマ室11の一端に設けられたガス導入口21には、室内に供給する放電用ガスの流量を制御する質量流量制御器(マスフローコントローラー)22と、プラズマ室内の圧力をモニタするための圧力計23とを備えたガス導入経路24が接続されており、他端のガス導出口25にはオリフィス26が設けられている。
【0010】
前記アンテナ12は、銅やニッケル等のように電気伝導性の良好な材料をコイル状としたものであって、コイルの断面形状は、円型である必要はなく、局所的な電界の過度な上昇を防止するため、四角型のリボンにより製作することもできる。また、アンテナ12は、共振長数が数波長分となるように構成されている。
【0011】
アンテナ12における給電点12aから同軸ケーブル16により給電されたマイクロ波は、給電点12a又はチューナー15とアンテナ先端12bとの間で共振して定在波を生じ、アンテナ内の電界が上昇する。この電界が、静電、誘電あるいは双方の結合により、プラズマ室11内のガスに印加されることによってプラズマが生成される。アンテナ12の長さは、寸法的な精度、放電開始前後の付加インピーダンスの変化等から、数波長以上にすることが効率的である。また、給電側には、コネクター17、チューナー15等の共振のポイントが複数存在するため、アンテナ12の長さは厳密でなくとも使用可能である。さらに、アンテナ12の先端が開放の場合は、電界が高くなるため、周囲の導体とは充分に離す必要がある。また、共振の原理により、アンテナ先端12bを接地することも可能である。
【0012】
このアンテナ12の長さは、供給するマイクロ波の1波長以上、特に2波長付近とすることが好ましく、これより短いと放電させることが困難となり、長くしても得られる効果は少なく、装置の大型化を招くことになる。また、アンテナのスパイラルピッチは、6mm以上、特に、7〜10mmの範囲とすることが好ましく、これよりも狭くすると反射波が大きく出て効率が低下し、大きくし過ぎると装置の大型化を招いて好ましくない。
【0013】
プラズマ室11には、前記ガス導入口21及びガス導出口25を介して放電用ガスの供給と排出とが行われ、質量流量制御器22によってプラズマ室内の圧力とガス流量とが一定になるように制御される。また、プラズマ室内の圧力は前記オリフィス26の孔径を調整することによっても制御できる。
【0014】
プラズマ室11内の放電状態は、放電用ガスの圧力に密接な関係がある。プラズマの強さは、ガス圧力の低い領域では均一となるが、条件によっては給電点12aの近傍において最も強いプラズマが生成される。ガス圧力は、低圧力から大気圧あるいは加圧まで対応することが可能である。
【0015】
このように形成したマイクロ波励起型のプラズマ源は、給電状態が極めて良好であり、電力、ガス種及びガス圧力の広い範囲において反射波が極めて少ない特性を得ることができる。そして、アンテナがプラズマ室内に露出しないために金属不純物によるガスの汚染が発生せず、しかも、波長の短いマイクロ波を使用したマイクロ波励起型であるから装置の小型化を図ることができる。また、プラズマ11室の外部に磁場発生器を配置し、放電部に磁場の効果を加えることも可能である。
【0016】
【実施例】
実施例1
図2に示す形状のプラズマ源を使用して2.45GHzのマイクロ波を使用し、プラズマの生成状態を確認する実験を行った。プラズマ室11には、外径15mm、厚さ1.5mm、長さ150mmの石英管を用いた。アンテナ12には直径2mmの銅線を使用し、石英管に密着して約10mmのピッチで10ターン巻き付けた。プラズマ質の外周はアルミニウム製ケース18で覆った。
【0017】
放電用ガスとしてアルゴンガスを用いた場合、プラズマ室内の圧力が133.3Pa(1torr)のとき、約10Wの電力で放電を開始した。次に、出力を200Wまで上昇させ、ガス圧力を13.33Pa(0.1torr)から13.33kPa(100torr)まで変化させた。この結果、ガス圧力が133.3Pa(1torr)以下の時、反射波は最高で約40Wまで上昇したが、常時、安定した連続動作が可能であった。ガス圧力を数百Pa(数torr)以上に増加させると反射波は低くなり、1333Pa(10torr)以上では10W以下となった。
【0018】
次に、放電用ガスを水素、窒素、酸素、四フッ化メタン、三弗化ヨウ化メタンとした場合について、同様の実験を実施した。これらのガスの場合も、前記アルゴンと同様に、133.3Pa(1torr)のときには約10Wで放電が開始し、出力を200Wまで上昇させても反射波は最高で数W程度と非常に低く、極めて効率的な放電状態となった。ガスの圧力が133.3Pa(1torr)程度の場合、プラズマ室11内の放電は、プラズマが全体に広がった状態となったが、400Pa(3torr)以上に増加させると、プラズマは、給電点12aの付近に局在化するようになり、かつ、放電領域は微小化する傾向となった。
【0019】
実施例2
実施例1と同じ装置を使用し、アンテナ12のターン数を変化させた実験を行った。なお、放電ガスにはアルゴンを用いた。この結果、ターン数が1(リング状)の場合は、電力が200Wまでの範囲で放電させることは困難であり、再現性を得ることはできなかった。ターン数を3、5、7と増加させていくと、放電開始電力と反射波とは共に減少し、ターン数が7から10までは、略同じ挙動となった。
【0020】
実施例3
実施例1と同じ装置を使用してアンテナ12のターン数を7で固定し、アンテナ12のピッチ幅(スパイラルピッチ)を10mmから4mmまで変化させた。放電ガスにはアルゴンを用いた。この結果、ピッチ幅が6mm以下のときには反射波が大きく出たが、7mm以上にすると低下し、これ以上では変化がなかった。この結果は、アンテナ12の断面形状が円型の場合であっても、幅5mmの四角型のリボンであっても同様であり、アンテナ12の構造を、ターン数が5以上、ピッチ幅が7〜10mmとすることにより、極めて効率的なプラズマを生成することができた。
【0021】
【発明の効果】
以上説明したように、本発明のプラズマ源によれば、マイクロ波を励起源としたプラズマの生成が容易に可能となる。また、小型でプラズマ室の設計自由度が高く、金属不純物による汚染がなく、電力、ガス種及びガス圧力の広い範囲で、極めて効率的なプラズマ生成が実施できる。したがって、半導体製造装置、表面改質装置、薄膜生成装置への応用に際し、プロセスの高性能化と共に、装置の小型化及び効率化を図ることが可能となる。
【図面の簡単な説明】
【図1】本発明の一形態例を示すプラズマ源の断面図である。
【図2】実施例で使用したプラズマ源の断面図である。
【符号の説明】
11…プラズマ室、12…アンテナ、12a…給電点、12b…アンテナ先端、13…マイクロ波電源、14…同軸ケーブル、15…チューナー(整合器)、16…同軸ケーブル、17…コネクター、21…ガス導入口、22…質量流量制御器(マスフローコントローラー)、23…圧力計、24…ガス導入経路、25…ガス導出口、26…オリフィス
[0001]
TECHNICAL FIELD OF THE INVENTION
The present invention relates to a plasma source, and more particularly to a plasma source used for a semiconductor manufacturing apparatus, a surface reforming apparatus, a thin film generating apparatus, and the like, and particularly to a small-sized plasma source that does not cause contamination by metal impurities.
[0002]
[Prior art]
Conventionally, various types of inductively coupled plasma sources using a 13.56 MHz band high frequency have been proposed and implemented, but plasma is generated using a 2.45 GHz band microwave as an excitation source. In the case of the generated microwave excitation type, in order to supply microwaves to the plasma chamber, a method of projecting a conductive antenna into the plasma chamber (for example, see Patent Document 1) or a waveguide to the plasma chamber by a waveguide is used. A method for guiding microwaves is known (for example, see Patent Document 2).
[0003]
[Patent Document 1]
JP-A-53-29076
[Patent Document 2]
JP-A-9-185999
[Problems to be solved by the invention]
However, in the method of projecting the antenna into the plasma chamber, since the metal antenna is exposed in the plasma chamber, the antenna is sputtered, and contamination by metal impurities occurs. At this time, it is possible to prevent metal contamination by covering the antenna with an insulator, but since the antenna exposed to plasma is heated to a high temperature, it is necessary to add a cooling device. It becomes large. On the other hand, in the method of feeding power by the waveguide, there is a problem that the long side is 80 mm or more because the cut-off wavelength exists in the waveguide, and the device becomes large.
[0006]
Therefore, an object of the present invention is to provide a plasma source that generates plasma by microwave power supply, does not cause gas contamination by metal impurities, and can reduce the size of the apparatus. I have.
