JP2004281347A - Method for making thin film for proton conductive solid electrolyte - Google Patents

Method for making thin film for proton conductive solid electrolyte Download PDF

Info

Publication number
JP2004281347A
JP2004281347A JP2003075041A JP2003075041A JP2004281347A JP 2004281347 A JP2004281347 A JP 2004281347A JP 2003075041 A JP2003075041 A JP 2003075041A JP 2003075041 A JP2003075041 A JP 2003075041A JP 2004281347 A JP2004281347 A JP 2004281347A
Authority
JP
Japan
Prior art keywords
solid electrolyte
thin film
metal oxide
proton
sputtering
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2003075041A
Other languages
Japanese (ja)
Other versions
JP4802441B2 (en
Inventor
Toru Joboji
亨 上坊寺
Sai Hayakawa
菜 早川
Norifumi Hasegawa
規史 長谷川
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Equos Research Co Ltd
Original Assignee
Equos Research Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Equos Research Co Ltd filed Critical Equos Research Co Ltd
Priority to JP2003075041A priority Critical patent/JP4802441B2/en
Publication of JP2004281347A publication Critical patent/JP2004281347A/en
Application granted granted Critical
Publication of JP4802441B2 publication Critical patent/JP4802441B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/30Hydrogen technology
    • Y02E60/50Fuel cells
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P70/00Climate change mitigation technologies in the production process for final industrial or consumer products
    • Y02P70/50Manufacturing or production processes characterised by the final manufactured product

Abstract

<P>PROBLEM TO BE SOLVED: To provide a method for making a thin film capable of stably retaining phosphorous as a proton conductivity imparting material, and maintaining the proton conductivity even in an environment having water content. <P>SOLUTION: A bulk of glass solid electrolyte of P<SB>2</SB>O<SB>5</SB>-MOx(M=Si, Ti, Zr, Al)system is fragmented into small strips. The small strips are heat-treated at 500-800°C under an oxidative atmosphere. A high energy is applied to the small strips to sinter through an electric discharge plasma sintering process. Using the resulted sintered body as a sputtering target, RF sputtering is performed to form a thin film of solid electrolyte. <P>COPYRIGHT: (C)2005,JPO&NCIPI

