JP2004285647A - Composite board material - Google Patents

Composite board material Download PDF

Info

Publication number
JP2004285647A
JP2004285647A JP2003077551A JP2003077551A JP2004285647A JP 2004285647 A JP2004285647 A JP 2004285647A JP 2003077551 A JP2003077551 A JP 2003077551A JP 2003077551 A JP2003077551 A JP 2003077551A JP 2004285647 A JP2004285647 A JP 2004285647A
Authority
JP
Japan
Prior art keywords
plate
heat insulating
thickness
combustible
fire
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2003077551A
Other languages
Japanese (ja)
Inventor
Shogo Matsugishi
省吾 松岸
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
MATSUGISHI KENKYUSHO KK
Komatsu Forklift KK
Original Assignee
MATSUGISHI KENKYUSHO KK
Komatsu Forklift KK
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by MATSUGISHI KENKYUSHO KK, Komatsu Forklift KK filed Critical MATSUGISHI KENKYUSHO KK
Priority to JP2003077551A priority Critical patent/JP2004285647A/en
Publication of JP2004285647A publication Critical patent/JP2004285647A/en
Pending legal-status Critical Current

Links

Images

Landscapes

  • Building Environments (AREA)
  • Laminated Bodies (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a composite board material which has excellent fireproof performance and heat insulating performance, which is lightweight by virtue of the small thickness of a board, which reduces noxious-gas yield in case of fire, and which can be recycled as a recyclable material. <P>SOLUTION: In this composite board material, noncombustible material layers 20 are each joined to both sides of a heat insulating layer 10 of foamed rigid urethane; two noncombustible rock wool molded plates 21 are superposed on each other in the layer 20; and surfaces of the molded plates 21 are covered with steel plates 22. <P>COPYRIGHT: (C)2005,JPO&NCIPI

