JP2004286689A - Simultaneous measuring method for profile and film thickness distribution for multilayer film, and device therefor - Google Patents

Simultaneous measuring method for profile and film thickness distribution for multilayer film, and device therefor Download PDF

Info

Publication number
JP2004286689A
JP2004286689A JP2003081791A JP2003081791A JP2004286689A JP 2004286689 A JP2004286689 A JP 2004286689A JP 2003081791 A JP2003081791 A JP 2003081791A JP 2003081791 A JP2003081791 A JP 2003081791A JP 2004286689 A JP2004286689 A JP 2004286689A
Authority
JP
Japan
Prior art keywords
light
reflecting
positions
thickness distribution
phase
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2003081791A
Other languages
Japanese (ja)
Other versions
JP3960427B2 (en
Inventor
Osami Sasaki
佐々木修己
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
NIIGATA TLO KK
Niigata TLO Corp
Original Assignee
NIIGATA TLO KK
Niigata TLO Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by NIIGATA TLO KK, Niigata TLO Corp filed Critical NIIGATA TLO KK
Priority to JP2003081791A priority Critical patent/JP3960427B2/en
Publication of JP2004286689A publication Critical patent/JP2004286689A/en
Application granted granted Critical
Publication of JP3960427B2 publication Critical patent/JP3960427B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Landscapes

  • Instruments For Measurement Of Length By Optical Means (AREA)
  • Length Measuring Devices By Optical Means (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To enable simultaneous measurement for a two-dimensional profile and a film thickness distribution of a plurality of the reflecting surfaces of an object to be measured, by reversely propagating an optical field detected by an interferometer using a multiple wavelength laser light source. <P>SOLUTION: Parallel light beams from the multiple wavelength laser light source 11 are separated via a beam splitter 20, and one beam is incident on a mirror 22 oscillated sinusoidally by a piezoelectric element 23, and other beam is incident on the reflecting surface of an object 21 to be measured. The beams reflected by the reflecting surface of the mirror 22 and by a plurality of the reflecting surfaces of the object 21 are composed by the beam splitter 20, and then are image-formed on a two-dimensional CCD image sensor 30 by using a lens 24 and a pinhole 25 to be interfered. Then an interference signal is obtained from the output signal of the two-dimensional CCD image sensor 30. The precise positions of a plurality of the reflecting surfaces are determined from the amplitude and the phase of this interference signal, and then the simultaneous measurement for the two-dimensional profile and film thickness distribution for the multilayer film of the object 21 can be done. <P>COPYRIGHT: (C)2005,JPO&NCIPI