Description

【0001】
【産業上の利用分野】
この発明はプロトン導電性固体電解質薄膜の製作方法に関する。
【0002】
【従来の技術】
ナフィオン(商品名)等の高分子系固体電解質に比べて高い耐熱性を有することから、金属酸化物系の固体電解質が注目されている。この金属酸化物系固体電解質は主にセラミックス系固体電解質とガラス系固体電解質に分類される。かかる固体電解質の一つとしてゾル−ゲル法で製作した金属酸化物系固体電解質(P−MOx(M=Si、Ti、Zr、Al等)がある(非特許文献1等参照)。
このガラス系固体電解質は、その成形材料がゾル状態のときに型に流し込んだりまたはキャストした後、乾燥して希望の形状とする。
【0003】
【非特許文献】
電気化学セミナー Vol. 40th, pp−62−69 (200)
【0004】
【発明が解決しようとする課題】
ゾル−ゲル法で形成された上記金属酸化物系固体電解質(以下、単に「固体電解質」ということがある)のバルク体は耐熱性を有するものの、使用雰囲気の湿度変化によって水分を吸放出する際の寸法変化による応力が原因でクラック若しくは割れの発生するおそれがある。
従って、ゾル−ゲル法で形成された金属酸化物系固体電解質のバルク体には耐久性の点に課題があった。
【0005】
また、水分存在下においてそのプロトン導電性が著しく低下するおそれがある。これは、電解質中においてプロトン導電性を付与しているリンが溶出するためと考えられる。
【0006】
【課題を解決するための手段】
本発明者らは上記課題の少なくとも一つを解決すべく鋭意検討を重ねてきた。その結果、リンを含む金属酸化物系固体電解質のバルク体を一旦粉砕して細片化し、これを焼結することにより固体電解質を形成したところ、湿度変化による水分の吸放出時の寸法変化が小さくなることを見出した。これにより、固体電解質にかかる応力が緩和され、当該固体電解質の耐久性が向上する(特願2003−46666号参照)。
また、細片化された金属酸化物系固体電解質を熱処理し、さらにこれを放電プラズマ焼結法により高エネルギーを付与したところ、水に対するリンの溶出が抑制されることも見出した。
【0007】
しかしながら、上記の知見により製作される固体電解質の試料は焼結体であるため、数ミリ〜数百μmの厚さを有することとなる。このように厚い試料では固体電解質に大きな抵抗損が生じてしまう。
【0008】
本発明者らは固体電解質を薄く形成すべく鋭意検討した結果、スパッタリング法に着目して本発明を完成するに至った。即ち、
リンを含む金属酸化物系固体電解質を熱処理するステップと、該熱処理された金属酸化物系固体電解質に高エネルギーを付与するステップとを経ることにより、プロトン導電性固体電解質用スパッタリングターゲットを製作するステップと、
該プロトン導電性固体電解質用スパッタリングターゲットを使用してスパッタリング法によりプロトン導電性固体電解質薄膜を形成する、ことを特徴とするプロトン導電性固体電解質薄膜の製作方法。
【0009】
以下、この発明の各要素について詳細に説明する。
(リンを含む金属酸化物系固体電解質)
リンを含む金属酸化物系固体電解質はそのバルク体がプロトン伝導性を有するものであればよい。組成として、P−MOx(M=Si、Ti、Zr、Al等)を挙げることができる。中でもPとSiを含むリン酸ガラス(P−SiO系のガラス電解質)が好ましく、ZrO等の第三成分を含んでいても良い。かかるP−SiO系のガラス電解質においては、室温から数百℃の温度範囲において十分なイオン伝導性を有する。
【0010】
金属酸化物系固体電解質のバルク体の製造方法として実施例ではゾル−ゲル法を用いたが、その他の手法を推定することは容易である。
ゾル−ゲル法で固体電解質のバルク体P−MOx(M=Si、Ti、Zr、Al等)を形成するには、リン酸若しくはリンのアルコキシドとSi、Ti、Zr、Al等の金属アルコキシドを出発原料として、ゲル状のP−MOxを合成する。その後これを乾燥させる。なお、出発原料には第三成分としてSi、Ti、Zr、Al等の金属アルコキシドを添加することもできる。
【0011】
(細片)
細片を得るための金属酸化物系固体電解質バルク体の破砕の方法は特に限定されるものではないが、ボールミル等の機械的な方法を用いることができる。
細片の形状も特に限定されるものではなく、粒子状若しくは粉体状のものを用いることができる。
【0012】
(熱処理ステップ)
リンを含む金属酸化物系固体電解質の細片を熱処理する。これは、例えばゾル−ゲル法で形成された当該固体電解質における未反応の脱水縮重合反応を促進するためである。さらにこの熱処理は、未反応物質及び触媒成分の除去も目的としており、焼結を行った場合に残さ成分が炭化し電子伝導性を生じることを未然に防ぐためにも重要である。
以上より、熱処理は酸化雰囲気中、望ましくは真空ポンプで減圧し、少量の酸素を導入する条件下で、500〜800℃、3時間以上行うことが好ましい。この場合、反応を均一にすすめるために、固体電解質を充分小さい粒径(75μm以下)の細片に破砕しておくことが好ましい。
【0013】
(高エネルギー付与)
熱処理した金属酸化物系固体電解質の細片へ高エネルギーを付与する。これにより、未結合のリン酸のリンと金属との間の共有結合が強化され、もってリンが固体電解質から溶出し難くなる。高エネルギー付与の方法として、プラズマ照射、マイクロ波照射、超音波照射等を挙げることができる。
実施例で紹介する放電プラズマ焼結法によれば、細片を結合するための焼結と同時にプラズマの作用により高エネルギーを付与することができることから、電解質を多孔質構造とすることとリン固定化処理の両方を達成するのに適した方法となる。
【0014】
また、放電プラズマ焼結法によれば何らバインダーを用いることなく固体電解質の細片を結合することができる。焼結後の試料をスパッタリングターゲットとして使用する場合、焼結はバインダーを添加せずに行うことが重要である。成膜時にバインダー成分が一緒にスパッタリングされ薄膜中に混入してしまうためである。特に有機物バインダーはスパッタリング中のプラズマのエネルギーで炭化し、電子伝導性の原因となるため望ましくない。またバインダーはプロトン伝導の妨げとなるので、このバインダーが存在しないとプロトン導電性向上の効果がある。
【0015】
ホットプレス焼結、熱間等方加圧焼結等の他の焼結法ではリン酸ガラス系固体電解質がプロトン導電性を維持できる比較的低い温度(1000℃以下)においてバインダーを用いずに当該固体電解質の細片を強固に焼結することができない。これに対し、放電プラズマ焼結法によれば、リン酸ガラス系固体電解質がプロトン導電性を維持できる温度において、何らバインダーを用いることなく、当該固体電解質の細片を強固に焼結可能である。
さらに放電プラズマ焼結法は他の焼結法と比較して短時間で焼結可能である。
また、細片を焼結した後に高エネルギーを付与することもできる。
【0016】
(スパッタリング)
上記のようにして形成された試料はスパッタリングターゲットして用いられる。スパッタリングを実行する際に、このスパッタリングターゲットは汎用的なバッキングプレートにボンディングされる。
スパッタリングにより形成される固体電解質膜の膜厚は、特に限定するものではないが、0.01μm〜10μmとすることが好ましい。
スパッタリングとしては、RFスパッタリング、マグネトロンスパッタリング等の周知の手法を使用することができ、これにより基板にプロトン導電性固体電解質薄膜を積層させる。基板の材質及び形状は、被スパッタリングが可能なものであれば特に限定されない。
【0017】
このようにスパッタリングにより形成された薄膜はプロトン導電性を有し、更には基板からの剥離や割れなどが生じることなく、またリン成分も溶出しない安定した性質を有している。
他方、本発明の検討段階でゾル状態の固体電解質へ基板をディッピングしてその表面に薄い固体電解質膜を形成してみたところ、厚さはサブミクロンまで薄くできるが、水分の吸放出による応力により固体電解質膜が基板から剥離し、または割れてしまった。
【0018】
【発明の作用・効果】
この発明のプロトン導電性固体電解質薄膜の製作方法によれば、プロトン導電性有し、かつ、水分の存在下においてもリンを溶出することなく安定した性質を有する薄膜の製作が可能となる。また、スパッタリングによれば当該薄膜の膜厚調整も容易に行える。従って、プロトン導電性固体電解質薄膜の膜厚を充分薄くすることにより、その抵抗損を小さなものにすることができる。
【0019】
このようにして得られた固体電解質薄膜は燃料電池、COセンサ等の各種センサ用に用いることができる。
【0020】
【実施例】
以下、この発明の実施例について図1を参照しながら説明をする。
<ターゲットの製作方法>
リンのアルコキシドとSiのアルコキシドを原料として一般的なゾル−ゲル法により5P−95SiOのガラス電解質ゲルを合成する(ステップ1)。
このガラス電解質ゲルを温度150℃で24時間乾燥しバルク体とした後(ステップ2)、ボールミルで粉砕し(ジルコニアポット、ジルコニアボールφ:5mm、300rpm、30分)、ふるいで分粒して粒径75μm以下の粉体(細片)とした(ステップ3)。
【0021】
この粉体に対して熱処理を行う(ステップ4)。
この粉体を管状炉にセットし、真空ポンプで減圧し、微量の酸素を導入した雰囲気で800℃、5時間熱処理を行った。この熱処理により、未反応の脱水縮重合反応の促進と未反応物質および触媒成分の除去が進行し、重量が15%程度減少する。昇温速度及び酸素導入量は処理する試料の量、真空度等に依存するが、熱処理後に粉体試料の色が褐色にならず、白色のままになっていることが好ましい。即ち、固体電解質が白色を維持した状態で熱処理を行うことが好ましい。
【0022】
熱処理後の粉体へ放電プラズマ焼結法により高エネルギーを付与する(ステップ5)。
このように熱処理した粉体(0.2g)を放電プラズマ焼結装置のカーボン型にセットし、焼結温度800℃、面圧400kg/cm、真空雰囲気、保持時間5分の条件で放電プラズマ焼結し、ディスク状(直径:4インチ、厚さ:3mm)の実施例のスパッタリングターゲットを得た。なお、上記のターゲットを作製するのには熱処理後の粉体を約50g使用し、焼結後の密度は1.55g/cm、充填率は0.64であった。
焼結後のスパッタリングターゲットは、表面に付着した型材のカーボンをサンドペーパーで軽く落とした後、銅のバッキングプレートにボンディングした。
【0023】
スパッタリングによる薄膜の形成(ステップ6)
次に、このターゲットをRFスパッタ装置(ULVAC製SH250)に取付け、合成石英基板上に成膜を行なった。Ar流量20sccm、投入電力200Wで240分の条件で成膜し、厚さ1μmの透明な薄膜が得られた。
【0024】
このようにして得られた薄膜とスパッタリングターゲットの組成分析を行ったところ次の結果を得た。