Description

【0001】
【発明の属する技術分野】
本発明は、冷凍倉庫建物の外壁材、間仕切り材、備蓄倉庫、食品製造工場、保冷庫、恒温室の室内壁及び天井板、出入り口扉等に用いる防火性能、断熱性能が優れた複合板材、好ましくは法的に1時間の防火設備性能を満足する複合板材に関する。
【0002】
前述の法的に1時間の防火設備性能を満足する板材とは、板材の一側面から924℃の温度で1時間加熱した時に、その板材の非加熱側面(他側面)の表面温度が平均180℃以下である板材である。
【0003】
【従来の技術】
冷凍倉庫建物としては、軸組みされた建物躯体に外壁材を取付けて外壁とし、室内を用途に応じて間仕切り材で複数の室に間仕切りし、その建物躯体の上部に屋根材を取付けて屋根としたものが一般的である。
【0004】
前述の外壁材、間仕切り材としては樹脂系断熱材により成る板材が知られ、この板材は断熱性能が優れているから室内と室外や、隣接した室を断熱することができる。
【0005】
しかしながら、前述の板材は不燃性でないために防火性の優れた冷凍倉庫建物とする場合には、予め防火構造の外壁材、間仕切り材を構築し、その外壁材、間仕切り材の表面に後から前述の樹脂系断熱材より成る断熱板を取付けて防火断熱外壁、間仕切りとするか、外壁材、間仕切り材の表面に溶融した断熱材を吹きつけて断熱層として防火断熱外壁、間仕切りとしている。
【0006】
前述のように、防火構造の外壁材、間仕切り材を現場で構築し、その後に表面に断熱板を取付けたり、溶融した断熱材を吹きつけて防火断熱外壁、間仕切りとする工法であると、多くの工数を要するので施工コストが高くなるばかりか、施工期間が長くなってしまう。
【0007】
前述の工法の問題点を解決する工法としては、軸組みした建物躯体に防火断熱板材を取付ける工法が知られ、この工法であれば板材を予め工場で製造して建築現場において取付ければ良いから、工数が低減して施工コストが安くできるし、施工期間を短くできる。
【0008】
しかしながら、前述の防火断熱板材はセメント系不燃材より成る防火板と樹脂系断熱材より成る断熱板を直接張り合わせたものであり、セメント系不燃材のために大重量となり、取扱いが面倒となる。また、火災時の火災による高温度で加熱された熱は不燃材より成る耐火板を透過し、樹脂系断熱材より成る断熱板との接合部の断熱層に阻まれた圧縮熱は更に高温度になり、樹脂系断熱材より成る断熱板を瞬時に延焼させる欠点があり、防火性能が十分でない。
【0009】
また、前述の防火断熱外壁材としては不燃性断熱材を金属板で包み込んだものが開発されているが、この不燃性断熱材の断熱性能は樹脂系断熱材と比較して十分でなく、冷凍倉庫建物に要求されている−25℃以上の低温に樹脂系断熱材と同等の断熱性能にするには、不燃性断熱材の厚さを相当量増す必要があり、建物の使用有効面積の減少等の経済性に不利な問題がある。
【0010】
また、前述のように形成した防火断熱板材を複数隣接して接合して外壁、間仕切りとしているので、その接合部の隙間を接合材で閉塞しているが、その接合材は樹脂系材又は難燃加工した樹脂材であるから耐火性能が著しく劣り、火災時に溶融し炎が侵入して断熱材に引火するので、防火断熱材自体の防火性が良くとも外壁、間仕切りの耐火性が劣る。
【0011】
前述のことを解消できる防火性能、断熱性能に優れた複合板材が、特許文献1に開示されている。
すなわち、厚さ180〜200mmの発泡硬質ウレタンの断熱層の厚さ方向両面に厚さ25mmの内側のけい酸カルシウム板がそれぞれ設けられ、この各内側のけい酸カルシウム板にアルミナシリケート繊維紙がそれぞれ接合され、この各アルミナシリケート繊維紙に厚さ5〜8mmの外側のけい酸カルシウム板がそれぞれ接合され、この各外側のけい酸カルシウム板に鋼板がそれぞれ接合された複合板材である。
この複合板材であれば、その両面からの熱によって発泡硬質ウレタンの断熱層が長期間に亘って融解、引火しないから両面からの火災に耐えることができると共に、断熱性に優れ軽量とすることができる。
【0012】
【特許文献1】
特許第3345742号公報
【0013】
【発明が解決しようとする課題】
前述した従来の複合板材は、発泡硬質ウレタンの断熱層が長時間に亘って融解、引火しないようにすることで優れた防火性能を有するものとしているので、その両面にそれぞれ設けた内側のけい酸カルシウム板、アルミナシリケート繊維紙、外側のけい酸カルシウム板の接合材は、前述のことを満足するために板厚を厚くしている。すなわち、30mm〜33mmの厚さとして発泡硬質ウレタンの断熱層に熱が伝わり難くしている。
また、けい酸カルシウム板を用いているために、複合板材の断熱性能は、主として発泡硬質ウレタンの断熱層の断熱性能で決定されるので、その断熱層を厚く(180〜200mm)して複合板材の断熱性能を優れたものにしている。
このために、従来の複合板材はその板厚が厚い。
【0014】
また、けい酸カルシウム板は比重が0.7と大きいので、前述した板厚さが厚いことと相俟って大重量で、従来の複合板材は大重量である。
【0015】
このように、従来の複合板材は、板厚が厚く、大重量であるから取り扱いが面倒であるし、コストが高く経済性が不利である。
また、断熱層が厚いので、発泡硬質ウレタンの使用料が多く、火災時の有害ガス発生量が多い。
【0016】
前述の従来の複合板材に用いているけい酸カルシウム板は、リサイクル材として再利用が困難で、廃棄処分する際に産業廃棄物となり、その廃棄に費用がかかる。
【0017】
本発明は、前述のことに鑑みなされたものであって、その目的は、優れた防火性能、断熱性能を有すること、板厚が薄く、軽量であると共に、火災時の有害ガス発生量が少ないこと、リサイクル材として再利用できること、を満足した複合板材を提供することである。
【0018】
【課題を解決するための手段】
本発明者等は、発泡硬質ウレタンを断熱材として用い、その両面に不燃材を接合して設けた複合板材の防火性能について鋭意研究実験した結果、次のことを見出した。
つまり、一方の不燃材に火炎を当てて加熱したところ、発泡硬質ウレタンの温度が上昇し、200℃で溶解して溶解ガス化し、この溶解ガスが、加熱した一方の不燃材が収縮しながら湾曲変形することで、その端部と取付部との間に生じた隙間から外部に吹き出して燃焼した。そして、他方の不燃材の温度が燃焼温度まで上昇せずに、所定の防火性能が得られた。
このことから、従来のように発泡硬質ウレタンが燃焼、溶解しないように不燃材を選択する必要がなく、その不燃材は発泡硬質ウレタンが燃焼、溶解する程度で良いことが判明した。
【0019】
前述の条件を満足する不燃材を種々選択検討したところ、不燃性ロックウールが好ましいことを見出した。
つまり、不燃性ロックウールは比重が0.4で小さく軽量であると共に、断熱性が良く、しかもリサイクル材として再利用できることから好ましい。
【0020】
前述のことに鑑み、不燃性ロックウールと発泡硬質ウレタンを用いた複合板材を種々研究実験した結果、本発明に到った。
本発明は、発泡硬質ウレタンの断熱層10と、この両面にそれぞれ接合された不燃材層20から成る複合板材において、
前記各不燃材層20は不燃性ロックウール成形板21を2枚重ね合せ、その断熱層10と反対側の不燃性ロックウール成形板21の表面を鋼板22で被覆したことを特徴とする複合板材である。
【0021】
前記断熱層10の厚さは30mm〜150mmの範囲が好ましく、不燃性ロックウール成形板21の板厚は12mmが好ましい。
前記鋼板22の板厚は0.4mm〜0.8mmが好ましい。
【0022】
また、前記断熱層10として用いる発泡硬質ウレタンは、ノンフロンガスで発泡したものが好ましい。
【0023】
【発明の実施の形態】
図1に示すように、断熱層10として発泡硬質ウレタンを用い、その両面に不燃材層20がそれぞれ接合されて複合板材1としてある。
この各不燃材層20は、不燃性ロックウール成形板21を2枚重ね合せ、その断熱層10と反対側の不燃性ロックウール成形板21の表面を鋼板22で被覆してある。
【0024】
この実施の形態の複合板材1は、2つの不燃材層20を間隔を置いて配置し、その両者の空間に、ウレタン、例えばイソシヤネート50%とポリウール50%を混合したものを注入充填してノンフロンガスで発泡して発泡硬質ウレタンの断熱層10としている。これに限ることはなく、所定の厚さと大きさの発泡硬質ウレタンをあらかじめ製造し、その両面に不燃材層20をそれぞれ接合して設けても良い。
【0025】
前記不燃性ロックウール成形板は、酸化ケイ素、酸化カルシウム系繊維合成成形板が好ましい。
例えば、スラグ系鉱物繊維(酸化ケイ素、酸化カルシウム系繊維)86(質量%)、有機バインダー(でん粉)6(質量%)、クレー5(質量%)、その他(撥水剤、凝集剤等)3(質量%)を組成とし、質量10.0kg/m,かさ比重0.4のもの。
また、スラグ系鉱物繊維(酸化ケイ素、酸化カルシウム系繊維)16〜86(質量%)、水酸化アルミニウム0〜70(質量%)、有機バインダー(でん粉)6(質量%)、クレー5(質量%)、その他(撥水剤、凝集剤等)3(質量%)を組成とし、質量2.4kg/m〜15.0kg/mで、かさ比重0.4〜0.6のもの。
【0026】
図1においては、2つの複合板材1を連結してある。
例えば、一方の複合板材1の不燃材層20と他方の複合板1材の不燃材層20を隙間を置いて対向し、その隙間に加熱膨張材30を設けると共に、耐火シーリング材31で閉塞することで2つの複合板材1を突き合せ連結してある。
【0027】
次に前述の複合板材のJIS規格加熱炉を使用しての火炎加熱1時間における防火性能実験を説明する。
(不燃材層20の決定実験)
不燃材層20として多種不燃材から不燃性ロックウール成形板を選出した。
図2(a),(b)に示すように、不燃性ロックウール成形板21単板で、板厚12mm、15mmと、図2(c)に示すように、板厚12mm+板厚6mm合成板と、図2(d)に示すように板厚12mm+板厚12mm合成板に、加熱側に鋼板22(厚さ0.4mm)を貼りつけて一体化した不燃材層20を加熱炉で火炎加熱温度800℃時点で20分間加熱における各試験体の試験体透過温度約200℃を確保できる性能厚さを求める実験を実施した。
必要とする透過温度約200℃とは、断熱層としての発泡硬質ウレタンを初期融解し融解ガス化を作り出す条件に合致する状態が得られることによる。
【0028】
その結果は、図3の図表に示すとおりであった。
このことから、NO.4の板厚12mm+板厚12mmの合成板に鋼板22を貼りつけた不燃材層20が、裏面温度が200℃となる時間が長く、この不燃材層20が最も好ましいことが判明した。
【0029】
(発泡硬質ウレタンの厚さによる防火性能実験)
図4に示すように、密閉加熱炉40に、前述の板厚12mm+板厚12mmの不燃性ロックウール成形板21の合成板に鋼板22を貼りつけた不燃材層20を用い、その不燃材層20の間隔、つまり発泡硬質ウレタンより成る断熱層10の厚さを変えた複合板材1をセットし、最高温度930℃の火炎で1時間加熱した時の防火性能を確認した。
前記確認の仕方として、加熱側の不燃材層20の裏面▲1▼の温度、加熱側と反対側の不燃材層20の裏面▲2▼の温度、2枚の不燃性ロックウール成形板21の重せ面▲3▼の温度、外側の不燃性ロックウール成形板21の鋼板22の表面▲4▼の温度を測定した。
図4において、火炎口41から火災が矢印で示すように複合板材1に向けて吹きつけられ、一方の不燃材層20の鋼板22が加熱面である。
【0030】
断熱材層10の厚さが30mmの実施結果は図5に示すとおりであった。
断熱材層10の厚さが60mmの実施結果は図6に示すとおりであった。
断熱材層10の厚さが90mmの実施結果は図7に示すとおりであった。
断熱材層10の厚さが120mmの実施結果は図8に示すとおりであった。
断熱材層10の厚さが150mmの実施結果は図9に示すとおりであった。
なお、図6〜図9において▲3▼の温度を三角印、▲4▼の温度を丸印で図示したが、これは他の温度と区別するためで、図5のように実線で示したものと同様である。
【0031】
以上の実験結果から次のことが判明した。
不燃材層20で被覆した断熱層10としての発泡硬質ウレタンが加熱融解し溶解ガス化燃焼して非加熱側表面温度に及ぼすのは、断熱層10の重量ではなく不燃材層20間の空間巾(断熱層10の厚さ)である。
即ち、断熱層10の厚さ(空間)が狭いほど非加熱側にある不燃材層20表面温度が高くなり防火性能としては、不利なる。図5に示す結果から断熱層10の厚さが30mmで非加熱側の不燃材層20の表面温度が75℃で、求める防火性能を確保できた。
このことから、断熱材層10の最小厚さを30mmとした。
また、この場合には厚さ30mmの発泡硬質ウレタンで求める断熱性能を確保できた。
【0032】
図6に示す結果から、断熱性能をアップするために発泡硬質ウレタン(断熱層10)の厚さを60mmとした場合には、前述の空間巾が大きくなることにより発泡硬質ウレタン量が多くなり、そのウレタンが溶解ガス化して燃焼した場合に、前述の表面▲2▼の温度が30mmの場合よりも低く、非加熱側の不燃材層20の表面温度が約50℃と低かった。
このことから、耐火性能が優れたものとなる。
【0033】
図7、図8、図9に示す結果から、発泡硬質ウレタン(断熱層10)の厚さが90mm、120mm、150mmと厚くすることで、非加熱側の不燃材層20の表面温度が約47℃、約40℃、約30℃と順次低くなり、耐火性能がより優れたものとなる。
【0034】
以上の実験での総合結果から、不燃性ロックウール成形板21と鋼板22より成る不燃材層20で発泡硬質ウレタンを被覆密閉した複合板材では、可燃材である発泡硬質ウレタンを用いても初期の火炎加熱時に、ウレタンを融解ガス化させ、これの燃焼させることにより複合板材の非加熱側温度を低下させる作用が働き火災温度に達さないので、この複合板材での区画火災が他に延焼させない。また区画外での防火が区画内に延焼しない防火性能を確保できることが判明した。