[0007]
[Means for Solving the Problems]
In order to achieve the above object, the plasma source of the present invention arranges a spiral antenna on the outer peripheral portion of a plasma chamber formed of an insulator when generating plasma using a microwave as an excitation source, and It is characterized in that plasma is generated by directly feeding microwaves, and in particular, the length of the antenna is at least one wavelength of the microwave, and the spiral pitch of the antenna is at least 6 mm. . Further, means for applying a magnetic field to the plasma chamber may be provided.
[0008]
BEST MODE FOR CARRYING OUT THE INVENTION
FIG. 1 is a sectional view of a plasma source showing one embodiment of the present invention. The plasma source includes a cylindrical plasma chamber 11 formed of an insulator, an antenna 12 spirally wound around the outer periphery of the plasma chamber 11, and a microwave for feeding microwaves to the antenna. The microwave power from the microwave power supply 13 is supplied directly through a coaxial cable 14, a tuner (matching device) 15, a coaxial cable 16, and a connector 17. It is desirable that the outside of the plasma chamber 11 be surrounded by a metal case made of aluminum or the like to prevent leakage of the microwave to the outside. By installing a cooling fan in this metal case, the temperature of the plasma chamber 11 can be controlled.
[0009]
The plasma chamber 11 is formed in a cylindrical shape from a dielectric material, such as alumina, quartz, or glass, that transmits microwaves and blocks gas to withstand a pressure difference between the inside and the outside. A gas inlet 21 provided at one end of the plasma chamber 11 has a mass flow controller (mass flow controller) 22 for controlling the flow rate of a discharge gas to be supplied into the chamber, and a pressure gauge for monitoring the pressure in the plasma chamber. And an orifice 26 is provided at a gas outlet 25 at the other end.
[0010]
The antenna 12 is a coil made of a material having good electric conductivity such as copper or nickel, and the cross-sectional shape of the coil does not need to be circular, and the local electric field is not excessive. It can also be made of a square ribbon to prevent it from rising. The antenna 12 is configured so that the number of resonance lengths is several wavelengths.
[0011]
The microwave fed from the feed point 12a of the antenna 12 by the coaxial cable 16 resonates between the feed point 12a or the tuner 15 and the antenna tip 12b to generate a standing wave, and the electric field in the antenna rises. This electric field is applied to the gas in the plasma chamber 11 by electrostatic, dielectric, or a combination of both to generate plasma. It is efficient to set the length of the antenna 12 to several wavelengths or more from the viewpoint of dimensional accuracy, change in additional impedance before and after the start of discharge, and the like. Further, since there are a plurality of resonance points on the power supply side, such as the connector 17 and the tuner 15, the antenna 12 can be used even if the length is not strict. Further, when the tip of the antenna 12 is open, the electric field becomes high, so that it is necessary to sufficiently separate the antenna from surrounding conductors. Further, the antenna tip 12b can be grounded by the principle of resonance.
[0012]
It is preferable that the length of the antenna 12 is at least one wavelength of the supplied microwave, particularly around two wavelengths. If the length is shorter than this, it is difficult to discharge, and even if the length is longer, the effect obtained is small. This leads to an increase in size. Further, the spiral pitch of the antenna is preferably 6 mm or more, particularly preferably in the range of 7 to 10 mm. If it is smaller than this, the reflected wave will be large and the efficiency will be reduced. Is not preferred.
[0013]
In the plasma chamber 11, supply and discharge of discharge gas are performed through the gas inlet 21 and the gas outlet 25, and the mass flow controller 22 controls the pressure and gas flow in the plasma chamber to be constant. Is controlled. The pressure in the plasma chamber can also be controlled by adjusting the diameter of the orifice 26.
[0014]
The discharge state in the plasma chamber 11 is closely related to the pressure of the discharge gas. The intensity of the plasma is uniform in a region where the gas pressure is low, but the strongest plasma is generated in the vicinity of the feeding point 12a depending on conditions. The gas pressure can correspond from low pressure to atmospheric pressure or pressurization.
[0015]
