JP2004286461A - Underground detection method and system - Google Patents

Underground detection method and system Download PDF

Info

Publication number
JP2004286461A
JP2004286461A JP2003075573A JP2003075573A JP2004286461A JP 2004286461 A JP2004286461 A JP 2004286461A JP 2003075573 A JP2003075573 A JP 2003075573A JP 2003075573 A JP2003075573 A JP 2003075573A JP 2004286461 A JP2004286461 A JP 2004286461A
Authority
JP
Japan
Prior art keywords
underground
signal
radar
ground
receiving
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2003075573A
Other languages
Japanese (ja)
Other versions
JP4166600B2 (en
Inventor
Toshifumi Moriyama
敏文 森山
Atsushi Kanayama
敦司 金山
Masato Miyoshi
壮人 三好
Junji Masuda
順二 増田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Fujitsu Ltd
Original Assignee
Fujitsu Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Fujitsu Ltd filed Critical Fujitsu Ltd
Priority to JP2003075573A priority Critical patent/JP4166600B2/en
Publication of JP2004286461A publication Critical patent/JP2004286461A/en
Application granted granted Critical
Publication of JP4166600B2 publication Critical patent/JP4166600B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F41WEAPONS
    • F41HARMOUR; ARMOURED TURRETS; ARMOURED OR ARMED VEHICLES; MEANS OF ATTACK OR DEFENCE, e.g. CAMOUFLAGE, IN GENERAL
    • F41H11/00Defence installations; Defence devices
    • F41H11/12Means for clearing land minefields; Systems specially adapted for detection of landmines
    • F41H11/13Systems specially adapted for detection of landmines
    • F41H11/136Magnetic, electromagnetic, acoustic or radiation systems, e.g. ground penetrating radars or metal-detectors

Landscapes

  • Physics & Mathematics (AREA)
  • Acoustics & Sound (AREA)
  • Electromagnetism (AREA)
  • Engineering & Computer Science (AREA)
  • General Engineering & Computer Science (AREA)
  • Geophysics And Detection Of Objects (AREA)
  • Radar Systems Or Details Thereof (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To safely and reliably detect metal objects such as land mines laid underground in a wide range in a short time. <P>SOLUTION: In this underground detection method, a radar signal transmitting means 10 and a receiving means 20 are arranged at locations in such a way as to approximately form the Brewster angle θ<SB>B</SB>at a target point on the ground. Reflected waves Er from the ground of polarized waves Ei in parallel with a plane of incidence transmitted from the transmitting means 10 toward the target point are received by the receiving means 20. On the basis of the excess of the amplitude of a reception signal of the receiving means 20 over a prescribed value, an underground target object is detected. <P>COPYRIGHT: (C)2005,JPO&NCIPI

Description

【0001】
【発明の属する技術分野】
本発明は地中探知方法及び装置に関し、更に詳しくは、広範囲の地中に埋設された金属物(地雷等)の探知に適用して好適なるバイスタティック方式の地中探知方法及び装置に関する。
【0002】
【従来の技術】
従来、地中に埋設された金属物を検出する方法としては、レーダ波を利用すると共に、地表に送受信アンテナを近づけ、電波エコーの戻ってくる時間や信号強度から調べる方法が知られている。また、地中を探査する形態としては、人が金属探知装置を携帯して探査する方法や、車両に金属探知装置を搭載して探査することが行われる。
【0003】
係る状況の下、従来は、入射角θiで路面に入射する垂直偏波(入射面に平行な偏波)の反射がブリュースター角を境にして逆位相になることを利用し、路面による反射と地中のレーンマーカ(Al金属)による反射とを区別するものが知られている(特許文献1)。以下、これを具体的に説明する。
【0004】
図9は従来技術を説明する図で、図9(A)に大地の断面図を示す。図において、今、路面(土壌)の比誘電率=ε(例えば5)とすると、入射面に平行な垂直偏波Eiが入射角θi(=反射角θr)で入射するときの路面の反射率Γは(1)式で与えられる。
【0005】
【数1】

