JP2004273922A - 薄膜トランジスタの製造方法、薄膜トランジスタ、表示装置、並びに電子機器 - Google Patents

薄膜トランジスタの製造方法、薄膜トランジスタ、表示装置、並びに電子機器 Download PDF

Info

Publication number
JP2004273922A
JP2004273922A JP2003065095A JP2003065095A JP2004273922A JP 2004273922 A JP2004273922 A JP 2004273922A JP 2003065095 A JP2003065095 A JP 2003065095A JP 2003065095 A JP2003065095 A JP 2003065095A JP 2004273922 A JP2004273922 A JP 2004273922A
Authority
JP
Japan
Prior art keywords
insulating film
semiconductor layer
film
thin film
film transistor
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2003065095A
Other languages
English (en)
Inventor
Takashi Sato
尚 佐藤
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Seiko Epson Corp
Original Assignee
Seiko Epson Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Seiko Epson Corp filed Critical Seiko Epson Corp
Priority to JP2003065095A priority Critical patent/JP2004273922A/ja
Publication of JP2004273922A publication Critical patent/JP2004273922A/ja
Pending legal-status Critical Current

Links

Images

Landscapes

  • Liquid Crystal (AREA)
  • Thin Film Transistor (AREA)

Abstract

【課題】レジストによる半導体膜の汚染を抑制すると共に、良好な絶縁性が得られた薄膜トランジスタの製造方法と、当該製造方法によって得られた薄膜トランジスタと、当該薄膜トランジスタを備えた表示装置と、当該表示装置を備えた電子機器を提供すること。
【解決手段】チャネル領域1a’を有する半導体層1と、チャネル領域1a’にゲート絶縁膜2を介して対向配置されたゲート電極3aとを備えた薄膜トランジスタの製造方法であって、基板10上に半導体層1を形成する工程と、半導体層1上に保護膜を形成する工程と、保護膜上に半導体層1のパターニングで用いるレジストを塗布する工程とを具備することを特徴とする。
【選択図】 図5