【0035】
前述の各実験において、加熱側の不燃材層10の端部と炉壁42との間から溶解ガスが炉内に吹き出して燃焼した。
このことは、加熱された不燃材層20が収縮しながら湾曲変形し、その端部と炉壁42との間に隙間が生じたためと考えられる。
【0036】
図1に示す加熱膨張材30は、グラフライト系無機質膨張材とセラミック系繊維を主材として板状に成形したシート状であることが好ましい。これにより、初期加熱300℃で小口より膨張を開始しシート全体に温度が及んだ時点で元の厚さの約9.5倍以上の膨張作用で隙間を密閉して火炎の進入を防止することができる。
【0037】
【発明の効果】
請求項1に係る発明によれば、一方側の不燃材層20が加熱された際に、発泡硬質ウレタンが溶解して溶解ガス化し、その溶解ガスが加熱側に吹き出して燃焼することで非加熱側の不燃材層20の表面温度が低く、燃焼温度まで上昇しないから、耐火性能を確保できる。
このことから、不燃材層20として比重が小さい不燃性ロックウール成形板21を用いて板厚を薄くすることで、耐火性能を確保できる複合板材とすることができる。
また、不燃性ロックウール成形板21は断熱性が良いから、発泡硬質ウレタンを薄くして求める断熱性能を確保できる。
しかも、不燃性ロックウール成形板21はリサイクル材として再利用できる。
【0038】
これらが相俟って、優れた防火性能、断熱性能を有し、板厚が薄く、軽量であると共に、火災時の有害ガス発生量が少なく、しかもリサイクル材として再利用できる複合板材である。
【0039】
請求項2に係る発明によれば、1時間の防火設備性能を満足する複合板材とすることができる。
【図面の簡単な説明】
【図1】複合板材の断面図である。
【図2】種々の不燃材層の断面図である。
【図3】種々の不燃材層の加熱実験結果を示す図表である。
【図4】密閉加熱炉による加熱実験の概略説明図である。
【図5】加熱実験結果を示す図表である。
【図6】加熱実験結果を示す図表である。
【図7】加熱実験結果を示す図表である。
【図8】加熱実験結果を示す図表である。
【図9】加熱実験結果を示す図表である。
【符号の説明】
10…断熱層、20…不燃材層、21…不燃材ロックウール成形板、22…剛板。
[0001]
TECHNICAL FIELD OF THE INVENTION
The present invention is an outer wall material of a freezer warehouse building, a partition material, a storage warehouse, a food manufacturing plant, a cool box, a room wall and a ceiling plate of a constant temperature room, a fire prevention performance used for doorways, etc., a composite plate material excellent in heat insulation performance, preferably Relates to a composite plate material that legally satisfies the performance of a fire protection facility for one hour.
[0002]
The above-mentioned plate material that satisfies the performance of the fire protection equipment for one hour is defined as having an average surface temperature of 180 on the unheated side surface (other side surface) when heated from one side surface at a temperature of 924 ° C. for one hour. It is a plate material that is below ℃.
[0003]
[Prior art]
As a freezer warehouse building, an outer wall material is attached to a framed building frame to form an outer wall, the room is divided into multiple rooms with partitioning materials according to the application, and a roofing material is attached to the top of the building frame and a roof is attached. What is done is common.
[0004]
As the above-mentioned outer wall material and partitioning material, a plate material made of a resin-based heat insulating material is known, and since this plate material has excellent heat insulating performance, it can insulate the room, the outside and the adjacent room.
[0005]
However, when the above-mentioned plate material is not nonflammable and is used as a refrigerated warehouse building with excellent fire protection, an outer wall material and a partition material having a fire protection structure are constructed in advance, and the outer wall material and the surface of the partition material are described later on the surface. A heat-insulating plate made of a resin-based heat insulating material is attached to form a fire-insulated outer wall or partition, or a molten heat-insulating material is sprayed on the surface of the outer wall material or the partition material to form a fire-insulated outer wall or partition as a heat insulating layer.
[0006]
As mentioned above, the construction method of the outer wall material and the partition material of the fire protection structure at the site, and then attaching the heat insulating plate to the surface or spraying the molten heat insulating material to make the fire protection heat insulating outer wall and partition, many methods Therefore, not only the construction cost is increased, but also the construction period becomes longer.
[0007]
As a method of solving the problems of the above-mentioned method, a method of attaching a fire-resistant and heat-insulating plate to a framed building frame is known. With this method, the plate may be manufactured in advance in a factory and attached at a building site. In addition, the number of steps can be reduced, the construction cost can be reduced, and the construction period can be shortened.
[0008]
However, the above-mentioned fire-resistant and heat-insulating plate material is obtained by directly bonding a fire-resistant plate made of a cement-based incombustible material and a heat-insulating plate made of a resin-based heat-insulating material. In addition, the heat heated at a high temperature due to the fire at the time of the fire passes through the refractory plate made of non-combustible material, and the compression heat blocked by the heat insulating layer at the junction with the heat insulating plate made of resin-based heat insulating material further increases the temperature. Therefore, there is a disadvantage that the heat insulating plate made of a resin-based heat insulating material spreads instantaneously, and the fire prevention performance is not sufficient.
[0009]
As the above-mentioned fire-resistant and heat-insulating outer wall material, a non-combustible heat-insulating material wrapped in a metal plate has been developed.However, the heat-insulating performance of this non-combustible heat-insulating material is not sufficient compared to resin-based heat-insulating materials. In order to achieve the same level of insulation performance as resin-based insulation at the low temperature of -25 ° C or higher required for warehouse buildings, it is necessary to increase the thickness of non-combustible insulation considerably, and the effective use area of the building is reduced. And other disadvantages in economics.
[0010]
Further, since a plurality of the fire-preventive and heat-insulating plate members formed as described above are joined adjacently to form an outer wall and a partition, the gap at the joint is closed with the joining material. Since it is a resin material subjected to combustion processing, the fire resistance is remarkably inferior. Since it melts at the time of a fire and a flame enters and ignites the heat insulating material, the fire resistance of the outer wall and the partition is inferior even if the fire protection heat insulating material itself has good fire resistance.