Figure 2004286461
【0006】
ブリュースター角θは、反射率Γ=0となる時の入射角と定義され、(2)式で与えられる。
【0007】
【数2】
Figure 2004286461
【0008】
図9(B)に入射角θiに対する反射率Γのグラフ図を示す。今、路面の比誘電率ε=5とすると、反射率Γの符号はブリュースター角θ=66°を境にして、図示の如く正から負に変化する。一方、地中のレーンマーカ(金属)の反射率Γはブリュースター角とは関係なく常にΓ=−1である。
【0009】
特許文献1では、この性質を利用し、円偏波の入射角θiをブリュースター角θよりも小さくなるように維持すると共に、路面中にレーンマーカが埋設されていない場所では反射波の旋回方向(位相)が反転せず、また路面中にレーンマーカ(金属)が埋設されている場所では反射波の旋回方向(位相)が反転することにより、路面の反射と区別して地中のレーンマーカを検出できる、とするものである。
【0010】
【特許文献1】
特開平10−103964号公報(段落「0016」、図1,図3)。
【0011】
【発明が解決しようとする課題】
しかし、上記特許文献1の金属探知方式によると、レーンマーカ(金属)が埋設されている場所では、路面からの正位相の反射波)とレーンマーカからの負位相の反射波とが合波されるため、路面の状況(湿潤/乾燥等)や両干渉波の位相差によっては受信波の振幅が小さくなり、レーンマーカの検出に悪影響を与える問題がある。
【0012】
本発明は上記従来技術の問題点に鑑みなされたもので、その目的とする所は、広範囲の地中に埋設された地雷等の金属物を短時間で安全・確実に探知可能な地中探知方法及び装置を提供することにある。
【0013】
【課題を解決するための手段】
上記の課題は例えば図1の構成により解決される。即ち、本発明(1)の地中探知方法は、レーダ信号の送信手段10及び受信手段20を大地の目標点に関して互いに略ブリュースター角θとなる位置に配置し、前記送信手段10から目標点に向けて送信した入射面に平行な偏波Eiについての大地からの反射波Erを前記受信手段20で受信すると共に、該受信手段20による受信信号の振幅が所定以上であることにより地中の目標物を探知するものである。
【0014】
図において、今、送信手段10より入射面に平行なレーダ波Eiを大地の状態(比誘電率ε)に応じたブリュースター角θで目標点に入射すると、該レーダ波Eiは地中(Et)の側に全透過するため、地中に金属が無い場所では受信手段20の側に向かう反射波は生じないが、地中に金属100がある場所では、該金属100による反射波Erが受信手段20で検出される。この関係は、大地の状態(比誘電率ε)に応じたブリュースター角θが維持される限りは成り立つため、よって大地の状態によらず金属の有無を確実に判定可能となる。
【0015】
本発明(2)の地中探知装置は、レーダ信号の送信手段及び受信手段を大地の目標点に関して互いに略ブリュースター角となる位置に配置し、前記送信手段から目標点に向けて送信した入射面に平行な偏波についての大地からの反射波を前記受信手段で受信すると共に、該受信手段による受信信号の振幅が所定以上であることにより地中の目標物を探知する信号処理手段を備えるものである。
【0016】
本発明(3)では、上記本発明(2)において、送信手段はパルス圧縮可能なレーダパルスを入射面と平行な方向にスキャンして送信すると供に、受信手段は前記送信手段に同期してパルス圧縮処理を行い、各受信パルスの信号振幅を時系列に検出し、信号処理手段は該検出された各信号振幅を時系列に比較することにより、入射面に平行な方向の地中探知を行うものである。
【0017】
本発明(3)によれば、パルス圧縮可能なレーダパルスを入射面と平行な方向にスキャンして送信すると共に、その各反射波をパルス圧縮し、時系列に検出することにより、目標点を中心とする入射面に平行な方向の所定領域を細分割して効率よく探知できる。また、検出された各信号振幅を時系列に比較することにより、金属が埋設されているか否かの状態を的確に検出できる。
【0018】
本発明(4)では、上記本発明(2)又は(3)において、送信手段及び受信手段を入射面と垂直な方向に移動させつつ、信号処理手段は受信手段による受信信号を周波数分割して周波数毎の各受信信号振幅を時系列に比較することにより、入射面に垂直な方向の地中探知を行うものである。
【0019】
本発明(4)によれば、送信手段及び受信手段を入射面と垂直な方向に移動させることで、目標点を中心とする入射面に垂直な方向の所定領域に照射されたレーダ波は±fdのドプラシフトを受ける。この状態で、信号処理手段は受信信号を周波数分割して周波数毎の各受信信号振幅を時系列に比較することにより、目標点を中心とする入射面に垂直な方向の所定領域を細分割して効率よく探知できる。
【0020】
本発明(5)では、上記本発明(2)において、送信手段及び又は受信手段は大地と垂直な方向に分散配置された複数のアンテナと、各アンテナの送信/受信信号を選択する選択手段とを備えるものである。
【0021】
本発明(5)によれば、大地と垂直な方向に複数のアンテナを分散配置し、必要に応じてこれらを切り替えることにより、大地の状況(比誘電率)が多少変化しても、送信手段及び又は受信手段を移動させるまでも無く、アンテナの選択を変えるだけで、的確な地中探査を行える。
【0022】
【発明の実施の形態】
以下、添付図面に従って本発明に好適なる複数の実施の形態を詳細に説明する。なお 、全図を通して同一符号は同一又は相当部分を示すものとする。
【0023】
図2は実施の形態によるバイスタティック地中探査装置のブロック図で、図において、10はパルス圧縮可能なレーダ信号を送信する送信ユニット、20は大地(地中)で反射したレーダ信号を受信しパルス圧縮を行う受信ユニット、30は該受信されたレーダ信号を解析処理して地中の目標物(地雷100等)を検出する信号処理ユニット、40は該検出された目標物のマーカを画面にBスコープ(2次元表示)で表示する情報処理ユニットである。
【0024】
送信ユニット10は、該ユニット10の主制御を行う送信制御部11と、パルス圧縮レーダ機能を有するレーダ送信部12と、大地に対して垂直偏波(入射面に平行な偏波)となるレーダ信号を射出する送信アンテナ13と、ジャイロなどを使用して送信ユニット10についての3次元位置、速度、加速度、動揺(姿勢)等の情報を検出する慣性航法部14と、後述の受信ユニット20との間で測定の制御や同期を取るための各種情報のやりとりを行うデータ通信部15と、その送受信アンテナ16とを備える。なお、送信ユニット10の3次元絶対位置の検出はディファレンシャルGPS(Gloqobal Positioning System)等を利用した受信機により行ってもよい。
【0025】
パルス圧縮レーダ機能としては、例えば10GHz±50MHzの範囲で直線状に周波数変調(チャープ)したレーダ信号波を射出し、受信側で周波数対遅延時間特性を有する回路で数nsのパルスに圧縮し、急峻なインパルス状態にすることで、レーダパルスの高い送信電力と、高い距離分解能を得ている。
【0026】
受信ユニット20は、該ユニット20の主制御を行う受信制御部21と、大地(地中を含む)で反射したレーダ信号を受信するレーダ受信部22と、受信したレーダ波をパルス圧縮するパルス圧縮部22aと、大地に対して垂直偏波となるレーダ信号を受信する受信アンテナ23と、ジャイロなどを使用して受信ユニット20についての3次元位置、速度、加速度、動揺(姿勢)等の情報を検出する慣性航法部24と、前記送信ユニット10との間で測定の制御や同期を取るための各種情報のやりとりを行うデータ通信部25と、その送受信アンテナ26とを備える。
【0027】
信号処理ユニット30は、レーダ受信波の合成開口処理を行う合成開口処理部32と、処理後のレーダ信号に基き地中の地雷100等を検出する地中検知処理部33とを備える。
【0028】
合成開口処理としては、本レーダ装置(送受信ユニット10,20等)が入射面と垂直な方向に高速で移動(飛行)することを利用して、該飛行方向に高い角度分解能が得られるところの所謂ビームシャープニング技術を利用している。ビームシャープニング技術としては、レーダ装置の移動に伴って時系列に得られる各レーダ受信信号を合成処理することで、飛行方向に細いビーム幅のレーダ信号を送出したと同等の角度分解能を得る方法、あるいは、レーダ装置の移動に伴ってレーダ受信波に含まれるドプラシフト成分を細分化して各周波数成分を解析することにより、飛行方向に細いビーム幅のレーダ信号を送出したと同等の角度分解能を得る方法を採用できる。
【0029】
そして、情報処理ユニット40は、地中探査結果についての画像処理を行うワークステーション41と、その表示部41aと、地図情報を格納しているデータベース(DB)42と、オペレータが操作をするマウス等のポインティングデバイス(PD)43とを備える。
【0030】
以上の構成により、好ましくは、2つの飛行体(有人/無人のヘリコプター等)に必要な機能ユニットのみをそれぞれ搭載し、目標エリアの上空を走査するように飛行することで、広範囲の地中に埋設された地雷100を能率よく安全に探査する。
【0031】
図3は実施の形態による地中探知原理を説明する図で、図3(A)にレーダ波の入射面に平行な面の断面図を示す。図において、レーダ信号の送信アンテナ13及び受信アンテナ23を大地の目標点に関してそれぞれ入射角θi及び反射角θr(=θi)となる位置に配置し、送信アンテナ13から送信した入射面に平行な偏波(垂直偏波)を受信アンテナ23で受信する状態を考える。
【0032】
挿入図(a)に大地の典型的な状態における比誘電率εの例を示す。大地の比誘電率εは、池や水溜りではε=81程度であり、また土壌の場合は、乾燥状態ではε=4〜6程度、また湿潤状態ではε=15〜30程度となることが知られている。
【0033】
大地の反射率Γは、上記(1)式に示した如く入射角θi及び大地の比誘電率εの関数であり、図3(B)にいくつかの典型的な例について計算した結果のグラフ図を示す。該図の横軸は入射角θi、縦軸は反射率の絶対値|Γ|てある。ブリュースター角θは、上記(2)式に示した如く比誘電率εの関数であり、土壌が乾燥状態か湿潤状態かによってブリュースター角θは略55°〜80°の範囲で変化することがわかる。
【0034】
今、例えば入射角θi=30°一定のところに着目すると、反射率|Γ|が略0.2〜0.8と変化するため、金属(|Γ|=1)との識別が困難となるが、本実施の形態による地中探査では、レーダ信号の送受信間で、常に大地の状態(比誘電率ε)に応じたブリュースター角θが供に維持されるため、地中の金属(地雷)100の有/無を確実に判別可能となる。以下、実施の形態による複数の地中探査動作を具体的に説明する。
【0035】
図4,図5は第1の実施の形態による地中探査動作を説明する図(1)、(2)で、広範囲の地中を2次元的に探査する場合の基本的な構成を示している。図4(A)にレーダ波の入射面に垂直な面の断面図を示す。飛行体Aには送信ユニット10を搭載し、飛行体Bには受信ユニット20、信号処理ユニット30及び情報処理ユニット40を搭載する。飛行体A,Bは、最初は地中探査領域の典型的(平均的)な状態(比誘電率ε)に応じたブリュースター角となるように配置(操縦)されるが、その後は、飛行体A,B間のデータ通信機能及び慣性航法機能を利用することで、飛行体A,Bの位置,姿勢が各目標点の状態に応じたブリュースター角に維持されるように、操縦(又は自動操縦)される。以下,探査動作を具体的に説明する。
【0036】
図4(A)において、a1はレーダ信号の送信アンテナ(図2の送信アンテナ13に相当)であり、この例では電子走査アンテナ(フェーズドアレーアンテナ)を採用すると供に、レーダ信号のパルス圧縮技術とフェーズドアレーアンテナの電子走査技術とを併用することで、入射面に平行な方向についての細いビーム幅のレーダパルス信号を生成している。飛行体Aは、各送信パルスの入射角θiを、その時点のブリュースター角θを中心にしてθj(<θ)〜θk(>θ)の範囲内でスキャンして送信すると供に、飛行体Bではパルス圧縮された各レーダパルスの受信信号を時分割で処理する。これによって、入射面に平行な方向の探査幅hに渡る領域をn個の小領域幅(数十cm〜数m程度)に細分化し、時分割で効率よく探知処理できる。
【0037】
挿入図(a)に1回の探査幅hに対応する受信信号振幅のグラフ図を示す。地雷100の無い場所では、ブリュースター角θのところで反射率|Γ|が最小(図の点線で示す)となるため、飛行体Bは現在の自己の位置とブリュースター角θとの関係を認識できる。また、この角度情報を逐次飛行体Aにフィードバックすることで、飛行体A,Bは常に自己のブリュースター角θを維持できる。そして、この状態で、もし地雷100に遭遇すると、その点で受信信号の振幅が大きくなるため、こうして地雷100の存在を鮮明に検出できる。
【0038】
図4(B)に飛行体A,Bを上空から見た大地の平面図を示す。上記探査幅hの検出を行いながら、飛行体A,Bが入射面と垂直な方向に飛行することで、1回の測定につき探査長vの領域の探知を同時に行う。以下、具体的に説明する。
【0039】
今、飛行体A,Bが地雷100の真横を通過しているとすると、地雷100の前後に分散するレーダビームはドプラシフトを受ける。レーダビームSiの中心周波数fi=f0とすると、レーダビームS1の周波数f1=f0+fd、レーダビームSmの周波数fm=f0−fdとなる。fdは各ビームが受けるドプラ周波数である。合成開口処理部32では、レーダ受信信号のドプラシフト成分をドプラフィルタ等により細分化・分離して各周波数成分の振幅を求めることにより、1回の探査領域長vをm個の小領域長(数十cm〜数m程度)に細分化し、地雷の有/無を能率よく判定可能となる。更に、この図4(B)の探査方法と上記図4(A)の探査方法と組み合わせることで、1回の測定につきn×m個の小領域の地中探査を効率よく行える。
【0040】
挿入図(b)にレーダビームS1/Smの受信信号振幅を示す。経路S1/Smには地雷100が存在しないため、中間における反射波の振幅が小さい。なお、この振幅パターンは現在のブリュースター角の確認に利用できる.挿入図(c)にレーダビームSiの受信信号振幅を示す。経路Siには地雷100が存在するため、中間で反射波の振幅が大きくなっている。
【0041】
図5は地雷探査の表示画面を示す図で、飛行中の飛行体B中で表示する場合を示している。予めワークステーション41に探査領域の地図情報を表示し、予定領域の地雷探査を行う。好ましくは,最初は地図上のP1点から探査開始してQ1点で探査終了する。その際には、飛行体A,Bの絶対位置の正確な検出はGPSを利用できる。また、飛行体A,Bの操縦は、慣性航法制御情報をもとに、操縦士が行っても良いし、自動操縦を併用しても良い。
【0042】
好ましくは、地雷100の検出により表示画面41a上に例えば●印をリアルタイムで表示する。また、検出結果が不確定の場合には例えば○印をリアルタイムで表示する。オペレータは、他に利用できる様々な状況データ(地上の視覚データ等)をもとに総合的に判断し、例えばカーソルCで○印を指示し、これを●印に変えることも、逆にカーソルCで●を指示し、これを○印に変えることも可能である。次に飛行体A,Bを旋回させてQ2点から探査開始してP2点で探査終了する。以下、同様にして進み、こうして予定のP10/Q10点までの広範囲な地中探査を効率よく安全に行える。
【0043】
図6,図7は第2の実施の形態による地中探査動作を説明する図(1),(2)で、少なくとも受信ユニット20が複数の受信アンテナb1〜b3を備える場合を示している。ブリュースター角は大地の状態(比誘電率ε)により微妙に変化するため、これに素早く対応したい。しかし、これに飛行体A,Bの操縦で対処するのには限界があるため、本実施の形態では少なくとも受信ユニット20の側に例えば3つ受信アンテナb1〜b3を大地と垂直となる方向に分散配置し、各時点の大地のブリュースター角θに対応した最適の受信アンテナb1,b2又はb3の使用を電子的に選択可能となっている。好ましくは、送信ユニット10の側にも送信アンテナa1〜a3を分散配置し、これらを電子的に選択可能とする。
【0044】
図6(A)は大地のブリュースター角がそれまでより広がったため、飛行体Bの位置が相対的に高くなった場合を示している。このとき、受信アンテナb1の受信振幅は中間部で最小となっており、新たなブリュースター角に対応している。これに対して、それまで使用していた受信アンテナb2の受信振幅はその最小となる点が中央よりも少し右方向にずれており、新たなブリュースター角よりも狭い角度に位置している。更に,受信アンテナb3は受信アンテナb2よりも更に狭い角度に位置しているため、受信振幅が最小となる点が認められない。この場合は、それまで使用していた受信アンテナb2の選択を受信アンテナb1の使用に切替える。
【0045】
更に、飛行体Bはこの角度に関する情報を飛行体Aに通知する。この通知を受けた送信ユニット10では、自己の慣性航法処理部14によって、それまでの送信ユニット10が例えばそれまでの受信ユニット20と同じ3次元位置に居たことを認識できるから、上記受信ユニット20におけると同様にして,それまで使用していた送信アンテナa2の選択を送信アンテナa1の使用に切替える。更にまた、上記飛行体Bで検出された角度に関する情報に基き、飛行体A,Bの飛行高度を変更しても良い。
【0046】
図6(B)は上記とは逆に大地のブリュースター角がそれまでより狭くなったため、飛行体Bの位置が相対的に低くなった場合を示している。このとき、受信アンテナb3の受信振幅は中間部で最小となっており、新たなブリュースター角に対応している。これに対して、それまで使用していた受信アンテナb2の受信振幅はその最小となる点が中央よりも少し左方向にずれており、新たなブリュースター角よりも広い角度に位置している。更に,受信アンテナb1は受信アンテナb2よりも更に広い角度に位置しているため、受信振幅が最小となる点が認められない。この場合は、それまで使用していた受信アンテナb2の選択を受信アンテナb3の使用に切替える。以下、上記と同様である。こうして、大地のブリュースター角の変動によらず、常に最適の条件下で地中探査が行える。
【0047】
上記の機能は飛行体A,Bの飛行状態(高度)が微妙に変動した場合にも有効に働く。図7(A)は飛行体Bの高度がそれまでよりも高くなった場合を示している。このとき、受信アンテナb1の受信振幅は中間部で最小となっており、飛行体Bの新たな高度に対応している。これに対して、それまで使用していた受信アンテナb2の受信振幅はその最小となる点が中央よりも少し右方向にずれており、現時点のブリュースター角よりも狭い角度に位置している。更に,受信アンテナb3は受信アンテナb2よりも更に狭い角度に位置しているため、受信振幅が最小となる点が認められない。この場合は、それまで使用していた受信アンテナb2の選択を受信アンテナb1の使用に切替える。
【0048】
更に、飛行体Bはこの角度に関する情報を飛行体Aに通知する。この通知を受けた送信ユニット10では、自己の慣性航法処理部14によって、それまで維持してきた送信アンテナa2のブリュースター角(即ち、飛行体Aの高度)には変更がないことを認識できるから、それまで使用していた送信アンテナa2の選択をそのまま維持する。
【0049】
図7(B)は上記とは逆に飛行体Bの高度がそれまでよりも低くなった場合を示している。このとき、受信アンテナb3の受信振幅は中間部で最小となっており、飛行体Bの新たな高度に対応している。これに対して、それまで使用していた受信アンテナb2の受信振幅はその最小となる点が中央よりも少し左方向にずれており、現時点のブリュースター角よりも広い角度に位置している。更に,受信アンテナb1は受信アンテナb2よりも更に広い角度に位置しているため、受信振幅が最小となる点が認められない。この場合は、それまで使用していた受信アンテナb2の選択を受信アンテナb3の使用に切替える。以下、上記と同様である。こうして、飛行体A,Bの高度の変動によらず、常に最適の条件下で地中探査が行える。
【0050】
なお、飛行体A,Bはそれぞれにブリュースター角θをなす線の延長上にあればよく、必ずしも高度が一致しなくても良いことは明らかである。この場合に、地雷100などの危険物を探査する場合には目標点から十分な距離をとって探索し、また単なる金属やその他の埋設物を探査する場合には、目標点に近づいて探知深度や探知精度(分解能)を上げることが可能である。
【0051】
図8は第3の実施の形態による地中探査動作を説明する図で、飛行体A,Bにそれぞれ送受信ユニット10,20、信号処理ユニット30及び情報処理ユニット40からなるフルセットを搭載し、同一の目標点につき、入射面に平行な一方向と、その逆方向から複数回の地中探査を瞬時に切替えて行うことにより、地中探査の信頼性が向上する場合を示している。
【0052】
まず、図8(A)に示す如く、あるタイミングで飛行体Aから目標点に向けてレーダパルスを送信すると共に、飛行体Bでは地中からの反射波を受信・解析して1回分の地中探査を行う。次に、図8(B)に示す如く、飛行体Bから同一の目標点に向けてレーダパルスを送信すると共に、飛行体Aで地中からの反射波を受信・解析して1回分の地中探査を行う。上記1回分の地中探査は、飛行体A,Bの飛行速度に比べて十分に短い時間で行えるため、実質同一の目標点に対して左右から2度の地中探査を行え、よって探査の信頼性が向上する。
【0053】
なお、上記実施の形態では、異なる飛行体A,Bに地中探査装置を分散配備し、かつこれらの協動によって地中探査を行ったが、これに限らない。探査対象が爆発物でないような場合には、地中探査装置を単一の飛行体に搭載し、目標領域に十分に接近して地中探査を行ってもよい。この場合は、地中探査装置を、飛行体以外の様々な移動手段(自動車等)に搭載して地中探査を行ってもよい。
【0054】
更には、測定中には探知データを表示しないで、レーダ受信信号のみを取得し、メモリに蓄積し、後に基地でレーダ解析しても良い。又は、レーダ受信信号を飛行体で解析処理するのではなく、遠隔の基地に無線送信し、該基地で解析処理しても良い。
【0055】
また、上記実施の形態では、地中の金属(地雷等)を探査する場合を述べたが、これに限らない。他にも、地中の比誘電率が大きく異なる地層等、レーダ波を反射するものであれば何でも本発明の探査対象となり得る。
【0056】
また、上記実施の形態では、パルス圧縮レーダへの適用例を示したが、これに限らない。本発明の地中探査原理は連続するレーダ波で地中探査行う場合にも適用可能である。
【0057】
また、上記実施の形態では、レ−ダ波の入射面に平行な偏波(直線偏波)を送受信する場合を述べたが、これに限らない。入射面に平行な偏波成分を有するものであるならば、円偏波を直線偏波に変換するポラライザを用いることにより円偏波のレ−ダ波を送受信してもよい。
【0058】
また、上記本発明に好適なる複数の実施の形態を述べたが、本発明思想を逸脱しない範囲内で各部の構成、制御、処理及びこれらの組み合わせの様々な変更が行えることは言うまでも無い。
【0059】
(付記1) レーダ信号の送信手段及び受信手段を大地の目標点に関して互いに略ブリュースター角となる位置に配置し、前記送信手段から目標点に向けて送信した入射面に平行な偏波についての大地からの反射波を前記受信手段で受信すると共に、該受信手段による受信信号の振幅が所定以上であることにより地中の目標物を探知することを特徴とする地中探知方法。
【0060】
