JP2004283379A - Electron beam irradiation equipment - Google Patents

Electron beam irradiation equipment Download PDF

Info

Publication number
JP2004283379A
JP2004283379A JP2003079370A JP2003079370A JP2004283379A JP 2004283379 A JP2004283379 A JP 2004283379A JP 2003079370 A JP2003079370 A JP 2003079370A JP 2003079370 A JP2003079370 A JP 2003079370A JP 2004283379 A JP2004283379 A JP 2004283379A
Authority
JP
Japan
Prior art keywords
irradiation
electron beam
irradiated
matter
seed
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2003079370A
Other languages
Japanese (ja)
Inventor
Masafumi Ochi
雅文 越智
Suetoshi Ooizumi
末年 大泉
Taro Takei
太郎 武井
Tetsuya Hirakawa
哲也 平川
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
JAPAN GREENHOUSE HORTICULTURE ASSOCIATION
Iwasaki Denki KK
Original Assignee
JAPAN GREENHOUSE HORTICULTURE ASSOCIATION
Iwasaki Denki KK
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by JAPAN GREENHOUSE HORTICULTURE ASSOCIATION, Iwasaki Denki KK filed Critical JAPAN GREENHOUSE HORTICULTURE ASSOCIATION
Priority to JP2003079370A priority Critical patent/JP2004283379A/en
Publication of JP2004283379A publication Critical patent/JP2004283379A/en
Pending legal-status Critical Current

Links

Images

Abstract

<P>PROBLEM TO BE SOLVED: To provide electron beam irradiation equipment capable of surely performing sterilization and pasteurization treatment of a matter to be irradiated by surely and uniformly irradiating the entire surface of the granular matter to be irradiated with electron beams. <P>SOLUTION: The electron beam irradiation equipment comprises: a vacuum container 2 which has an irradiation space 3 through which the matter to be irradiated passes, which is positioned in an orthogonal direction where the matter to be irradiated passes through and which has a plurality of irradiation windows 4; an electron beam generation part 10 arranged corresponding to the irradiation windows 4 of the vacuum container; and a carrying mechanism 20 for allowing the matter to be irradiated to pass through at prescribed intervals in the irradiation space of the vacuum container. A plurality of electron beam generation parts 5 irradiate the matter to be irradiated with uniform electron beams. The matter to be irradiated can be treated even when it is a deformed granular matter in addition to a circular granular matter. <P>COPYRIGHT: (C)2005,JPO&NCIPI