[0011]
Patent Document 1 discloses a composite plate material excellent in fire prevention performance and heat insulation performance capable of solving the above-mentioned problems.
That is, an inner calcium silicate plate having a thickness of 25 mm is provided on both sides in the thickness direction of a heat insulating layer of a foamed hard urethane having a thickness of 180 to 200 mm, and an alumina silicate fiber paper is provided on each inner calcium silicate plate. This is a composite board material in which outer calcium silicate plates having a thickness of 5 to 8 mm are bonded to the respective alumina silicate fiber papers, and steel plates are bonded to the respective outer calcium silicate plates.
With this composite board, the heat-insulating layer of the foamed rigid urethane is not melted and ignited for a long period of time due to heat from both sides, so that it can withstand fire from both sides and has excellent heat insulating properties and light weight. it can.
[0012]
[Patent Document 1]
Japanese Patent No. 3345742
[Problems to be solved by the invention]
The above-mentioned conventional composite board has excellent fire protection performance by preventing the heat-insulating layer of foamed rigid urethane from melting and igniting over a long period of time. The bonding material of the calcium plate, the alumina silicate fiber paper, and the outer calcium silicate plate is made thicker to satisfy the above-mentioned requirements. That is, the thickness of 30 mm to 33 mm makes it difficult for heat to be transmitted to the heat insulating layer of the foamed hard urethane.
Also, since the calcium silicate plate is used, the heat insulation performance of the composite plate material is determined mainly by the heat insulation performance of the heat insulation layer of the foamed hard urethane. Therefore, the heat insulation layer is thickened (180 to 200 mm) and Has excellent heat insulation performance.
For this reason, the conventional composite board has a large board thickness.
[0014]
Further, since the calcium silicate plate has a large specific gravity of 0.7, it is heavy in combination with the above-mentioned thick plate thickness, and the conventional composite plate is heavy.
[0015]
As described above, the conventional composite plate material has a large thickness and a large weight, so that it is troublesome to handle, and the cost is high and the economic efficiency is disadvantageous.
In addition, since the heat insulating layer is thick, the usage fee of the foamed hard urethane is large, and the amount of harmful gas generated during a fire is large.
[0016]
The calcium silicate plate used in the above-mentioned conventional composite plate material is difficult to reuse as a recycled material, becomes an industrial waste when disposed, and is expensive to dispose.
[0017]
The present invention has been made in view of the above, and its object is to have excellent fire prevention performance, heat insulation performance, a thin plate, light weight, and a small amount of harmful gas generated in a fire. It is an object of the present invention to provide a composite board material that satisfies that it can be reused as a recycled material.
[0018]
[Means for Solving the Problems]
The present inventors have conducted intensive studies and experiments on the fire prevention performance of a composite plate material provided with a non-combustible material bonded to both surfaces thereof using foamed rigid urethane as a heat insulating material, and found the following.
In other words, when a flame is applied to one of the incombustible materials and heated, the temperature of the foamed hard urethane rises and melts at 200 ° C. to form a dissolved gas, and this dissolved gas is curved while the heated one of the incombustible materials shrinks. Due to the deformation, it was blown out to the outside from a gap formed between the end portion and the mounting portion and burned. Then, a predetermined fire prevention performance was obtained without the temperature of the other noncombustible material rising to the combustion temperature.
From this, it was found that it was not necessary to select an incombustible material so that the foamed hard urethane did not burn and dissolve as in the related art, and the incombustible material was only required to burn and dissolve the foamed hard urethane.
[0019]
When various noncombustible materials satisfying the above-mentioned conditions were selected and studied, it was found that noncombustible rock wool was preferable.
That is, non-combustible rock wool is preferable because it has a specific gravity of 0.4, is small and lightweight, has good heat insulating properties, and can be reused as a recycled material.
[0020]
In view of the above, as a result of conducting various research and experiments on composite plate materials using non-combustible rock wool and foamed hard urethane, the present invention has been reached.
The present invention relates to a composite board comprising a heat insulating layer 10 of foamed hard urethane and a non-combustible material layer 20 bonded to both surfaces thereof,
The composite plate material is characterized in that each of the non-combustible material layers 20 is formed by stacking two non-combustible rock wool molded plates 21 and covering the surface of the non-combustible rock wool molded plate 21 opposite to the heat insulating layer 10 with a steel plate 22. It is.
[0021]
The thickness of the heat insulating layer 10 is preferably in the range of 30 mm to 150 mm, and the thickness of the non-combustible rock wool molded plate 21 is preferably 12 mm.
The thickness of the steel plate 22 is preferably 0.4 mm to 0.8 mm.
[0022]
The foamed rigid urethane used as the heat insulating layer 10 is preferably foamed with a non-fluorocarbon gas.
[0023]
BEST MODE FOR CARRYING OUT THE INVENTION