Description

【0001】
【発明の属する技術分野】本発明は多波長レーザ光源を用いて被測定物体の多層膜の表面形状と膜厚分布を高精度に同時測定する計測装置に関するものである。
【0002】
【従来の技術】従来の膜厚測定方法は2つの方法がある。1つは、単色光を被測定物体に入射角度を変化させながら照射し、被測定物体からの反射光の強度変化を測定することから膜厚を求める方法である。この方法では、測定点は1つの点である。他の方法は、被測定物体に照射する光の波長を変化させながら、被測定物体からの反射光の強度変化を測定することから膜厚を求める方法である。この方法では、測定点を線上にすることができるが、面測定を行う場合には、線上の測定点を走査する必要がある。また、これら従来の2つの方法は、膜厚分布を求めることはできるが、膜の表面形状を求めることはできない。
非特許文献;(1)佐々木,位相変調干渉法による表面形状計測,光技術コンタクト,Vol 37.No8(1999)p556〜p564
(2)佐々木,鈴木,正弦波変調干渉法におけるフィードバック干渉計,光技術コンタクト,Vol 39.No8(2001)p501〜p509引用例;特開2002−107283
【0003】
【発明が解決しようとする課題】測定点の走査を行うことなしに、2次元の膜厚分布及び膜の表面形状を数ナノメータの精度で測定する装置を提供することを目的とする。
【0004】
【課題を解決するための手段】前記目標を達成するために、本願請求項1に係る多層膜の表面形状と膜厚分布の同時測定方法は、波長が変化する光を発生する光源と、前記光源からの光を分離して被測定物体の複数の反射面及び参照面で反射させた後、合成して干渉させる干渉光学系と、前記参照面を正弦波振動させる正弦波振動手段と、前記干渉光学系によって得られる干渉光を電気的な干渉信号に変換する光電変換手段と、前記干渉信号に基づいて該干渉信号の振幅と位相を求める手段と、多くの波長について求めた前記の振幅及び位相に基づいて前記被測定物体の反射面上付近の多波長逆伝搬光場を求める演算手段と、前記被測定物体の反射面付近の多波長逆伝搬光場の強度分布と位相分布から複数の反射面の位置を決定する演算手段と、を備えたことを特徴としている。
【0005】
本願請求項2に示すように等間隔で波長が変化する光を発生する光源と、前記光源からの光を分離して被測定物体の複数の反射面及び参照面で反射させた後、各反射光をレンズとピンホールを用いて結像し、合成して干渉させる干渉光学系を備えたことを特徴としている。
本願請求項3に示すように前記参照面を正弦波振動させる正弦波振動手段と、前記干渉光学系によって得られる干渉光を電気的な干渉信号に変換する光電変換手段を備えたことを特徴としている。
【0006】
本願請求項4に示すように前記干渉信号に基づいて該干渉信号の振幅と位相を求める演算手段と、前記求めた振幅及び位相から求められる光場を前記被測定物体の反射面付近に逆伝搬させることによって被測定物体の反射面付近の逆伝搬光場を求める演算手段を備えたことを特徴としている。
本願請求項5に示すように多くの波長について求められた被測定物体の反射面付近の逆伝搬光場の総和から求められる前記被測定物体の反射面付近の再生光場の強度分布から複数の反射面のおおまかな位置を求め、再生光場の位相分布から複数の反射面の正確な位置を求める演算手段を備えたことを特徴としている。
【0007】
【発明の実施の形態】以下添付図面に従って本発明に係る多層膜の表面形状と膜厚分布の同時測定方法及びそのための装置の好ましい実施の形態について詳説する。
【0008】
図1は本発明に係る多層膜の表面形状と膜厚分布の同時測定のための装置の実施の形態を示す概略図である。同図に示すように、この装置は、多波長レーザ光源(MWL)10と、ビームスプリッタ20と、ミラー22と、結像レンズ24と、ピンホール25と、2次元CCDイメージセンサ30と、A/D変換器31と、パソコン32から構成されている。尚、23はミラー22を正弦波振動させる圧電素子であり、21は被測定物体である。
【0009】
多波長レーザ光源(MWL)10は、一定の波長間隔で、多くの波長のレーザ光を時系列的に発生するものである。この多波長レーザ光源10からの平行光は、ビームスプリッタ20で2分され、分割された一方の光は被測定物体21の複数の反射面に入射し、ここで反射され、分割された他方の光はミラー22の反射面(参照面)に入射し、ここで反射される。被測定物体21の複数の反射面で反射された光と、ミラー22の反射面で反射された光は、ビームスプリッタ20で合成される。レンズ24によって、CCDイメージセンサ30の検出面上に被測定物体21の複数の反射面の像が形成される。このとき、レンズ24の焦点面上におかれたピンホール25によって、被測定物体21の複数の反射面で反射された光の中で、反射面にほぼ垂直な方向に反射された光だけが選択され、CCDイメージセンサ30の検出面上で、ミラー22の反射面で反射された光と干渉する。この干渉による強度分布はCCDイメージセンサ30で電気的な干渉信号に変換される。この干渉信号は、A/D変換器31によってデジタル信号に変換されたのち、パソコン32に取り込まれ、ここで、被測定物体21の複数の反射面の表面形状と膜厚分布を求めるための演算処理が行われる。
【0010】
いま、多波長レーザ光源10の波長を波長λ0から△λの間隔で(M−1)△λだけ増加させる。mを零からM−1までの整数とすると、各波長λmは次式で表現される。
λm=λ0+m△λ、m=0〜M−1 (1)
被測定物体21が2つの反射面A、Bを持ち、それぞれの面の反射率をa1、a2、光路差をL1、L2とし、ミラー22を圧電素子23によって振幅a、各周波数ωcで正弦波状に振動させると、多波長λmに対する各干渉信号S(t,m)は次式で表現される。