Description

【0001】
【発明の属する技術分野】
本発明は、植物や野菜の種子等の粒状物に平均的に電子線を照射し、殺菌・滅菌処理することができる電子線照射装置の改良に関する。
【0002】
【従来の技術】
従来、植物や野菜の種子等の粒状物を殺菌・滅菌処理するには、例えば特許文献1乃至特許文献3に記載の発明がある。
特許文献1の特開2003−365400号には、気流搬送された被照射物をサイクロンの内部で旋回し、旋回する被照射物にサイクロンの周壁に設けた電子線照射手段により電子線を照射する技術が開示されている。
また特許文献3の特開2002−95451号には、穀類、香辛料、豆類等の粒状物を単粒の配列になるように整流して空中に落下させ、落下する粒状物の各粒に回転を付与し、回転しながら落下する粒状物の各粒に水平又は斜め方向から電子線を照射する技術が開示されている。
また特許文献2の特開2001−321136号には、麦、米、豆等の粒状物より大きい開口を有する篩を振動させ、篩の穴から回転しつつ落下する粒状物に電子線を照射する技術が開示されている。
【0003】
【特許文献1】特開2003−365400
【特許文献2】特開2001−321136
【特許文献3】特開2002−95451
【0004】
【発明が解決しようとする課題】
ところで、上記した特許文献1乃至特許文献3に記載の発明によると、電子線は一方向からのみ照射されるため、粒状被照射物の回転方向、単位時間あたりの回転数によっては、照射空間内を通過する間に、回転が不十分で粒状被照射物の表面全体に電子線を照射することを保証できないという問題があった。また粒状被照射物の形状が扁平な場合は均一な照射が難しく、被照射物の殺菌・滅菌処理が不十分となる課題がある。
【0005】
本発明は上記の点に鑑み発明したもので、粒状の被照射物の表面全体に確実且つ均一に電子線が照射され、被照射物の殺菌・滅菌処理を確実に行うことができる電子線照射装置を提供することを目的とする。
【0006】
【課題を解決するための手段】
上記の課題を解決するために、請求項1に記載の発明は、被照射物が通過する照射空間を有し、被照射物が通過する直交方向に位置して複数の照射窓を有する真空容器と、同真空容器の照射窓に対応して配置してなる電子線発生部と、真空容器の照射空間に被照射物を所定の間隔で通過させる搬送機構を有して構成してある。
また複数の電子線発生部から被照射物に対して均一な電子線が照射されるように構成してある。
【0007】
請求項1に記載の電子線照射装置によると、粒状の被照射物の表面全体に確実に電子線が照射され、被照射物の殺菌・滅菌処理を確実に行うことができる。
【0008】
請求項2に記載の発明は、請求項1に記載の電子線照射装置における複数の照射窓により構成される照射空間は円筒状に構成され、また被照射物は球形及び変形粒状物も処理できるように構成してある。
【0009】
請求項2に記載の電子線照射装置によると、被照射物が球形の他、扁平等の変形粒状物であっても全体に電子線を照射することができ、殺菌・滅菌処理を確実に行うことができる。
【0010】
請求項3に記載の発明は、請求項1及び請求項2に記載の電子線照射装置における照射窓から被照射物までの距離を5mmから50mmに設定し構成してある。
【0011】
照射窓から取り出された電子線は、被照射物を照射するまで、大気中を通過するが、この間にわずかずつではあるが電子線のエネルギーが減衰する。したがって、照射窓から被照射物までの距離は適切に設定しなければならない。請求項3に記載の電子線照射装置によると、電子線は減衰して完全にエネルギーを失うことなく、被照射物を確実に殺菌・滅菌処理することができる。
【0012】
請求項4に記載の発明は、請求項1乃至請求項3に記載の電子線照射装置における照射窓は120度の間隔で配置し、同照射窓に対応して電子線発生部を設けて構成してある。
【0013】
請求項4に記載の電子線照射装置によると、多種の形状の被照射物に均一な電子線を照射することができる。
【0014】
請求項5に記載の発明は、請求項1乃至請求項4に記載の電子線照射装置における複数の照射窓により構成される円筒状の照射空間の被照射物が送出される方向に気流が流れるように構成してある。
【0015】
請求項5に記載の電子線照射装置によると、照射空間に侵入した被照射物と同方向の気流を円筒状の照射空間に生じせしめることにより、被照射物は空気抵抗によって、速度が低下したり、あるいは進行方向とは垂直の方向に揺動することなく、安定して照射空間を通過することができる。
【0016】
請求項6に記載の発明は、請求項1乃至請求項5に記載の電子線照射装置における搬送機構は、被照射物を真空吸着する搬送部と、真空容器の照射空間に被照射物を通過させる案内機構を有して構成してある。
【0017】
請求項6に記載の電子線照射装置によると、粒状の被照射物が所定の間隔で照射空間に送出されるので、重なりあうことがなく、各被照射物には全方向から電子線が照射されるので、被照射物は確実に殺菌・滅菌処理される。
【0018】
【発明の実施の形態】
以下本発明を図1乃至図3について説明する。図1は本発明に係る電子線照射装置の正面図、図2は図1の平面図である。図1及び図2において、1は電子線照射装置を構成する真空容器であって、例えばステンレス材で筒状に構成してある。2は真空容器1の内部に構成された内側壁2であって、被照射物が通過する照射空間3を形成し、被照射物が通過する直交方向に位置して複数の照射窓4を有して構成してある。5は内側壁2の照射窓4に対応して配置してなる電子線発生部である。真空容器1の外側の縦寸法は例えば60cm、直径は例えば70cmの大きさで構成してある。また内側壁2の縦寸法は例えば60cm、内径は例えば10cmの大きさで構成してある。また複数の照射窓4を内側壁2に配置することにより構成される照射空間3は円筒状に構成される。内側壁2の内径が10cmである場合、照射空間3の直径も同じく10cmである。
【0019】
電子線発生部5は照射窓4に対応して真空容器1の内部に配置してあって、例えば内側壁2に設けられた照射窓4に対応した120度の間隔で配置して構成してある。電子線発生部5を120度の間隔で配置すると、照射窓4を通過した電子線は拡散し、照射空間3内にほぼ均一に分布するようになるので、球形の他、扁平形、流線形、紡錘形等多種の形状の被照射物を処理することができる。
被照射物は変形粒状物であって、例えば表1に記載のとおりである。重量と寸法は種子10粒の平均値を示すものである。
【0020】
【表1】