(付記2) レーダ信号の送信手段及び受信手段を大地の目標点に関して互いに略ブリュースター角となる位置に配置し、前記送信手段から目標点に向けて送信した入射面に平行な偏波についての大地からの反射波を前記受信手段で受信すると共に、該受信手段による受信信号の振幅が所定以上であることにより地中の目標物を探知する信号処理手段を備えることを特徴とする地中探知装置。
【0061】
(付記3) 各飛行体に送信手段及び受信手段の双方を搭載し、同一の目標点に対してレーダ信号の送信位置と受信位置を切り替えることにより複数回探知することを特徴とする付記3記載の地中探知方法。従って、広範囲にわたる効率のよい地中探査が行えると共に、検出の信頼性が向上する。
【0062】
(付記4) レーダ信号の送信手段及び受信手段を大地の目標点に関して互いに略ブリュースター角となる位置に配置し、前記送信手段から送信した入射面に平行な偏波を前記受信手段で受信すると共に、該受信手段による受信信号の振幅が所定以上であることにより地中の目標物を探知する信号処理手段を備えることを特徴とする地中探知装置。
【0063】
(付記5) 送信手段はパルス圧縮可能なレーダパルスを入射面と平行な方向にスキャンして送信すると供に、受信手段は前記送信手段に同期してパルス圧縮処理を行い、各受信パルスの信号振幅を時系列に検出し、信号処理手段は該検出された各信号振幅を時系列に比較することにより、入射面に平行な方向の地中探知を行うことを特徴とする付記4記載の地中探知装置。
【0064】
(付記6) 受信手段の3次元位置を検出する受信位置検出手段を更に備え、信号処理手段は各検出された信号振幅が減少から上昇に転じる時点の受信位置を目標点に関するブリュースター角と認識することを特徴とする付記5記載の地中探知装置。従って、地中の金属等を確実に検出できると共に、受信手段が現在ブリュースター角上にいるか否かを容易に把握できる。
【0065】
(付記7) 送信手段の3次元位置を検出する送信位置検出手段を更に備え、送信手段は信号処理手段が認識したブリュースター角に従って該送信手段からの送信電波を目標点に関するブリュースター角上に維持することを特徴とする付記6記載の地中探知装置。従って、レーダ波の送信手段及び受信手段を共に現在のブリュースター角上に容易に誘導し、維持できる。
【0066】
(付記8) 送信手段及び受信手段を入射面と垂直な方向に移動させつつ、信号処理手段は受信手段による受信信号を周波数分割して周波数毎の各受信信号振幅を時系列に比較することにより、入射面に垂直な方向の地中探知を行うことを特徴とする付記4又は5記載の地中探知装置。
【0067】
(付記9) 送信手段及び又は受信手段は大地と垂直な方向に分散配置された複数のアンテナと、各アンテナの送信/受信信号を選択する選択手段とを備えることを特徴とする付記4記載の地中探知装置。
【0068】
(付記10) 探査領域の地図データを表示する表示手段と、信号処理手段により探知された目標物の像を前記表示された地図上に重ね合せて表示する情報処理手段とを備えることを特徴とする付記6記載の地中探知装置。従って、金属(地雷等)の分布状況を把握しやすくなり、その後の地雷等の除去作業を効率よく行える。
【0069】
【発明の効果】
以上述べた如く本発明によれば、広範囲の地中に埋設された地雷等の金属物を短時間で安全・確実に探知可能となり、金属探査の能率向上に寄与するところが極めて大きい。
【図面の簡単な説明】
【図1】本発明の原理を説明する図である。
【図2】実施の形態によるバイスタティック地中探査装置のブロック図である。
【図3】実施の形態による地中探知原理を説明する図である。
【図4】第1の実施の形態による地中探査動作を説明する図(1)である。
【図5】第1の実施の形態による地中探査動作を説明する図(2)である。
【図6】第2の実施の形態による地中探査動作を説明する図(1)である。
【図7】第2の実施の形態による地中探査動作を説明する図(2)である。
【図8】第3の実施の形態による地中探査動作を説明する図である。
【図9】従来技術を説明する図である。
【符号の説明】
10 送信ユニット
11 送信制御部
12 レーダ送信部
13 送信アンテナ
14 慣性航法部
15 データ通信部
16 送受信アンテナ
20 受信ユニット
21 受信制御部
22 レーダ受信部
22a パルス圧縮部
23 受信アンテナ
24 慣性航法部
25 データ通信部
26 送受信アンテナ
30 信号処理ユニット
32 合成開口処理部
33 地中検知処理部
40 情報処理ユニット
41 ワークステーション
41a 表示部
42 地図データベース(DB)
43 ポインティングデバイス(PD)
100 地雷(金属)[0001]
TECHNICAL FIELD OF THE INVENTION
The present invention relates to an underground detection method and apparatus, and more particularly, to a bistatic underground detection method and apparatus suitable for application to detection of a metal object (land mine or the like) buried underground in a wide area.
[0002]
[Prior art]
Conventionally, as a method of detecting a metal object buried in the ground, a method of using a radar wave, bringing a transmission / reception antenna close to the surface of the ground, and examining the return time of the radio wave echo and the signal intensity is known. In addition, as a form of exploring the underground, a method in which a person carries a metal detection device to carry out an exploration, or a method in which a metal detection device is mounted on a vehicle for exploration, are performed.
[0003]
Under such circumstances, conventionally, the reflection on the road surface using the fact that the reflection of the vertically polarized wave (polarized light parallel to the incident surface) incident on the road surface at the incident angle θi has an opposite phase at the Brewster angle is used. There is known one that distinguishes between reflection from an underground lane marker (Al metal) (Patent Document 1). Hereinafter, this will be described in detail.
[0004]
FIG. 9 is a diagram for explaining a conventional technique, and FIG. 9A is a cross-sectional view of the ground. In the figure, the relative permittivity of the road surface (soil) = ε 2 (E.g., 5), the reflectance 路 of the road surface when the vertically polarized wave Ei parallel to the incident surface is incident at an incident angle θi (= reflection angle θr) is given by equation (1).
[0005]
(Equation 1)
Figure 2004286461
[0006]
Brewster angle θ B Is defined as the angle of incidence when the reflectance Γ = 0, and is given by equation (2).
[0007]
(Equation 2)
Figure 2004286461
[0008]
FIG. 9B is a graph showing the reflectance Γ with respect to the incident angle θi. Now, the relative permittivity ε of the road surface 2 = 5, the sign of the reflectance Γ is the Brewster angle θ B = 66 °, the value changes from positive to negative as shown. On the other hand, the reflectance の of the underground lane marker (metal) is always Γ = −1 regardless of the Brewster angle.
[0009]
In Patent Document 1, utilizing this property, the incident angle θi of the circularly polarized wave is changed to the Brewster angle θ. B And the turning direction (phase) of the reflected wave is not reversed in the place where the lane marker is not buried in the road surface, and it is reflected in the place where the lane marker (metal) is buried in the road surface. By inverting the turning direction (phase) of the wave, it is possible to detect an underground lane marker in distinction from road surface reflection.
[0010]
[Patent Document 1]
JP-A-10-103964 (paragraph "0016", FIGS. 1 and 3).
[0011]
[Problems to be solved by the invention]
However, according to the metal detection method of Patent Document 1, in a place where a lane marker (metal) is buried, a positive-phase reflected wave from the road surface) and a negative-phase reflected wave from the lane marker are combined. However, the amplitude of the received wave becomes small depending on the road surface condition (wet / dry, etc.) and the phase difference between the two interference waves, and there is a problem that the detection of the lane marker is adversely affected.
[0012]
SUMMARY OF THE INVENTION The present invention has been made in view of the above-mentioned problems of the prior art, and has as its object the underground detection capable of detecting metal objects such as land mines buried in a wide area underground in a short time and safely and reliably. It is to provide a method and an apparatus.
[0013]
[Means for Solving the Problems]
The above problem is solved by, for example, the configuration of FIG. That is, in the underground detection method of the present invention (1), the radar signal transmitting means 10 and the radar signal transmitting means 20 are substantially Brewster's angle θ B The reflected wave Er from the ground with respect to the polarization Ei parallel to the incident surface transmitted from the transmitting means 10 toward the target point is received by the receiving means 20 and is transmitted by the transmitting means 10 to the target point. The underground target is detected when the amplitude of the received signal is equal to or larger than a predetermined value.
[0014]
In the figure, the radar wave Ei parallel to the incident surface is now transmitted from the transmitting means 10 to the ground state (relative permittivity ε). 2 Brewster angle θ according to) B When the radar wave Ei enters the target point at, the radar wave Ei penetrates completely to the underground (Et) side, so that in a place where there is no metal in the ground, no reflected wave toward the receiving means 20 side occurs, but At a place where the metal 100 is present, the receiving means 20 detects the reflected wave Er from the metal 100. This relationship is based on the state of the earth (dielectric constant ε 2 Brewster angle θ according to) B Is maintained as long as is maintained, so that the presence or absence of metal can be reliably determined regardless of the state of the ground.
[0015]
In the underground detection device of the present invention (2), the radar signal transmitting means and the radar signal transmitting means are arranged at positions substantially at a Brewster angle with respect to a target point on the ground, and the incident light transmitted from the transmitting means toward the target point is transmitted. A signal processing unit that receives a reflected wave from the ground with respect to a polarization parallel to the plane by the receiving unit, and detects an underground target when the amplitude of a signal received by the receiving unit is equal to or greater than a predetermined value. Things.
[0016]
In the present invention (3), in the present invention (2), the transmitting means scans and transmits the pulse compressible radar pulse in a direction parallel to the incident surface, and the receiving means synchronizes with the transmitting means. By performing pulse compression processing, the signal amplitude of each received pulse is detected in time series, and the signal processing means compares the detected signal amplitudes in time series to detect underground in a direction parallel to the incident surface. Is what you do.
[0017]
According to the third aspect of the present invention, the target point can be determined by scanning a pulse compressible radar pulse in a direction parallel to the incident surface and transmitting the pulse, compressing each reflected wave and detecting the reflected wave in time series. A predetermined area in the direction parallel to the center incidence plane can be subdivided and detected efficiently. Further, by comparing the detected signal amplitudes in a time series, it is possible to accurately detect whether or not the metal is buried.
[0018]
In the present invention (4), in the above present invention (2) or (3), the signal processing means frequency-divides a signal received by the receiving means while moving the transmitting means and the receiving means in a direction perpendicular to the incident surface. The underground detection in the direction perpendicular to the incident surface is performed by comparing the received signal amplitudes for each frequency in a time series.
[0019]
According to the present invention (4), by moving the transmitting means and the receiving means in the direction perpendicular to the incident surface, the radar wave irradiated on a predetermined area in the direction perpendicular to the incident surface centering on the target point is ± fd Doppler shift. In this state, the signal processing means subdivides a predetermined area in the direction perpendicular to the incident plane centering on the target point by frequency-dividing the received signal and comparing each received signal amplitude for each frequency in time series. And can be detected efficiently.
[0020]