Figure 2004286689
さて、この時間的に変化する干渉信号は、CCDイメージセンサ30のフレームレート及びシャッター時間をミラー22の正弦波振動と同期させることによって、CCDイメージセンサ30の出力から得ることができる。A/D変換器31によってパソコン32に取り込まれる式(2)の干渉信号から、正弦波位相変調干渉法に基づく演算処理によって振幅Amと位相?mを求める。そして、被測定物体1の複数の反射面で反射された光によってCCDイメージセンサ検出面上に形成される検出光場D(m)を次式で求める。
D(m) =Amexp(jΦm) (4)
この検出光場D(m)を、光路差Lである被測定物体21の反射面付近に逆伝搬させることによって生じる光場U(m)を次式で求める。
U(m)= D(m)exp(−j2πL/λm) (5)
次に、式(5)の逆伝搬させた光場U(m)をすべての波長について足し合わせ、光路差Lにおける再生光場UR(L)を次式で求める。
【式(6)】
Figure 2004286689
式(5)の逆伝搬させた光場U(m)は、被測定物体21の反射面の位置では、すべてのmについて位相が零あるいはπとなるため、再生光場UR(L)の位相ΦRは零あるいはπである。また、再生光場強度IR= |UR(L)| 2は極大となる。従って、再生光場強度IRから被測定物体21の複数の反射面のおおまかな位置を求めることができ、再生光場の位相ΦRから被測定物体21の複数の反射面の正確な位置を求めることができる。
【0011】
3次元構造をもつ被測定物体21の奥行き方向は光路差Lで表現され、奥行き方向に垂直な平面は(X, Y)座標で示される。図2に、X=400μmの平面Y−Lにおいて実際に得られた再生光場強度IRの分布を濃淡表示で示す。被測定物体21はビニールシートである。図2の濃淡表示において白い部分は再生光場強度IRの値は大きく、被測定物体21の反射面が存在することを示している。図3に、図2のY=400μmの線上における再生光場強度IRを光路差Lに対して示す。被測定物体21の2つの反射面A、Bの位置を示す光路差L1とL2はそれぞれ、約220μm及び530μmであることが分かる。図3に示されているように、反射面Aの存在により、再生光場強度IRは反射面Aの位置で極大値を持ち、反射面Aの位置から離れるに従って値は小さくなるが、他の反射面Bの位置において、反射面Aの存在によって生じる再生光場強度IRがほぼ零とみなせる値になる場合には、他の反射面Bの位置においても再生光場強度IRは極大値を持つ。このように2つの反射面の位置を測定できるためには、2つの反射面A、Bの光路差L1、L2の差はLS=λ02/Bλ以上であることが必要である。但し、B?は多波長レーザ光源11の波長走査幅であり、Bλ=M△λとなる。図3では、λ0=787nm、Bλ=6nmであり、LS=103μmとなる。2つの反射面A、Bの光路差L1、L2の差がLS=λ02/Bλ以上である場合、再生光場の位相ΦRは反射面の位置で零あるいはπとなる。図4に、光路差L1とL2付近の再生光場の位相ΦRを光路差Lに対して5nm間隔で求めた結果を示す。被測定物体21の表面の反射面Aでは位相ΦRは零となり、裏面の反射面Bでは位相ΦRはπとなることから、光路差L1とL2を数nmの精度で正確に求めることができ、光路差L1とL2はそれぞれ、223.115μm及び530.035μmであることが分かる。
【0012】
尚、本発明は、本実施例に限られるものではなく、各構成要件の具体的構成は適宜設計し得るものである。
【0013】
【発明の効果】以上説明したように本発明によれば、再生光場の位相?Rを反射面の付近で正確に求めることにより、反射面の位置を数nmの精度で求めることができる。また、2次元CCDイメージセンサを用い、干渉信号を2次元平面で検出しているため、反射面の位置を2次元平面で求めることができる。すなわち、複数の反射面の2次元表面形状と膜厚分布を同時に測定することができる。
【0014】
【図面の簡単な説明】
【図1】本発明に係る複数の反射面の2次元表面形状および膜厚分布を測定するための装置の実施の形態を示す概略図である。
【図2】図2は測定物体21がビニールシートである場合に実際に得られたX=400μmの平面Y−Lにおける再生光場強度IRの濃淡表示図である。
【図3】図3は図2のY=400μmの線上における光路差Lに対する再生光場強度IRを示す図である。
【図4】図4は光路差L1とL2付近において5nm間隔の光路差Lに対する再生光場の位相ΦRを示す図である。
【符号の説明】
10…多波長レーザ光源(MWL)
20…ビームスプリッタ
21…被測定物体
22…ミラー
23…圧電素子
24…結像レンズ
30…2次元CCDイメージセンサ
31…A/D変換器
32…パソコン[0001]
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a measuring apparatus for simultaneously measuring the surface shape and thickness distribution of a multilayer film of an object to be measured with high accuracy using a multi-wavelength laser light source.
[0002]
2. Description of the Related Art There are two conventional film thickness measuring methods. One is a method of irradiating monochromatic light to an object to be measured while changing the incident angle, and measuring a change in intensity of light reflected from the object to be measured, thereby obtaining a film thickness. In this method, the measurement point is one point. Another method is a method of obtaining a film thickness by measuring a change in intensity of light reflected from an object to be measured while changing a wavelength of light to be applied to the object to be measured. In this method, the measurement points can be on a line. However, when performing surface measurement, it is necessary to scan the measurement points on the line. These two conventional methods can determine the film thickness distribution, but cannot determine the surface shape of the film.
Non-patent literature; (1) Sasaki, Surface shape measurement by phase modulation interferometry, optical technology contact, Vol. No8 (1999) p556 to p564
(2) Sasaki, Suzuki, Feedback Interferometer in Sinusoidal Modulation Interferometry, Optical Technology Contact, Vol. No. 8 (2001) References p501 to p509; JP-A-2002-107283
[0003]
SUMMARY OF THE INVENTION An object of the present invention is to provide an apparatus for measuring a two-dimensional film thickness distribution and a film surface shape with an accuracy of several nanometers without scanning a measurement point.
[0004]
According to a first aspect of the present invention, there is provided a method for simultaneously measuring a surface shape and a film thickness distribution of a multilayer film, comprising the steps of: After separating the light from the light source and reflecting it on the plurality of reflection surfaces and the reference surface of the measured object, an interference optical system that synthesizes and interferes, a sine wave vibration unit that vibrates the reference surface with a sine wave, Photoelectric conversion means for converting the interference light obtained by the interference optical system into an electrical interference signal, means for obtaining the amplitude and phase of the interference signal based on the interference signal, and the amplitude and the phase obtained for many wavelengths Calculating means for obtaining a multi-wavelength counter-propagating light field near the reflection surface of the object to be measured based on the phase; and Calculation means for determining the position of the reflecting surface It is characterized by having a.
[0005]
As shown in claim 2 of the present application, a light source that generates light whose wavelength changes at equal intervals, and light from the light source is separated and reflected by a plurality of reflecting surfaces and a reference surface of an object to be measured. It is characterized by including an interference optical system that forms an image of light using a lens and a pinhole, combines the light, and causes interference.
