JP2004286642A - Charge condition detection method for storage battery - Google Patents

Charge condition detection method for storage battery Download PDF

Info

Publication number
JP2004286642A
JP2004286642A JP2003080306A JP2003080306A JP2004286642A JP 2004286642 A JP2004286642 A JP 2004286642A JP 2003080306 A JP2003080306 A JP 2003080306A JP 2003080306 A JP2003080306 A JP 2003080306A JP 2004286642 A JP2004286642 A JP 2004286642A
Authority
JP
Japan
Prior art keywords
soc
storage battery
charge
region
detection method
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2003080306A
Other languages
Japanese (ja)
Other versions
JP4165268B2 (en
Inventor
Kazuhiro Sugie
一宏 杉江
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Panasonic Holdings Corp
Original Assignee
Matsushita Electric Industrial Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Matsushita Electric Industrial Co Ltd filed Critical Matsushita Electric Industrial Co Ltd
Priority to JP2003080306A priority Critical patent/JP4165268B2/en
Publication of JP2004286642A publication Critical patent/JP2004286642A/en
Application granted granted Critical
Publication of JP4165268B2 publication Critical patent/JP4165268B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Landscapes

  • Secondary Cells (AREA)
  • Electric Propulsion And Braking For Vehicles (AREA)
  • Tests Of Electric Status Of Batteries (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide an SOC (state of charge) detecting method reduced in a detection error within a relatively wide SOC range of 50%-95% for example, in an electric power supply system for controlling an SOC within the prescribed range, such as a storage battery for a hybrid vehicle. <P>SOLUTION: An SOC of the each storage battery is detected by switching to a proper method in response to an SOC value. The SOC is detected based on a relation of a charge voltage-a charge current in charge of the storage battery when the SOC is high to be near to an upper limit in a control area, and the SOC is detected based on a relation of a discharge voltage-a discharge current in the charge of the storage battery when the SOC is low to be close to a lower limit in the control area. A value of the discharge (charge) voltage-discharge current is preliminarily found the SOC by the SOC in the every storage battery, a data sequence thereof is stored in a memory or the like, and the SOC is found referring to a measured result of a voltage-current and the data sequence. <P>COPYRIGHT: (C)2005,JPO&NCIPI