In the present invention (5), in the above present invention (2), the transmitting means and / or the receiving means may include a plurality of antennas distributed in a direction perpendicular to the ground and a selecting means for selecting a transmission / reception signal of each antenna. It is provided with.
[0021]
According to the present invention (5), by dispersing a plurality of antennas in a direction perpendicular to the ground and switching them as necessary, even if the state of the ground (relative permittivity) slightly changes, the transmitting means It is possible to perform accurate underground exploration simply by changing the selection of the antenna without moving the receiving means.
[0022]
BEST MODE FOR CARRYING OUT THE INVENTION
Hereinafter, a plurality of embodiments suitable for the present invention will be described in detail with reference to the accompanying drawings. Note that the same reference numerals indicate the same or corresponding parts throughout the drawings.
[0023]
FIG. 2 is a block diagram of the bistatic underground exploration apparatus according to the embodiment. In the figure, reference numeral 10 denotes a transmission unit that transmits a radar signal that can be pulse-compressed, and reference numeral 20 denotes a radar signal that is reflected on the ground (underground). A receiving unit 30 for performing pulse compression, a signal processing unit 30 for analyzing and processing the received radar signal to detect an underground target (such as the land mine 100), and a reference numeral 40 for displaying a marker of the detected target on a screen This is an information processing unit for displaying on a B scope (two-dimensional display).
[0024]
The transmission unit 10 includes a transmission control unit 11 that performs main control of the unit 10, a radar transmission unit 12 that has a pulse compression radar function, and a radar that is vertically polarized with respect to the ground (polarization parallel to the incident surface). A transmission antenna 13 for emitting a signal, an inertial navigation unit 14 for detecting information such as a three-dimensional position, velocity, acceleration, and sway (posture) of the transmission unit 10 using a gyro and the like; A data communication unit 15 for exchanging various kinds of information for controlling and synchronizing measurement, and a transmission / reception antenna 16 thereof. The detection of the three-dimensional absolute position of the transmission unit 10 may be performed by a receiver using a differential GPS (global positioning system) or the like.
[0025]
As a pulse compression radar function, for example, a radar signal wave that is linearly frequency-modulated (chirped) in a range of 10 GHz ± 50 MHz is emitted, and is compressed into a pulse of several ns by a circuit having frequency versus delay time characteristics on a receiving side. By setting a steep impulse state, a high transmission power of a radar pulse and a high distance resolution are obtained.
[0026]
The reception unit 20 includes a reception control unit 21 that performs main control of the unit 20, a radar reception unit 22 that receives a radar signal reflected on the ground (including underground), and a pulse compression unit that performs pulse compression on a received radar wave. Unit 22a, a receiving antenna 23 that receives a radar signal that is vertically polarized with respect to the ground, and information such as a three-dimensional position, velocity, acceleration, and sway (posture) of the receiving unit 20 using a gyro or the like. An inertial navigation unit 24 for detection, a data communication unit 25 for exchanging various information for controlling and synchronizing measurement between the transmitting unit 10 and a transmitting / receiving antenna 26 are provided.
[0027]
The signal processing unit 30 includes a synthetic aperture processing unit 32 that performs synthetic aperture processing of a radar reception wave, and an underground detection processing unit 33 that detects a mine 100 or the like in the ground based on the processed radar signal.
[0028]
Synthetic aperture processing uses the fact that the radar apparatus (transmitter / receiver units 10, 20, etc.) moves (flies) at a high speed in a direction perpendicular to the plane of incidence to obtain high angular resolution in the flight direction. A so-called beam sharpening technique is used. As a beam sharpening technique, a method of obtaining the same angular resolution as sending a radar signal with a narrow beam width in the flight direction by synthesizing each radar reception signal obtained in time series with the movement of the radar device Or, by subdividing the Doppler shift component included in the radar reception wave with the movement of the radar apparatus and analyzing each frequency component, an angular resolution equivalent to that of transmitting a radar signal with a narrow beam width in the flight direction is obtained. Method can be adopted.
[0029]
The information processing unit 40 includes a workstation 41 that performs image processing on an underground exploration result, a display unit 41a thereof, a database (DB) 42 that stores map information, a mouse operated by an operator, and the like. And a pointing device (PD) 43.
[0030]
According to the above configuration, preferably, only the necessary functional units are mounted on two flying objects (manned / unmanned helicopters, etc.), and the aircraft flies so as to scan over the target area. Exploring the buried mine 100 efficiently and safely.
[0031]
FIG. 3 is a diagram for explaining the principle of underground detection according to the embodiment. FIG. 3A is a cross-sectional view of a plane parallel to the radar wave incident surface. In the figure, a radar signal transmitting antenna 13 and a receiving antenna 23 are arranged at positions corresponding to an incident angle θi and a reflection angle θr (= θi) with respect to a target point on the ground, respectively. Consider a state in which a wave (vertically polarized wave) is received by the receiving antenna 23.
[0032]
Inset (a) shows the relative permittivity ε in a typical state of the earth. 2 Here is an example. Earth's relative permittivity ε 2 Is ε in ponds and puddles 2 = 81, and in the case of soil, ε 2 = About 4-6, and ε in the wet state 2 = 15 to 30 is known.
[0033]
The reflectance の of the ground is represented by the incident angle θi and the relative permittivity ε of the ground as shown in the above equation (1). 2 FIG. 3 (B) shows a graph of the result of calculation for some typical examples. The horizontal axis of the figure is the incident angle θi, and the vertical axis is the absolute value of the reflectance | Γ |. Brewster angle θ B Is the relative dielectric constant ε as shown in the above equation (2). 2 Brewster angle θ depending on whether the soil is dry or wet. B It can be seen that changes in the range of approximately 55 ° to 80 °.
[0034]
Now, for example, focusing on a point where the incident angle θi = 30 ° is constant, since the reflectance | Γ | changes from about 0.2 to 0.8, it is difficult to distinguish it from a metal (| Γ | = 1). However, in the underground exploration according to this embodiment, the state of the ground (the relative permittivity ε 2 Brewster angle θ according to) B Is maintained, the presence / absence of underground metal (land mine) 100 can be reliably determined. Hereinafter, a plurality of underground exploration operations according to the embodiment will be specifically described.
[0035]
FIGS. 4 and 5 are diagrams (1) and (2) for explaining an underground exploration operation according to the first embodiment, and show a basic configuration in a case of two-dimensionally exploring the ground under a wide range. I have. FIG. 4A is a cross-sectional view of a plane perpendicular to the plane of incidence of the radar wave. The transmitting unit 10 is mounted on the flying object A, and the receiving unit 20, the signal processing unit 30, and the information processing unit 40 are mounted on the flying object B. The flying vehicles A and B initially have a typical (average) state of the underground exploration area (relative permittivity ε 2 ) Is arranged (steered) so as to have a Brewster angle corresponding to the Brewster's angle. Thereafter, by utilizing the data communication function between the flying bodies A and B and the inertial navigation function, the positions of the flying bodies A and B, Maneuvering (or automatic maneuvering) is performed so that the posture is maintained at the Brewster angle corresponding to the state of each target point. Hereinafter, the search operation will be specifically described.
[0036]
In FIG. 4A, a1 is a radar signal transmitting antenna (corresponding to the transmitting antenna 13 in FIG. 2). In this example, an electronic scanning antenna (phased array antenna) is employed, and a radar signal pulse compression technique is employed. By using the electronic scanning technology of the phased array antenna together with the phased array antenna, a radar pulse signal having a narrow beam width in a direction parallel to the incident surface is generated. The flying object A sets the incident angle θi of each transmission pulse to the Brewster angle θ at that time. B Centered on θj (<θ B ) To θk (> θ) B ), And the flying object B processes the pulse-compressed received signal of each radar pulse in a time-division manner. As a result, an area that extends over the search width h in the direction parallel to the incident surface is subdivided into n small area widths (about several tens of cm to several meters), and the detection processing can be performed efficiently by time division.
[0037]
The inset (a) shows a graph of the received signal amplitude corresponding to one search width h. In places without land mines 100, the Brewster angle θ B At this time, the reflectivity | Γ | becomes the minimum (indicated by the dotted line in the figure), so that the flying object B has its own position and Brewster angle θ B You can recognize the relationship. Further, by sequentially feeding back this angle information to the flying object A, the flying objects A and B always have their own Brewster angles θ. B Can be maintained. Then, in this state, if the mine 100 is encountered, the amplitude of the received signal increases at that point, and thus the presence of the mine 100 can be clearly detected.