Figure 2004283379
(単位 重量:g , 寸法 :mm)
【0021】
また電子線照射装置における照射物から被照射物までの距離を5mmから50mmに設定し構成してある。5mmから50mmの距離は、真空容器1の一部である内側壁2を交換することにより、容易に換えることができる。例えば被照射物がトマト種子のように、寸法が小さいものについては、5mm程度のものを使用し、カボチャ種子のように寸法が大きいものについては50mm程度のものを用いる。照射物から被照射物までの距離を5mmから50mmに設定すると、電子線は減衰し過ぎるすることなく、被照射物を確実に殺菌・滅菌処理することができる。種子の大きさに対して、照射物から被照射物までの距離が小さいと種子が照射窓4に当たり、照射窓4を傷める危険性がある。
【0022】
被照射物を殺菌するための電子線照射装置の加速電圧は、この実施例では最大180キロボルトである。しかし種子の種類と形状、あるいは種皮の厚さなどによっては、加速電圧が高い場合に、電子線が表面部の殺菌だけではなく、種子の内部にも到達し、種子そのものにダメージを与える可能性がある。したがって電子線の加速電圧は、被照射物により、適切に設定しなければならない。電子線照射装置の加速電圧としては80キロボルトあるいはそれ以下にまで、連続的に可変し設定することができる。加速電圧を適切に設定することにより、種子の表面付近の殺菌を達成することができる。
【0023】
被照射物が円筒状の照射空間3を通過する際に、電子線を照射されるが、被照射物が受けるエネルギーの量は吸収線量という値で表される。種子の表面全体を殺菌する場合、吸収線量は例えば5キログレイから100キログレイという範囲である。ただし最適な照射条件は、種子の種類と形状、種皮の厚さ、殺菌対象となる微小生物の種類や性質、あるいは電子線照射装置の加速電圧などに依存するため、種子に与えられる吸収線量は上記範囲に限られない。また、被照射物が種子以外のものである場合にも、吸収線量は上記範囲に限られない。
【0024】
適切な吸収線量を被照射物に与えるために、具体的には電子線照射装置のビーム電流を制御することになるが、これは被照射物に与える吸収線量、被照射物が照射空間を通過する際の速度、加速電圧などに依存する。一般的に、電子線照射装置のビーム電流の範囲は数ミリアンペアから1アンペア程度である。
【0025】
また複数の照射窓4により構成される円筒状の照射空間3には、被照射物が送出される方向に気流が流れるように構成してある。円筒状の照射空間3の片側から、被照射物の進行方向と同じ方向になるように圧縮空気を吹き込むことで、照射空間3内に気流を発生させる。圧縮空気の代わりに窒素ガスなどを用いてもよい。さらに、圧縮空気の流量や圧力を変化させ、照射空間3内の気流の速度を、照射空間内にほぼ等しいか、あるいは速く調節することで、被照射物は、進行方向とは垂直方向に揺動することなく、安定して照射空間3内を通過することができる。
【0026】
20は搬送機構であり、種子11をホッパー27から照射空間3に搬送する。21は種子搬送部であり、種子搬送部21に対して一定の間隔を空けて種子吸引搬送部22が設けられている。種子吸引搬送部22は、種子11を吸着するための微小な穴が設けられているベルトコンベアである。23は種子吸引搬送部22の内部空間に接続されている吸引機構である。種子吸引搬送部22の内部空間は、吸引機構23によってその内部が減圧されているので、種子搬送部21上にある種子11は、種子吸引搬送部22の微小な穴に吸着され、搬送される。
種子吸引搬送部22で搬送した種子11は、案内通路24を通って、電子線照射装の照射空間3に所定の間隔で落下され、電子線により滅菌・殺菌処理される。
26は種子の返流機構であって、種子吸引搬送部22で吸着せず、照射空間3の内部に入り込まなかった種子11は、返流通路29を通って、いったん未照射種子貯め25に送られ、種子返送コンベア26により、再度種子搬送部21に戻される。
28は種子吸引搬送部22に接続されたスピードコントロールモータである。スピードコントロールモータ28で種子吸引搬送部22の移動速度を可変することにより、種子吸引搬送部22に吸着される種子11の搬送量を調整することができる。また種子搬送部21と種子吸引搬送部22の角度や間隔を可変することにより、種子11の流れを制御することができる。さらに電子線のビーム電流あるいは加速電圧を制御することにより、種子11に照射される電子線量を制御することができる。
【0027】
▲1▼搬送機構20によると、種子搬送部21により搬送された種子の一部は、種子吸引搬送部22に吸着され、照射空間3内に所定の間隔で落下され、電子線により滅菌・殺菌処理される。照射空間3内に、種子が所定の間隔で落下され、重なって落下することがなく、落下する全ての種子の全面に電子線が照射される。
▲2▼また照射空間3に入り込まなかった種子は返流機構26により、再度種子搬送部24のベルトコンベアに戻されるので、未処理の種子が発生することはない。
▲3▼また種子の種類により、種子搬送部21と種子吸引搬送部22の角度や間隔を可変したり、種子吸引搬送部22の速度をコントロールすることにより、所定量の種子を搬送し、処理することができる。
【0028】
【発明の効果】
上記した請求項1の本発明によると、粒状の被照射物の表面全体に確実且つ平均的に電子線が照射され、被照射物の殺菌・滅菌処理を確実に行うことができる特別な効果がある。
【0029】
請求項2に記載の本発明によると、被照射物が球形の他、扁平等の変形粒状物であっても種子の表面全体に電子線を照射することができ、殺菌・滅菌処理を確実に行うことができる特別な効果がある。
【0030】
請求項3に記載の本発明によると、電子線は減衰することなく、被照射物を確実に殺菌・滅菌処理することができる特別な効果がある。
【0031】
請求項4に記載の本発明によると、多種の形状の被照射物を電子線により処理することができる特別な効果がある。
【0032】
請求項5に記載の本発明によると、表面積に対して重量の軽い被照射物、空気の抵抗を受けやすい被照射物であっても、円筒状の照射空間を揺動することなく通過できるため、一定量の電子線の照射が確実に行われる特別な効果がある。
【0033】
請求項6に記載の本発明によると、粒状の被照射物が所定の間隔で照射空間に送出されるので、重なりあうことがなく、各被照射物は確実に殺菌・滅菌処理される特別な効果がある。
【図面の簡単な説明】
【図1】本発明に係る電子線照射装置の正面図である。
【図2】図1の平面図である。
【図3】本発明に係る電子線照射装置の搬送機構部分の正面図である。
【符号の説明】
1 真空容器
2 内側壁
3 照射空間
4 照射窓
5 電子線発生部
20 搬送機構
21 種子搬送部
22 種子吸引搬送部
23 吸引機構
24 案内通路
25 未照射種子溜め
26 種子返送コンベア
27 ホッパー
28 スピードコントロールモータ
29 返流通路[0001]
TECHNICAL FIELD OF THE INVENTION
The present invention relates to an improvement in an electron beam irradiation apparatus capable of irradiating a particle, such as a seed of a plant or a vegetable, with an electron beam on average and performing a sterilization / sterilization treatment.
[0002]
[Prior art]
2. Description of the Related Art Conventionally, for example, Patent Documents 1 to 3 disclose the inventions described in Patent Documents 1 to 3 for sterilizing and sterilizing granular materials such as seeds of plants and vegetables.
Japanese Patent Application Laid-Open No. 2003-365400 of Patent Document 1 discloses that an irradiation target conveyed by airflow is turned inside a cyclone, and the turning irradiation target is irradiated with an electron beam by an electron beam irradiation means provided on a peripheral wall of the cyclone. The technology is disclosed.
Further, Japanese Patent Application Laid-Open No. 2002-95451 of Patent Document 3 discloses that grains such as grains, spices, beans and the like are rectified and dropped into the air so as to form an array of single grains, and each of the falling grains is rotated. There is disclosed a technique of irradiating an electron beam from a horizontal or oblique direction to each particle of a granular material that is applied and falls while rotating.
Japanese Patent Application Laid-Open No. 2001-321136 of Patent Document 2 discloses that a sieve having an opening larger than a granular material such as wheat, rice, and beans is vibrated, and the granular material that falls while rotating from a hole in the sieve is irradiated with an electron beam. The technology is disclosed.
[0003]
[Patent Document 1] JP-A-2003-365400
[Patent Document 2] JP-A-2001-321136
[Patent Document 3] JP-A-2002-95451
[0004]
[Problems to be solved by the invention]
By the way, according to the inventions described in Patent Documents 1 to 3 described above, since the electron beam is irradiated only from one direction, depending on the rotation direction of the granular irradiation object and the number of rotations per unit time, the irradiation space may be reduced. However, there is a problem that it is not possible to guarantee that the entire surface of the granular irradiation object is irradiated with the electron beam during the passage of the electron beam. Also, when the shape of the granular irradiation target is flat, uniform irradiation is difficult, and there is a problem that sterilization / sterilization of the irradiation target becomes insufficient.