Figure 2004281347
なお、この組成分析はX線マイクロアナライザーによりSiとPの濃度を測定し、P/SiOの濃度比を計算で求める方法で行なった。
ターゲットの組成はP/SiO=4.7%で原料仕込み時のねらいの濃度5%にほぼ一致した。また、スパッタ薄膜の組成もP/SiO=3.9%となり、ターゲットの組成がほぼ同等に維持されることが確認できた。
【0025】
次に、スパッタ薄膜のリン溶出試験を次のようにして行った。
スパッタ薄膜試料を室温下で純水に24時間浸漬し、経過時間ごとに取り出し乾燥する。この試料をX線マイクロアナライザーによる元素分析でリンの濃度を測定し、初期のリン濃度に対する濃度比を残存率として計算で求めた。なお、かかるリン溶出試験において試料中の全てのリンが溶出しても飽和濃度にならないだけの量の純水に試料は浸漬されている。
結果を図2に示す。
この結果、リン残存率は浸漬24時間後に約65%程度に減少した後は、1000時間後もほぼ一定であった。これにより、スパッタ薄膜においてもリンが固定されてその溶出が防止されることがわかる。これにより、スパッタ薄膜におけるプロトン導電性が安定したものとなる。
【0026】
プロトン導電性の確認
スパッタ薄膜に触媒となるPtおよび、集電用の金属膜をつけて水素イオン化電流を測定した。当該測定に用いた素子の構成を図3(A)に示す。
図3(A)の素子1では鏡面研磨したSUS基板2の上に、ごく薄いPt層3、実施例の固体電解質薄膜4、ごく薄いPt層5を3層スパッタし、そのうえに金属膜(Pt)6をスパッタ法で積層する。なお、金属層6の材料にはAu、Pt,Al,Ti及びCuから選ばれる1種若しくは2種以上の金属又はそれらの合金を採用することができる。
【0027】
図3(A)の素子に替えて図3(B)、(C)の素子を用いることもできる。
図3(B)の素子11では、SUS基板2に金属膜16をスパッタしたうえにごく薄いPt層3、固体電解質薄膜4、ごく薄いPt層5を3層スパッタし、そのうえに金属膜6をスパッタ法で積層する。
図3(C)の素子21では、鏡面研磨した石英基板22上に金属膜16、薄いPt層3、実施例の固体電解質薄膜4、ごく薄いPt層5、金属膜6の順にスパッタ法で積層してもよい。
上記各素子においてPt層5を厚くして金属膜6を省略し、もって触媒層と集電層をかねさせてもよい。
リード線7をSUS基板2と金属膜6に導電性ペーストで接着する。
【0028】
この多層膜構造の固体電解質素子を温度90℃、飽和水蒸気加湿の窒素ガス雰囲気中に置き、イオン化電流が流れず、電子伝導がないことを確認する。次に、ガスを飽和水蒸気加湿の水素ガスに切り替え、電圧を印加してイオン化電流の時間変化を測定した。
この結果を図4に示す。電圧をかけた状態で水素ガス導入すると、イオン化電流が流れ、120分以上にわたりほぼ一定値を保っている。
以上から、ターゲットを使用して、スパッタリングを行い成膜した固体電解質薄膜は、プロトン導電性を有することが確認できる。
【0029】
膜抵抗測定
実施例のスッパタ薄膜にスパッタ法で集電用の金属膜をつけて抵抗値を測定する。当該測定に用いた素子の構成を図5(A)に示す。
図5(A)に示す素子31では鏡面研磨したSUS基板32の上に実施例の固体電解質薄膜33をスパッタし、そのうえに金属膜(Pt)34をスパッタ法で積層する。なお、金属層6の材料にはAu、Pt,Al,Ti及びCuから選ばれる1種若しくは2種以上の金属又はそれらの合金を採用することができる。
【0030】
図5(A)の素子に替えて図5(B)、(C)の素子を用いることもできる。
図5(B)に示す素子41では、SUS基板32に金属膜35をスパッタした上に実施例の固体電解質薄膜33をスパッタし、そのうえに金属膜34をスパッタ法で積層する。
図5(C)に示す素子51では、鏡面研磨した石英基板52上に金属膜35、実施例の固体電解質薄膜33、金属膜34の順にスパッタ法で積層する。
上記各素子において、リード線37をSUS基板32と金属膜34に導電性ペーストで接着する。
【0031】
この多層膜構造の固体電解質素子31、41、51を温度90℃、飽和水蒸気加湿の窒素ガス雰囲気中に置いて、電解質薄膜の抵抗値を測定した。測定はLCRメータを用い、周波数1Hzから100kHzの範囲でインピーダンス測定を行い抵抗を求めた。
他方、図5(A)と同様の構造においてスパッタ薄膜33を焼結体(スパッタリングターゲット自体)に交換したときのインピーダンスを同一の条件で測定した。結果を図6に示す。
この結果、スパッタ薄膜33の抵抗値は1cm2あたり0.6Ωであり、焼結体に比べておよそ1桁も電気抵抗が低減していることがわかる。
【0032】
この発明は、上記発明の実施の形態及び実施例の説明に何ら限定されるものではない。特許請求の範囲の記載を逸脱せず、当業者が容易に想到できる範囲で種々の変形態様もこの発明に含まれる。
【図面の簡単な説明】
【図1】図1はこの発明の実施例の固体電解質薄膜の製作方法を示す工程図。
【図2】図2は実施例の固体電解薄膜のリン溶出試験の結果を示すグラフ図。
【図3】図3は実施例の固体電解質薄膜のプロトン導電性確認試験に用いる素子の構成を示す図。
【図4】図4は水素イオン化電流測定結果を示すグラフ図。
【図5】図5は実施例の固体電解質薄膜の膜抵抗測定試験に用いる素子の構成を示す図。
【図6】図6は実施例の固体電解質薄膜と焼結体固体電解質との抵抗測定結果を示すグラフ図。[0001]
[Industrial applications]
The present invention relates to a method for producing a proton conductive solid electrolyte thin film.
[0002]
[Prior art]
Metal oxide solid electrolytes have attracted attention because they have higher heat resistance than polymer solid electrolytes such as Nafion (trade name). This metal oxide-based solid electrolyte is mainly classified into a ceramic-based solid electrolyte and a glass-based solid electrolyte. Such solid sol as one of the electrolytes - is metal oxide-based solid electrolyte fabricated gel method (P 2 O 5 -MOx (M = Si, Ti, Zr, Al , etc.) (see Non-Patent Document 1 and the like).
This glass-based solid electrolyte is poured or cast into a mold when the molding material is in a sol state, and then dried to a desired shape.
[0003]
[Non-patent literature]
Electrochemistry Seminar Vol. 40th, pp-62-69 (200)
[0004]
[Problems to be solved by the invention]
The bulk body of the metal oxide-based solid electrolyte (hereinafter sometimes simply referred to as “solid electrolyte”) formed by the sol-gel method has heat resistance, but when absorbing and releasing moisture due to changes in the humidity of the use atmosphere. Cracks or cracks may occur due to the stress caused by the dimensional change of
Therefore, the bulk body of the metal oxide solid electrolyte formed by the sol-gel method has a problem in durability.
[0005]
In addition, the proton conductivity may be significantly reduced in the presence of moisture. It is considered that this is because phosphorus imparting proton conductivity elutes in the electrolyte.
[0006]
[Means for Solving the Problems]
The present inventors have intensively studied to solve at least one of the above problems. As a result, the bulk body of the metal oxide-based solid electrolyte containing phosphorus was once pulverized into small pieces, and this was sintered to form a solid electrolyte. I found it to be smaller. This alleviates the stress applied to the solid electrolyte and improves the durability of the solid electrolyte (see Japanese Patent Application No. 2003-46666).
In addition, they found that when the flaked metal oxide-based solid electrolyte was subjected to a heat treatment and further applied with high energy by a discharge plasma sintering method, the elution of phosphorus into water was suppressed.
[0007]
However, since the solid electrolyte sample manufactured based on the above findings is a sintered body, it has a thickness of several millimeters to several hundreds of micrometers. In such a thick sample, a large resistance loss occurs in the solid electrolyte.
[0008]
The present inventors have conducted intensive studies to form a thin solid electrolyte, and as a result, completed the present invention by focusing on the sputtering method. That is,
Heat-treating the metal oxide-based solid electrolyte containing phosphorus and applying high energy to the heat-treated metal oxide-based solid electrolyte, thereby producing a sputtering target for a proton-conductive solid electrolyte. When,