[0038]
FIG. 4B is a plan view of the ground when the flying objects A and B are viewed from above. The flying objects A and B fly in the direction perpendicular to the incident surface while detecting the search width h, thereby simultaneously detecting the area of the search length v for each measurement. This will be specifically described below.
[0039]
Now, assuming that the flying objects A and B pass right beside the mine 100, the radar beams dispersed before and after the mine 100 undergo Doppler shift. Assuming that the center frequency fi of the radar beam Si is f0, the frequency f1 of the radar beam S1 is f0 + fd, and the frequency fm of the radar beam Sm is f0-fd. fd is the Doppler frequency received by each beam. The synthetic aperture processing unit 32 obtains the amplitude of each frequency component by subdividing and separating the Doppler shift component of the radar reception signal using a Doppler filter or the like, thereby reducing the length v of one search region to m small region lengths (numbers). (About 10 cm to several meters), and it is possible to efficiently determine the presence / absence of land mines. Further, by combining the search method of FIG. 4B with the search method of FIG. 4A, the underground search of n × m small areas can be efficiently performed in one measurement.
[0040]
The inset (b) shows the received signal amplitude of the radar beam S1 / Sm. Since the land mine 100 does not exist on the route S1 / Sm, the amplitude of the reflected wave in the middle is small. This amplitude pattern can be used to confirm the current Brewster angle. The inset (c) shows the received signal amplitude of the radar beam Si. Since the land mine 100 exists in the path Si, the amplitude of the reflected wave is large in the middle.
[0041]
FIG. 5 is a view showing a display screen of landmine exploration, and shows a case where the display is made in the flying object B in flight. The map information of the exploration area is displayed on the workstation 41 in advance, and the mine exploration of the planned area is performed. Preferably, the search starts at point P1 on the map and ends at point Q1. At that time, GPS can be used to accurately detect the absolute positions of the flying objects A and B. The pilots of the flying bodies A and B may be performed by the pilot based on the inertial navigation control information, or may be used in combination with the automatic piloting.
[0042]
Preferably, for example, a mark ● is displayed in real time on the display screen 41a by detecting the land mine 100. When the detection result is uncertain, for example, a circle is displayed in real time. The operator makes a comprehensive judgment based on various other available situation data (visual data on the ground, etc.). For example, the operator can designate a circle with a cursor C and change it to a circle with a cursor. It is also possible to indicate "●" with C and change this to "O". Next, the flying objects A and B are turned to start the search from the point Q2 and end the search at the point P2. Thereafter, the process proceeds in the same manner, and thus a wide range underground exploration up to the scheduled P10 / Q10 point can be efficiently and safely performed.
[0043]
6 and 7 are diagrams (1) and (2) for explaining the underground exploration operation according to the second embodiment, and show a case where at least the receiving unit 20 includes a plurality of receiving antennas b1 to b3. Brewster's angle is the state of the earth (relative permittivity ε 2 ), So I want to respond quickly. However, since there is a limit in dealing with this by maneuvering the flying objects A and B, in the present embodiment, for example, at least the three receiving antennas b1 to b3 are arranged at least on the receiving unit 20 side in a direction perpendicular to the ground. Brewster angle θ of the earth at each point B The use of the optimum receiving antenna b1, b2 or b3 corresponding to the above can be electronically selected. Preferably, transmission antennas a1 to a3 are also dispersedly arranged on the side of the transmission unit 10, and these can be electronically selected.
[0044]
FIG. 6A shows a case where the position of the flying object B is relatively high because the Brewster angle of the ground is wider than before. At this time, the reception amplitude of the reception antenna b1 is minimum at the middle part, and corresponds to a new Brewster angle. On the other hand, the reception amplitude of the reception antenna b2 used so far has its minimum point slightly shifted rightward from the center, and is located at an angle smaller than the new Brewster angle. Further, since the receiving antenna b3 is located at a smaller angle than the receiving antenna b2, no point at which the receiving amplitude becomes minimum is recognized. In this case, the selection of the receiving antenna b2 used so far is switched to the use of the receiving antenna b1.
[0045]
Further, the flying object B notifies the flying object A of information on the angle. The transmitting unit 10 that has received this notification can recognize that the previous transmitting unit 10 was at the same three-dimensional position as the previous receiving unit 20, for example, by its own inertial navigation processing unit 14. In the same manner as in 20, the selection of the transmission antenna a2 used so far is switched to the use of the transmission antenna a1. Furthermore, the flight altitude of the flying objects A and B may be changed based on the information on the angle detected by the flying object B.
[0046]
FIG. 6B shows a case where the Brewster angle of the ground is narrower than before, and the position of the flying object B is relatively low. At this time, the reception amplitude of the reception antenna b3 is minimum at the middle part, and corresponds to a new Brewster angle. On the other hand, the point at which the reception amplitude of the reception antenna b2 used so far is the minimum is slightly shifted leftward from the center, and is located at an angle wider than the new Brewster angle. Further, since the receiving antenna b1 is located at a wider angle than the receiving antenna b2, a point where the receiving amplitude becomes minimum is not recognized. In this case, the selection of the receiving antenna b2 used so far is switched to the use of the receiving antenna b3. Hereinafter, it is the same as above. In this way, underground exploration can always be performed under optimal conditions regardless of the variation of the Brewster angle of the earth.
[0047]
The above function works effectively even when the flying state (altitude) of the flying objects A and B slightly fluctuates. FIG. 7A shows a case where the altitude of the flying object B is higher than before. At this time, the reception amplitude of the reception antenna b1 is minimum at the middle part, and corresponds to the new altitude of the flying object B. On the other hand, the reception amplitude of the reception antenna b2 used so far has its minimum point slightly shifted rightward from the center, and is located at an angle narrower than the current Brewster angle. Further, since the receiving antenna b3 is located at a smaller angle than the receiving antenna b2, no point at which the receiving amplitude becomes minimum is recognized. In this case, the selection of the receiving antenna b2 used so far is switched to the use of the receiving antenna b1.
[0048]
Further, the flying object B notifies the flying object A of information on the angle. The transmitting unit 10 that has received this notification can recognize by its own inertial navigation processing unit 14 that the Brewster angle (that is, the altitude of the flying object A) of the transmitting antenna a2 that has been maintained so far does not change. , The selection of the transmission antenna a2 used so far is maintained as it is.
[0049]
FIG. 7B shows a case where the altitude of the flying object B is lower than before. At this time, the reception amplitude of the reception antenna b3 is minimum in the middle part, and corresponds to the new altitude of the flying object B. On the other hand, the reception amplitude of the reception antenna b2 used up to that point is slightly shifted leftward from the center at the minimum, and is located at an angle wider than the current Brewster angle. Further, since the receiving antenna b1 is located at a wider angle than the receiving antenna b2, a point where the receiving amplitude becomes minimum is not recognized. In this case, the selection of the receiving antenna b2 used so far is switched to the use of the receiving antenna b3. Hereinafter, it is the same as above. In this way, underground exploration can always be performed under optimal conditions irrespective of fluctuations in the altitude of the flying objects A and B.
[0050]
The flying objects A and B have Brewster angles θ, respectively. B Obviously, it is only necessary to be on the extension of the line which makes the above, and the altitudes do not necessarily have to coincide. In this case, when searching for a hazardous material such as the land mine 100, the search is performed at a sufficient distance from the target point, and when searching for a mere metal or other buried object, the search depth is set closer to the target point. And the detection accuracy (resolution) can be increased.
[0051]
FIG. 8 is a diagram for explaining an underground exploration operation according to the third embodiment. A full set of transmission / reception units 10, 20, a signal processing unit 30, and an information processing unit 40 is mounted on each of the flying vehicles A, B. A case where the reliability of the underground exploration is improved by instantaneously switching the underground exploration a plurality of times from one direction parallel to the incident surface and the opposite direction for the same target point is shown.
[0052]