Description

【0001】
【発明の属する技術分野】
本発明はハイブリッド自動車に用いられる電池のような充電状態(Stateof charge:以下、SOC)をある設定領域内で制御する電源システムにおけるSOCの検知方法に関するものである。
【0002】
【従来の技術】
エンジン動力とモータ動力を組み合わせたハイブリッド自動車において、モータ動力による走行アシスト時には内蔵された電池からモータに電力が供給される。また、車両を減速・停止させる際には車両の運動エネルギーを変換して得た電気エネルギーを電池に蓄積する、いわゆる回生充電を行うことによって、エネルギーを効率的に利用する。
【0003】
このような車両に用いられる電池は、アシスト走行時にモータに供給する電力を確保し、かつ回生充電を効率良く受け入れることが求められる。したがって、電池のSOCは満充電状態を100%とした場合に、例えば50%〜95%の部分充電状態に制御する。
【0004】
また、前記したようなハイブリッド自動車の他に太陽光発電や風力発電システムでは出力を平準化するための電池を有しているものがある。このようなシステムでは自然条件により発電量が変化するために、負荷に対しての発電量の過不足が発生する。そこで発電量が負荷に対して余剰がある場合には、この余剰電力を電池に蓄積し、発電量が負荷に対して不足する場合には、この不足電力を電池から補う。したがって、このような発電システムに併用される電池も、ハイブリッド自動車用の電池と同様、余剰電力を効率的に受入れ、かつ不足電力を補うために適切なSOC領域内で制御される。
【0005】
前記したようなシステムにおける電池のSOC制御はシステムの効率を高める上で重要であることから、電池のSOCを検知するための方法について検討が行われてきている。このSOCの検知方法として放電電気量と充電電気量とを連続してモニターすることにより、任意の時刻における電池のSOCを推定することができる。ところが、電池の充電効率のばらつき、さらには充電効率の経時変化によってSOCの推定誤差が大きくなる。
【0006】
一方、鉛蓄電池ではSOCとOCVとの間に相関が存在するので、鉛蓄電池の開路電圧(OCV)を基に蓄電池のSOCを推定することが知られている(例えば特許文献1参照)。
【0007】
ところが、ハイブリッド車両に用いられる鉛蓄電池では車両の運行状況に応じて充放電が短い時間間隔で切り替わり、電池が開路状態にある時間は制限されるため、頻繁にSOCを検知するには不都合であった。
【0008】
そこで充電時の充電電圧値や放電時の放電電圧値からSOCを推定する方法が検討されてきた。ところがハイブリッド車両用のようにSOCが50%〜95%といった比較的広い範囲内で制御を行う場合、SOCの推定誤差を低く抑えることは困難であった。
【0009】
【特許文献1】
特開2001−351698号公報
【0010】
【発明が解決しようとする課題】
本発明は、ハイブリッド車両用の蓄電池のような、SOCをある所定範囲内で制御する電源システムにおいて、例えば50%〜95%といった比較的広いSOC範囲内で、検知誤差の少ないSOC検知方法を提供するものである。
【0011】
【課題を解決するための手段】
前記した課題を解決するために、本発明の請求項1に係る発明は、蓄電池の充電状態(SOC)が所定のSOC領域内で制御される電源システムにおける前記SOCの検知方法であって、前記SOC領域の下限近傍に設定される第1のSOC領域と、前記SOC領域の上限近傍に設定され、かつ前記第1のSOC領域を含まない第2のSOC領域を設定し、前記SOCが前記第1のSOC領域内か前記第2のSOC領域内かを判定する判定ステップを有し、前記ステップにおいて前記SOCが前記第1のSOC領域内である場合には、前記SOCを第1のSOC検知方法によって検知するとともに、前記SOCが前記第2のSOC領域内である場合には、前記SOCを第2のSOC検知方法によって検知し、前記第1のSOC検知方法は前記蓄電池の放電電流(Id)と放電電圧(Vd)に基いて前記SOCを検知し、前記第2のSOC検知方法は前記蓄電池の充電電流(Ic)と充電電圧(Vc)に基いて前記SOCを検知することを特徴とする蓄電池の充電状態検知方法を示すものである。
【0012】
また、本発明の請求項2に係る発明は、請求項1の蓄電池の充電状態検知方法において、前記第1のSOC検知方法によって得たSOCに基いて前記判定ステップを行うことを特徴とするものである。
【0013】
そして、本発明の請求項3に係る発明は、請求項1の前記蓄電池の充電状態検知方法において、前記第2のSOC検知方法によって得たSOCに基いて前記判定ステップを行うことを特徴とするものである。
【0014】
【発明の実施の形態】
本発明の実施の形態による蓄電池の充電状態の検知方法を図面を用いて説明する。
【0015】
図1および図2は本発明の蓄電池の充電状態の検知方法を適用する電源システムにおける蓄電池の充電状態(以下、SOC)の推移の例を示す図である。SOCは上限であるSOC(UL)と下限であるSOC(LL)内に制御されている。例えばSOCを50〜95%の領域内で制御する場合、SOC(UL)は95%、SOC(LL)は50%である。
【0016】
そして本発明ではSOCの下限近傍に第1のSOC領域とSOCの上限近傍に第2のSOC領域を設定する。例えば図1に示したように、SOC(LL)より大であり、SOC(UL)未満であるSOC(LP)を設定し、SOC(LL)≦SOC≦SOC(LP)を第1のSOC領域、また、SOC(LP)以上であり、SOC(UL)以下であるSOC(UP)を設定し、SOC(UP)≦SOC≦SOC(UL)を第2のSOC領域とする。
【0017】
なお、図2に示したようにSOC(LP)=SOC(UP)となることを妨げないが、この場合SOC(LP)値、すなわち、SOC(UP)値がどちらのSOC領域に入れるかを予め定義しておく必要がある。本実施の形態においてはSOC(LP)=SOC(UP)とし、SOC(LL)≦SOC≦SOC(UP)を第1のSOC領域、SOC(UP)<SOC≦SOC(UL)を第2のSOC領域とした例について述べる。
【0018】
図3と図4は本発明の実施の形態による蓄電池の充電状態(SOC)検知方法のフローを示す図である。SOC検知のスタート(S1)後、蓄電池が放電状態にあるかどうかの判定を行う(S2)。蓄電池が放電状態でない場合には所定時間待機後、放電判定(S2)を行う。この放電判定(S2)は蓄電池に流れる電流を検知し、これが電流値の符号から判定することができる。
【0019】
蓄電池が放電状態にある場合、蓄電池の放電電流(Id)の測定(S3)と、放電電圧(Vd)の測定(S4)が行われる。次にここで得られたVdとIdとの値から蓄電池のSOCを求める。この放電時の電圧(Vd)−電流(Id)との関係から求めたSOCをSOC1とする(S5)。ここで蓄電池毎に予めSOC別にVd−Id値のデータ列を求めておき、このデータ列をメモリー等の記憶手段に記憶させておく。そしてVd値とId値の実測値からこのデータ列を参照してSOC1を求める。なお、ここでデータ列を蓄電池温度毎に求めておけば、より精度よくSOC1を測定することができる。なお、放電開始後にVdは変化するため、放電開始後のVdの測定タイミングを所定時間内に行うことが必要である。
【0020】
次にSOC1が下限近傍の第1のSOC領域内か、上限近傍の第2のSOC領域内かどうかを判定するステップ(S6)を行う。ここでSOC1が第1のSOC領域内、すなわち、SOC(LL)≦SOC1≦SOC(UP)内である場合(YES)、このSOC1の値を蓄電池のSOCとして出力する(S7)。SOC1が第1のSOC領域外、すなわち、第2のSOC領域内である場合には図4に示した充電判定を行うステップ(S8)に移行する。
【0021】
充電判定ステップ(S8)では蓄電池が充電中であるかどうかの判定を行う。蓄電池が放電中、あるいは充放電電流が0であり、実質上開路状態である場合には所定時間後に再び充電判定ステップ(S8)に移行する。
【0022】
充電判定ステップ(S8)で蓄電池が充電中である場合にはこのときの充電電流(Ic)と充電電圧(Vc)の測定がそれぞれステップ(S9)とステップ(S10)で行われる。そしてここで得られたVcとIcとの値から蓄電池のSOCを求め、SOC2とする(S11)。なお、VcおよびIcとSOCとの関係は用いる蓄電池毎に予め求めたデータ列をメモリー等の記憶手段に保存しておき、VcとIcの測定後、これらのデータ列を参照してSOC2を逆算する。なお、ここでデータ列を蓄電池温度毎に求めておけば、より精度よくSOC2を測定することができる。ここで求めたSOC2を蓄電池のSOCとして出力する(S12)。
【0023】
本発明ではSOCの値によってSOCの測定方法を変えるものである。SOCが80%程度以下の領域では放電時の電流(Id)と電圧(Vd)の関係からSOCを求める方法が充電時の電流(Ic)と電圧(Vc)の関係からSOCを求める方法に比較して精度良くSOCが検知できる。またSOCが95%といった上限に近いところでは充電時の電流(Ic)と電圧(Vc)の関係からSOCを求める方法が放電時の電流(Id)と電圧(Vd)をより精度よく求めることが可能である。
【0024】
本発明では蓄電池のSOCがどのSOC領域にあるのかを検知し、そのSOC領域に適したSOC検知方法を選択することにより、SOCの測定精度を高めることができる。なお、本実施形態では図2に示したように、SOC(UP)=SOC(LP)とすることによって第1のSOC領域と第2のSOC領域が接するよう、設定したが、図1に示したように、SOC(UP)>SOC(LP)とし、第1のSOC領域と第2のSOC領域の間にどちらにも属さない、第3のSOC領域を設けることも可能である。この第3の領域で第1のSOC領域と同様の放電電圧と放電電流に基づく方法を採用した場合には、前記した本発明の実施形態と実質上、同じとなる。また、放電電圧と放電電流によって求めたSOC(SOC1)と充電電圧と充電電圧によって求めたSOC(SOC2)との平均値を採用することもできる。
【0025】