A method for producing a proton-conductive solid electrolyte thin film, comprising forming a proton-conductive solid electrolyte thin film by a sputtering method using the sputtering target for proton-conductive solid electrolyte.
[0009]
Hereinafter, each element of the present invention will be described in detail.
(Metal oxide solid electrolyte containing phosphorus)
The phosphorus-containing metal oxide-based solid electrolyte may be any as long as its bulk body has proton conductivity. Examples of the composition include P 2 O 5 —MOx (M = Si, Ti, Zr, Al, etc.). Of these phosphate glasses (P 2 O 5 -SiO 2 glass electrolyte) containing P and Si are preferred and may include a third component such as ZrO 2. Such a P 2 O 5 —SiO 2 glass electrolyte has sufficient ionic conductivity in a temperature range from room temperature to several hundred degrees Celsius.
[0010]
Although the sol-gel method is used in the examples as a method for producing a bulk body of a metal oxide-based solid electrolyte, other methods can be easily estimated.
In order to form a bulk solid electrolyte P 2 O 5 —MOx (M = Si, Ti, Zr, Al, etc.) by a sol-gel method, an alkoxide of phosphoric acid or phosphorus and Si, Ti, Zr, Al, etc. Using a metal alkoxide as a starting material, a gelled P 2 O 5 —MOx is synthesized. Thereafter, it is dried. Note that a metal alkoxide such as Si, Ti, Zr, or Al can be added as a third component to the starting material.
[0011]
(Strips)
The method of crushing the bulk metal oxide solid electrolyte to obtain the strips is not particularly limited, but a mechanical method such as a ball mill can be used.
The shape of the strip is not particularly limited, and a particle or a powder can be used.
[0012]
(Heat treatment step)
A strip of the metal oxide-based solid electrolyte containing phosphorus is heat-treated. This is for promoting an unreacted dehydration-condensation polymerization reaction in the solid electrolyte formed by, for example, a sol-gel method. Furthermore, this heat treatment is also intended to remove unreacted substances and catalyst components, and is important for preventing the residual components from carbonizing and causing electronic conductivity when sintering is performed.
As described above, it is preferable that the heat treatment be performed in an oxidizing atmosphere, preferably at a temperature of 500 to 800 ° C. for 3 hours or more under a condition in which a small amount of oxygen is introduced by reducing the pressure with a vacuum pump. In this case, in order to promote the reaction uniformly, it is preferable to crush the solid electrolyte into small pieces having a sufficiently small particle size (75 μm or less).
[0013]
(High energy application)
High energy is applied to the heat-treated metal oxide solid electrolyte strip. This strengthens the covalent bond between the unbound phosphorous and the metal, thereby making it difficult for phosphorus to be eluted from the solid electrolyte. Examples of a method for applying high energy include plasma irradiation, microwave irradiation, and ultrasonic irradiation.
According to the spark plasma sintering method introduced in the examples, high energy can be applied by the action of plasma at the same time as sintering for bonding the strips. This is a method suitable for achieving both of the chemical treatments.
[0014]
Further, according to the spark plasma sintering method, the solid electrolyte strip can be bonded without using any binder. When a sample after sintering is used as a sputtering target, it is important to perform sintering without adding a binder. This is because the binder components are sputtered together during film formation and are mixed into the thin film. In particular, an organic binder is undesirable because it is carbonized by the energy of the plasma during sputtering and causes electron conductivity. Also, since the binder hinders proton conduction, the absence of this binder has the effect of improving proton conductivity.
[0015]
In other sintering methods such as hot press sintering and hot isostatic pressing sintering, a binder is used without using a binder at a relatively low temperature (1000 ° C. or lower) at which a phosphate glass-based solid electrolyte can maintain proton conductivity. The solid electrolyte strip cannot be firmly sintered. On the other hand, according to the discharge plasma sintering method, at a temperature at which the phosphate glass-based solid electrolyte can maintain the proton conductivity, a small piece of the solid electrolyte can be strongly sintered without using any binder. .
Further, the spark plasma sintering method can be sintered in a shorter time than other sintering methods.
High energy can also be applied after sintering the strip.
[0016]
(Sputtering)
The sample formed as described above is used as a sputtering target. When performing sputtering, the sputtering target is bonded to a general-purpose backing plate.
The thickness of the solid electrolyte membrane formed by sputtering is not particularly limited, but is preferably 0.01 μm to 10 μm.
Well-known techniques such as RF sputtering and magnetron sputtering can be used as the sputtering, whereby a proton conductive solid electrolyte thin film is laminated on the substrate. The material and shape of the substrate are not particularly limited as long as the substrate can be sputtered.
[0017]