The microwave-excited plasma source thus formed has an extremely good power supply state, and can obtain characteristics with extremely small reflected waves in a wide range of power, gas type, and gas pressure. Since the antenna is not exposed in the plasma chamber, gas contamination due to metal impurities does not occur, and the apparatus can be miniaturized because it is of a microwave excitation type using a microwave having a short wavelength. It is also possible to arrange a magnetic field generator outside the chamber of the plasma 11 so as to add a magnetic field effect to the discharge unit.
[0016]
【Example】
Example 1
An experiment was performed to confirm the state of plasma generation using a microwave of 2.45 GHz using a plasma source having the shape shown in FIG. For the plasma chamber 11, a quartz tube having an outer diameter of 15 mm, a thickness of 1.5 mm, and a length of 150 mm was used. A copper wire having a diameter of 2 mm was used as the antenna 12 and wound 10 turns at a pitch of about 10 mm in close contact with a quartz tube. The outer periphery of the plasma was covered with an aluminum case 18.
[0017]
When an argon gas was used as the discharge gas, when the pressure in the plasma chamber was 133.3 Pa (1 torr), the discharge was started with a power of about 10 W. Next, the output was increased to 200 W, and the gas pressure was changed from 13.33 Pa (0.1 torr) to 13.33 kPa (100 torr). As a result, when the gas pressure was 133.3 Pa (1 torr) or less, the reflected wave rose to a maximum of about 40 W, but stable continuous operation was always possible. When the gas pressure was increased to several hundred Pa (several torr) or more, the reflected wave became low, and when the gas pressure was 1333 Pa (10 torr) or more, it became 10 W or less.
[0018]
Next, the same experiment was performed when the discharge gas was hydrogen, nitrogen, oxygen, methane tetrafluoride, or methane trifluoride methane. In the case of these gases as well, the discharge starts at about 10 W at 133.3 Pa (1 torr) as in the case of the above-mentioned argon, and even when the output is increased to 200 W, the reflected wave is as very low as about several W at the maximum. An extremely efficient discharge state was achieved. When the gas pressure is about 133.3 Pa (1 torr), the discharge in the plasma chamber 11 is in a state where the plasma spreads over the entirety. However, when the pressure is increased to 400 Pa (3 torr) or more, the plasma is supplied to the power supply point 12a. , And the discharge region tends to be miniaturized.
[0019]
Example 2
An experiment was performed using the same device as in Example 1 and changing the number of turns of the antenna 12. Note that argon was used as a discharge gas. As a result, when the number of turns is 1 (ring shape), it is difficult to discharge the electric power in a range of up to 200 W, and reproducibility cannot be obtained. When the number of turns was increased to 3, 5, and 7, both the discharge starting power and the reflected wave decreased, and the behavior became almost the same from 7 to 10 turns.
[0020]
Example 3
Using the same device as in Example 1, the number of turns of the antenna 12 was fixed at 7, and the pitch width (spiral pitch) of the antenna 12 was changed from 10 mm to 4 mm. Argon was used as a discharge gas. As a result, when the pitch width was 6 mm or less, a large reflected wave was produced. However, when the pitch width was 7 mm or more, the reflected wave was reduced. This result is the same whether the cross-sectional shape of the antenna 12 is a circle or a rectangular ribbon having a width of 5 mm. By setting it to 10 to 10 mm, extremely efficient plasma could be generated.
[0021]
【The invention's effect】
As described above, according to the plasma source of the present invention, it is possible to easily generate plasma using microwaves as an excitation source. In addition, the plasma generation can be performed very efficiently in a wide range of power, gas type, and gas pressure because of its small size, high degree of freedom in designing a plasma chamber, no contamination by metal impurities, and wide range of gas, gas type and gas pressure. Therefore, when applied to a semiconductor manufacturing apparatus, a surface reforming apparatus, and a thin film forming apparatus, it is possible to improve the performance of the process and to reduce the size and efficiency of the apparatus.
[Brief description of the drawings]
FIG. 1 is a cross-sectional view of a plasma source showing one embodiment of the present invention.
FIG. 2 is a sectional view of a plasma source used in the embodiment.
[Explanation of symbols]
11: Plasma chamber, 12: Antenna, 12a: Feeding point, 12b: Antenna tip, 13: Microwave power supply, 14: Coaxial cable, 15: Tuner (matching device), 16: Coaxial cable, 17: Connector, 21: Gas Inlet, 22: Mass flow controller (mass flow controller), 23: Pressure gauge, 24: Gas introduction path, 25: Gas outlet, 26: Orifice