As shown in FIG. 1, a foamed hard urethane is used as a heat insulating layer 10, and a non-combustible material layer 20 is joined to both surfaces thereof to form a composite board 1.
Each of the noncombustible material layers 20 is formed by stacking two noncombustible rock wool molded plates 21 and covering the surface of the noncombustible rock wool molded plate 21 opposite to the heat insulating layer 10 with a steel plate 22.
[0024]
In the composite board 1 of this embodiment, two non-combustible layers 20 are arranged at an interval, and a mixture of urethane, for example, a mixture of 50% of isocyanate and 50% of polywool is injected and filled into both spaces. The heat insulating layer 10 is made of foamed hard urethane by foaming with gas. However, the present invention is not limited to this. For example, foamed hard urethane having a predetermined thickness and size may be manufactured in advance, and the non-combustible material layers 20 may be provided on both surfaces thereof.
[0025]
The non-combustible rock wool molded plate is preferably a silicon oxide or calcium oxide-based fiber synthetic molded plate.
For example, slag-based mineral fibers (silicon oxide, calcium oxide-based fibers) 86 (% by mass), organic binder (starch) 6 (% by mass), clay 5 (% by mass), and others (water repellent, flocculant, etc.) 3 (Mass%), a mass of 10.0 kg / m 3 and a bulk specific gravity of 0.4.
In addition, slag-based mineral fibers (silicon oxide, calcium oxide-based fibers) 16 to 86 (% by mass), aluminum hydroxide 0 to 70 (% by mass), organic binder (starch) 6 (% by mass), clay 5 (% by mass) ) And 3 (% by mass) of other components (water repellent, coagulant, etc.) having a mass of 2.4 kg / m 3 to 15.0 kg / m 3 and a bulk specific gravity of 0.4 to 0.6.
[0026]
In FIG. 1, two composite board members 1 are connected.
For example, the non-combustible material layer 20 of one composite plate 1 and the non-combustible material layer 20 of the other composite plate 1 are opposed to each other with a gap therebetween, and the heat expansion material 30 is provided in the gap and closed by the fireproof sealing material 31. Thus, the two composite plate members 1 are butt-connected.
[0027]
Next, a description will be given of a fire prevention performance experiment for one hour of flame heating using the JIS standard heating furnace of the above-mentioned composite plate material.
(Experiment for determining the incombustible material layer 20)
A non-combustible rock wool molded plate was selected from various non-combustible materials as the non-combustible material layer 20.
As shown in FIGS. 2 (a) and 2 (b), the non-combustible rock wool molded plate 21 is a single plate having a thickness of 12 mm and 15 mm, and a composite plate having a thickness of 12 mm + a thickness of 6 mm as shown in FIG. 2 (c). Then, as shown in FIG. 2 (d), a non-combustible material layer 20 obtained by attaching a steel plate 22 (0.4 mm in thickness) to a heating side on a composite plate having a thickness of 12 mm + a thickness of 12 mm is flame-heated in a heating furnace. An experiment was conducted to determine the performance thickness at which the specimen permeation temperature of about 200 ° C. could be secured for each specimen during heating at 800 ° C. for 20 minutes.
The required permeation temperature of about 200 ° C. is based on obtaining a state that meets the conditions for initial melting of the foamed hard urethane as the heat insulating layer to produce molten gasification.
[0028]
The results were as shown in the chart of FIG.
From this, NO. 4, the non-combustible material layer 20 in which the steel plate 22 was bonded to the composite plate having a thickness of 12 mm and a thickness of 12 mm had a long back surface temperature of 200 ° C., and it was found that this non-combustible material layer 20 was most preferable.
[0029]
(Fire prevention performance experiment based on the thickness of foamed rigid urethane)
As shown in FIG. 4, a non-combustible material layer 20 in which a steel plate 22 is bonded to a composite plate of the above-described non-combustible rock wool molded plate 21 having a thickness of 12 mm + a thickness of 12 mm is used for a closed heating furnace 40. The composite plate material 1 was set at intervals of 20, that is, the thickness of the heat insulating layer 10 made of foamed hard urethane was changed, and the fire protection performance when heated for 1 hour with a flame having a maximum temperature of 930 ° C. was confirmed.
As a method of checking, the temperature of the back surface (1) of the non-combustible material layer 20 on the heating side, the temperature of the back surface (2) of the non-combustible material layer 20 on the side opposite to the heating side, and the two non-combustible rock wool molding plates 21 The temperature of the weighted surface {circle around (3)} and the temperature of the surface {circle around (4)} of the steel plate 22 of the outer noncombustible rock wool molded plate 21 were measured.
In FIG. 4, a fire is blown from the flame port 41 toward the composite plate 1 as indicated by an arrow, and the steel plate 22 of one of the noncombustible material layers 20 is a heating surface.
[0030]
The results obtained when the thickness of the heat insulating material layer 10 was 30 mm were as shown in FIG.
The results obtained when the thickness of the heat insulating material layer 10 was 60 mm were as shown in FIG.
The results obtained when the thickness of the heat insulating material layer 10 was 90 mm were as shown in FIG.
The results obtained when the thickness of the heat insulating material layer 10 was 120 mm were as shown in FIG.
The results obtained when the thickness of the heat insulating material layer 10 was 150 mm were as shown in FIG.
In FIGS. 6 to 9, the temperature of (3) is indicated by a triangle and the temperature of (4) is indicated by a circle, which is indicated by a solid line as shown in FIG. Same as the one.
[0031]
The following was found from the above experimental results.