The thin film formed by sputtering in this manner has proton conductivity, and further has a stable property that no peeling or cracking from the substrate occurs and no phosphorus component is eluted.
On the other hand, when the substrate was dipped in the sol-state solid electrolyte at the examination stage of the present invention to form a thin solid electrolyte film on the surface, the thickness could be reduced to submicron, but due to the stress due to the absorption and release of moisture, The solid electrolyte membrane peeled off or cracked from the substrate.
[0018]
[Action and Effect of the Invention]
According to the method for producing a proton conductive solid electrolyte thin film of the present invention, it is possible to produce a thin film having proton conductivity and having stable properties without eluting phosphorus even in the presence of moisture. In addition, the thickness of the thin film can be easily adjusted by sputtering. Therefore, the resistance loss can be reduced by making the proton conductive solid electrolyte thin film sufficiently thin.
[0019]
The solid electrolyte thin film thus obtained can be used for various sensors such as a fuel cell and a CO sensor.
[0020]
【Example】
Hereinafter, an embodiment of the present invention will be described with reference to FIG.
<Target manufacturing method>
General sol an alkoxide of phosphorous alkoxide and Si as raw material - synthesizing 5P 2 O 5 -95SiO 2 glass electrolyte gel gel method (Step 1).
This glass electrolyte gel was dried at 150 ° C. for 24 hours to form a bulk body (Step 2), pulverized by a ball mill (zirconia pot, zirconia ball φ: 5 mm, 300 rpm, 30 minutes), and sieved to obtain particles. Powder (strips) having a diameter of 75 μm or less was obtained (step 3).
[0021]
Heat treatment is performed on the powder (step 4).
This powder was set in a tubular furnace, depressurized by a vacuum pump, and heat-treated at 800 ° C. for 5 hours in an atmosphere in which a trace amount of oxygen was introduced. By this heat treatment, promotion of unreacted dehydration-condensation polymerization reaction and removal of unreacted substances and catalyst components progress, and the weight is reduced by about 15%. The rate of temperature rise and the amount of oxygen introduced depend on the amount of sample to be processed, the degree of vacuum, and the like, but it is preferable that the color of the powder sample does not turn brown but remains white after heat treatment. That is, it is preferable to perform the heat treatment in a state where the solid electrolyte maintains white.
[0022]
High energy is applied to the heat-treated powder by a discharge plasma sintering method (step 5).
The heat-treated powder (0.2 g) was set in a carbon mold of a discharge plasma sintering apparatus, and discharge plasma was performed under the conditions of a sintering temperature of 800 ° C., a surface pressure of 400 kg / cm 2 , a vacuum atmosphere, and a holding time of 5 minutes. This was sintered to obtain a disk-shaped (diameter: 4 inches, thickness: 3 mm) sputtering target of Example. In addition, about 50 g of the powder after heat treatment was used to produce the above target, the density after sintering was 1.55 g / cm 3 , and the filling factor was 0.64.
After the sintering sputtering target, the carbon of the mold attached to the surface was lightly dropped with sandpaper and then bonded to a copper backing plate.
[0023]
Formation of thin film by sputtering (Step 6)
Next, this target was attached to an RF sputtering apparatus (SH250 manufactured by ULVAC), and a film was formed on a synthetic quartz substrate. A film was formed under the conditions of an Ar flow rate of 20 sccm and an input power of 200 W for 240 minutes to obtain a transparent thin film having a thickness of 1 μm.
[0024]
When the composition analysis of the thin film thus obtained and the sputtering target was performed, the following results were obtained.
Figure 2004281347
The composition analysis was performed by measuring the concentrations of Si and P with an X-ray microanalyzer and calculating the concentration ratio of P 2 O 5 / SiO 2 by calculation.
The composition of the target was P 2 O 5 / SiO 2 = 4.7%, which almost coincided with the target concentration of 5% when the raw materials were charged. Also, the composition of the sputtered thin film was P 2 O 5 / SiO 2 = 3.9%, confirming that the composition of the target was maintained substantially equal.
[0025]
Next, a phosphorus elution test of the sputtered thin film was performed as follows.
The sputtered thin film sample is immersed in pure water at room temperature for 24 hours, taken out and dried at every elapse of time. The phosphorus concentration of this sample was measured by elemental analysis using an X-ray microanalyzer, and the ratio of the concentration to the initial phosphorus concentration was calculated as the residual ratio. In this phosphorus elution test, the sample is immersed in pure water in such an amount that the saturated concentration is not reached even when all the phosphorus in the sample elutes.
FIG. 2 shows the results.
As a result, the residual phosphorus ratio decreased to about 65% after 24 hours of immersion, and was substantially constant after 1000 hours. This indicates that phosphorus is fixed even in the sputtered thin film and its elution is prevented. Thereby, the proton conductivity in the sputtered thin film becomes stable.