なお、本発明では蓄電池の電流−電圧の関係からSOCを求めるため、これらの関係に比較的強い相関関係がある蓄電池、例えば鉛蓄電池やリチウム2次電池に適用すれば、SOCの検知精度をより高めることができる。
【0026】
【発明の効果】
以上、説明してきたように、本発明による蓄電池の充電状態(SOC)の検知方法によれば、例えば50%〜95%といった比較的広いSOC領域で精度よくSOCを検知でき、ひいてはSOC制御を必要とする電源システムの制御精度を高めることができることから、工業上、極めて有用である。
【図面の簡単な説明】
【図1】蓄電池のSOC推移を示す図
【図2】蓄電池のSOC推移を示す図
【図3】本発明の実施の形態による充電状態検知方法のフローの一部を示す図
【図4】本発明の実施の形態による充電状態検知方法のフローの一部を示す図
[0001]
TECHNICAL FIELD OF THE INVENTION
The present invention relates to an SOC detection method in a power supply system that controls a state of charge (hereinafter, SOC) such as a battery used in a hybrid vehicle within a certain setting region.
[0002]
[Prior art]
In a hybrid vehicle that combines engine power and motor power, electric power is supplied to the motor from a built-in battery at the time of running assistance using motor power. Further, when the vehicle is decelerated and stopped, the energy is efficiently used by performing so-called regenerative charging in which electric energy obtained by converting kinetic energy of the vehicle is stored in a battery.
[0003]
A battery used in such a vehicle is required to secure electric power to be supplied to a motor during assist traveling and to efficiently accept regenerative charging. Therefore, the SOC of the battery is controlled to a partial charge state of, for example, 50% to 95% when the full charge state is 100%.
[0004]
In addition to the above-mentioned hybrid vehicles, some solar power generation systems and wind power generation systems have a battery for leveling the output. In such a system, since the amount of power generation changes due to natural conditions, excess or deficiency of the power generation with respect to the load occurs. Therefore, when the amount of power generation has a surplus with respect to the load, the surplus power is stored in the battery, and when the amount of power generation is insufficient with respect to the load, the insufficient power is supplemented from the battery. Therefore, the battery used in such a power generation system is also controlled in an appropriate SOC range in order to efficiently receive surplus power and compensate for the shortage of power, similarly to the battery for a hybrid vehicle.
[0005]
Since the SOC control of the battery in the above-described system is important for enhancing the efficiency of the system, a method for detecting the SOC of the battery has been studied. By continuously monitoring the amount of discharged electricity and the amount of charged electricity as a method of detecting the SOC, the SOC of the battery at an arbitrary time can be estimated. However, the estimation error of the SOC increases due to the variation in the charging efficiency of the battery and the change over time in the charging efficiency.
[0006]
On the other hand, since there is a correlation between the SOC and the OCV in the lead storage battery, it is known to estimate the SOC of the storage battery based on the open circuit voltage (OCV) of the lead storage battery (for example, see Patent Document 1).
[0007]
However, in a lead-acid battery used in a hybrid vehicle, charging and discharging are switched at short time intervals according to the operating condition of the vehicle, and the time during which the battery is open is limited, which is inconvenient for frequent SOC detection. Was.
[0008]
Therefore, a method of estimating the SOC from a charging voltage value during charging or a discharging voltage value during discharging has been studied. However, when the control is performed within a relatively wide range of 50% to 95% SOC as in the case of a hybrid vehicle, it has been difficult to keep the estimation error of the SOC low.
[0009]
[Patent Document 1]
JP 2001-351698 A
[Problems to be solved by the invention]
The present invention provides an SOC detection method with a small detection error within a relatively wide SOC range of, for example, 50% to 95% in a power supply system such as a storage battery for a hybrid vehicle that controls the SOC within a predetermined range. Is what you do.
[0011]
[Means for Solving the Problems]