First, as shown in FIG. 8 (A), a radar pulse is transmitted from the flying object A to the target point at a certain timing, and the flying object B receives and analyzes a reflected wave from the underground to perform one time of the ground. Conduct medium exploration. Next, as shown in FIG. 8 (B), a radar pulse is transmitted from the flying object B to the same target point, and a reflected wave from the underground is received and analyzed by the flying object A to perform one time of the ground. Conduct medium exploration. Since the above-mentioned underground exploration for one time can be performed in a sufficiently short time as compared with the flight speeds of the flying objects A and B, the underground exploration can be performed twice from the left and right with respect to the substantially same target point. Reliability is improved.
[0053]
In the above-described embodiment, the underground exploration devices are distributed and deployed on different flying vehicles A and B, and the underground exploration is performed by the cooperation of these devices. However, the present invention is not limited to this. If the target to be searched is not an explosive, the underground exploration device may be mounted on a single flying object, and the underground exploration may be performed sufficiently close to the target area. In this case, the underground exploration device may be mounted on various transportation means (such as an automobile) other than the flying object to perform the underground exploration.
[0054]
Further, it is also possible to acquire only the radar reception signal without displaying the detection data during the measurement, accumulate the acquired signal in the memory, and perform radar analysis at the base later. Alternatively, instead of performing the analysis processing on the radar reception signal by the flying object, the radar reception signal may be wirelessly transmitted to a remote base, and the analysis processing may be performed at the base.
[0055]
Further, in the above-described embodiment, the case where the underground metal (land mine or the like) is searched has been described, but the invention is not limited to this. In addition, anything that reflects radar waves, such as a geological layer having a significantly different relative permittivity in the ground, can be a search target of the present invention.
[0056]
Further, in the above embodiment, an example of application to the pulse compression radar has been described, but the present invention is not limited to this. The principle of underground exploration of the present invention can be applied to the case where underground exploration is performed with continuous radar waves.
[0057]
Further, in the above-described embodiment, the case of transmitting and receiving a polarized wave (linearly polarized wave) parallel to the incident surface of the radar wave has been described, but the present invention is not limited to this. As long as it has a polarization component parallel to the incident surface, a circularly polarized radar wave may be transmitted and received by using a polarizer that converts a circularly polarized wave into a linearly polarized wave.
[0058]
In addition, although a plurality of embodiments suitable for the present invention have been described, it goes without saying that various changes in the configuration, control, processing, and combinations thereof can be made without departing from the spirit of the present invention. .
[0059]
(Supplementary Note 1) The radar signal transmitting means and the radar signal receiving means are arranged at positions substantially at a Brewster's angle with respect to a target point on the ground, and the radar means transmits the polarized light parallel to the incident surface transmitted toward the target point. An underground detection method comprising: receiving a reflected wave from the ground by the receiving means; and detecting an underground target when the amplitude of a signal received by the receiving means is equal to or greater than a predetermined value.
[0060]
(Supplementary Note 2) A radar signal transmitting means and a radar signal transmitting means and a receiving means are arranged at positions which are substantially at Brewster's angle with respect to a target point on the ground. Underground detection comprising: a signal processing unit that receives a reflected wave from the ground by the receiving unit and detects an underground target when the amplitude of a signal received by the receiving unit is equal to or greater than a predetermined value. apparatus.
[0061]
(Supplementary note 3) Supplementary note 3 characterized in that both the transmitting means and the receiving means are mounted on each of the flying objects, and the detection is performed a plurality of times by switching the transmitting position and the receiving position of the radar signal with respect to the same target point. Underground detection method. Therefore, efficient underground exploration over a wide range can be performed, and the reliability of detection is improved.
[0062]
(Supplementary Note 4) The transmitting means and the receiving means of the radar signal are arranged at positions substantially at a Brewster angle with respect to a target point on the ground, and the receiving means receives the polarized wave transmitted from the transmitting means and parallel to the incident surface. And an underground detection device comprising signal processing means for detecting an underground target when the amplitude of a signal received by the receiving means is equal to or greater than a predetermined value.
[0063]
(Supplementary Note 5) The transmitting means scans and transmits a pulse compressible radar pulse in a direction parallel to the incident surface, and the receiving means performs pulse compression processing in synchronization with the transmitting means, and outputs a signal of each received pulse. The ground according to claim 4, wherein the amplitude is detected in time series, and the signal processing means performs underground detection in a direction parallel to the incident surface by comparing the detected signal amplitudes in time series. Inside detection device.
[0064]
(Supplementary Note 6) The apparatus further includes a reception position detection unit that detects a three-dimensional position of the reception unit, and the signal processing unit recognizes a reception position at a time when each detected signal amplitude changes from a decrease to an increase as a Brewster angle with respect to the target point. 6. The underground detection device according to claim 5, wherein Therefore, underground metals and the like can be reliably detected, and it can be easily grasped whether or not the receiving means is currently on the Brewster angle.
[0065]
(Supplementary Note 7) The transmission means further includes a transmission position detection means for detecting a three-dimensional position of the transmission means, wherein the transmission means places transmission radio waves from the transmission means on a Brewster angle with respect to a target point according to the Brewster angle recognized by the signal processing means. 7. The underground detection device according to claim 6, wherein the device is maintained. Therefore, both the radar wave transmitting means and the radar wave receiving means can be easily guided and maintained on the current Brewster angle.
[0066]
(Supplementary Note 8) By moving the transmitting means and the receiving means in a direction perpendicular to the plane of incidence, the signal processing means divides the frequency of the signal received by the receiving means and compares the amplitude of each received signal for each frequency in time series. The underground detection device according to claim 4 or 5, wherein the underground detection is performed in a direction perpendicular to the incident surface.
[0067]
(Supplementary note 9) The transmitting means and / or the receiving means include a plurality of antennas distributed and arranged in a direction perpendicular to the ground, and a selecting means for selecting a transmission / reception signal of each antenna. Underground detector.
[0068]
(Supplementary Note 10) It is characterized by comprising a display means for displaying map data of a search area, and an information processing means for displaying an image of a target object detected by the signal processing means so as to be superimposed on the displayed map. 6. The underground detection device according to claim 6, wherein Therefore, it is easy to grasp the distribution state of the metal (land mine or the like), and the subsequent removal work of the land mine or the like can be performed efficiently.
[0069]
【The invention's effect】
As described above, according to the present invention, a metal object such as a mine buried underground in a wide area can be detected safely and reliably in a short time, and this greatly contributes to improving the efficiency of metal exploration.
[Brief description of the drawings]
FIG. 1 is a diagram illustrating the principle of the present invention.
FIG. 2 is a block diagram of a bistatic underground survey device according to the embodiment.
FIG. 3 is a diagram illustrating an underground detection principle according to the embodiment.
FIG. 4 is a diagram (1) illustrating an underground exploration operation according to the first embodiment.
FIG. 5 is a diagram (2) illustrating an underground exploration operation according to the first embodiment.
FIG. 6 is a diagram (1) illustrating an underground exploration operation according to the second embodiment.
FIG. 7 is a diagram (2) illustrating an underground exploration operation according to the second embodiment.
FIG. 8 is a diagram illustrating an underground exploration operation according to a third embodiment.
FIG. 9 is a diagram illustrating a conventional technique.
[Explanation of symbols]
10 Transmission unit
11 Transmission control unit
12 radar transmitter
13 transmitting antenna
14 Inertial Navigation Department
15 Data communication unit
16 transmitting and receiving antennas
20 receiving unit
21 Reception control unit
22 radar receiver
22a Pulse compression unit
23 receiving antenna
24 Inertial Navigation Department
25 Data communication unit
26 transmitting / receiving antenna
30 signal processing unit
32 Synthetic aperture processing unit
33 Underground detection processing unit
40 Information processing unit
41 Workstation
41a Display unit
42 Map Database (DB)
43 Pointing Device (PD)
100 land mines (metal)