[0005]
The present invention has been made in view of the above points, and an electron beam irradiation capable of reliably and uniformly irradiating the entire surface of a granular irradiation object with an electron beam to reliably perform sterilization and sterilization of the irradiation object. It is intended to provide a device.
[0006]
[Means for Solving the Problems]
In order to solve the above-mentioned problem, the invention according to claim 1 has an irradiation space through which an irradiation object passes, and a vacuum vessel having a plurality of irradiation windows positioned in a direction orthogonal to the irradiation object. And an electron beam generator arranged corresponding to the irradiation window of the vacuum vessel, and a transport mechanism for passing an object to be irradiated through the irradiation space of the vacuum vessel at predetermined intervals.
Further, a uniform electron beam is irradiated from a plurality of electron beam generators to the irradiation object.
[0007]
According to the electron beam irradiation apparatus of the first aspect, the entire surface of the granular object to be irradiated is reliably irradiated with the electron beam, and the object to be irradiated can be reliably sterilized and sterilized.
[0008]
According to a second aspect of the present invention, in the electron beam irradiation apparatus according to the first aspect, the irradiation space formed by the plurality of irradiation windows is formed in a cylindrical shape, and the irradiation object can process spherical and deformed granular materials. It is configured as follows.
[0009]
According to the electron beam irradiation apparatus of the present invention, even if the object to be irradiated is not only spherical but also deformed granular material such as flat, the whole can be irradiated with the electron beam, and the sterilization / sterilization processing is surely performed. be able to.
[0010]
According to a third aspect of the present invention, in the electron beam irradiation apparatus according to the first and second aspects, the distance from the irradiation window to the irradiation target is set to 5 mm to 50 mm.
[0011]
The electron beam extracted from the irradiation window passes through the atmosphere until irradiating the object to be irradiated. During this time, the energy of the electron beam is attenuated little by little. Therefore, the distance from the irradiation window to the irradiation target must be set appropriately. According to the electron beam irradiation apparatus of the third aspect, the irradiation object can be surely sterilized and sterilized without attenuating the electron beam and completely losing energy.
[0012]
According to a fourth aspect of the present invention, in the electron beam irradiation apparatus according to any one of the first to third aspects, the irradiation windows are arranged at intervals of 120 degrees, and an electron beam generator is provided corresponding to the irradiation windows. I have.
[0013]
According to the electron beam irradiation apparatus according to the fourth aspect, it is possible to irradiate an object having various shapes with a uniform electron beam.
[0014]
According to a fifth aspect of the present invention, in the electron beam irradiation apparatus according to any one of the first to fourth aspects, an airflow flows in a direction in which an object to be irradiated is sent out in a cylindrical irradiation space formed by a plurality of irradiation windows. It is configured as follows.
[0015]
According to the electron beam irradiation apparatus according to claim 5, by causing an airflow in the cylindrical irradiation space in the same direction as the irradiation object that has entered the irradiation space, the irradiation object has a reduced speed due to air resistance. It can pass through the irradiation space stably without swinging or swinging in a direction perpendicular to the traveling direction.
[0016]
According to a sixth aspect of the present invention, in the electron beam irradiation apparatus according to any one of the first to fifth aspects, the transport mechanism passes the object to the irradiation space of the vacuum container and the irradiation part of the vacuum container. It has a guiding mechanism to make it work.
[0017]
According to the electron beam irradiation apparatus of the present invention, since the granular objects to be irradiated are sent to the irradiation space at predetermined intervals, they do not overlap, and each object is irradiated with the electron beam from all directions. Therefore, the irradiation object is surely sterilized and sterilized.
[0018]
BEST MODE FOR CARRYING OUT THE INVENTION