Claims (4)

マイクロ波を励起源としたプラズマを生成するにあたり、絶縁物で形成されたプラズマ室の外周部にスパイラル状のアンテナを配置し、該アンテナにマイクロ波を直接給電してプラズマを生成することを特徴とするプラズマ源。In generating plasma using microwaves as an excitation source, a spiral antenna is arranged on the outer periphery of a plasma chamber made of an insulator, and microwaves are directly supplied to the antenna to generate plasma. And a plasma source. 前記アンテナの長さが前記マイクロ波の1波長以上であることを特徴とする請求項1記載のプラズマ源。The plasma source according to claim 1, wherein the length of the antenna is one or more wavelengths of the microwave. 前記アンテナのスパイラルピッチが6mm以上であることを特徴とする請求項1記載のプラズマ源。The plasma source according to claim 1, wherein a spiral pitch of the antenna is 6 mm or more. 前記プラズマ室に磁場を印加する手段を備えていることを特徴とする請求項1記載のプラズマ源。2. The plasma source according to claim 1, further comprising means for applying a magnetic field to said plasma chamber.
JP2003078556A 2003-03-20 2003-03-20 Plasma source Expired - Lifetime JP3854238B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2003078556A JP3854238B2 (en) 2003-03-20 2003-03-20 Plasma source