It is not the weight of the heat-insulating layer 10 but the space width between the non-flammable material layers 20 that the foamed hard urethane as the heat-insulating layer 10 covered with the non-combustible material layer 20 is heated, melted, dissolved and gasified and burned, and exerts on the non-heating side surface temperature. (Thickness of the heat insulating layer 10).
That is, the smaller the thickness (space) of the heat insulating layer 10 is, the higher the surface temperature of the non-combustible material layer 20 on the non-heating side becomes, which is disadvantageous in fire prevention performance. From the results shown in FIG. 5, it was found that the thickness of the heat insulating layer 10 was 30 mm, the surface temperature of the non-combustible material layer 20 on the non-heating side was 75 ° C., and the required fire protection performance was secured.
For this reason, the minimum thickness of the heat insulating material layer 10 was set to 30 mm.
Further, in this case, the heat insulation performance required by the foamed hard urethane having a thickness of 30 mm could be secured.
[0032]
From the results shown in FIG. 6, when the thickness of the foamed hard urethane (heat insulating layer 10) is set to 60 mm in order to improve the heat insulating performance, the above-mentioned space width increases, and the amount of the foamed hard urethane increases. When the urethane was dissolved and gasified and burned, the temperature of the surface (2) was lower than that of the case of 30 mm, and the surface temperature of the non-combustible material layer 20 on the non-heating side was as low as about 50 ° C.
From this, the fire resistance performance is excellent.
[0033]
From the results shown in FIGS. 7, 8 and 9, by increasing the thickness of the foamed hard urethane (heat insulating layer 10) to 90 mm, 120 mm, and 150 mm, the surface temperature of the non-combustible material layer 20 on the non-heating side becomes approximately 47 mm. C., about 40.degree. C., and about 30.degree. C., and the fire resistance becomes more excellent.
[0034]
From the overall results of the above experiments, the composite plate material in which the foamed hard urethane was covered and sealed with the incombustible material layer 20 composed of the incombustible rock wool molded plate 21 and the steel plate 22 even when the foamed hard urethane which is a combustible material was used. At the time of flame heating, urethane is melted and gasified, and by burning it, the action of lowering the non-heating side temperature of the composite plate material does not work and does not reach the fire temperature, so the section fire in this composite plate material does not spread to other parts . In addition, it was found that fire protection outside the section could secure fire prevention performance that would not spread to the inside of the section.
[0035]
In each of the experiments described above, the dissolved gas was blown into the furnace from between the end of the non-combustible material layer 10 on the heating side and the furnace wall 42 and burned.
This is probably because the heated non-combustible material layer 20 was bent and deformed while shrinking, and a gap was formed between the end portion and the furnace wall 42.
[0036]
The heat-expanding material 30 shown in FIG. 1 is preferably in the form of a sheet formed by forming a graphite-based inorganic expanding material and ceramic-based fibers as main materials into a plate shape. Thereby, the expansion starts from the small opening at the initial heating of 300 ° C., and when the temperature reaches the entire sheet, the gap is closed by the expansion action of about 9.5 times or more of the original thickness to prevent the flame from entering. be able to.
[0037]
【The invention's effect】
According to the first aspect of the present invention, when the non-combustible material layer 20 on one side is heated, the foamed hard urethane dissolves and turns into a dissolved gas, and the dissolved gas is blown out to the heating side and burned, thereby preventing non-heating. Since the surface temperature of the noncombustible material layer 20 on the side is low and does not rise to the combustion temperature, fire resistance can be ensured.
Therefore, by using the non-combustible rock wool molded plate 21 having a small specific gravity as the non-combustible material layer 20 and reducing the thickness, a composite plate material capable of securing fire resistance can be obtained.
Further, since the non-combustible rock wool molded plate 21 has good heat insulating properties, it is possible to secure the required heat insulating performance by reducing the thickness of the foamed hard urethane.
Moreover, the non-combustible rock wool molded plate 21 can be reused as a recycled material.
[0038]
Together, these are composite plate materials having excellent fire prevention performance and heat insulation performance, having a small thickness and light weight, generating a small amount of harmful gas during a fire, and being recyclable.
[0039]
According to the second aspect of the present invention, it is possible to obtain a composite plate material that satisfies the fire protection facility performance for one hour.
[Brief description of the drawings]
FIG. 1 is a cross-sectional view of a composite plate material.
FIG. 2 is a cross-sectional view of various non-combustible material layers.
FIG. 3 is a table showing the results of heating experiments on various non-combustible material layers.
FIG. 4 is a schematic explanatory view of a heating experiment using a closed heating furnace.
FIG. 5 is a table showing the results of a heating experiment.
FIG. 6 is a table showing the results of a heating experiment.
FIG. 7 is a table showing the results of a heating experiment.
FIG. 8 is a table showing the results of a heating experiment.
FIG. 9 is a table showing the results of a heating experiment.
[Explanation of symbols]
10: heat insulating layer, 20: noncombustible material layer, 21: noncombustible material rock wool molded plate, 22: rigid plate.