Description

【0001】
【発明の属する技術分野】
本発明は、薄膜トランジスタの製造方法、薄膜トランジスタ、表示装置、並びに電子機器に関する。
【0002】
【従来の技術】
近年、絶縁体層上に設けられたシリコン層(半導体層)を半導体装置の形成に利用するSOI(Silicon On Insurator)技術は、α線耐性、ラッチアップ特性、或いはショートチャネルの抑制効果など、通常の単結晶シリコン基板では達成し得ない優れた特性を示すため、半導体装置の高集積化を目的として開発が進められている。
このようなシリコン層のパターニングにおいては、シリコン層を島状にパターニングした後に、シリコン層を被覆するように絶縁膜が形成されている(例えば、特許文献1参照。)。
【0003】
【特許文献1】
特開2001−320055号公報
【0004】
【発明が解決しようとする課題】
しかしながら、上記特許文献1に記載の技術においては、シリコン層をパターニングする際のレジスト塗布により、レジストに含まれているリン、ボロン、硫黄、金属等がシリコン層に入り込み、半導体装置のVth変動、ゲート絶縁膜のTDDB信頼性低下等を招いてしまうという問題がある。
更に、図17(a)に示すように、シリコン層を被覆していた絶縁膜を除去した場合には、図17(b)に示すように、えぐれ部分Eが形成されてしまう。この状態で、シリコン層に熱酸化を施して酸化絶縁膜を形成した場合には、図17(c)に示すように、シリコン層の表面に酸化絶縁膜が形成されるが、えぐれ部分Eが酸化絶縁膜で埋設されることがない。更に、ゲート電極を形成するために、酸化絶縁膜上に熱CVDでポリシリコンを成膜した後に、パターニングを行った場合には、図17(d)に示すように、えぐれ部分Eにポリシリコンが堆積してしまう。このようなポリシリコンの残留は、半導体装置のスイッチング特性に影響を与えるという問題がある。
また、図18に示すようなダブルゲート構造のように、シリコン層の上に第1及び第2のゲート電極を形成した場合に、残留したポリシリコンを介して第1及び第2のゲート電極間が短絡し、正規のスイッチングが行われないという問題がある。
【0005】
本発明は、上述する事情に鑑みてなされたものであり、レジストによる半導体膜の汚染を抑制すると共に、良好な絶縁性が得られた薄膜トランジスタの製造方法と、当該製造方法によって得られた薄膜トランジスタと、当該薄膜トランジスタを備えた表示装置と、当該表示装置を備えた電子機器を提供することを目的とする。
【0006】
【課題を解決するための手段】
上記の目的を達成するために、本発明は以下の手段を採用した。
即ち、本発明の薄膜トランジスタの製造方法は、チャネル領域を有する半導体層と、チャネル領域にゲート絶縁膜を介して対向配置されたゲート電極とを備えた薄膜トランジスタの製造方法であって、基板上に半導体層を形成する工程と、半導体層上に保護膜を形成する工程と、保護膜上に半導体層のパターニングで用いるレジストを塗布する工程とを具備することを特徴とする。
ここで、半導体層とは、シリコン(Si)、ゲルマニウム(Ge)等の半導体材料や、化合物半導体により形成されたものである。また、基板とは、石英、シリコンカーバイト(SiC)、サファイア等により形成されたものである。また、パターニングとは、レジスト塗布工程、露光工程、現像工程、エッチング工程を意味するものであり、このような工程のうちレジスト塗布工程においては上記レジスト液が用いられる。また、保護膜は、上記の半導体層の材料を有しており、特に、当該材料の酸化膜や窒化膜により形成されていることが好ましい。
従って、本発明によれば、保護膜を形成したことにより、レジスト液に含まれる金属等の不純物と半導体層とが接触することがないので、当該不純物の混入に起因する半導体層の特性悪化を防止することができる。
【0007】
また、本発明の薄膜トランジスタの製造方法は、先に記載の薄膜トランジスタの製造方法であり、半導体層と保護膜とのパターニングを同時に行うことを特徴とする。
従って、本発明によれば、先に記載の製造方法と同様の効果を奏すると共に、同時にパターニングが行われることにより、工程の簡略化を図ることができる。
【0008】
また、本発明の薄膜トランジスタの製造方法は、先に記載の薄膜トランジスタの製造方法であり、ゲート絶縁膜を形成するゲート絶縁膜形成工程を備え、当該ゲート絶縁膜形成工程は、半導体層を熱酸化して熱酸化膜を形成する第1絶縁膜形成工程と、気相合成法により熱酸化膜上に気相合成絶縁膜を形成する第2絶縁膜形成工程とを具備することを特徴とする。
ここで、第1絶縁膜形成工程においては、半導体層の上方に熱酸化膜が形成される。また、第2絶縁膜形成工程においては、気相合成法が用いられるので、熱酸化膜の上方及び側方に対して略均一な膜厚の気相合成絶縁膜が形成される。
従って、本発明によれば、先に記載の製造方法と同様の効果を奏すると共に、熱酸化膜及び気相合成絶縁膜とによる複数構造の絶縁膜が形成されるので、良好なゲート絶縁性を得ることができる。
また、第2絶縁膜形成工程を施すことにより、半導体層と下地絶縁膜との間にえぐれ部分が生じた場合であっても、当該えぐれ部分に気相合成絶縁膜を形成することができる。
【0009】
また、本発明の薄膜トランジスタの製造方法は、先に記載の薄膜トランジスタの製造方法であり、半導体層は下地絶縁膜を介して基板上に形成され、保護膜と下地絶縁膜の一部とをエッチング法により除去する除去工程を更に具備することを特徴とする。
ここで、除去工程においては、保護膜と下地絶縁膜とを全面に同時にエッチングが行われ、保護膜が完全に除去されると共に、これに伴って下地絶縁膜の一部が除去される。エッチング法としては、ドライエッチング法又はウエットエッチング法が好適に用いられる。
従って、本発明によれば、先に記載の製造方法と同様の効果を奏すると共に、レジスト液により汚染された保護膜が完全に除去されるので、当該保護膜の残留に伴う半導体層への汚染を防止することができ、良好な半導体層を形成することができる。
【0010】
また、本発明の薄膜トランジスタの製造方法は、先に記載の薄膜トランジスタの製造方法であり、除去工程における下地絶縁膜の除去量よりも、気相合成絶縁膜の膜厚が大きいことを特徴とする。
ここでいう除去量とは、半導体層と下地絶縁膜との界面と、除去工程により露出した下地絶縁膜の表面との基板に垂直な方向の距離を意味する(図3(a)のd参照)。
従って、本発明によれば、先に記載の製造方法と同様の効果を奏すると共に、除去工程による半導体層と下地絶縁膜との間のえぐれ部分に、気相合成絶縁膜を埋設することができる。
【0011】
また、本発明の薄膜トランジスタの製造方法は、先に記載の薄膜トランジスタの製造方法であり、気相合成絶縁膜の膜厚は、下地絶縁膜の除去量の2倍以上であることを特徴とする。
従って、本発明によれば、先に記載の製造方法と同様の効果を奏すると共に、えぐれ部分に良好に気相合成絶縁膜を埋設することができる。
【0012】
また、本発明の薄膜トランジスタの製造方法は、先に記載の薄膜トランジスタの製造方法であり、半導体層は単結晶半導体からなることを特徴とする。
従って、本発明によれば、先に記載の製造方法と同様の効果を奏すると共に、単結晶半導体によるSOI技術を用いることが可能になる。即ち、薄膜トランジスタのα線耐性やラッチアップ特性を向上させることができる。また、ショートチャネルの抑制効果等が得られる。更には、100nm以下の厚さにSOI層を薄膜化することにより、ショートチャネルの抑制効果を向上させることが可能になる。また、更には放射線耐性の向上に伴う高信頼性が得られる。また、更には寄生容量の低減による素子の高速化や低消費電力化を図ることができる。或いは、完全空乏層型の薄膜トランジスタを形成することが可能になる。
【0013】
また、本発明の薄膜トランジスタは、先に記載の薄膜トランジスタの製造方法で得られたことを特徴とする。
従って、本発明によれば、先に記載の方法と同様の効果を奏すると共に、良好な特性を有する薄膜トランジスタを提供することが可能になる。
【0014】
また、本発明の表示装置は、先に記載の薄膜トランジスタを備えることを特徴とする。
従って、本発明よれば、先に記載の薄膜トランジスタと同様の効果が得られると共に、良好な特性を有した表示装置を提供することが可能となる。
【0015】
次に、本発明の電子機器は、本発明の表示装置を備えることを特徴とする。
従って、本発明によれば、先に記載の表示装置と同様の効果が得られると共に、好適な電子機器を提供することが可能となる。
このような電子機器としては、例えば、携帯電話機、移動体情報端末、時計、ワープロ、パソコンなどの情報処理装置などを例示することができる。
【0016】
【発明の実施の形態】
以下、本発明に係る薄膜トランジスタの製造方法、薄膜トランジスタ、表示装置、並びに電子機器について、図面を参照して説明する。
なお、各層や各部材を図面上で認識可能な程度の大きさとするため、各層や各部材の縮尺は実際のものとは異なるように表している。
【0017】
(第1実施形態)
以下、本発明に係る薄膜トランジスタの製造方法と、薄膜トランジスタの第1実施形態について説明する。
図1及び図2は、薄膜トランジスタの製造方法の主要工程における基板本体の模式断面図である。
図1(a)に示すように、基板本体10A上に、下地絶縁膜12と、半導体層1が形成されている。
【0018】
基板本体10Aとしては、石英基板、ハードガラス等の透光性基板が用いられ、本実施形態においては、石英基板が採用される。また、当該基板本体10AをN2(窒素)等の不活性ガス雰囲気下、約850〜1300℃、より好ましくは1000℃の高温で、アニール処理を施しておくことが好ましい。これにより、高温プロセスにおける基板本体10Aの歪みを少なくすることが可能になる。薄膜トランジスタの製造における最高温度に合わせて、基板本体10Aを同じ温度かそれ以上の温度で熱処理しておくことが好ましい。
【0019】
下地絶縁膜12の材料としては、酸化シリコンや窒化シリコン等が採用される。本実施形態の下地絶縁膜12は、酸化シリコンが200nmの膜厚で形成されたものである。
また、後述する貼り合わせにより、基板本体10A上に下地絶縁膜12を形成する場合には、NSG(ノンドープトシリケートガラス)、PSG(リンシリケートガラス)、BSG(ボロンシリケートガラス)、BPSG(ボロンリンシリケートガラス)などの高絶縁性ガラス等を採用してもよい。
【0020】
半導体層1は、ポリシリコン(多結晶シリコン)、アモルファスシリコン(非晶質シリコン)、単結晶シリコン、化合物半導体等の材料によって形成されたものである。特に、後述する貼り合わせにより、下地絶縁膜12上に半導体層1を形成する場合には、単結晶シリコンが用いられる。本実施形態の半導体層1は、単結晶シリコンが50nmの膜厚で形成されたものである。
【0021】
次に、図1(b)に示すように、半導体層1上に保護膜14を形成する。
保護膜14は、半導体層1に含まれる原子を有しており、酸化膜や窒化膜が好適に用いられる。膜厚としては、10〜100nmの範囲が好ましく、より好ましくは20〜50nmの範囲である。なお、本実施形態の保護膜14は、酸化シリコンが10nmの膜厚で形成されたものである。
保護膜14の形成方法としては、半導体層1の熱酸化により形成する。
なお、当該保護膜14の形成方法は、熱酸化に限定することなく、CVD(気相合成)法等の真空雰囲気中での成膜や、ポリシラザンを有した液体材料をスピンコート法により塗布した後に、加熱処理を施して酸化シリコンを形成する方法であってもよい。
【0022】