In order to solve the above-mentioned problem, an invention according to claim 1 of the present invention is a method for detecting the SOC in a power supply system in which a state of charge (SOC) of a storage battery is controlled within a predetermined SOC region. A first SOC region set near the lower limit of the SOC region; and a second SOC region set near the upper limit of the SOC region and not including the first SOC region. A step of determining whether the SOC is within the first SOC region or not in the first SOC region. And when the SOC is within the second SOC region, the SOC is detected by a second SOC detection method, and the first SOC detection method is the first SOC detection method. The SOC is detected based on a discharge current (Id) and a discharge voltage (Vd) of the battery, and the second SOC detection method detects the SOC based on a charge current (Ic) and a charge voltage (Vc) of the storage battery. This shows a method of detecting the state of charge of a storage battery, which is characterized by detecting.
[0012]
According to a second aspect of the present invention, in the method for detecting a state of charge of a storage battery according to the first aspect, the determination step is performed based on the SOC obtained by the first SOC detection method. It is.
[0013]
According to a third aspect of the present invention, in the method for detecting the state of charge of the storage battery according to the first aspect, the determination step is performed based on the SOC obtained by the second SOC detection method. Things.
[0014]
BEST MODE FOR CARRYING OUT THE INVENTION
A method for detecting a state of charge of a storage battery according to an embodiment of the present invention will be described with reference to the drawings.
[0015]
1 and 2 are diagrams showing an example of transition of the state of charge (hereinafter referred to as SOC) of a storage battery in a power supply system to which the method for detecting the state of charge of a storage battery according to the present invention is applied. The SOC is controlled within the upper limit SOC (UL) and the lower limit SOC (LL). For example, when the SOC is controlled within the range of 50 to 95%, the SOC (UL) is 95% and the SOC (LL) is 50%.
[0016]
In the present invention, the first SOC region is set near the lower limit of the SOC, and the second SOC region is set near the upper limit of the SOC. For example, as shown in FIG. 1, SOC (LP) which is larger than SOC (LL) and smaller than SOC (UL) is set, and SOC (LL) ≦ SOC ≦ SOC (LP) is set to the first SOC region. Also, SOC (UP) which is equal to or more than SOC (LP) and equal to or less than SOC (UL) is set, and SOC (UP) ≦ SOC ≦ SOC (UL) is set as a second SOC region.
[0017]
Although it does not prevent SOC (LP) = SOC (UP) as shown in FIG. 2, in this case, the SOC (LP) value, that is, which SOC area the SOC (UP) value falls in is determined. It must be defined in advance. In the present embodiment, SOC (LP) = SOC (UP), SOC (LL) ≦ SOC ≦ SOC (UP) is in the first SOC region, and SOC (UP) <SOC ≦ SOC (UL) is in the second SOC region. An example in which the SOC region is set will be described.
[0018]
3 and 4 are diagrams showing a flow of a method of detecting a state of charge (SOC) of a storage battery according to an embodiment of the present invention. After the start of the SOC detection (S1), it is determined whether the storage battery is in a discharged state (S2). If the storage battery is not in the discharge state, the discharge determination (S2) is performed after waiting for a predetermined time. This discharge determination (S2) detects the current flowing through the storage battery, and this can be determined from the sign of the current value.
[0019]
When the storage battery is in the discharging state, measurement of the discharge current (Id) of the storage battery (S3) and measurement of the discharge voltage (Vd) (S4) are performed. Next, the SOC of the storage battery is determined from the values of Vd and Id obtained here. The SOC obtained from the relationship between the voltage (Vd) and the current (Id) at the time of this discharge is defined as SOC1 (S5). Here, a data string of the Vd-Id value is obtained for each storage battery in advance for each SOC, and this data string is stored in a storage unit such as a memory. Then, SOC1 is obtained by referring to this data string from the actually measured values of the Vd value and the Id value. Here, if the data string is obtained for each storage battery temperature, SOC1 can be measured more accurately. Since Vd changes after the start of discharge, the measurement timing of Vd after the start of discharge needs to be performed within a predetermined time.
[0020]