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2003078556A JP3854238B2 (en) 2003-03-20 2003-03-20 Plasma source

Publications (2)

Publication Number Publication Date
JP2004288462A true JP2004288462A (en) 2004-10-14
JP3854238B2 JP3854238B2 (en) 2006-12-06

Family

ID=33293007

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2003078556A Expired - Lifetime JP3854238B2 (en) 2003-03-20 2003-03-20 Plasma source

Country Status (1)

Country Link
JP (1) JP3854238B2 (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007220600A (en) * 2006-02-20 2007-08-30 Nissin Electric Co Ltd Plasma generation method and plasma generation device as well as plasma treatment device
JP2008525750A (en) * 2004-12-23 2008-07-17 アルカテル−ルーセント Apparatus and method for monitoring dehydration operation during lyophilization process
JP2008223123A (en) * 2007-03-15 2008-09-25 Rohm Co Ltd Radical generator
JP2015145650A (en) * 2014-02-04 2015-08-13 公立大学法人首都大学東京 Electric propulsion system

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008525750A (en) * 2004-12-23 2008-07-17 アルカテル−ルーセント Apparatus and method for monitoring dehydration operation during lyophilization process
JP2007220600A (en) * 2006-02-20 2007-08-30 Nissin Electric Co Ltd Plasma generation method and plasma generation device as well as plasma treatment device
JP2008223123A (en) * 2007-03-15 2008-09-25 Rohm Co Ltd Radical generator
WO2008114719A1 (en) * 2007-03-15 2008-09-25 Rohm Co., Ltd. Radical generating apparatus and zno thin film
JP2015145650A (en) * 2014-02-04 2015-08-13 公立大学法人首都大学東京 Electric propulsion system

Also Published As

Publication number Publication date
JP3854238B2 (en) 2006-12-06

Similar Documents

Publication Publication Date Title
EP3254302B1 (en) Apparatus and method for plasma ignition with a self-resonating device
US6325018B1 (en) Flat antenna having openings provided with conductive materials accommodated therein and plasma processing apparatus using the flat antenna
US4368092A (en) Apparatus for the etching for semiconductor devices
JP2004055614A (en) Plasma processing apparatus
US9807862B2 (en) Plasma processing apparatus
US6908530B2 (en) Microwave plasma processing apparatus
KR20070108929A (en) Microwave plasma processing device
JP3907087B2 (en) Plasma processing equipment
US6734385B1 (en) Microwave plasma burner
US7574974B2 (en) Device for production of a plasma sheet
US6343565B1 (en) Flat antenna having rounded slot openings and plasma processing apparatus using the flat antenna
JP3527475B2 (en) Apparatus for generating excited or ionized particles in a plasma
JP3854238B2 (en) Plasma source
JP6341690B2 (en) Inductively coupled microplasma source with floating electrode shielded
JP2967060B2 (en) Microwave plasma generator
JP2005228604A (en) Plasma generator
JP5143662B2 (en) Plasma processing equipment
JP4735095B2 (en) Apparatus for measuring electric field distribution of remote plasma generation unit, remote plasma generation unit, processing apparatus, and method for adjusting characteristics of remote plasma generation unit
JPH11354291A (en) Plasma generator
CN112652512A (en) Plasma processing apparatus
JP2010022975A (en) High-voltage plasma generator
JPH0729889A (en) Microwave plasma treatment processing equipment
JP3757159B2 (en) Plasma processing equipment
CN112652513A (en) Processing method and plasma processing apparatus
JP2006080550A (en) Plasma processing apparatus

Legal Events

Date Code Title Description
A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20050516

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20050524

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20050725

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A821

Effective date: 20050726

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20060822

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20060907

R150 Certificate of patent or registration of utility model

Ref document number: 3854238

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090915

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100915

Year of fee payment: 4

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110915

Year of fee payment: 5

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110915

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120915

Year of fee payment: 6

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120915

Year of fee payment: 6

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130915

Year of fee payment: 7

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313117

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130915

Year of fee payment: 7

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

EXPY Cancellation because of completion of term