Hereinafter, the present invention will be described with reference to FIGS. FIG. 1 is a front view of an electron beam irradiation apparatus according to the present invention, and FIG. 2 is a plan view of FIG. 1 and 2, reference numeral 1 denotes a vacuum container constituting an electron beam irradiation apparatus, which is formed of, for example, stainless steel in a cylindrical shape. Reference numeral 2 denotes an inner wall 2 formed inside the vacuum vessel 1, which forms an irradiation space 3 through which the irradiation object passes, and which has a plurality of irradiation windows 4 positioned in a direction orthogonal to the irradiation object. It is configured. Reference numeral 5 denotes an electron beam generating unit arranged corresponding to the irradiation window 4 of the inner wall 2. The outside of the vacuum vessel 1 has a vertical dimension of, for example, 60 cm and a diameter of, for example, 70 cm. The inner wall 2 has a vertical dimension of, for example, 60 cm, and an inner diameter of, for example, 10 cm. The irradiation space 3 formed by arranging the plurality of irradiation windows 4 on the inner wall 2 has a cylindrical shape. When the inner diameter of the inner wall 2 is 10 cm, the diameter of the irradiation space 3 is also 10 cm.
[0019]
The electron beam generators 5 are arranged inside the vacuum vessel 1 corresponding to the irradiation windows 4, for example, arranged at intervals of 120 degrees corresponding to the irradiation windows 4 provided on the inner wall 2. is there. When the electron beam generators 5 are arranged at intervals of 120 degrees, the electron beams that have passed through the irradiation window 4 are diffused and distributed almost uniformly in the irradiation space 3. An object to be irradiated having various shapes such as a spindle shape can be processed.
The object to be irradiated is a deformed granular material, for example, as shown in Table 1. The weight and size indicate the average value of 10 seeds.
[0020]
[Table 1]
Figure 2004283379
(Unit weight: g, dimensions: mm)
[0021]
Further, the distance from the irradiation object to the irradiation object in the electron beam irradiation apparatus is set to 5 mm to 50 mm. The distance from 5 mm to 50 mm can be easily changed by replacing the inner wall 2 which is a part of the vacuum vessel 1. For example, when the object to be irradiated has a small size, such as tomato seeds, about 5 mm is used, and when the object to be irradiated is large, such as pumpkin seeds, about 50 mm is used. When the distance from the irradiation object to the irradiation object is set to 5 mm to 50 mm, the irradiation object can be surely sterilized and sterilized without excessive attenuation of the electron beam. If the distance from the irradiated object to the irradiated object is small with respect to the size of the seed, the seed may hit the irradiation window 4 and damage the irradiation window 4.
[0022]
The accelerating voltage of the electron beam irradiation device for sterilizing the irradiation object is 180 kV at the maximum in this embodiment. However, depending on the type and shape of the seed or the thickness of the seed coat, when the accelerating voltage is high, the electron beam may not only sterilize the surface but also reach the inside of the seed and damage the seed itself. There is. Therefore, the acceleration voltage of the electron beam must be set appropriately depending on the irradiation object. The acceleration voltage of the electron beam irradiation device can be continuously varied and set up to 80 kilovolts or less. By appropriately setting the accelerating voltage, sterilization near the surface of the seed can be achieved.
[0023]
An electron beam is irradiated when the irradiation object passes through the cylindrical irradiation space 3, and the amount of energy received by the irradiation object is represented by a value called an absorbed dose. When disinfecting the entire surface of the seed, the absorbed dose ranges, for example, from 5 kilogray to 100 kilogray. However, the optimal irradiation conditions depend on the type and shape of the seed, the thickness of the seed coat, the type and properties of the microbes to be sterilized, or the accelerating voltage of the electron beam irradiation device. It is not limited to the above range. Also, when the irradiation target is other than the seed, the absorbed dose is not limited to the above range.
[0024]
In order to give an appropriate absorbed dose to the irradiation target, specifically, the beam current of the electron beam irradiation device is controlled, but this is the absorption dose given to the irradiation target, and the irradiation target passes through the irradiation space. Speed, acceleration voltage, etc. Generally, the range of the beam current of an electron beam irradiation apparatus is about several milliamps to about 1 amp.
[0025]
The cylindrical irradiation space 3 formed by the plurality of irradiation windows 4 is configured so that an airflow flows in a direction in which an object to be irradiated is sent out. By blowing compressed air from one side of the cylindrical irradiation space 3 in the same direction as the traveling direction of the irradiation target, an air flow is generated in the irradiation space 3. Nitrogen gas or the like may be used instead of compressed air. Further, by changing the flow rate and pressure of the compressed air and adjusting the velocity of the air flow in the irradiation space 3 to be substantially equal to or faster than the irradiation space, the irradiation object is swung in a direction perpendicular to the traveling direction. It can pass through the irradiation space 3 stably without moving.