Next, a step (S6) of determining whether SOC1 is in the first SOC region near the lower limit or in the second SOC region near the upper limit is performed. If SOC1 is within the first SOC region, that is, SOC (LL) ≦ SOC ≦ SOC (UP) (YES), the value of SOC1 is output as the SOC of the storage battery (S7). When SOC1 is outside the first SOC region, that is, inside the second SOC region, the process proceeds to the step (S8) of performing the charge determination shown in FIG.
[0021]
In the charging determination step (S8), it is determined whether or not the storage battery is being charged. If the storage battery is discharging or the charging / discharging current is 0 and the circuit is substantially in an open state, the process returns to the charging determination step (S8) after a predetermined time.
[0022]
If the storage battery is being charged in the charging determination step (S8), the charging current (Ic) and the charging voltage (Vc) at this time are measured in steps (S9) and (S10), respectively. Then, the SOC of the storage battery is obtained from the obtained values of Vc and Ic, and is set as SOC2 (S11). The relationship between Vc and Ic and the SOC is stored in a storage means such as a memory in advance for each storage battery used, and after measuring Vc and Ic, the SOC2 is back-calculated with reference to these data sequences. I do. Here, if a data string is obtained for each storage battery temperature, SOC2 can be measured more accurately. The obtained SOC2 is output as the SOC of the storage battery (S12).
[0023]
In the present invention, the SOC measurement method is changed depending on the SOC value. In the region where the SOC is about 80% or less, the method of calculating the SOC from the relationship between the current (Id) and the voltage (Vd) during discharging is compared with the method of calculating the SOC from the relationship between the current (Ic) and the voltage (Vc) during charging. Thus, the SOC can be accurately detected. Further, when the SOC is close to the upper limit of 95%, the method of obtaining the SOC from the relationship between the current (Ic) and the voltage (Vc) during charging requires that the current (Id) and the voltage (Vd) during discharging be obtained more accurately. It is possible.
[0024]
According to the present invention, the SOC measurement accuracy can be improved by detecting which SOC region the SOC of the storage battery is in and selecting an SOC detection method suitable for the SOC region. In this embodiment, as shown in FIG. 2, SOC (UP) = SOC (LP) is set so that the first SOC region and the second SOC region are in contact with each other. As described above, SOC (UP)> SOC (LP), and it is also possible to provide a third SOC region which does not belong to either of the first SOC region and the second SOC region. When a method based on a discharge voltage and a discharge current similar to that of the first SOC region is employed in the third region, it is substantially the same as the above-described embodiment of the present invention. Alternatively, an average value of the SOC (SOC1) obtained from the discharge voltage and the discharge current and the SOC (SOC2) obtained from the charge voltage and the charge voltage can be used.
[0025]
In the present invention, since the SOC is obtained from the current-voltage relationship of the storage battery, if the present invention is applied to a storage battery having a relatively strong correlation between these relationships, for example, a lead storage battery or a lithium secondary battery, the detection accuracy of the SOC can be improved. Can be enhanced.
[0026]
【The invention's effect】
As described above, according to the method of detecting the state of charge (SOC) of a storage battery according to the present invention, the SOC can be accurately detected in a relatively wide SOC range of, for example, 50% to 95%, and the SOC control is required. It is extremely useful industrially because the control accuracy of the power supply system can be improved.
[Brief description of the drawings]
FIG. 1 is a diagram showing an SOC transition of a storage battery; FIG. 2 is a diagram showing an SOC transition of a storage battery; FIG. 3 is a diagram showing a part of a flow of a state-of-charge detection method according to an embodiment of the present invention; The figure which shows a part of flow of the state-of-charge detection method by the embodiment of the invention.