次に、図1(c)に示すように、半導体層1及び保護膜14を同時にパターニングする。ここで、パターニングとは、レジスト塗布工程、露光工程、現像工程及びエッチング工程により、所定のパターンの半導体層1及び保護膜14を形成するものである。エッチング工程においては、ドライエッチング法が用いられる。このようなパターニングにおいては、半導体層1の上に保護膜14が形成されているので、レジスト塗布工程のおけるレジスト液と半導体層1とが接触することがない。
【0023】
次に、図1(d)に示すように、第1絶縁膜形成工程が施され、保護膜14及び半導体膜1を覆うように、熱酸化膜2aが形成される。本実施形態の熱酸化膜2aは、酸化シリコンが10nmの膜厚で形成されたものである。半導体層1の端部においては、この熱酸化膜2aが形成されることにより、下地絶縁膜12と熱酸化膜2aとによるえぐれ部分Eが形成される。
【0024】
次に、図2(e)に示すように、第2絶縁膜形成工程が施され、熱酸化膜2a及び下地絶縁膜12を覆うように、気相合成絶縁膜2bが形成される。本実施形態の気相合成絶縁膜2bは、HTO(High Temperature Oxide)膜が50nmの膜厚で形成されたものである。
従って、熱酸化膜2aの表面だけでなく、下地絶縁膜12上に対して、略均一に気相合成絶縁膜2bが形成されるので、図1(d)に示すえぐれ部分Eが気相合成絶縁膜2bによって埋設される。
【0025】
次に、図2(f)に示すように、ポリシリコンからなるゲート電極3が気相合成絶縁膜2b上に形成される。ゲート電極3の形成においては、気相合成絶縁膜2b全面にポリシリコン膜を一様に形成した後に、上述のパターニングが行われる。
【0026】
次に、図2(g)に示すように、ゲート電極3の表面をレジストRで被覆し、当該ゲート電極3及びレジストRを拡散マスクとして、イオンドーピング法により、リン(P)などのV族元素のドーパント15をドープし、Nチャネルのソース領域1m及びドレイン領域1nを形成する。
なお、イオンドーピング法においては、Pイオンの加速電圧を変更して、ソース領域1m及びドレイン領域1n内にPイオンの低濃度領域と高濃度領域を形成してもよい。
【0027】
次に、図2(h)に示すように、ソース領域1m及びドレイン領域1nを露出するようにコンタクトホールCが形成され、当該コンタクトホールCを埋めるように配線Lが形成される。ここで、コンタクトホールC及び配線Lの形成においては、上記のパターニングが行われる。なお、配線Lの材料としては、Al等の低抵抗金属材料が用いられる。
従って、以上説明したように、薄膜トランジスタが形成される。
【0028】
このように形成された薄膜トランジスタに対して、N、PCHにおけるVthの値のバラツキを検査したところ、0.3±0.05V、−0.4±0.05Vとなった。従来方法によれば、0.5±0.5V、−0.5±0.6であった。即ち、本実施形態で製造した薄膜トランジスタの値のバラツキが小さくなった。更に、ゲート耐圧分布を調べたところ、従来方法ではBモード不良が30%であったが、本実施形態で製造した薄膜トランジスタでは略0%(不良が発見されなかった)となった。これは、TDDB寿命が大幅に改善されたことを意味している。
【0029】
上述したように、本実施形態に示す薄膜トランジスタの製造方法においては、保護膜14を半導体層1上に形成したことにより、レジスト液に含まれる金属等の不純物と半導体層1とが接触することがないので、当該不純物の混入に起因する半導体層1の特性悪化を防止することができる。また、半導体層1及び保護膜14は同時にパターニングが行われるので、工程の簡略化を図ることができる。また、気相合成絶縁膜2bを形成することにより、えぐれ部分Eを埋設することができる。
また、上記の方法によって製造された薄膜トランジスタにおいては、Vthのバラツキを小さくすることができると共に、不良が減少したことによるTDDB寿命の改善を図ることができる。
【0030】
また、半導体層1は、単結晶シリコンで形成されているので、SOI技術を用いることが可能になる。従って、薄膜トランジスタのα線耐性やラッチアップ特性を向上させることが可能になる。また、ショートチャネルの抑制効果等が得られ、更には、100nm以下の厚さにSOI層を薄膜化することにより、ショートチャネルの抑制効果を向上させることが可能になる。また、放射線耐性の向上に伴う高信頼性が得られる。また、更には寄生容量の低減による素子の高速化や低消費電力化を図ることができる。或いは、完全空乏層型の薄膜トランジスタを形成することが可能になる。
【0031】
(第2実施形態)
以下、本発明に係る薄膜トランジスタの製造方法と、薄膜トランジスタの第2実施形態について説明する。
本実施形態は、第1実施形態に記載した保護膜の除去工程を備えている。
図3は薄膜トランジスタの製造方法の主要工程における基板本体の模式断面図である。なお、本実施形態においては、第1実施形態の図1(a)から図1(c)までの工程が同一であるので、異なる部分のみを説明すると共に、同一部分には同一符号を付し、説明を簡略化する。
【0032】
本実施形態においては、図1(c)に示すように半導体層1及び保護膜14を同時にパターニングされた後に、図3(a)に示すように保護膜14の除去工程が行われる。この除去工程においては、ウエットエッチング法が用いられ、保護膜14が完全に除去されると共に、これに伴って、下地絶縁膜12の一部が除去される。従って、半導体層1の端部においては、下地絶縁膜12の除去によるえぐれ部分Eが形成される。
【0033】
次に、図3(b)に示すように、第1絶縁膜形成工程が施され、半導体膜1を覆うように熱酸化膜2aが形成される。熱酸化膜2aは酸化シリコンが10nmの膜厚で形成されたものである。この第1絶縁膜形成工程においては、上記のえぐれ部分Eが埋設されることがない。
【0034】
次に、図3(c)に示すように、第2絶縁膜形成工程が施され、熱酸化膜2a及び下地絶縁膜12を覆うように、気相合成絶縁膜2bが形成される。気相合成絶縁膜2bは、HTO(High Temperature Oxide)膜が50nmの膜厚で形成されたものである。ここで、気相合成絶縁膜2bの膜厚は50nmに限定することなく、上記の除去工程による下地絶縁膜の除去量(半導体層1と下地絶縁膜14との界面と、除去工程により露出した下地絶縁膜12の表面との基板10Aに垂直な方向の距離d)よりも大きい膜厚であることが好ましく、より好ましくは、除去量の2倍以上の膜厚で形成するのがよい。
従って、熱酸化膜2aの表面だけでなく、下地絶縁膜12上に対して、略均一に気相合成絶縁膜2bが形成されるので、えぐれ部分Eは気相合成絶縁膜2bによって埋設される。
【0035】
更に、第1実施形態と同様に、ゲート電極3、ソース領域1m及びドレイン領域1n、コンタクトホールC及び配線Lを形成することにより、図3(d)に示す薄膜トランジスタが形成される。
【0036】
本実施形態により形成された薄膜トランジスタのVth値及びゲート耐圧分布は、第1実施形態の薄膜トランジスタと同様な結果が得られた。
【0037】
上述したように、本実施形態に示す薄膜トランジスタの製造方法においては、第1実施形態と同様の効果が得られると共に、レジスト液により汚染された保護膜14を完全に除去することができるので、保護膜14が残留に起因する半導体層1への汚染を防止することができ、良好な半導体層を形成することができる。
【0038】
(第3実施形態)
以下、第3実施形態として本発明の表示装置について説明する。
なお、本実施形態においては、第1及び第2実施形態と異なる部分を説明すると共に、同一部分には同一符号を付し、説明を簡略化する。
【0039】
図4は、本発明の表示装置の一実施形態である液晶パネルの全体構成を説明するための平面図であり、TFTアレイ基板をその上に形成された各構成要素とともに対向基板の側から見た状態を示した平面図である。また、図5は、図4のA−A’断面図であり、図6は、図4のB−B’断面図である。
【0040】
図4及び図5、図6に示す液晶パネル(表示装置)は、一対の基板間に液晶が封入されたものであり、一方の基板をなす薄膜トランジスタ(Thin Film Transistor、以下、TFTと略記する)アレイ基板10と、これに対向配置された他方の基板をなす対向基板20とを備えている。
図4は、TFTアレイ基板10をその上に形成された各構成要素とともに対向基板20の側から見た状態を示している。図4に示すように、TFTアレイ基板10の上には、シール材51がその縁に沿って設けられており、その内側には、シール材51に並行して額縁としての遮光膜53が設けられている。また、図4において、符号52は、表示領域を示している。表示領域52は、額縁としての遮光膜53の内側の領域であり、液晶パネルの表示に使用する領域である。また、符号54は、表示領域の外側の領域である非表示領域を示している。
【0041】
非表示領域54には、データ線駆動回路101及び外部回路接続端子102がTFTアレイ基板10の一辺に沿って設けられ、走査線駆動回路104がこの一辺に隣接する2辺に沿って設けられ、プリチャージ回路103が残る一辺に沿って設けられている。さらに、データ線駆動回路101、プリチャージ回路103、走査線駆動回路104と外部回路接続端子102との間をつなぐための複数の配線105が設けられている。
また、対向基板20のコーナー部に対応する位置には、TFTアレイ基板10と対向基板20との間で電気的導通をとるための導通材106が設けられている。そして、シール材51とほぼ同じ輪郭を持つ対向基板20が当該シール材51によりTFTアレイ基板10に固着されている。
【0042】
また、図5及び図6に示すように、TFTアレイ基板10は、第1実施形態に記載した基板本体10Aと、その液晶層50側表面上に形成され、ITO(Indium Tin Oxide)膜などの透明導電性膜からなる画素電極9aと、表示領域に設けられた画素スイッチング用TFT30及び非表示領域に設けられた駆動回路用TFT31と、ポリイミド膜等の有機膜から形成され、ラビング処理等の所定の配向処理が施された配向膜16とを主体として構成されている。なお、前記の画素スイッチング用TFT30及び駆動回路用TFT31は、後述するように本発明の薄膜トランジスタの一例となるものである。
【0043】
他方、対向基板20は、透明なガラスや石英などの光透過性基板からなる基板本体20Aと、その液晶層50側表面上に形成された対向電極21と、配向膜22と、金属などからなり、各画素部の開口領域以外の領域に設けられた遮光膜23、及び、遮光膜23と同じかあるいは異なる材料からなる額縁としての遮光膜53とを主体として構成されている。
このように構成され、画素電極9aと対向電極21とが対向するように配置されたTFTアレイ基板10と対向基板20との間には、液晶層50が形成されている。
【0044】
また、図5に示すように、TFTアレイ基板10の基板本体10Aの液晶層50側表面上において、各画素スイッチング用TFT30に対応する位置には、遮光層11a(後述)が設けられている。また、当該遮光層11aと複数の画素スイッチング用TFT30との間には、第1層間絶縁膜(後に貼り合わせ工程により下地絶縁膜12となる)が設けられている。第1層間絶縁膜4aは、画素スイッチング用TFT30を構成する半導体層1を遮光層11a(後述)から電気的に絶縁するために設けられるものである。
【0045】