Claims (5)

レーダ信号の送信手段及び受信手段を大地の目標点に関して互いに略ブリュースター角となる位置に配置し、前記送信手段から目標点に向けて送信した入射面に平行な偏波についての大地からの反射波を前記受信手段で受信すると共に、該受信手段による受信信号の振幅が所定以上であることにより地中の目標物を探知することを特徴とする地中探知方法。The radar signal transmitting means and the radar signal receiving means are arranged at positions substantially at Brewster's angle with respect to the target point on the ground, and the reflection from the ground about the polarization parallel to the incident surface transmitted from the transmitting means toward the target point. An underground detection method comprising: receiving a wave by the receiving unit; and detecting an underground target by detecting an amplitude of a signal received by the receiving unit that is equal to or greater than a predetermined value. レーダ信号の送信手段及び受信手段を大地の目標点に関して互いに略ブリュースター角となる位置に配置し、前記送信手段から目標点に向けて送信した入射面に平行な偏波についての大地からの反射波を前記受信手段で受信すると共に、該受信手段による受信信号の振幅が所定以上であることにより地中の目標物を探知する信号処理手段を備えることを特徴とする地中探知装置。The radar signal transmitting means and the radar signal receiving means are arranged at positions substantially at Brewster's angle with respect to the target point on the ground, and the reflection from the ground about the polarization parallel to the incident surface transmitted from the transmitting means toward the target point. An underground detection device comprising: a signal processing unit that receives a wave by the receiving unit and detects an underground target when the amplitude of a signal received by the receiving unit is equal to or greater than a predetermined value. 送信手段はパルス圧縮可能なレーダパルスを入射面と平行な方向にスキャンして送信すると供に、受信手段は前記送信手段に同期してパルス圧縮処理を行い、各受信パルスの信号振幅を時系列に検出し、信号処理手段は該検出された各信号振幅を時系列に比較することにより、入射面に平行な方向の地中探知を行うことを特徴とする請求項2記載の地中探知装置。The transmitting means scans and transmits the pulse compressible radar pulse in a direction parallel to the incident surface, and the receiving means performs pulse compression processing in synchronization with the transmitting means, and the signal amplitude of each received pulse is time-series. 3. The underground detection device according to claim 2, wherein the signal processing means performs underground detection in a direction parallel to the incident surface by comparing the detected signal amplitudes in a time series. . 送信手段及び受信手段を入射面と垂直な方向に移動させつつ、信号処理手段は受信手段による受信信号を周波数分割して周波数毎の各受信信号振幅を時系列に比較することにより、入射面に垂直な方向の地中探知を行うことを特徴とする請求項2又は3記載の地中探知装置。While moving the transmitting means and the receiving means in a direction perpendicular to the plane of incidence, the signal processing means frequency-divides the signal received by the receiving means and compares the amplitude of each received signal for each frequency in a time series, so that The underground detection device according to claim 2, wherein the underground detection is performed in a vertical direction. 送信手段及び又は受信手段は大地と垂直な方向に分散配置された複数のアンテナと、各アンテナの送信/受信信号を選択する選択手段とを備えることを特徴とする請求項2記載の地中探知装置。3. The underground detection apparatus according to claim 2, wherein the transmitting means and / or the receiving means includes a plurality of antennas distributed in a direction perpendicular to the ground and a selecting means for selecting a transmission / reception signal of each antenna. apparatus.
JP2003075573A 2003-03-19 2003-03-19 Underground detector Expired - Fee Related JP4166600B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2003075573A JP4166600B2 (en) 2003-03-19 2003-03-19 Underground detector