Claims (3)

蓄電池の充電状態(SOC)が所定のSOC領域内で制御される電源システムにおける前記充電状態の検知方法であって、
前記SOC領域の下限近傍に設定される第1のSOC領域と、
前記SOC領域の上限近傍に設定され、かつ前記第1のSOC領域を含まない第2のSOC領域を設定し、
前記SOCが前記第1のSOC領域内か前記第2のSOC領域内かを判定する判定ステップを有し、
前記ステップにおいて前記SOCが前記第1のSOC領域内である場合には、前記SOCを第1のSOC検知方法によって検知するとともに、
前記SOCが前記第2のSOC領域内である場合には、前記SOCを第2のSOC検知方法によって検知し、
前記第1のSOC検知方法は前記蓄電池の放電電流(Id)と放電電圧(Vd)に基いて前記SOCを検知し、
前記第2のSOC検知方法は前記蓄電池の充電電流(Ic)と充電電圧(Vc)に基いて前記SOCを検知することを特徴とする蓄電池の充電状態検知方法。
A method of detecting a state of charge in a power supply system in which a state of charge (SOC) of a storage battery is controlled within a predetermined SOC region,
A first SOC region set near a lower limit of the SOC region;
Setting a second SOC region that is set near the upper limit of the SOC region and that does not include the first SOC region;
A determining step of determining whether the SOC is within the first SOC region or the second SOC region;
When the SOC is within the first SOC region in the step, the SOC is detected by a first SOC detection method,
When the SOC is within the second SOC region, the SOC is detected by a second SOC detection method,
The first SOC detection method detects the SOC based on a discharge current (Id) and a discharge voltage (Vd) of the storage battery,
The second SOC detection method is a method of detecting a state of charge of a storage battery, wherein the SOC is detected based on a charging current (Ic) and a charging voltage (Vc) of the storage battery.
前記第1のSOC検知方法によって得たSOCに基いて前記判定ステップを行うことを特徴とする請求項1に記載の充電状態検知方法。The charging state detection method according to claim 1, wherein the determination step is performed based on the SOC obtained by the first SOC detection method. 前記第2のSOC検知方法によって得たSOCに基いて前記判定ステップを行うことを特徴とする請求項1に記載の充電状態検知方法。The charging state detection method according to claim 1, wherein the determination step is performed based on the SOC obtained by the second SOC detection method.
JP2003080306A 2003-03-24 2003-03-24 Battery charge state detection method Expired - Fee Related JP4165268B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2003080306A JP4165268B2 (en) 2003-03-24 2003-03-24 Battery charge state detection method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2003080306A JP4165268B2 (en) 2003-03-24 2003-03-24 Battery charge state detection method