図5及び図6に示すように、本発明における薄膜トランジスタとなる画素スイッチング用TFT30及び駆動回路用TFT31は、LDD(Lightly Doped Drain )構造を有しており、走査線3aからの電界によりチャネルが形成される半導体層1のチャネル領域1a’と、ゲート電極3cからの電界によりチャネルが形成される半導体層1のチャネル領域1k’と、走査線3a及びゲート電極3cと半導体層1とを絶縁するゲート絶縁膜2と、データ線6aと、半導体層1における低濃度ソース領域1b、1g及び低濃度ドレイン領域1c、1hと、半導体層1における高濃度ソース領域(ソース領域)1d、1i及び高濃度ドレイン領域1e、1j(ドレイン領域)とを備えている。
【0046】
ここで、半導体層1は単結晶シリコンからなっている。この半導体層1の厚さとしては、100nm以下とすることが望ましい。半導体層1の厚さが100nm以上の場合、光リークが生じることにより表示画像に悪影響を及ぼす恐れがあるからである。
【0047】
ゲート絶縁膜2は、本実施形態では積層構造、即ち、熱酸化膜2aと気相合成絶縁膜2bとの積層構造となっている。熱酸化膜2aの厚さとしては、3〜50nm程度、好ましくは5〜30nm程度とされる。また、気相合成絶縁膜2bは、後述するようにCVD法等によって成膜されたもので、シリコン酸化膜、シリコン窒化膜、シリコン酸窒化膜等から選択された1種以上の膜からなるものである。このような気相合成絶縁膜2bの厚さ(2種以上を形成した場合にはその合計厚さ)は10nm以上とされる。また、ゲート絶縁膜2全体の厚さ、すなわち熱酸化膜2aと気相合成絶縁膜2bとの合計厚さは40〜80nm程度とされる。これは、特に画素スイッチング用TFT30や駆動回路用TFT31の駆動電圧を10〜15V程度に設定した場合に、前記範囲の厚さが耐圧を確保するうえで必要となるからである。
【0048】
なお、気相合成絶縁膜2bとして、シリコン窒化膜やシリコン酸窒化膜といった高誘電率材料を選択した場合、電流量を多くとれることから薄膜トランジスタのサイズの小型化を図ることができる。一方、気相合成絶縁膜2bとしてシリコン酸化膜を選択した場合には、その下層である熱酸化膜2aと同じ材質となることから、半導体層1に通じるコンタクトホール形成の際のエッチングが容易になる。
【0049】
また、この液晶パネルにおいては、図5に示すように、ゲート絶縁膜2を走査線3aに対向する位置から延設して誘電体膜として用い、半導体層1を延設して第1蓄積容量電極1fとし、更にこれらに対向する容量線3bの一部を第2蓄積容量電極とすることにより、蓄積容量70が構成されている。容量線3b及び走査線3aは、同一のポリシリコン膜、または、ポリシリコン膜と、金属単体、合金、金属シリサイド等の積層構造からなり、蓄積容量70の誘電体膜と画素スイッチング用TFT30及び駆動回路用TFT31のゲート絶縁膜2とは、同一の高温酸化膜からなっている。また、画素スイッチング用TFT30のチャネル領域1a’、ソース領域1d、ドレイン領域1eと、駆動回路用TFT31のチャネル領域1k’、ソース領域1i、ドレイン領域1jと、第1蓄積容量電極1fとは、同一の半導体層1からなっている。半導体層1は、前述したように単結晶シリコンによって形成されたもので、SOI(Silicon On Insulator)技術が適用されたTFTアレイ基板10に設けられたものである。
【0050】
また、図5に示すように、走査線3a、ゲート絶縁膜2及び第1層間絶縁膜4aの上には第2層間絶縁膜4bが形成されており、この第2層間絶縁膜4bには、画素スイッチング用TFT30の高濃度ソース領域1dへ通じるコンタクトホール5、及び画素スイッチング用TFT30の高濃度ドレイン領域1eへ通じるコンタクトホール8がそれぞれ形成されている。さらに、データ線6a及び第2層間絶縁膜4bの上には第3層間絶縁膜7が形成されており、この第3層間絶縁膜7には画素スイッチング用TFT30の高濃度ドレイン領域1eへのコンタクトホール8が形成されている。また、画素電極9aは、このように構成された第3層間絶縁膜7の上面に設けられている。
【0051】
一方、図6に示すように、駆動回路用TFT31には画素電極9aは接続されておらず、駆動回路用TFT31のソース領域1iにはソース電極6bが接続され、駆動回路用TFT31のドレイン領域1jにはドレイン電極6cが接続されている。
【0052】
次に、このような構成の液晶パネル(表示装置)の製造方法に基づき、本発明の薄膜トランジスタの製造方法を説明する。
まず、図7〜図15に基づき、図4及び図5、図6に示した液晶パネルの製造方法におけるTFTアレイ基板10の製造方法について説明する。なお、図7及び図8と図9〜図15とは異なる縮尺で示している。
まず、図7及び図8に基づいて、TFTアレイ基板10の基板本体10Aの表面上に、遮光層11aと第1層間絶縁膜4aとを形成する工程について詳細に説明する。なお、図7及び図8は、各工程におけるTFTアレイ基板の一部分を、図5に示した液晶パネルの断面図に対応させて示す工程図である。
【0053】
はじめに、基板本体10Aの表面上の全面に、図7(a)に示すように、Ti、Cr、W、Ta、Mo及びPbのうちの少なくとも一つを含む、金属単体、合金、金属シリサイド等を、スパッタリング法、CVD法、電子ビーム加熱蒸着法などにより、例えば150〜200nmの膜厚に堆積することにより、遮光材料層11を形成する。
【0054】
次に、基板本体10Aの表面上の全面にフォトレジストを形成し、最終的に形成する遮光層11aのパターンを有するフォトマスクを用いてフォトレジストを露光する。その後、フォトレジストを現像することにより、図7(b)に示すように、最終的に形成する遮光層11aのパターンを有するフォトレジスト207を形成する。
次に、フォトレジスト207をマスクとして遮光材料層11のエッチングを行い、その後、フォトレジスト207を剥離することにより、基板本体10Aの表面上における画素スイッチング用TFT30の形成領域に、図7(c)に示すように所定のパターンを有する遮光層11aが形成される。遮光層11aの膜厚は、例えば150〜200nmとする。
【0055】
次に、図8(a)に示すように、遮光層11aを形成した基板本体10Aの表面上に、スパッタリング法、CVD法などにより、第1層間絶縁膜4aを形成する。このとき、遮光層11aを形成した領域上には、第1層間絶縁膜4aの表層部に凸部12aが形成される。第1層間絶縁膜4aの材料としては、酸化シリコンや、NSG(ノンドープトシリケートガラス)、PSG(リンシリケートガラス)、BSG(ボロンシリケートガラス)、BPSG(ボロンリンシリケートガラス)などの高絶縁性ガラス等を例示することができる。
次に、第1層間絶縁膜4aの表面をCMP(化学的機械研磨)法などの方法を用いて研磨し、図8(b)に示すように前記凹部12aを除去して第1層間絶縁膜4aの表面を平坦化する。第1層間絶縁膜4aの膜厚については、約400〜1000nm程度、より好ましくは800nm程度とする。
【0056】
次に、図9〜図15に基づいて、第1層間絶縁膜4aが形成された基板本体10AからTFTアレイ基板10を製造する方法について説明する。なお、図9〜図15は、各工程におけるTFTアレイ基板の一部分を、図5に示した液晶パネルの断面図のA−A’に対応させて示す工程図である。
図9(a)は、図8(b)の一部分を取り出して異なる縮尺で示す図である。図9(b)に示すように、図9(a)に示した表面が平坦化された第1層間絶縁膜4aを有する基板本体10Aと、単結晶シリコン基板206との貼り合わせを行う。
【0057】
貼り合わせに用いる単結晶シリコン基板206は、膜厚が例えば700μmの単結晶シリコン層206a(後述では、半導体層1と称する)と、予め単結晶シリコン基板206の基板本体10Aと貼り合わせる側の表面に形成された酸化膜層206b(後に貼り合わせ工程により下地絶縁膜12となる)とを有している。また、単結晶シリコン基板206の中には、水素イオン(H+)が例えば加速電圧100keV、ドーズ量10×1016/cmにて注入されている。酸化膜層206bは、単結晶シリコン基板206の表面を0.05〜0.8μm程度酸化することにより形成される。
貼り合わせ工程は、例えば300℃で2時間熱処理することにより2枚の基板を直接貼り合わせる方法を採用することができる。このような貼り合わせ工程によって酸化膜層206bと第1層間絶縁膜4aとが密着して一体化し、下地絶縁膜12となる。
【0058】
また、貼り合わせ強度を更に高めるためには、熱処理温度を上げて450℃程度にする必要があるが、石英などからなる基板本体10Aの熱膨張係数と単結晶シリコン基板206の熱膨張係数との間には大きな差があるため、このまま加熱すると単結晶シリコン層にクラックなどの欠陥が発生し、製造されるTFTアレイ基板10の品質が劣化する恐れがある。クラックなどの欠陥の発生を抑制するためには、一度300℃にて貼り合わせのための熱処理を行った単結晶シリコン基板206を、ウエットエッチングまたはCMPによって100〜150μm程度まで薄くし、その後、更に高温の熱処理を行うことが望ましい。例えば、80℃のKOH水溶液を用いて単結晶シリコン基板206の厚さが150μmとなるようにエッチングし、その後、基板本体10Aとの貼り合わせを行い、更に450℃にて再び熱処理することにより貼り合わせ強度を高めることが望ましい。
【0059】
次に、図9(c)に示すように、貼り合わせた単結晶シリコン基板206の貼り合わせ面側の酸化膜206bと単結晶シリコン層(半導体層1)206aを残したまま、単結晶シリコン基板206を基板本体10Aから剥離(分離)するための熱処理を行う。
この基板の剥離現象は、単結晶シリコン基板206中に導入された水素イオンによって、単結晶シリコン層206aの表面近傍のある層でシリコンの結合が分断されるために生じるものである。ここでの熱処理は、例えば、貼り合わせた2枚の基板を毎分20℃の昇温速度にて600℃まで加熱することにより行うことができる。この熱処理により、貼り合わせた単結晶シリコン基板206が基板本体10Aから分離し、基板本体10Aの表面上には約55nm±5nm程度の単結晶シリコン層206aが形成される。
【0060】
単結晶シリコン層206の膜厚については、前述した単結晶シリコン基板206に対して行う水素イオン注入の加速電圧を変えることにより、例えば10nm〜3000nmの範囲で任意に形成することができる。
なお、薄膜化した単結晶シリコン層206aは、ここに述べた方法以外に、単結晶シリコン基板の表面を研磨して膜厚を3〜5μmとした後、PACE(Plasma Assisted Chemical Etching)法によってその膜厚を0.05〜0.8μm程度までエッチングして仕上げる方法や、多孔質シリコン上に形成したエピタキシャルシリコン層を、多孔質シリコン層の選択エッチングによって貼り合わせ基板上に転写するELTRAN(Epitaxial Layer Transfer)法によっても得ることができる。
【0061】
更に、第1層間絶縁膜4aと単結晶シリコン層206aとの密着性を高め、貼り合わせ強度を高めるためには、基板本体10Aと単結晶シリコン基板206とを貼り合わせた後に、急速熱処理法(RTA)などにより加熱することが望ましい。加熱温度としては、600℃〜1200℃、望ましくは酸化膜の粘度を下げ、原子的に密着性を高めるため1050℃〜1200℃で加熱することが望ましい。
【0062】
次に、図9(d)に示すように、第1及び第2実施形態に示した保護膜14を形成する。保護膜14の形成は、単結晶シリコン層206aを熱酸化して得られた熱酸化膜である。
なお、以降の説明では単結晶シリコン層206aを半導体層1と称する。
【0063】