[0026]
Confirmation of proton conductivity Pt serving as a catalyst and a metal film for current collection were attached to the sputtered thin film, and the hydrogen ionization current was measured. FIG. 3A shows the structure of the element used for the measurement.
In the element 1 shown in FIG. 3A, a very thin Pt layer 3, a solid electrolyte thin film 4 of the embodiment, and a very thin Pt layer 5 are sputtered on a mirror-polished SUS substrate 2, and a metal film (Pt) is further formed thereon. 6 is laminated by a sputtering method. The metal layer 6 may be made of one or more metals selected from Au, Pt, Al, Ti, and Cu, or alloys thereof.
[0027]
The elements in FIGS. 3B and 3C can be used instead of the elements in FIG.
In the element 11 of FIG. 3B, the metal film 16 is sputtered on the SUS substrate 2, and then the extremely thin Pt layer 3, the solid electrolyte thin film 4, and the extremely thin Pt layer 5 are sputtered, and the metal film 6 is sputtered thereon. Lamination by the method.
3C, the metal film 16, the thin Pt layer 3, the solid electrolyte thin film 4, the very thin Pt layer 5, and the metal film 6 are stacked in this order on the mirror-polished quartz substrate 22 by sputtering. May be.
In each of the above elements, the Pt layer 5 may be thickened and the metal film 6 may be omitted, so that the catalyst layer and the current collecting layer may be combined.
The lead wire 7 is bonded to the SUS substrate 2 and the metal film 6 with a conductive paste.
[0028]
The solid electrolyte device having the multilayer structure is placed in a nitrogen gas atmosphere humidified by saturated steam at a temperature of 90 ° C., and it is confirmed that no ionization current flows and there is no electron conduction. Next, the gas was switched to hydrogen gas saturated with saturated steam and a voltage was applied to measure the time change of the ionization current.
The result is shown in FIG. When hydrogen gas is introduced while a voltage is applied, an ionization current flows and keeps a substantially constant value for 120 minutes or more.
From the above, it can be confirmed that the solid electrolyte thin film formed by sputtering using the target has proton conductivity.
[0029]
Film Resistance Measurement A current collecting metal film is attached to the sputter thin film of the embodiment by a sputtering method, and the resistance value is measured. FIG. 5A shows the structure of the element used for the measurement.
In the element 31 shown in FIG. 5A, a solid electrolyte thin film 33 of the embodiment is sputtered on a mirror-polished SUS substrate 32, and a metal film (Pt) 34 is laminated thereon by a sputtering method. The metal layer 6 may be made of one or more metals selected from Au, Pt, Al, Ti, and Cu, or alloys thereof.
[0030]
The elements in FIGS. 5B and 5C can be used instead of the elements in FIG.
In the element 41 shown in FIG. 5B, the metal film 35 is sputtered on the SUS substrate 32, the solid electrolyte thin film 33 of the embodiment is sputtered, and the metal film 34 is laminated thereon by the sputtering method.
In the element 51 shown in FIG. 5C, a metal film 35, a solid electrolyte thin film 33 of the embodiment, and a metal film 34 are stacked in this order on a mirror-polished quartz substrate 52 by a sputtering method.
In each of the above elements, the lead wire 37 is bonded to the SUS substrate 32 and the metal film 34 with a conductive paste.
[0031]
The resistance values of the electrolyte thin films were measured by placing the solid electrolyte devices 31, 41 and 51 having the multilayer structure in a nitrogen gas atmosphere humidified in saturated steam at a temperature of 90 ° C. The impedance was measured by using an LCR meter in a frequency range of 1 Hz to 100 kHz to obtain a resistance.
On the other hand, in the same structure as in FIG. 5A, the impedance when the sputtered thin film 33 was replaced with a sintered body (sputtering target itself) was measured under the same conditions. FIG. 6 shows the results.
As a result, the resistance value of the sputtered thin film 33 is 0.6 Ω / cm 2, and it can be seen that the electric resistance is reduced by about one digit compared to the sintered body.
[0032]
The present invention is not limited to the description of the embodiment and the example of the above invention. Various modifications are included in the present invention without departing from the scope of the claims and within the scope of those skilled in the art.
[Brief description of the drawings]
FIG. 1 is a process chart showing a method for manufacturing a solid electrolyte thin film according to an embodiment of the present invention.
FIG. 2 is a graph showing the results of a phosphorus elution test of a solid electrolytic thin film of an example.
FIG. 3 is a view showing a configuration of an element used for a proton conductivity confirmation test of a solid electrolyte thin film of an example.
FIG. 4 is a graph showing the results of hydrogen ionization current measurement.
FIG. 5 is a diagram showing a configuration of an element used in a test for measuring a film resistance of a solid electrolyte thin film of an example.
FIG. 6 is a graph showing resistance measurement results of the solid electrolyte thin film and the sintered solid electrolyte of the example.