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2003075573A JP4166600B2 (en) 2003-03-19 2003-03-19 Underground detector

Publications (2)

Publication Number Publication Date
JP2004286461A true JP2004286461A (en) 2004-10-14
JP4166600B2 JP4166600B2 (en) 2008-10-15

Family

ID=33290856

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2003075573A Expired - Fee Related JP4166600B2 (en) 2003-03-19 2003-03-19 Underground detector

Country Status (1)

Country Link
JP (1) JP4166600B2 (en)

Cited By (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007248167A (en) * 2006-03-15 2007-09-27 Honda Motor Co Ltd Radio wave transparent component
JP2009036576A (en) * 2007-07-31 2009-02-19 Fuji Heavy Ind Ltd Antenna device for pulse radar
JP2011191097A (en) * 2010-03-12 2011-09-29 Mitsubishi Space Software Kk Device, method, and program of specifying dielectric constant
JP2012037204A (en) * 2010-08-11 2012-02-23 Yasuaki Iwai Device and method for searching mine
JP2013205075A (en) * 2012-03-27 2013-10-07 Nec Corp Environment observation system
KR101783815B1 (en) * 2015-07-14 2017-10-11 한국지질자원연구원 Method for detecting underground environment change using magnetic induction
WO2018042655A1 (en) * 2016-09-05 2018-03-08 三菱電機株式会社 Dielectric boundary surface estimation device
JP2018100944A (en) * 2016-12-21 2018-06-28 川崎地質株式会社 Chirp type multi-ground radar system
JP2020085558A (en) * 2018-11-20 2020-06-04 有限会社ネオサイエンス Airborne electromagnetic survey device and method for airborne electromagnetic survey
CN112346134A (en) * 2020-10-30 2021-02-09 高军 Geological radar method for intelligently detecting grouting effect of water-rich broken surrounding rock
CN113468467A (en) * 2021-05-29 2021-10-01 湖南科技大学 Data detection and preprocessing method for lightning field synchronous ground-air coupling inversion
CN114675263A (en) * 2022-04-11 2022-06-28 广州大学 Underground pipeline material identification method using dual-polarization ground penetrating radar
US20220214437A1 (en) * 2019-05-27 2022-07-07 Nippon Telegraph And Telephone Corporation Underground Radar Device and Measuring Method
WO2022243938A1 (en) * 2021-05-20 2022-11-24 Universidad Nacional De Colombia Device for locating improvised explosive devices by means of the backscattering of thermal neutrons

Cited By (19)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007248167A (en) * 2006-03-15 2007-09-27 Honda Motor Co Ltd Radio wave transparent component
JP2009036576A (en) * 2007-07-31 2009-02-19 Fuji Heavy Ind Ltd Antenna device for pulse radar
JP2011191097A (en) * 2010-03-12 2011-09-29 Mitsubishi Space Software Kk Device, method, and program of specifying dielectric constant
JP2012037204A (en) * 2010-08-11 2012-02-23 Yasuaki Iwai Device and method for searching mine
JP2013205075A (en) * 2012-03-27 2013-10-07 Nec Corp Environment observation system
KR101783815B1 (en) * 2015-07-14 2017-10-11 한국지질자원연구원 Method for detecting underground environment change using magnetic induction
JPWO2018042655A1 (en) * 2016-09-05 2018-12-20 三菱電機株式会社 Dielectric interface estimation device
WO2018042655A1 (en) * 2016-09-05 2018-03-08 三菱電機株式会社 Dielectric boundary surface estimation device
JP2018100944A (en) * 2016-12-21 2018-06-28 川崎地質株式会社 Chirp type multi-ground radar system
JP2020085558A (en) * 2018-11-20 2020-06-04 有限会社ネオサイエンス Airborne electromagnetic survey device and method for airborne electromagnetic survey
JP7223395B2 (en) 2018-11-20 2023-02-16 有限会社ネオサイエンス Airborne electromagnetic exploration device and method of airborne electromagnetic exploration
US11874658B2 (en) 2018-11-20 2024-01-16 Neoscience Co., Ltd. Airborne electromagnetic survey apparatus and airborne electromagnetic survey method
US20220214437A1 (en) * 2019-05-27 2022-07-07 Nippon Telegraph And Telephone Corporation Underground Radar Device and Measuring Method
CN112346134A (en) * 2020-10-30 2021-02-09 高军 Geological radar method for intelligently detecting grouting effect of water-rich broken surrounding rock
CN112346134B (en) * 2020-10-30 2022-08-02 高军 Geological radar method for intelligently detecting grouting effect of water-rich broken surrounding rock
WO2022243938A1 (en) * 2021-05-20 2022-11-24 Universidad Nacional De Colombia Device for locating improvised explosive devices by means of the backscattering of thermal neutrons
CN113468467A (en) * 2021-05-29 2021-10-01 湖南科技大学 Data detection and preprocessing method for lightning field synchronous ground-air coupling inversion
CN114675263A (en) * 2022-04-11 2022-06-28 广州大学 Underground pipeline material identification method using dual-polarization ground penetrating radar
CN114675263B (en) * 2022-04-11 2024-05-28 广州大学 Underground pipeline material identification method using dual-polarized ground penetrating radar

Also Published As

Publication number Publication date
JP4166600B2 (en) 2008-10-15

Similar Documents

Publication Publication Date Title
US11604251B2 (en) Systems and methods for combining radar data
US6665631B2 (en) System and method for measuring short distances
US8427360B2 (en) Apparatus and method for assisting vertical takeoff vehicles
JP2022058483A (en) Method and system for controlling autonomous vehicle using coherent distance doppler optical sensors
CN101256235B (en) Subsurface imaging radar
US20160154099A1 (en) Object detection apparatus and road mirror
US7190302B2 (en) Sub-surface radar imaging
JP4166600B2 (en) Underground detector
US5483241A (en) Precision location of aircraft using ranging
JP2020507069A (en) Augment location footprint using surface penetrating radar (SPR)
JP2019505806A (en) Multicopter with radar system
AU2002321657A1 (en) Sub-surface radar imaging
CN1820212A (en) Polarization sensitive synthetic aperture radar system and method for local positioning
CN103700288A (en) Systems and methods for performing wingtip protection
RU2656287C1 (en) Method for remote searching of underground communications location and determination of their lateral dimension and occurrence depth in the ground
JP2003522951A (en) Precision radar altimeter with surface coordinates positioning capability
US20110273324A1 (en) Continuous high-accuracy locating method and apparatus
US9739570B1 (en) Gimbal-assisted radar detection system for unmanned aircraft system (UAS)
CA2529012A1 (en) Systems and methods for target location
CA2945564A1 (en) Roadway information detection sensor device/system for autonomous vehicles
Garcia-Fernandez et al. UAV-mounted GPR for NDT applications
JP6923799B2 (en) Radar device
JPH0425507B2 (en)
WO2020222948A1 (en) Systems and methods for combining radar data
KR101656150B1 (en) Object detection flying apparatus for detection of object entombed on lower part of ground surface and object detection method

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20060308

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20080122

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20080129

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20080325

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20080722

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20080730

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110808

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120808

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120808

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130808

Year of fee payment: 5

LAPS Cancellation because of no payment of annual fees