次に、図9(e)に示すように、フォトリソグラフィ工程、エッチング工程等によるメサ型分離法により、半導体層1及び保護膜14を所定パターンに形成する。
【0064】
次に、図9(f)に示すように、保護膜14をウエットエッチングにより除去することにより、半導体層1のみのパターンが形成される。ここで、特にデータ線6a下で容量線3bが形成される領域及び走査線3aに沿って容量線3bが形成される領域には、画素スイッチング用TFT30を構成する半導体層1から延設された第1蓄積容量電極1fを形成する。なお、前記素子分離工程については、周知のLOCOS分離法やトレンチ分離法を用いてもよい。
なお、本実施形態においては、保護膜14を除去したが、第1実施形態に記載したように、保護膜14の除去を行わずに後の工程となる熱酸化膜2aを形成してもよい。
また、第1及び第2実施形態に記載したように保護膜14の除去に伴って第1層間絶縁膜4aの一部が除去され、図3(a)に示したように、えぐれ部分Eが形成されるが、図9(f)においては、えぐれ部分Eが形成されているものとする。
【0065】
次に、図10(a)に示すように、半導体層1を約800〜1050℃の温度で熱酸化することにより、3〜50nm程度、好ましくは5〜30nm程度の厚さの熱酸化膜2aを形成する。
【0066】
次いで、図10(b)に示すように、気相合成法、例えば常圧又は減圧CVD法、蒸着法等により、シリコン酸化物、シリコン窒化物、又はシリコン酸窒化物を堆積成膜し、気相合成絶縁膜2bを形成する。すると、この気相合成絶縁膜2bは略均一な厚さで前記熱酸化膜2a上、及び第1層間絶縁膜4a上に形成されることから、第2実施形態と同様にえぐれ部分Eが埋設される。従って、熱酸化膜2aと気相合成絶縁膜2bとからなるゲート酸化膜2は、十分な耐圧が確保されたものとなる。
なお、この気相合成絶縁膜2bについては、単層で形成してもよく、また、前記絶縁材料より選択された2種以上の膜による積層膜としてもよい。また、その膜厚としては、前述したように10nm以上とする。これは、10nm未満に形成しようとしても、良好な膜質のものが得られないからである。
【0067】
このようにして熱酸化膜2a、気相合成絶縁膜2bをそれぞれ形成したら、不活性ガス中、例えば窒素やアルゴン中にて900〜1050℃程度の温度によるアニール処理を行い、前記熱酸化膜2a、気相合成絶縁膜2bの積層構造を有するゲート酸化膜2を得る。ここで、このゲート酸化膜2の膜厚、すなわち熱酸化膜2aと気相合成絶縁膜2bとの合計厚さについては、40〜80nm程度となるようにするのが好ましい。
【0068】
次に、図11(a)に示すように、Nチャネルの半導体層1に対応する位置にレジスト膜301を形成し、Pチャネルの半導体層1にP(リン)などのV族元素のドーパント302を低濃度で(例えば、Pイオンを70keVの加速電圧、2×1011/cmのドーズ量にて)ドープする。
次に、図11(b)に示すように、図示を省略するPチャネルの半導体層1と対応する位置にレジスト膜を形成し、Nチャネルの半導体層1にB(ホウ素)などのIII 族元素のドーパント303を低濃度で(例えば、Bイオンを35keVの加速電圧、1×1012/cmのドーズ量にて)ドープする。
【0069】
次に、図11(c)に示すように、半導体層1を延設してなる第1蓄積容量電極1fを低抵抗化するため、基板本体10A表面の第1蓄積容量電極1f以外の部分に対応する部分にレジスト膜307(走査線3aよりも幅が広い)を形成し、これをマスクとしてその上からPなどのV族元素のドーパント308を低濃度で(例えば、Pイオンを70keVの加速電圧、3×1014/cmのドーズ量にて)ドープする。
【0070】
次に、図12(a)に示すように、第1層間絶縁膜4aに遮光層11aに達するコンタクトホール13を反応性エッチング、反応性イオンビームエッチング等のドライエッチングにより、あるいはウエットエッチングにより形成する。この際、反応性エッチング、反応性イオンビームエッチングのような異方性エッチングにより、コンタクトホール13等を開孔した方が、開孔形状をマスク形状とほぼ同じにできるという利点がある。ただし、ドライエッチングとウエットエッチングとを組み合わせて開孔すれば、これらのコンタクトホール13等をテーパ状にできるので、配線接続時の断線を防止できるという利点が得られる。
【0071】
次に、図12(b)に示すように、減圧CVD法等によりポリシリコン層3を350nm程度の厚さで堆積し、その後、リン(P)を熱拡散してポリシリコン膜3を導電化する。又は、Pイオンをポリシリコン膜3の成膜と同時に導入したドープトシリコン膜を用いてもよい。これにより、ポリシリコン層3の導電性を高めることができる。更に、ポリシリコン層3の導電性を高めるため、ポリシリコン層3の上部に、Ti、W、Co及びMoのうちの少なくとも一つを含む、金属単体、合金、金属シリサイド等を、スパッタリング法、CVD法、電子ビーム加熱蒸着法などにより、例えば150〜200nmの膜厚に堆積した層構造にしてもよい。
次に、図12(c)に示すように、レジストマスクを用いたフォトリソグラフィ工程、エッチング工程等により、図5に示した所定パターンの走査線3aと共に容量線3bを形成する。なお、この後、基板本体10Aの裏面に残存するポリシリコンを基板本体10Aの表面をレジスト膜で覆ってエッチングすることにより除去する。
【0072】
次に、図12(d)に示すように、半導体層1に駆動回路用TFT31のPチャネルのLDD領域を形成するために、Nチャネルの半導体層1に対応する位置をレジスト膜309で覆い、ゲート電極(走査線)3aを拡散マスクとして、BなどのIII 族元素のドーパント310を低濃度で(例えば、BF2イオンを90keVの加速電圧、3×1013/cmのドーズ量にて)ドープし、図6に示すPチャネルの低濃度ソース領域1g及び低濃度ドレイン領域1hが形成される。
【0073】
続いて、図12(e)に示すように、半導体層1に駆動回路用TFT31のPチャネルの高濃度ソース領域及び高濃度ドレイン領域を形成するために、Nチャネルの半導体層1に対応する位置をレジスト膜309で覆った状態で、かつ、図示はしていないが走査線3aよりも幅の広いマスクでレジスト層をPチャネルに対応する走査線3a上に形成した状態で、同じくBなどのIII 族元素のドーパント311を高濃度で(例えば、BF2イオンを90keVの加速電圧、2×1015/cmのドーズ量にて)ドープし、図6に示すPチャネルの高濃度ソース領域1i及び高濃度ドレイン領域1jが形成される。
【0074】
次に、図13(a)に示すように、半導体層1に画素スイッチング用TFT30及び駆動回路用TFT31のNチャネルのLDD領域を形成するため、Pチャネルの半導体層1に対応する位置をレジスト膜(図示せず)で覆い、走査線3a(ゲート電極)を拡散マスクとして、PなどのV族元素のドーパント60を低濃度で(例えば、Pイオンを70keVの加速電圧、6×1012/cmのドーズ量にて)ドープし、Nチャネルの低濃度ソース領域1b、1g及び低濃度ドレイン領域1c、1hを形成する。
【0075】
続いて、図13(b)に示すように、半導体層1に画素スイッチング用TFT30及び駆動回路用TFT31のNチャネルの高濃度ソース領域1d、1i及び高濃度ドレイン領域1e、1jを形成するため、走査線3aよりも幅の広いマスクでレジスト62をNチャネルに対応する走査線3a上に形成した後、同じくPなどのV族元素のドーパント61を高濃度で(例えば、Pイオンを70keVの加速電圧、4×1015/cmのドーズ量にて)ドープする。
【0076】
次に、図13(c)に示すように、容量線3b及び走査線3aを覆うように、例えば常圧又は減圧CVD法によってNSG、PSG、BSG、BPSGなどのシリケートガラス膜、窒化シリコン膜や酸化シリコン膜等からなる第2層間絶縁膜4bを形成する。この第2層間絶縁膜4bの膜厚としては、約500〜1500nmとするのが好ましく、800nmとするのがより好ましい。
この後、高濃度ソース領域1d、1i及び高濃度ドレイン領域1e、1jを活性化するため、約850℃のアニール処理を20分程度行う。
【0077】
次に、図13(d)に示すように、データ線に対するコンタクトホール5を、反応性エッチング、反応性イオンビームエッチング等のドライエッチングによりあるいはウエットエッチングにより形成する。また、走査線3aや容量線3bを図示しない配線と接続するためのコンタクトホールも、コンタクトホール5と同一の工程により第2層間絶縁膜4bに開孔する。
【0078】
次に、図14(a)に示すように、スパッタ処理等によって第2層間絶縁膜4bの上に、遮光性のAl等の低抵抗金属や金属シリサイド等を金属膜6として、約100〜700nmの厚さ、好ましくは約350nmに堆積する。
更に、図14(b)に示すように、フォトリソグラフィ工程、エッチング工程等により、データ線6aを形成する。
次に、図14(c)に示すように、データ線6a上を覆うように、例えば常圧又は減圧CVD法により、NSG、PSG、BSG、BPSGなどのシリケートガラス膜、窒化シリコン膜や酸化シリコン膜等からなる第3層間絶縁膜7を形成する。第3層間絶縁膜7の膜厚は、約500〜1500nmとするのが好ましく、更に800nmとするのがより好ましい。
【0079】
次に、図15(a)に示すように、画素スイッチング用TFT30において、画素電極9aと高濃度ドレイン領域1eとを電気的に接続するためのコンタクトホール8を、反応性エッチング、反応性イオンビームエッチング等のドライエッチングあるいはウエットエッチングにより形成する。
次に、図15(b)に示すように、スパッタ処理等によって第3層間絶縁膜7の上に、ITO等の透明導電性薄膜9を約50〜200nmの厚さに堆積する。
【0080】
更に、図15(c)に示すように、フォトリソグラフィ工程、エッチング工程等により、画素電極9aを形成する。なお、本実施形態の液晶装置が反射型液晶装置である場合には、Al等の反射率の高い不透明な材料から画素電極9aを形成してもよい。
続いて、画素電極9aの上にポリイミド系の配向膜の塗布液を塗布した後、所定のプレティルト角を持つように、且つ所定方向にラビング処理を施すこと等により、配向膜16が形成される。
以上のようにして、TFTアレイ基板10が製造される。
【0081】
次に、対向基板20の製造方法及びTFTアレイ基板10と対向基板20とから液晶パネルを製造する方法について説明する。
図5に示した対向基板20については、基板本体20Aとしてガラス基板等の光透過性基板を用意し、基板本体20Aの表面上に、遮光膜23及び周辺見切りとしての遮光膜53を形成する。遮光膜23及び周辺見切りとしての遮光膜53は、例えばCr、Ni、Alなどの金属材料をスパッタリングした後、フォトリソグラフィ工程、エッチング工程を経て形成される。なお、これらの遮光膜23、53は、前記の金属材料の他、カーボンやTiなどをフォトレジストに分散させた樹脂ブラックなどの材料から形成してもよい。
【0082】
その後、スパッタリング法などによって基板本体20Aの表面上の全面に、ITO等の透明導電性薄膜を約50〜200nmの厚さに堆積し、対向電極21を形成する。更に、対向電極21の表面上の全面にポリイミドなどの配向膜の塗布液を塗布し、その後、所定のプレティルト角を持つように、且つ所定方向にラビング処理を施すこと等により、配向膜22を形成する。
以上のようにして、対向基板20が製造される。
【0083】