[0026]
A transport mechanism 20 transports the seed 11 from the hopper 27 to the irradiation space 3. Reference numeral 21 denotes a seed transport unit, and a seed suction transport unit 22 is provided at a predetermined interval from the seed transport unit 21. The seed suction conveyance unit 22 is a belt conveyor provided with minute holes for sucking the seeds 11. Reference numeral 23 denotes a suction mechanism connected to the internal space of the seed suction transport unit 22. Since the internal space of the seed suction / conveyance unit 22 is decompressed by the suction mechanism 23, the seeds 11 on the seed conveyance unit 21 are adsorbed by the minute holes of the seed suction / conveyance unit 22 and conveyed. .
The seed 11 transported by the seed suction transport unit 22 is dropped at a predetermined interval into the irradiation space 3 of the electron beam irradiation device through the guide passage 24, and is sterilized and sterilized by the electron beam.
Numeral 26 is a seed return mechanism. The seeds 11 that have not been adsorbed by the seed suction / conveyance unit 22 and have not entered the interior of the irradiation space 3 are once sent to the unirradiated seed storage 25 through the return passage 29. Then, the seeds are returned to the seed transport unit 21 again by the seed return conveyor 26.
Reference numeral 28 denotes a speed control motor connected to the seed suction transport unit 22. By varying the moving speed of the seed suction / conveyance unit 22 with the speed control motor 28, the conveyance amount of the seeds 11 adsorbed on the seed suction / conveyance unit 22 can be adjusted. The flow of the seed 11 can be controlled by changing the angle and the interval between the seed transport unit 21 and the seed suction transport unit 22. Further, by controlling the beam current or the accelerating voltage of the electron beam, the electron dose applied to the seed 11 can be controlled.
[0027]
{Circle around (1)} According to the transport mechanism 20, a part of the seed transported by the seed transport unit 21 is adsorbed by the seed suction transport unit 22, dropped into the irradiation space 3 at predetermined intervals, and sterilized and sterilized by an electron beam. It is processed. The seeds are dropped into the irradiation space 3 at a predetermined interval, do not overlap and fall, and the entire surface of all the falling seeds is irradiated with the electron beam.
{Circle around (2)} The seeds that have not entered the irradiation space 3 are returned by the return mechanism 26 to the belt conveyor of the seed transport section 24 again, so that untreated seeds are not generated.
{Circle around (3)} Depending on the type of seed, by changing the angle or interval between the seed transport unit 21 and the seed suction transport unit 22 or controlling the speed of the seed suction transport unit 22, a predetermined amount of seed is transported and processed. can do.
[0028]
【The invention's effect】
According to the first aspect of the present invention, the entire surface of the granular object is irradiated with the electron beam reliably and averagely, and a special effect that the object to be sterilized / sterilized can be surely performed. is there.
[0029]
According to the present invention as described in claim 2, even if the irradiated object is spherical or deformed granular material having a flat shape or the like, the entire surface of the seed can be irradiated with the electron beam, and the sterilization / sterilization treatment is surely performed. There are special effects that can be performed.
[0030]
According to the third aspect of the present invention, there is a special effect that the irradiation target can be surely sterilized and sterilized without the electron beam being attenuated.
[0031]
According to the fourth aspect of the present invention, there is a special effect that an irradiation target having various shapes can be processed by an electron beam.
[0032]
According to the fifth aspect of the present invention, even an irradiation object having a light weight relative to the surface area or an irradiation object which is easily affected by air can pass through the cylindrical irradiation space without swinging. In addition, there is a special effect that irradiation of a certain amount of electron beam is performed reliably.
[0033]
According to the present invention, since the granular objects to be irradiated are sent to the irradiation space at predetermined intervals, they do not overlap each other, and the respective objects to be irradiated are specially sterilized and sterilized. effective.
[Brief description of the drawings]
FIG. 1 is a front view of an electron beam irradiation apparatus according to the present invention.
FIG. 2 is a plan view of FIG.
FIG. 3 is a front view of a transport mechanism of the electron beam irradiation apparatus according to the present invention.
[Explanation of symbols]
DESCRIPTION OF SYMBOLS 1 Vacuum container 2 Inner side wall 3 Irradiation space 4 Irradiation window 5 Electron beam generator 20 Transport mechanism 21 Seed transport section 22 Seed suction transport section 23 Suction mechanism 24 Guide passage 25 Non-irradiated seed reservoir 26 Seed return conveyor 27 Hopper 28 Speed control motor 29 Return passage

Claims (6)

被照射物が通過する照射空間を有し、被照射物が通過する直交方向に位置して複数の照射窓を有する真空容器と、同真空容器の照射窓に対応して配置してなる電子線発生部と、真空容器の照射空間に被照射物を所定の間隔で通過させる搬送機構を有し、複数の電子線発生部から被照射物に対して均一な電子線が照射されるように構成したことを特徴とする電子線照射装置。A vacuum container having an irradiation space through which the irradiation object passes and having a plurality of irradiation windows positioned in a direction orthogonal to the passage of the irradiation object, and an electron beam arranged corresponding to the irradiation window of the vacuum container It has a generating unit and a transport mechanism that allows the irradiation object to pass through the irradiation space of the vacuum vessel at a predetermined interval, and is configured so that a uniform electron beam is irradiated from multiple electron beam generation units to the irradiation object. An electron beam irradiating apparatus, characterized in that: 複数の照射窓により構成される照射空間は円筒状に構成され、被照射物は球形及び変形粒状物であることを特徴とする請求項1記載の電子線照射装置。2. The electron beam irradiation apparatus according to claim 1, wherein the irradiation space formed by the plurality of irradiation windows is formed in a cylindrical shape, and the irradiation target is a spherical or deformed granular material. 照射窓から被照射物までの距離を5mmから50mmに設定したことを特徴とする請求項1及び請求項2記載の電子線照射装置。3. The electron beam irradiation apparatus according to claim 1, wherein the distance from the irradiation window to the irradiation object is set to 5 mm to 50 mm. 照射窓は120度の間隔で配置し、同照射窓に対応して電子線発生部を設けたことを特徴とする請求項1乃至請求項3記載の電子線照射装置。4. The electron beam irradiation apparatus according to claim 1, wherein the irradiation windows are arranged at intervals of 120 degrees, and an electron beam generator is provided corresponding to the irradiation windows. 複数の照射窓により構成される円筒状の照射空間の被照射物が送出される方向に気流が流れるように構成したことを特徴とする請求項1乃至請求項4記載の電子線照射装置。5. The electron beam irradiation apparatus according to claim 1, wherein an airflow flows in a cylindrical irradiation space formed by a plurality of irradiation windows in a direction in which an object to be irradiated is sent out. 搬送機構は、被照射物を真空吸着する搬送部と、真空容器の照射空間に被照射物を通過させる案内機構を有して構成したことを特徴とする請求項1乃至請求項5記載の電子線照射装置。6. The electronic device according to claim 1, wherein the transport mechanism includes a transport unit that vacuum-adsorbs the object to be irradiated and a guide mechanism that passes the object into the irradiation space of the vacuum vessel. Line irradiation equipment.
JP2003079370A 2003-03-24 2003-03-24 Electron beam irradiation equipment Pending JP2004283379A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2003079370A JP2004283379A (en) 2003-03-24 2003-03-24 Electron beam irradiation equipment

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2003079370A JP2004283379A (en) 2003-03-24 2003-03-24 Electron beam irradiation equipment

Publications (1)

Publication Number Publication Date
JP2004283379A true JP2004283379A (en) 2004-10-14

Family

ID=33293495

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2003079370A Pending JP2004283379A (en) 2003-03-24 2003-03-24 Electron beam irradiation equipment

Country Status (1)

Country Link
JP (1) JP2004283379A (en)

Similar Documents

Publication Publication Date Title
JP4365835B2 (en) Electron beam irradiation device for open containers
CN109788745B (en) Method and apparatus for treating poultry eggs using electron beams to sterilize calcium shells
JP7265246B2 (en) Sterilization device and sterilization method
JP6646787B2 (en) Method for sterilizing and / or sterilizing granular articles
JP2004283379A (en) Electron beam irradiation equipment
JP2002045159A (en) Electron beam sterilization device
JPH10268100A (en) Electron beam irradiation device
JP3079516B2 (en) Continuous sterilization of food ingredients
JP3730850B2 (en) Particle transport mechanism in electron beam irradiation equipment
JP2000254486A (en) Device and method for electron beam irradiation and material to be treated
RU2655806C1 (en) Radiation processing unit for facilities (options)
JP2001321136A (en) Device and method for sterilizing grain
JP3777080B2 (en) Electron beam irradiation device
JPH11192078A (en) Sterilization of vegetable food by low energy electron beam
JP2001321139A (en) Device and method for sterilizing grain
JP2001321138A (en) Device and method for sterilizing grain
JP4777545B2 (en) Method for sterilizing granular object and apparatus for sterilizing granular object used therefor
JPH1152100A (en) Electron beam irradiator
JP7065987B2 (en) Devices and methods for pasteurizing and / or sterilizing particulate articles
JP2001318197A (en) Structure for shielding and transportation in electron beam irradiator
JP3822426B2 (en) Electron beam irradiation device
JP2001321137A (en) Device and method for sterilizing grain
US20230320388A1 (en) Sterilizing device and sterilizing method
JP2004337192A (en) Electron beam sterilization method and apparatus and sterilization processing system
JP3034864B1 (en) Surface irradiation method and apparatus for granular material

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20060203

A711 Notification of change in applicant

Free format text: JAPANESE INTERMEDIATE CODE: A711

Effective date: 20060725

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A821

Effective date: 20060725

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20080108

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20080331

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20080724