Publications (2)

Publication Number Publication Date
JP2004286642A true JP2004286642A (en) 2004-10-14
JP4165268B2 JP4165268B2 (en) 2008-10-15

Family

ID=33294202

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2003080306A Expired - Fee Related JP4165268B2 (en) 2003-03-24 2003-03-24 Battery charge state detection method

Country Status (1)

Country Link
JP (1) JP4165268B2 (en)

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007050833A (en) * 2005-08-19 2007-03-01 Toyota Motor Corp Battery state estimation device for vehicle
US7345452B2 (en) 2004-12-21 2008-03-18 Hyundai Motor Company Method of calculating SOC of battery for prevention of memory effect
JP2010019845A (en) * 2008-07-10 2010-01-28 Commissariat A L'energie Atomique Determination method of state of charge of battery in charging or discharging phase at constant current
WO2011039912A1 (en) 2009-09-30 2011-04-07 新神戸電機株式会社 Storage battery device, storage battery state of charge evaluation device and method
JP2012064426A (en) * 2010-09-16 2012-03-29 Sony Corp Battery pack and inspection method for secondary battery storage state therein
US10120032B2 (en) 2012-03-13 2018-11-06 Primearth Ev Energy Co., Ltd. Device and method for estimating secondary cell status
CN116500475A (en) * 2023-04-28 2023-07-28 江苏果下科技有限公司 Energy storage acquisition method and system with real-time SOC correction compensation