最後に、前述のように製造されたTFTアレイ基板10と対向基板20とを、配向膜16及び22が互いに対向するようにシール材51によって貼り合わせる。そして、真空吸引法などの方法により、両基板間の空間に例えば複数種類のネマティック液晶を混合してなる液晶を吸引し、所定の厚みを有する液晶層50を形成する。これにより、前記構造の液晶パネルが得られる。
【0084】
このように構成された液晶パネルにおいては、第1及び第2実施形態に示した薄膜トランジスタを備えているので、同様の効果が得られる。
また、熱酸化膜2a上に気相合成絶縁膜2bを形成してゲート絶縁膜2を構成しているので、十分な耐圧を確保することができる。従って、絶縁耐圧が増加され、ゲート絶縁破壊を防止することができる。また、寄生トランジスタ効果を低下することができ、更に単結晶シリコン層へのストレス減少のため欠陥の誘起を小さくすることができる。
【0085】
また、ゲート絶縁膜2の形成のプロセスに関しては、従来に比べ単に気相合成による成膜工程が加わるだけであるので、プロセスが複雑化せず、したがってコスト上有利になり、歩留まりの低下も抑えることができる。
また、メサ型分離法によって単結晶シリコン層を分離しているので、単結晶シリコン層を容易にかつ分離領域も狭く形成することができ、したがってこの単結晶シリコン層を用いた薄膜トランジスタからなる画素スイッチン用TFT30や駆動回路用TFT31を、良好に形成することができる。
【0086】
また、特にこのようにして得られる画素スイッチング用TFT30や駆動回路用TFT31の構造にあっては、例えばダブルゲート構造のように半導体層1上に複数のゲート電極を複数形成した場合、図18に示したようなポリシリコン残留物による第1及び第2のゲート電極の短絡といった不都合が防止されたものとなる。即ち、本発明においては、半導体層1に熱酸化膜2aを形成した後、気相合成絶縁膜2bを形成するので、熱酸化膜2aの側部においてえぐれ部分Eが形成されても、当該えぐれ部分を埋設するように気相合成絶縁膜2bが形成されることにより、従って、ポリシリコン残留物に起因する第1及び第2のゲート電極間の短絡が防止されるのである。
【0087】
なお、本実施形態の液晶パネルでは、前述したように画素スイッチング用TFT30についてはLDD構造を有するものとしたが、低濃度ソース領域1b及び低濃度ドレイン領域1cを設けなくてもよく、また、低濃度ソース領域1b及び低濃度ドレイン領域1cに不純物イオンの打ち込みを行わないオフセット構造を採用してもよい。また、ゲート電極をマスクとして高濃度で不純物イオンを打ち込み、自己整合的に高濃度ソース及びドレイン領域を形成するセルフアライン型のTFTとしてもよい。
【0088】
また、本実施形態の液晶パネルでは、画素スイッチング用TFT30の走査線3aの一部からなるゲート電極を、ソース・ドレイン領域間に1個のみ配置したシングルゲート構造としたが、これらの間に2個以上のゲート電極を配置してもよい。この際、各々のゲート電極には同一の信号が印加されるようにする。このようにデュアルゲート(ダブルゲート)あるいはトリプルゲート以上でTFTを構成すれば、チャネルとソース・ドレイン領域接合部のリーク電流を防止でき、オフ時の電流を低減することができる。更に、これらのゲート電極の少なくとも1個をLDD構造あるいはオフセット構造にすれば、より一層、オフ電流を低減でき、安定したスイッチング素子を得ることができる。なお、このように2個以上のゲート電極を配置した場合、前述したようにエッチ残りに起因する第1及び第2の間の短絡が防止されているものとなる。
また、本実施形態の液晶パネルでは、画素スイッチング用TFT30をNチャネル型としたが、Pチャネル型を用いても良く、更にはNチャネル型とPチャネル型の両方のTFTを形成しても良い。
【0089】
また、本実施形態の液晶パネルでは、TFTアレイ基板10の非表示領域に駆動回路用TFT31が設けられているものとしたが、非表示領域に駆動回路用TFT31が設けられていないものとしてもよく、特に限定されない。
また、本実施形態の液晶パネルでは、画素スイッチング用TFT30を構成する半導体層と駆動回路用TFT31を構成する半導体層とを、同じ層厚としたが、異なる層厚としてもよい。
更に、本実施形態の液晶パネルでは、TFTアレイ基板10は、SOI技術が適用されたものとしたが、SOI技術を適用したものでなくてもよく、特に限定されない。また、単結晶半導体層を形成する材料としては、単結晶シリコンに限定されるものではなく、化合物系の単結晶半導体などを使用してもよい。また、半導体層にポリシリコンを用いてもよい。
【0090】
なお、本実施形態の液晶パネルでは、TFTアレイ基板10における基板本体10Aとして石英基板、ハードガラス等の透光性のものを用い、また遮光層11aを形成して画素スイッチング用TFT30に向かう光を遮断し、画素スイッチング用TFT30に光が照射されるのを防止して光リーク電流を抑えるようにしたが、基板本体10Aとして非透光性のものを用いることもでき、その場合には遮光層11aの形成を省略してもよい。
【0091】
また、本実施形態の液晶パネルでは、蓄積容量70を形成する方法として、半導体層との間で容量を形成するための配線である容量線3bを設けているが、容量線3bを設ける代わりに、画素電極9aと前段の走査線3aとの間で容量を形成しても良い。または、第1蓄積容量電極1fを形成する代わりに、容量線3bの上に、薄い絶縁膜を介して別の蓄積容量電極を形成しても良い。
また、画素電極9aと高濃度ドレイン領域1eとは、データ線6aと同一のAl膜や走査線3aと同一のポリシリコン膜を中継して電気的に接続する構成としてもよい。
また、遮光層11aはポリシリコン膜3と接続されているが、図13(d)に示したデータ線に対するコンタクトホール5の形成工程と同時にコンタクトホールを形成し、金属膜6と接続しても良い。また、遮光層11aの電位を固定するために、上述したような各画素毎にコンタクトを取らず、画素領域の周辺で一括して接続をしても良い。
【0092】
また、本実施形態の液晶パネルにおいては、TFTアレイ基板10上に、更に製造途中や出荷時の当該液晶装置の品質、欠陥等を検査するための検査回路等を形成してもよい。
また、データ線駆動回路101及び走査線駆動回路104をTFTアレイ基板10の上に設ける代わりに、例えばTAB(Tape Automated Bonding )基板上に実装された駆動用LSIに、TFTアレイ基板10の周辺部に設けられた異方性導電フィルムを介して電気的及び機械的に接続するようにしてもよい。
更に、対向基板20の投射光が入射する側及びTFTアレイ基板10の出射光が出射する側に各々、例えば、TN(Twisted Nematic)モード、VA(VerticallyAligned )モード、PDLC(Polymer Dipersed Liquid Crystal)モード等の動作モードや、ノーマリーホワイトモード/ノーマリーブラックモードの別に応じて、偏光フィルム、位相差フィルム、偏光手段などが所定の方向で配置される。
【0093】
なお、本発明の薄膜トランジスタを備えた表示装置としての液晶パネルは、反射型の液晶パネルにも、透過型の液晶パネルにも適用可能である。
また、前記の液晶パネルにおいては、例えばカラー液晶プロジェクタ(電子機器)に適用することができる。その場合、3枚の液晶パネルがRGB用のライトバルブとして各々用いられ、各ライトバルブには各々RGB色分解用のダイクロイックミラーを介して分解された各色の光が投射光として各々入射されることになる。したがって、前記の実施形態では、対向基板20に、カラーフィルタは設けられていない。しかしながら、遮光膜23の形成されていない画素電極9aに対向する所定領域に、RGBのカラーフィルタをその保護膜とともに対向基板20上に形成してもよい。このようにすれば、液晶プロジェクタ以外の直視型や反射型のカラー液晶テレビなどのカラー液晶装置に各実施形態における液晶パネルを適用できる。
【0094】
更に、対向基板20上に1画素に1個対応するようにマイクロレンズを形成してもよい。このようにすれば、入射光の集光効率を向上することで、明るい液晶パネルが実現できる。更に、対向基板20上に、何層もの屈折率の相違する干渉層を堆積することで、光の干渉を利用して、RGB色を作り出すダイクロイックフィルタを形成してもよい。このダイクロイックフィルタ付対向基板によれば、より明るいカラー液晶装置が実現できる。
【0095】
なお、本発明の薄膜トランジスタを備えた表示装置としては、前記の液晶パネルに限定されることなく、有機エレクトロルミネッセンス装置、電気泳動装置、プラズマディスプレイ装置等にも適用可能である。
また、本発明の半導体装置は、前記の画素スイッチング用TFT30のような、ゲート絶縁膜2を単結晶シリコン層(単結晶半導体層)の熱酸化による熱酸化膜2aと気相合成絶縁膜2bとの少なくとも二層からなる積層構造とした薄膜トランジスタを有したものであり、このような薄膜トランジスタを有したものであれば、メモリ等いずれの半導体装置にも適用可能である。
【0096】
(第4実施形態)
次に、第3実施形態に示した表示装置(液晶パネル)を備える電子機器の例について説明する。
図16は、前記実施形態の表示装置(液晶装置)を用いた電子機器の例として、携帯電話の一例を示す斜視図である。図16において、符号1000は携帯電話本体を示し、符号1001は上記の液晶装置を用いた液晶表示部を示している。
図16に示す電子機器(携帯電話)にあっては、上記各実施形態の液晶装置を備えたものであるので、良好な表示特性を有した電子機器となる。
【0097】
また、本発明の電子機器としては、携帯電話以外にも、例えば投射型表示装置や、前記の液晶表示装置を用いた液晶表示部を有する腕時計型電子機器、さらにはワープロ、パソコンなどの携帯型情報処理装置にも適用可能である。
なお、本発明の技術範囲は上記の実施形態に限定されるものではなく、本発明の趣旨を逸脱しない範囲において種々の変更を加えることが可能であるのはもちろんである。
【図面の簡単な説明】
【図1】本発明の薄膜トランジスタの製造方法を説明するための模式断面図。
【図2】本発明の薄膜トランジスタの製造方法を説明するための模式断面図。
【図3】本発明の薄膜トランジスタの製造方法を説明するための模式断面図。
【図4】本発明の表示装置の一例である液晶パネルの平面図である。
【図5】図4のA−A’断面図である。
【図6】図4のB−B’断面図である。
【図7】(a)〜(c)は液晶パネルの製造工程図である。
【図8】(a)〜(b)は液晶パネルの製造工程図である。
【図9】(a)〜(f)は液晶パネルの製造工程図である。
【図10】(a)、(b)は液晶パネルの製造工程図である。
【図11】(a)〜(c)は液晶パネルの製造工程図である。
【図12】(a)〜(e)は液晶パネルの製造工程図である。
【図13】(a)〜(d)は液晶パネルの製造工程図である。
【図14】(a)〜(c)は液晶パネルの製造工程図である。
【図15】(a)〜(c)は液晶パネルの製造工程図である。
【図16】電子機器としての携帯電話の一例を説明するための図である。
【図17】課題を説明するための要部断面図である。
【図18】ダブルゲート構造を模式的に示す平面図である。
【符号の説明】
1 半導体層、1a’、1k’ チャネル領域、1d、1i 高濃度ソース領域(ソース領域)、1e、1j 高濃度ドレイン領域(ドレイン領域)、2 ゲート絶縁膜、2a 熱酸化膜、2b 気相合成絶縁膜、3 ゲート電極、10A 基板本体(基板)、12 下地絶縁膜、14 保護膜、30 薄膜トランジスタ(画素スイッチング用TFT)、31 薄膜トランジスタ(駆動回路用TFT)、R レジスト、1000 携帯電話(電子機器)