As set forth in claim 3 of the present application, there is provided a sine wave oscillating means for sine wave oscillating the reference surface, and a photoelectric conversion means for converting interference light obtained by the interference optical system into an electric interference signal. I have.
[0006]
Calculating means for obtaining the amplitude and phase of the interference signal based on the interference signal, and back-propagating the light field obtained from the obtained amplitude and phase to the vicinity of the reflection surface of the object to be measured. In this case, there is provided a calculating means for obtaining a counter-propagating light field near the reflection surface of the object to be measured.
As shown in claim 5 of the present application, a plurality of light intensity distributions of the reproduction light field near the reflection surface of the measured object obtained from the sum of the back-propagating light fields near the reflection surface of the measured object obtained for many wavelengths are obtained. The present invention is characterized in that there is provided a calculating means for obtaining a rough position of the reflection surface and obtaining accurate positions of the plurality of reflection surfaces from the phase distribution of the reproduction light field.
[0007]
DETAILED DESCRIPTION OF THE PREFERRED EMBODIMENTS Preferred embodiments of a method for simultaneously measuring a surface shape and a film thickness distribution of a multilayer film according to the present invention and an apparatus therefor will be described in detail with reference to the accompanying drawings.
[0008]
FIG. 1 is a schematic view showing an embodiment of an apparatus for simultaneously measuring the surface shape and the film thickness distribution of a multilayer film according to the present invention. As shown in FIG. 1, the apparatus includes a multi-wavelength laser light source (MWL) 10, a beam splitter 20, a mirror 22, an imaging lens 24, a pinhole 25, a two-dimensional CCD image sensor 30, It comprises a / D converter 31 and a personal computer 32. Reference numeral 23 denotes a piezoelectric element for causing the mirror 22 to vibrate in a sine wave, and reference numeral 21 denotes an object to be measured.
[0009]
The multi-wavelength laser light source (MWL) 10 generates laser light of many wavelengths at a constant wavelength interval in a time-series manner. The parallel light from the multi-wavelength laser light source 10 is split into two by the beam splitter 20, and one of the split lights is incident on a plurality of reflection surfaces of the measured object 21, where it is reflected and split by the other. The light enters the reflection surface (reference surface) of the mirror 22 and is reflected there. The light reflected by the plurality of reflection surfaces of the measured object 21 and the light reflected by the reflection surface of the mirror 22 are combined by the beam splitter 20. The lenses 24 form images of a plurality of reflection surfaces of the measured object 21 on the detection surface of the CCD image sensor 30. At this time, of the light reflected by the plurality of reflection surfaces of the measured object 21 due to the pinholes 25 placed on the focal plane of the lens 24, only the light reflected in a direction substantially perpendicular to the reflection surface is included. The selected light interferes with the light reflected on the reflection surface of the mirror 22 on the detection surface of the CCD image sensor 30. The intensity distribution due to the interference is converted by the CCD image sensor 30 into an electrical interference signal. The interference signal is converted into a digital signal by the A / D converter 31 and taken into the personal computer 32. Here, a calculation for obtaining the surface shape and the film thickness distribution of the plurality of reflection surfaces of the measured object 21 is performed. Processing is performed.
[0010]
Now, the wavelength of the multi-wavelength laser light source 10 is increased by (M−1) △ λ at an interval of △ λ from the wavelength λ0. Assuming that m is an integer from zero to M-1, each wavelength λm is represented by the following equation.
λm = λ0 + m △ λ, m = 0 to M−1 (1)
The measured object 21 has two reflecting surfaces A and B, the reflectances of the respective surfaces are a1 and a2, the optical path differences are L1 and L2, and the mirror 22 is a sine wave at the amplitude a by the piezoelectric element 23 and at each frequency ωc. , Each interference signal S (t, m) for multiple wavelengths λm is expressed by the following equation.
Figure 2004286689
The temporally changing interference signal can be obtained from the output of the CCD image sensor 30 by synchronizing the frame rate and the shutter time of the CCD image sensor 30 with the sine wave vibration of the mirror 22. From the interference signal of Expression (2) taken into the personal computer 32 by the A / D converter 31, the amplitude Am and the phase are calculated by a calculation process based on the sine wave phase modulation interferometry. Find m. Then, a detection light field D (m) formed on the detection surface of the CCD image sensor by the light reflected by the plurality of reflection surfaces of the measured object 1 is obtained by the following equation.
D (m) = Amexp (jΦm) (4)