Cited By (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7345452B2 (en) 2004-12-21 2008-03-18 Hyundai Motor Company Method of calculating SOC of battery for prevention of memory effect
JP4577151B2 (en) * 2005-08-19 2010-11-10 トヨタ自動車株式会社 Vehicle battery state estimation device
JP2007050833A (en) * 2005-08-19 2007-03-01 Toyota Motor Corp Battery state estimation device for vehicle
JP2010019845A (en) * 2008-07-10 2010-01-28 Commissariat A L'energie Atomique Determination method of state of charge of battery in charging or discharging phase at constant current
US10209313B2 (en) 2009-09-30 2019-02-19 Hitachi Chemical Company, Ltd. Accumulator device, and state of charge evaluation apparatus and method for accumulator
WO2011039912A1 (en) 2009-09-30 2011-04-07 新神戸電機株式会社 Storage battery device, storage battery state of charge evaluation device and method
CN102124360A (en) * 2009-09-30 2011-07-13 新神户电机株式会社 Storage battery device, storage battery state of charge evaluation device and method
EP2490034A1 (en) * 2009-09-30 2012-08-22 Shin-Kobe Electric Machinery Co., Ltd. Storage battery device, storage battery state of charge evaluation device and method
EP2490034A4 (en) * 2009-09-30 2013-05-01 Shin Kobe Electric Machinery Storage battery device, storage battery state of charge evaluation device and method
JP2012064426A (en) * 2010-09-16 2012-03-29 Sony Corp Battery pack and inspection method for secondary battery storage state therein
US10120032B2 (en) 2012-03-13 2018-11-06 Primearth Ev Energy Co., Ltd. Device and method for estimating secondary cell status
CN116500475A (en) * 2023-04-28 2023-07-28 江苏果下科技有限公司 Energy storage acquisition method and system with real-time SOC correction compensation
CN116500475B (en) * 2023-04-28 2023-11-10 江苏果下科技有限公司 Energy storage acquisition method and system with real-time SOC correction compensation

Also Published As

Publication number Publication date
JP4165268B2 (en) 2008-10-15

Similar Documents

Publication Publication Date Title
EP3664247B1 (en) Charging time computation method and charge control device
JP3878150B2 (en) Charge state algorithm for lead acid battery in hybrid electric vehicle
JP3571026B2 (en) Pseudo-adaptive method and system for determining state of charge of battery
US6356083B1 (en) State of charge algorithm for a battery
US7355411B2 (en) Method and apparatus for estimating state of charge of secondary battery
JP4157317B2 (en) Status detection device and various devices using the same
EP1265335B1 (en) Method and apparatus for controlling residual battery capacity of secondary battery
US9475480B2 (en) Battery charge/discharge control device and hybrid vehicle using the same
US8655524B2 (en) Power supply system, vehicle provided with the same and control method of power supply system
US6700383B2 (en) Method of detecting and resolving memory effect
JP5862836B2 (en) Battery system
JP6668905B2 (en) Battery deterioration estimation device
US8054046B2 (en) Fast search algorithm for finding initial diffusion voltage in electro-chemical systems
JP2000166109A (en) Charged state detecting device for battery
JP2009042176A (en) Electromotive vehicle
JP2014126411A (en) Secondary battery state estimation device and control device
JP6672743B2 (en) Full charge capacity calculation device, computer program, and full charge capacity calculation method
JP2004056937A (en) Electricity accumulation system
CN102713653A (en) Secondary battery charging reception limit detecting method and device using same
JP2009210478A (en) Estimation method for chargeable/dischargeable power of battery
JPH08503307A (en) How to estimate the residual charge of a storage battery
JP2014202630A (en) Battery system
JP2003243042A (en) Detecting method and device for degree of deterioration of lithium battery as component of package battery
JP4165268B2 (en) Battery charge state detection method
JP2004022322A (en) Remaining capacity estimation apparatus and remaining capacity estimation method of secondary battery

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20051202

RD01 Notification of change of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7421

Effective date: 20060112

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20080528

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20080708

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20080721

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110808

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110808

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120808

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130808

Year of fee payment: 5

LAPS Cancellation because of no payment of annual fees