Claims (2)

発泡硬質ウレタンの断熱層10と、この両面にそれぞれ接合された不燃材層20から成り、
前記各不燃材層20は、不燃性ロックウール成形板21を2枚重ね合せ、その断熱層10と反対側の不燃性ロックウール成形板21の表面を鋼板22で被覆したことを特徴とする複合板材。
It consists of a heat insulating layer 10 of foamed hard urethane, and a non-combustible material layer 20 bonded to both sides thereof,
Each of the non-combustible material layers 20 is formed by stacking two non-combustible rock wool molded plates 21 and coating the surface of the non-combustible rock wool molded plate 21 opposite to the heat insulating layer 10 with a steel plate 22. Board material.
断熱層10の厚さは30mm〜150mmで、不燃性ロックウール成形板21の板厚は12mmで、鋼板22の板厚は0.4mm〜0.8mmである請求項1記載の複合板材。The composite plate material according to claim 1, wherein the thickness of the heat insulating layer 10 is 30 mm to 150 mm, the thickness of the non-combustible rock wool molded plate 21 is 12 mm, and the thickness of the steel plate 22 is 0.4 mm to 0.8 mm.
JP2003077551A 2003-03-20 2003-03-20 Composite board material Pending JP2004285647A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2003077551A JP2004285647A (en) 2003-03-20 2003-03-20 Composite board material