An optical field U (m) generated by back-propagating the detected optical field D (m) to the vicinity of the reflection surface of the measured object 21 having the optical path difference L is determined by the following equation.
U (m) = D (m) exp (−j2πL / λm) (5)
Next, the back-propagated light field U (m) of equation (5) is added for all wavelengths, and the reproduced light field UR (L) at the optical path difference L is determined by the following equation.
[Equation (6)]
Figure 2004286689
In the back-propagating light field U (m) of the equation (5), the phase of all the m is zero or π at the position of the reflection surface of the measured object 21, so that the phase of the reproduction light field UR (L) is ΦR is zero or π. The reproduction light field intensity IR = | UR (L) | Therefore, the approximate positions of the plurality of reflection surfaces of the measured object 21 can be determined from the reproduced light field intensity IR, and the accurate positions of the plurality of reflection surfaces of the measured object 21 can be determined from the phase ΦR of the reproduced light field. Can be.
[0011]
The depth direction of the measured object 21 having a three-dimensional structure is represented by an optical path difference L, and a plane perpendicular to the depth direction is represented by (X, Y) coordinates. FIG. 2 shows in gray scale the distribution of the reproduction light field intensity IR actually obtained on the plane YL where X = 400 μm. The measured object 21 is a vinyl sheet. In the shaded display of FIG. 2, the white portion indicates that the value of the reproduction light field intensity IR is large, and that the reflection surface of the measured object 21 exists. FIG. 3 shows the reproduction light field intensity IR on the line of Y = 400 μm in FIG. It can be seen that the optical path differences L1 and L2 indicating the positions of the two reflecting surfaces A and B of the measured object 21 are about 220 μm and 530 μm, respectively. As shown in FIG. 3, due to the presence of the reflection surface A, the reproduction light field intensity IR has a maximum value at the position of the reflection surface A, and the value decreases as the distance from the position of the reflection surface A decreases. At the position of the reflection surface B, when the reproduction light field intensity IR caused by the presence of the reflection surface A has a value that can be regarded as substantially zero, the reproduction light field intensity IR has a maximum value at the other reflection surface B positions. . In order to be able to measure the positions of the two reflecting surfaces, the difference between the optical path differences L1 and L2 between the two reflecting surfaces A and B needs to be LS = λ02 / Bλ or more. However, B? Is the wavelength scanning width of the multi-wavelength laser light source 11, and Bλ = M △ λ. In FIG. 3, λ0 = 787 nm, Bλ = 6 nm, and LS = 103 μm. When the difference between the optical path differences L1 and L2 between the two reflecting surfaces A and B is LS = λ02 / Bλ or more, the phase ΦR of the reproduction light field becomes zero or π at the position of the reflecting surface. FIG. 4 shows the result of obtaining the phase ΦR of the reproduction light field near the optical path difference L1 and L2 at an interval of 5 nm with respect to the optical path difference L. Since the phase ΦR is zero on the reflection surface A on the surface of the measured object 21 and the phase ΦR is π on the reflection surface B on the back surface, the optical path differences L1 and L2 can be accurately obtained with an accuracy of several nm. It can be seen that the optical path differences L1 and L2 are 223.115 μm and 530.035 μm, respectively.
[0012]
It should be noted that the present invention is not limited to the present embodiment, and a specific configuration of each component can be appropriately designed.
[0013]
As described above, according to the present invention, the phase of the reproduction light field is changed. By accurately determining R near the reflective surface, the position of the reflective surface can be determined with an accuracy of several nm. Further, since the interference signal is detected on a two-dimensional plane using a two-dimensional CCD image sensor, the position of the reflection surface can be obtained on the two-dimensional plane. That is, the two-dimensional surface shape and the film thickness distribution of a plurality of reflection surfaces can be measured simultaneously.
[0014]
[Brief description of the drawings]
FIG. 1 is a schematic view showing an embodiment of an apparatus for measuring a two-dimensional surface shape and a film thickness distribution of a plurality of reflection surfaces according to the present invention.
FIG. 2 is a gray scale view of a reproduction light field intensity IR on a plane YL of X = 400 μm actually obtained when the measurement object 21 is a vinyl sheet.
FIG. 3 is a diagram showing a reproduction light field intensity IR with respect to an optical path difference L on a line of Y = 400 μm in FIG. 2;
FIG. 4 is a diagram showing a phase ΦR of a reproduction light field with respect to an optical path difference L at an interval of 5 nm near the optical path differences L1 and L2.
[Explanation of symbols]
10 Multi-wavelength laser light source (MWL)
Reference Signs List 20 beam splitter 21 object 22 mirror 23 piezoelectric element 24 imaging lens 30 two-dimensional CCD image sensor 31 A / D converter 32 personal computer