Claims (10)

  1. チャネル領域を有する半導体層と、前記チャネル領域にゲート絶縁膜を介して対向配置されたゲート電極とを備えた薄膜トランジスタの製造方法であって、
    基板上に前記半導体層を形成する工程と、
    前記半導体層上に保護膜を形成する工程と、
    前記保護膜上に前記半導体層のパターニングで用いるレジストを塗布する工程とを具備することを特徴とする薄膜トランジスタの製造方法。
  2. 前記半導体層と前記保護膜とのパターニングを同時に行うことを特徴とする請求項1に記載の薄膜トランジスタの製造方法。
  3. 前記ゲート絶縁膜を形成するゲート絶縁膜形成工程を備え、
    当該ゲート絶縁膜形成工程は、
    前記半導体層を熱酸化して熱酸化膜を形成する第1絶縁膜形成工程と、
    気相合成法により、前記熱酸化膜上に気相合成絶縁膜を形成する第2絶縁膜形成工程とを具備することを特徴とする請求項1又は請求項2に記載の薄膜トランジスタの製造方法。
  4. 前記半導体層は下地絶縁膜を介して前記基板上に形成され、前記保護膜と前記下地絶縁膜の一部とをエッチング法により除去する除去工程を更に具備することを特徴とする請求項1乃至請求項3のいずれかに記載の薄膜トランジスタの製造方法。
  5. 前記除去工程における前記下地絶縁膜の除去量よりも、前記気相合成絶縁膜の膜厚が大きいことを特徴とする請求項4に記載の薄膜トランジスタの製造方法。
  6. 前記気相合成絶縁膜の膜厚は、前記下地絶縁膜の除去量の2倍以上であることを特徴とする請求項5に記載の薄膜トランジスタの製造方法。
  7. 前記半導体層は単結晶半導体からなることを特徴とする請求項1から請求項6のうちいずれかに記載の薄膜トランジスタの製造方法。
  8. 請求項1から請求項7のうちいずれかに記載の方法で得られたことを特徴とする薄膜トランジスタ。
  9. 請求項8に記載の薄膜トランジスタを備えることを特徴とする表示装置。
  10. 請求項9に記載の表示装置を備えることを特徴とする電子機器。
JP2003065095A 2003-03-11 2003-03-11 薄膜トランジスタの製造方法、薄膜トランジスタ、表示装置、並びに電子機器 Pending JP2004273922A (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2003065095A JP2004273922A (ja) 2003-03-11 2003-03-11 薄膜トランジスタの製造方法、薄膜トランジスタ、表示装置、並びに電子機器

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2003065095A JP2004273922A (ja) 2003-03-11 2003-03-11 薄膜トランジスタの製造方法、薄膜トランジスタ、表示装置、並びに電子機器

Publications (1)

Publication Number Publication Date
JP2004273922A true JP2004273922A (ja) 2004-09-30

Family

ID=33126202

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2003065095A Pending JP2004273922A (ja) 2003-03-11 2003-03-11 薄膜トランジスタの製造方法、薄膜トランジスタ、表示装置、並びに電子機器

Country Status (1)

Country Link
JP (1) JP2004273922A (ja)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006251093A (ja) * 2005-03-08 2006-09-21 Seiko Epson Corp 電気泳動表示装置、その製造方法及び電子機器
JP2009021565A (ja) * 2007-06-12 2009-01-29 Semiconductor Energy Lab Co Ltd 半導体装置及び半導体装置の作製方法
JP2014003311A (ja) * 2006-12-05 2014-01-09 Semiconductor Energy Lab Co Ltd 半導体装置
US11705522B2 (en) 2012-12-25 2023-07-18 Semiconductor Energy Laboratory Co., Ltd. Semiconductor device and method for manufacturing the same

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006251093A (ja) * 2005-03-08 2006-09-21 Seiko Epson Corp 電気泳動表示装置、その製造方法及び電子機器
JP2014003311A (ja) * 2006-12-05 2014-01-09 Semiconductor Energy Lab Co Ltd 半導体装置
JP2009021565A (ja) * 2007-06-12 2009-01-29 Semiconductor Energy Lab Co Ltd 半導体装置及び半導体装置の作製方法
US8921902B2 (en) 2007-06-12 2014-12-30 Semiconductor Energy Laboratory Co., Ltd. Semiconductor device and manufacturing method thereof
US11705522B2 (en) 2012-12-25 2023-07-18 Semiconductor Energy Laboratory Co., Ltd. Semiconductor device and method for manufacturing the same

Similar Documents

Publication Publication Date Title
JP3956572B2 (ja) 液晶装置用基板の製造方法
JP3909583B2 (ja) 電気光学装置の製造方法
KR100570405B1 (ko) 트랜지스터와 그 제조 방법, 전기 광학 장치, 반도체 장치및 전자기기
KR20030017428A (ko) 반도체 기판의 제조 방법, 반도체 기판, 전기 광학 장치및 전자 기기
JP2003172950A (ja) 電気光学装置及びその製造方法並びに電子機器
JP2004273922A (ja) 薄膜トランジスタの製造方法、薄膜トランジスタ、表示装置、並びに電子機器
JP2005166911A (ja) 半導体装置の製造方法、半導体装置、電気光学装置の製造方法、電気光学装置および電子機器
JP4366953B2 (ja) 複合半導体基板の製造方法
JP4366954B2 (ja) 複合半導体基板の製造方法
JP2002110998A (ja) 電気光学基板およびその製造方法、電気光学装置及び電子機器
JP4556378B2 (ja) トランジスタの製造方法及び複合基板の製造方法
JP2002353466A (ja) 電気光学装置の製造方法および電気光学装置
JP2002353464A (ja) 電気光学装置、その製造方法及び電子機器
JP4792694B2 (ja) 電気光学装置用基板の製造方法、電気光学装置用基板、電気光学装置、電子機器
JP2005275179A (ja) 反射型液晶装置及び投射型表示装置、並びに電子機器
JP4677707B2 (ja) 電気光学装置用薄膜トランジスタアレイ基板の製造方法
JP4214702B2 (ja) 電気光学装置の製造方法、及び電気光学装置、並びに投写型表示装置、電子機器
JP2004246028A (ja) デバイスの製造方法及びこれを用いて製造されたデバイス、複合基板の製造方法、電気光学装置、並びに電子機器
JP4556376B2 (ja) 半導体基板の製造方法
JP2003207806A (ja) 電気光学装置および電気光学装置の製造方法、並びに投射型表示装置、電子機器
JP4333176B2 (ja) トランジスタの製造方法、電気光学基板、電気光学装置、電子機器
JP2004200573A (ja) 電気光学装置および電気光学装置の製造方法、並びに投射型表示装置、電子機器
JP2003158270A (ja) 電気光学装置および電気光学装置の製造方法、並びに投射型表示装置、電子機器
JP2004356533A (ja) 複合半導体基板の製造方法、複合半導体基板、デバイスの製造方法、デバイス、電気光学装置並びに電子機器
JP2005044864A (ja) 複合半導体基板の製造方法、複合半導体基板、デバイスの製造方法、デバイス、電気光学装置並びに電子機器