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2003077551A JP2004285647A (en) 2003-03-20 2003-03-20 Composite board material

Publications (1)

Publication Number Publication Date
JP2004285647A true JP2004285647A (en) 2004-10-14

Family

ID=33292277

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2003077551A Pending JP2004285647A (en) 2003-03-20 2003-03-20 Composite board material

Country Status (1)

Country Link
JP (1) JP2004285647A (en)

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2012034297A1 (en) * 2010-09-17 2012-03-22 天津科技大学 Aerating type wall body material and aerating type mini cold storage or air conditioned storage using wall body material
CN102409819A (en) * 2011-07-29 2012-04-11 郑斯强 Granite insulating-fireproof composite board and production method thereof
CN103122659A (en) * 2011-11-18 2013-05-29 苏畅 Warehouse-dividing fireproofing insulation board
CN105544770A (en) * 2014-11-03 2016-05-04 山东永远集团有限公司 Integral type energy saving light-weight composite wall
CN105672509A (en) * 2016-01-30 2016-06-15 万华节能科技集团股份有限公司 Rock wool composite board and continuous production method thereof
JP2017160611A (en) * 2016-03-07 2017-09-14 東亜建設工業株式会社 Wall surface panel
JP2017190576A (en) * 2016-04-12 2017-10-19 東亜建設工業株式会社 Wall structure and construction method of wall structure
TWI689651B (en) * 2018-07-20 2020-04-01 三貳防火材料有限公司 Skeleton structure of composite refractory

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS4842312U (en) * 1971-09-20 1973-05-30
JPH07189359A (en) * 1993-12-27 1995-07-28 Ask:Kk Steel frame fireproof covering structure and steel frame fireproof covering work method
JPH09242210A (en) * 1996-03-12 1997-09-16 Takenaka Komuten Co Ltd Adiabatic plate used also as flask
JPH10299129A (en) * 1997-04-22 1998-11-10 Komatsu Forklift Co Ltd Fire resistant heat insulating plate material and joining material

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS4842312U (en) * 1971-09-20 1973-05-30
JPH07189359A (en) * 1993-12-27 1995-07-28 Ask:Kk Steel frame fireproof covering structure and steel frame fireproof covering work method
JPH09242210A (en) * 1996-03-12 1997-09-16 Takenaka Komuten Co Ltd Adiabatic plate used also as flask
JPH10299129A (en) * 1997-04-22 1998-11-10 Komatsu Forklift Co Ltd Fire resistant heat insulating plate material and joining material

Cited By (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2012034297A1 (en) * 2010-09-17 2012-03-22 天津科技大学 Aerating type wall body material and aerating type mini cold storage or air conditioned storage using wall body material
CN102409819A (en) * 2011-07-29 2012-04-11 郑斯强 Granite insulating-fireproof composite board and production method thereof
CN103122659A (en) * 2011-11-18 2013-05-29 苏畅 Warehouse-dividing fireproofing insulation board
CN105544770A (en) * 2014-11-03 2016-05-04 山东永远集团有限公司 Integral type energy saving light-weight composite wall
CN105672509A (en) * 2016-01-30 2016-06-15 万华节能科技集团股份有限公司 Rock wool composite board and continuous production method thereof
CN105672509B (en) * 2016-01-30 2018-01-19 万华节能科技集团股份有限公司 A kind of rock wool-steel plywood and its continuous production method
JP2017160611A (en) * 2016-03-07 2017-09-14 東亜建設工業株式会社 Wall surface panel
JP2017190576A (en) * 2016-04-12 2017-10-19 東亜建設工業株式会社 Wall structure and construction method of wall structure
TWI689651B (en) * 2018-07-20 2020-04-01 三貳防火材料有限公司 Skeleton structure of composite refractory

Similar Documents

Publication Publication Date Title
JP5543744B2 (en) Fireproof compartment penetration structure
KR101995447B1 (en) Composite exterior structure for construction with integral flat inorganic layer
KR100778359B1 (en) The fire protection of heat insulating pad using eco-friendly material
JP6193249B2 (en) Fireproof compartment penetration structure
JP2004285647A (en) Composite board material
KR102003327B1 (en) Fireproof outer wall finishing method
JP2003214592A (en) Joint for fire prevention division penetrating part
KR20140089642A (en) The method which forms a fireproof filling structure in the metal pipe of insulating completed which is applied in penetration department of the building
KR101953513B1 (en) Manufacturing method of fire spread preventing wall Structure ant the wall structure
JP3345742B2 (en) Fireproof insulation board
JP6021607B2 (en) Eaves ceiling material
JP2011026953A (en) Compartmentation wall
KR20160053606A (en) Fire-proof prefabricated panel
EP0217875A1 (en) Fire wall panels
JPS6316723Y2 (en)
JPH08158590A (en) Architectural fireproof panel
JP2003286751A (en) Connection structure of fireproof panel
CN109356502A (en) The hermetyic window of refractory heat-insulating
JP4063994B2 (en) Hot-melt rivet fastening member and fastening method
RU61742U1 (en) WALL PROTECTION FOR THE FORMATION OF THE DEW POINT IN THE AIR LAYER
JP3127401U (en) Inside / outside wall structure of wooden buildings
KR20160125065A (en) Composite Doors
KR101963197B1 (en) Structure to ensure fire resistance
CN207274029U (en) A kind of environmental type decorative panel calcium silicate board light fireproof thermal-insulating board
KR20020058926A (en) adiabatic material using styrofoam

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20060106

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20070913

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20070919

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20080130