Claims (5)

波長が変化する光を発生する光源と、前記光源からの光を分離して被測定物体の複数の反射面及び参照面で反射させた後、合成して干渉させる干渉光学系と、前記参照面を正弦波振動させる正弦波振動手段と、前記干渉光学系によって得られる干渉光を電気的な干渉信号に変換する光電変換手段と、前記干渉信号に基づいて該干渉信号の振幅と位相を求める手段と、多くの波長について求めた前記の振幅及び位相に基づいて前記被測定物体の反射面上付近の多波長逆伝搬光場を求める演算手段と、前記被測定物体の反射面付近の多波長逆伝搬光場の強度分布と位相分布から複数の反射面の位置を決定する演算手段と、を備えることにより複数の反射面の位置を求める、多層膜の表面形状と膜厚分布の同時測定方法及びその装置。A light source that generates light whose wavelength changes, an interference optical system that separates light from the light source, reflects the light on a plurality of reflection surfaces and a reference surface of an object to be measured, and combines and interferes with each other; Sinusoidal vibration means for sinusoidally vibrating, photoelectric conversion means for converting the interference light obtained by the interference optical system into an electric interference signal, and means for determining the amplitude and phase of the interference signal based on the interference signal Calculating means for calculating a multi-wavelength counterpropagating light field near the reflection surface of the object to be measured based on the amplitude and phase obtained for many wavelengths; Calculating means for determining the positions of the plurality of reflecting surfaces from the intensity distribution and the phase distribution of the propagating light field, and determining the positions of the plurality of reflecting surfaces by providing the method for simultaneously measuring the surface shape and thickness distribution of the multilayer film; That device. 等間隔で波長が変化する光を発生する光源と、前記光源からの光を分離して被測定物体の複数の反射面及び参照面で反射させた後、各反射光をレンズとピンホールを用いて結像し、合成して干渉させる干渉光学系を備えたことにより複数の反射面の位置を求める、多層膜の表面形状と膜厚分布の同時測定方法及びその装置。A light source that generates light whose wavelength changes at equal intervals, and after separating the light from the light source and reflecting the reflected light on a plurality of reflection surfaces and reference surfaces of the measured object, using a lens and a pinhole for each reflected light Simultaneous measurement method and apparatus for measuring the surface shape and film thickness distribution of a multilayer film, wherein an interference optical system for forming an image, combining and interfering with each other is provided, and the positions of a plurality of reflection surfaces are obtained. 前記参照面を正弦波振動させる正弦波振動手段と、前記干渉光学系によって得られる干渉光を電気的な干渉信号に変換する光電変換手段を備えることにより複数の反射面の位置を求める、多層膜の表面形状と膜厚分布の同時測定方法及びその装置。A multi-layer film for determining the positions of a plurality of reflecting surfaces by including a sine wave oscillating means for sine wave oscillating the reference surface and a photoelectric conversion means for converting interference light obtained by the interference optical system into an electric interference signal Method and apparatus for simultaneous measurement of the surface shape and film thickness distribution of an object. 前記干渉信号に基づいて該干渉信号の振幅と位相を求める演算手段と、前記求めた振幅及び位相から求められる光場を前記被測定物体の反射面付近に逆伝搬させることによって被測定物体の反射面付近の逆伝搬光場を求める演算手段を備えることにより複数の反射面の位置を求める、多層膜の表面形状と膜厚分布の同時測定方法及びその装置。Calculating means for determining the amplitude and phase of the interference signal based on the interference signal; and reflecting the light field determined from the determined amplitude and phase back to the vicinity of the reflection surface of the measured object to reflect the reflected light of the measured object. A method and apparatus for simultaneously measuring the surface shape and film thickness distribution of a multilayer film, comprising calculating means for calculating a back-propagating light field near a surface, and calculating positions of a plurality of reflection surfaces. 多くの波長について求められた被測定物体の反射面付近の逆伝搬光場の総和から求められる前記被測定物体の反射面付近の再生光場の強度分布から複数の反射面のおおまかな位置を求め、再生光場の位相分布から複数の反射面の正確な位置を求める演算手段を備えることにより複数の反射面の位置を求める、多層膜の表面形状と膜厚分布の同時測定方法及びその装置。Approximate positions of a plurality of reflecting surfaces are determined from the intensity distribution of the reproduction light field near the reflecting surface of the measured object obtained from the sum of the back-propagating light fields near the reflecting surface of the measured object obtained for many wavelengths. A method and apparatus for simultaneously measuring the surface shape and film thickness distribution of a multilayer film, comprising calculating means for calculating the accurate positions of a plurality of reflecting surfaces from the phase distribution of a reproduction light field, thereby obtaining the positions of the plurality of reflecting surfaces.
JP2003081791A 2003-03-25 2003-03-25 Method and apparatus for simultaneous measurement of surface shape and film thickness distribution of multilayer film Expired - Fee Related JP3960427B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2003081791A JP3960427B2 (en) 2003-03-25 2003-03-25 Method and apparatus for simultaneous measurement of surface shape and film thickness distribution of multilayer film