Claims (13)

リンを含む金属酸化物系固体電解質を熱処理するステップと、該熱処理された金属酸化物系固体電解質に高エネルギーを付与するステップとを経ることにより、プロトン導電性固体電解質用スパッタリングターゲットを製作するステップと、
該プロトン導電性固体電解質用スパッタリングターゲットを使用してスパッタリング法によりプロトン導電性固体電解質薄膜を形成する、ことを特徴とするプロトン導電性固体電解質薄膜の製作方法。
Heat-treating the metal oxide-based solid electrolyte containing phosphorus and applying high energy to the heat-treated metal oxide-based solid electrolyte, thereby producing a sputtering target for a proton-conductive solid electrolyte. When,
A method for producing a proton-conductive solid electrolyte thin film, comprising forming a proton-conductive solid electrolyte thin film by a sputtering method using the sputtering target for proton-conductive solid electrolyte.
前記金属酸化物系固体電解質は前記高エネルギー付与ステップにおいて細片化されている、ことを特徴とする請求項1に記載の製作方法。The method according to claim 1, wherein the metal oxide-based solid electrolyte is fragmented in the step of applying high energy. 前記金属酸化物系固体電解質は前記熱処理ステップにおいて細片化されている、ことを特徴とする請求項1に記載の製作方法。The method according to claim 1, wherein the metal oxide-based solid electrolyte is fragmented in the heat treatment step. プロトン導電性固体電解質用スパッタリングターゲットの製作ステップにおいて前記金属酸化物系固体電解質の細片をバインダーレスで結合するステップが更に含まれる、ことを特徴とする請求項2に記載の製作方法。3. The method according to claim 2, wherein the step of preparing a sputtering target for a proton-conductive solid electrolyte further comprises the step of bonding the metal oxide-based solid electrolyte strips without a binder. 前記高エネルギー付与のステップと前記細片を結合するステップとは放電プラズマ焼結により行われる、ことを特徴とする請求項4に記載の製作方法。The method according to claim 4, wherein the step of applying high energy and the step of bonding the strips are performed by spark plasma sintering. 前記金属酸化物系固体電解質はP−MOx(M=Si,Ti,Zr、Al)系のガラス系固体電解質である、ことを特徴とする請求項1〜5のいずれかに記載の製作方法。The metal oxide-based solid electrolytes P 2 O 5 -MOx (M = Si, Ti, Zr, Al) is a glass-based solid electrolyte system, according to claim 1, characterized in that Production method. 前記金属酸化物系固体電解質はP−SiOからなる、ことを特徴とする請求項1〜5に記載の製作方法。The method according to claim 1, wherein the metal oxide-based solid electrolyte is made of P 2 O 5 —SiO 2 . 前記熱処理ステップは500〜800℃で加熱する、ことを特徴とする請求項1〜7のいずれかに記載の製作方法。The method according to claim 1, wherein the heat treatment is performed at a temperature of 500 to 800 ° C. 9. 前記加熱は酸化雰囲気で行う、ことを特徴とする請求項8に記載の製作方法。The method according to claim 8, wherein the heating is performed in an oxidizing atmosphere. 前記高エネルギーは放電プラズマ焼結により付与される、ことを特徴とする請求項1〜9のいずれかに記載の製作方法。The method according to any one of claims 1 to 9, wherein the high energy is applied by spark plasma sintering. ゾル−ゲル法によりP−MOx(M=Si,Ti,Zr、Al)系のガラス系固体電解質のバルクを形成し、これを破砕して得られた細片を酸化雰囲気下500〜800℃で熱処理後、放電プラズマ焼結法により結合し、これをターゲットとしてスパッタリングを実行する、ことを特徴とするプロトン導電性固体電解質薄膜の製作方法。A bulk of a P 2 O 5 —MOx (M = Si, Ti, Zr, Al) -based glass solid electrolyte is formed by a sol-gel method, and fragments obtained by crushing the bulk are subjected to oxidizing atmosphere at 500 to 500 μm. A method for producing a proton conductive solid electrolyte thin film, comprising: performing heat treatment at 800 ° C., bonding by a discharge plasma sintering method, and performing sputtering with the target as a target. リンを含む金属酸化物系固体電解質を熱処理するステップと、該熱処理された金属酸化物系固体電解質に高エネルギーを付与するステップとを含む、プロトン導電性固体電解質用スパッタリングターゲットの製作方法。A method for producing a sputtering target for a proton-conductive solid electrolyte, comprising: heat-treating a metal oxide-based solid electrolyte containing phosphorus; and applying high energy to the heat-treated metal oxide-based solid electrolyte. ゾル−ゲル法によりP−MOx(M=Si,Ti,Zr、Al)系のガラス系固体電解質のバルクを形成し、これを破砕して得られた細片を酸化雰囲気下500〜800℃で熱処理後、放電プラズマ焼結法により結合して得られるプロトン導電性固体電解質用スパッタリングターゲット。A bulk of a P 2 O 5 —MOx (M = Si, Ti, Zr, Al) -based glass solid electrolyte is formed by a sol-gel method, and fragments obtained by crushing the bulk are subjected to oxidizing atmosphere at 500 to 500 μm. A sputtering target for a proton conductive solid electrolyte obtained by heat treatment at 800 ° C. and bonding by a discharge plasma sintering method.
JP2003075041A 2003-03-19 2003-03-19 A method for producing a thin film for proton conductive solid electrolyte. Expired - Fee Related JP4802441B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2003075041A JP4802441B2 (en) 2003-03-19 2003-03-19 A method for producing a thin film for proton conductive solid electrolyte.