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2003081791A JP3960427B2 (en) 2003-03-25 2003-03-25 Method and apparatus for simultaneous measurement of surface shape and film thickness distribution of multilayer film

Publications (2)

Publication Number Publication Date
JP2004286689A true JP2004286689A (en) 2004-10-14
JP3960427B2 JP3960427B2 (en) 2007-08-15

Family

ID=33295227

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2003081791A Expired - Fee Related JP3960427B2 (en) 2003-03-25 2003-03-25 Method and apparatus for simultaneous measurement of surface shape and film thickness distribution of multilayer film

Country Status (1)

Country Link
JP (1) JP3960427B2 (en)

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006189339A (en) * 2005-01-06 2006-07-20 Niigata Univ Thin film shape measuring method and thin film shape measuring instrument
CN102322997A (en) * 2011-05-31 2012-01-18 哈尔滨工业大学 Micro-impulse measuring method based on multi-beam laser heterodyne second harmonic method and torsion pendulum method
WO2012120699A1 (en) * 2011-03-09 2012-09-13 オムロン株式会社 Inspection apparatus and inspection method
TWI458960B (en) * 2012-03-20 2014-11-01 Univ Minghsin Sci & Tech White-light interference measuring device and interfere measuring method thereof
KR101594309B1 (en) * 2014-12-17 2016-02-16 주식회사 템퍼스 3D distance measuring system and 3D distance measuring method
KR101594314B1 (en) * 2014-12-02 2016-02-16 주식회사 템퍼스 3D distance measuring system and 3D distance measuring method

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102305682B (en) * 2011-05-31 2013-01-02 哈尔滨工业大学 Device and method for measuring micro impulse by torsional pendulum method for modulating multi-beam laser heterodyne by using doppler galvanometer sine

Cited By (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006189339A (en) * 2005-01-06 2006-07-20 Niigata Univ Thin film shape measuring method and thin film shape measuring instrument
JP4560622B2 (en) * 2005-01-06 2010-10-13 国立大学法人 新潟大学 Thin film shape measuring method and thin film shape measuring apparatus
WO2012120699A1 (en) * 2011-03-09 2012-09-13 オムロン株式会社 Inspection apparatus and inspection method
JP2012189348A (en) * 2011-03-09 2012-10-04 Omron Corp Inspection apparatus and inspection method
CN102322997A (en) * 2011-05-31 2012-01-18 哈尔滨工业大学 Micro-impulse measuring method based on multi-beam laser heterodyne second harmonic method and torsion pendulum method
CN102322997B (en) * 2011-05-31 2012-12-26 哈尔滨工业大学 Micro-impulse measuring method based on multi-beam laser heterodyne second harmonic method and torsion pendulum method
TWI458960B (en) * 2012-03-20 2014-11-01 Univ Minghsin Sci & Tech White-light interference measuring device and interfere measuring method thereof
KR101594314B1 (en) * 2014-12-02 2016-02-16 주식회사 템퍼스 3D distance measuring system and 3D distance measuring method
KR101594309B1 (en) * 2014-12-17 2016-02-16 주식회사 템퍼스 3D distance measuring system and 3D distance measuring method

Also Published As

Publication number Publication date
JP3960427B2 (en) 2007-08-15

Similar Documents

Publication Publication Date Title
CN109416346B (en) Defect inspection apparatus and method
US6885460B2 (en) Apparatus for and method of measuring surface shape of an object
JP3410051B2 (en) Shape measuring method and device
JP2004286689A (en) Simultaneous measuring method for profile and film thickness distribution for multilayer film, and device therefor
JP2008003597A (en) Scanning microscope for optically measuring an object
WO2006001712A2 (en) Non-destructive testing of materials
JP6014449B2 (en) Laser scanning microscope equipment
JP4843789B2 (en) Nanometer displacement measuring method and apparatus by laser speckle
JP4025878B2 (en) Apparatus for obtaining reproduced image of object, phase shift digital holographic displacement distribution measuring apparatus, and parameter identifying method
Wang et al. Investigation of membrane deformation by a fringe projection method
JP2993836B2 (en) Interferometer using coherence degree
JP2010139326A (en) Observation device and observation method
JP2007071817A (en) Two-light flux interferometer and method for measuring shape of object to be measured using interferometer
Li et al. Measurement of diameter of metal cylinders using a sinusoidally vibrating interference pattern
JP6501307B2 (en) Heterodyne interference device
JPH0726826B2 (en) Sharing interferometer device
JP2595050B2 (en) Small angle measuring device
JP4560622B2 (en) Thin film shape measuring method and thin film shape measuring apparatus
JP5239049B2 (en) Roughness measuring method and roughness measuring apparatus
JP2009079933A (en) Interferometer device for measuring large-sized sample
JPH07181005A (en) Multi-wavelength phase interference and interferometer
JP2010256192A (en) Shape measuring method and shape measuring device by phase shift method, complex amplitude measuring method, and complex amplitude measuring device
JP2003065709A (en) Method for analyzing interference fringe of transparent parallel flat plate
JPH07190737A (en) Shearing interference measuring method and shearing interferometer
JPH055610A (en) Measuring apparatus

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20060119

A871 Explanation of circumstances concerning accelerated examination

Free format text: JAPANESE INTERMEDIATE CODE: A871

Effective date: 20061121

A975 Report on accelerated examination

Free format text: JAPANESE INTERMEDIATE CODE: A971005

Effective date: 20061215

A131 Notification of reasons for refusal

Effective date: 20061226

Free format text: JAPANESE INTERMEDIATE CODE: A131

A521 Written amendment

Effective date: 20070116

Free format text: JAPANESE INTERMEDIATE CODE: A523

A131 Notification of reasons for refusal

Effective date: 20070221

Free format text: JAPANESE INTERMEDIATE CODE: A131

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20070411

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Effective date: 20070508

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20070509

R150 Certificate of patent (=grant) or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

LAPS Cancellation because of no payment of annual fees