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2003075041A JP4802441B2 (en) 2003-03-19 2003-03-19 A method for producing a thin film for proton conductive solid electrolyte.

Publications (2)

Publication Number Publication Date
JP2004281347A true JP2004281347A (en) 2004-10-07
JP4802441B2 JP4802441B2 (en) 2011-10-26

Family

ID=33290451

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2003075041A Expired - Fee Related JP4802441B2 (en) 2003-03-19 2003-03-19 A method for producing a thin film for proton conductive solid electrolyte.

Country Status (1)

Country Link
JP (1) JP4802441B2 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006185919A (en) * 2004-12-23 2006-07-13 Samsung Sdi Co Ltd Proton conductor, its manufacturing method, high molecule electrolytic membrane, its manufacturing method, electrode for fuel cell, and fuel cell
KR100856545B1 (en) * 2007-06-07 2008-09-04 한국과학기술원 Method and apparatus for fabricating thin film by using nano particle beam

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS4839398A (en) * 1971-04-08 1973-06-09
JPH1097811A (en) * 1996-02-09 1998-04-14 Ohara Inc Lithium ion-transmissible glass ceramics and battery and gas sensor using it
JP2000357524A (en) * 1999-06-15 2000-12-26 Toshiba Corp Proton conductor, fuel cell, manufacture of electrolyte plate, and manufacture of fuel cell
JP2001093543A (en) * 1999-09-28 2001-04-06 Toshiba Corp Proton conductor and fuel cell utilizing same

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS4839398A (en) * 1971-04-08 1973-06-09
JPH1097811A (en) * 1996-02-09 1998-04-14 Ohara Inc Lithium ion-transmissible glass ceramics and battery and gas sensor using it
JP2000357524A (en) * 1999-06-15 2000-12-26 Toshiba Corp Proton conductor, fuel cell, manufacture of electrolyte plate, and manufacture of fuel cell
JP2001093543A (en) * 1999-09-28 2001-04-06 Toshiba Corp Proton conductor and fuel cell utilizing same

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006185919A (en) * 2004-12-23 2006-07-13 Samsung Sdi Co Ltd Proton conductor, its manufacturing method, high molecule electrolytic membrane, its manufacturing method, electrode for fuel cell, and fuel cell
KR100856545B1 (en) * 2007-06-07 2008-09-04 한국과학기술원 Method and apparatus for fabricating thin film by using nano particle beam

Also Published As

Publication number Publication date
JP4802441B2 (en) 2011-10-26

Similar Documents

Publication Publication Date Title
JP5058818B2 (en) Manufacturing method and current collector
Chen et al. Preparation yttria-stabilized zirconia electrolyte by spark-plasma sintering
JP5803700B2 (en) Inorganic all-solid secondary battery
CN105579419B (en) Conductive target material
KR20160124240A (en) High Capacity Solid State Composite Cathode, Solid State Composite Separator, Solid-State Rechargeable Lithium Battery and Methods of Making Same
JP2010535290A (en) Protective oxide coating for SOFC interconnector
EP2975156B1 (en) Sintered body comprising licoo2 sputtering target, and production method for sintered body comprising licoo2
Clemenceau et al. Flash sintering of Li-ion conducting ceramic in a few seconds at 850 C
JP2014066547A (en) Sensor electrode and manufacturing method thereof, and metallic paste for electrode formation
Wolfenstine et al. Electrical and mechanical properties of hot-pressed versus sintered LiTi2 (PO4) 3
Kharchenko et al. Nanostructural changes in a Ni/NiO cermet during high-temperature reduction and reoxidation
CN109437880B (en) Method for preparing Ce-Sm-Fe composite solid electrolyte ceramic material by ultrasonic-microwave sol-gel method
JP4802441B2 (en) A method for producing a thin film for proton conductive solid electrolyte.
JPH11273693A (en) Separator for low temperature type fuel cell
Sakao et al. Fabrication and ionic conductivity of oriented lanthanum silicate films with apatite-type structure
JP4090148B2 (en) Method for producing lithium ion conductive glass ceramics
Kalinina et al. Electrophoretic deposition of Y 2 O 3-stabilized ZrO 2 nanoparticles on the surface of dense La 0.7 Sr 0.3 MnO 3− δ cathodes produced by pyrolysis and solid-state reaction
JP4802440B2 (en) A method for producing a proton conductive solid electrolyte.
JP4014250B2 (en) Carbon dioxide sensor
JP2015005739A (en) Solid ion capacitor
JP7272370B2 (en) Silicon nitride substrate manufacturing method and silicon nitride substrate
TW200304954A (en) Silicon monoxide sintered product and sputtering target comprising the same
JP2011171247A (en) Solid electrolyte and all solid lithium secondary battery
Galbo et al. Evaluating electrophoretically deposited Cu-Mn-O spinel coatings on stainless steel substrates used in solid oxide fuel cell interconnects
JP2000007438A (en) High-resistance recrystallized silicon carbide, corrosion- resisting member, production of high-resistance recrystallized silicon carbide and production of corrosion-resisting member

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20060215

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20080930

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20081007

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20081201

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20090106

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20090309

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20100608

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20100806

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20110712

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20110725

R150 Certificate of patent or registration of utility model

Ref document number: 4802441

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140819

Year of fee payment: 3

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees