JP2004273604A - Method of manufacturing semiconductor device and semiconductor electronic component, and semiconductor electronic component - Google Patents

Method of manufacturing semiconductor device and semiconductor electronic component, and semiconductor electronic component Download PDF

Info

Publication number
JP2004273604A
JP2004273604A JP2003059653A JP2003059653A JP2004273604A JP 2004273604 A JP2004273604 A JP 2004273604A JP 2003059653 A JP2003059653 A JP 2003059653A JP 2003059653 A JP2003059653 A JP 2003059653A JP 2004273604 A JP2004273604 A JP 2004273604A
Authority
JP
Japan
Prior art keywords
semiconductor
resin layer
electronic component
manufacturing
semiconductor substrate
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2003059653A
Other languages
Japanese (ja)
Inventor
Hirohisa Matsuki
浩久 松木
Masamitsu Ikumo
雅光 生雲
Hisahiro Okamoto
九弘 岡本
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Fujitsu Ltd
Original Assignee
Fujitsu Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Fujitsu Ltd filed Critical Fujitsu Ltd
Priority to JP2003059653A priority Critical patent/JP2004273604A/en
Publication of JP2004273604A publication Critical patent/JP2004273604A/en
Pending legal-status Critical Current

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/73Means for bonding being of different types provided for in two or more of groups H01L2224/10, H01L2224/18, H01L2224/26, H01L2224/34, H01L2224/42, H01L2224/50, H01L2224/63, H01L2224/71
    • H01L2224/731Location prior to the connecting process
    • H01L2224/73101Location prior to the connecting process on the same surface
    • H01L2224/73103Bump and layer connectors
    • H01L2224/73104Bump and layer connectors the bump connector being embedded into the layer connector

Landscapes

  • Mechanical Treatment Of Semiconductor (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a method of manufacturing semiconductor device which can manufacture thin film semiconductor devices in a high manufacturing yield. <P>SOLUTION: The method of manufacturing semiconductor device includes a process (a) to form a resin layer showing a first adhesive force to a semiconductor wafer by filling the surface provided with convex portions for soldering of the semiconductor wafer including the convex portions for soldering at the upper side of the semiconductor substrate, a process (b) to adhere a rear-surface grinding tape showing a second adhesive force which is larger than the first adhesive force to the resin layer over the resin layer, a process (c) to grind the rear surface of the semiconductor substrate, and a process (d) to peel the rear surface grinding tape from the semiconductor wafer and to peel also the resin layer in this timing together with the rear surface grinding tape. <P>COPYRIGHT: (C)2004,JPO&NCIPI

Description

【0001】
【発明の属する技術分野】
本発明は、半導体装置又は半導体電子部品の製造方法と半導体電子部品とに関し、特に半導体基板の背面を研削した、半導体装置または半導体電子部品の製造方法と半導体電子部品とに関する。
【0002】
【従来の技術】
半導体チップを回路基板上に直接フリップチップ実装することにより、電子部品の厚さを低減することができる。フリップチップ実装のため、半導体チップには複数のはんだ接合用突起(バンプ)が形成され、エポキシ回路基板等の回路基板上に形成されたはんだ接合用金属層パターン(ランド)にはんだ接合される。
【0003】
ICカード等の最終製品の厚さを薄くするためには、回路基板の厚さを薄くすると共に、フリップチップ実装する半導体チップの厚さを薄くすることが望まれる。半導体ウエハは、通常約500μm〜1000μmの厚さを有するが、半導体集積回路として機能する領域は表面から高々2〜3μmの層である。
【0004】
すなわち、半導体チップの厚さ数百μmの内電気的に利用されている厚さはごく一部、例えば1%以下であり、残りの厚さは物理的支持力を提供するために用いられている。最終製品の電気的機能が確保され、物理的支持力が満足されれば、半導体チップの厚さは、薄ければ薄いほど最終製品の薄型化に有効である。
【0005】
半導体ウエハをウエハとして扱う工程においては、半導体ウエハはウエハとしての支持力を有することが望ましい。しかし、半導体ウエハをスクライビングして多数の半導体チップとして取り扱う工程においては、ウエハレベルの支持力は不必要となる。すなわち、半導体基板を薄膜化する可能性が増大する。半導体基板を薄くすることにより、ICカード等の最終製品を薄くすることが可能となる。
【0006】
以下、半導体チップをフリップチップ実装する技術の具体例を説明する。
特開2000−188308は、フリップチップボンディングされる半導体チップの上面に形成される複数のボンディングパッドの均一性を高めるため、半導体ウエハの接続部にはんだボールを埋め込み、はんだボールを埋め込む樹脂層の一部を除去すると共に、はんだボールの表面を露出させ、導電面を露出させることにより、半導体電子部品を効率的に製造する方法を提案している。
【0007】
特開2001−168124は、バンプを形成した半導体ウエハ表面上に、粘着層を備えた保護テープを貼付し、保護テープと半導体ウエハとの密着性を高めた後、半導体ウエハの背面を研削する方法を提案している。
【0008】
特開2002−118147は、バンプを備えた半導体ウエハ上に、基材テープ上に樹脂層を備えたテープを貼り付け、半導体基板背面を研削し、その後樹脂層を半導体基板表面上に残し、基材テープのみを剥離する方法を提案している。
【0009】
特開2000−31185は、はんだ層を備えた半導体ウエハ表面上にフラックス層を塗布し、はんだ層をリフローして丸め込み、その表面上にバックグラインド用テープ貼着し、半導体ウエハ背面をバックグラインドし、その後テープを剥離し、フラックス層を除去する方法を提案している。なお、はんだ層をリフローして丸め込んだ後、一旦フラックス層を除去し、レジスト等の保護層を形成し、その上にバックグラインド用テープを貼着することも提案している。
【0010】
特開2001−168275は、回路基板上に複数の半導体チップをフリップチップ実装し、複数の半導体チップの背面を共通に研削し、薄膜化することを提案している。
【0011】
【特許文献1】
特開2000−188308号公報
【特許文献2】
特開2001−168124号公報
【特許文献3】
特開2002−118147号公報
【特許文献4】
特開2000‐31185号公報
【特許文献5】
特開2001−168275号公報
【0012】
【発明が解決しようとする課題】
以上説明したように、半導体チップを薄膜化する種々の技術が提案されている。しかしながら、高い歩留りで欠陥のない半導体チップを製造することは容易でなかった。
【0013】
バンプ形式のウエハの厚さを薄くする方法は、特開2001−168124、特開2002−118147に開示されているが、特開2001−168124では粘着層がバンプ間を充填しウエハの保持力を維持するが、バンプ高さが、100μm以上と高くなると充填性が不十分となり易い。バンプ高さ100μmの時、例えばウエハ厚を80μm以下に研削する場合、研削中の振動でウエハが割れる事がしばしば発生する。
【0014】
特開2002−118147では研削後、樹脂層を除去する必要があるが、ウエハ厚が200μm未満のものは割れ易く、浸漬工程や乾燥工程で割れが発生し易い。ウエハ厚が100μm未満の物では研削後、ウエハ背面全体を保持する樹脂除去処理は困難である。
【0015】
ウエハ研削後にはんだバンプを転写する方法も考案できるが、ウエハ厚が100μm未満の場合表面の配線や保護膜等の応力でウエハは大きく反っており、ウエハの固定が困難である。
【0016】
本発明の目的は、薄膜化した半導体装置を高い歩留りで製造することのできる半導体装置の製造方法を提供することである。
本発明の他の目的は、薄膜化した半導体装置を備えた電子部品を高い歩留りで製造する製造方法を提供することである。
【0017】
本発明のさらに他の目的は、薄膜化した半導体装置を複数個備えた半導体電子部品を提供することである。
【0018】
【課題を解決するための手段】
本発明の1観点によれば、(a)半導体基板上方にはんだ接合用突起を備えた半導体ウエハのはんだ接合用突起を備えた表面上に、はんだ接合用突起間の空間を充填し、半導体ウエハに対して第1の接着力を示す樹脂層を形成する工程と、(b)前記樹脂層に対して前記第1の接着力より大きい第2の接着力を示す背面研削テープを、前記樹脂層上に貼着する工程と、(c)前記半導体基板の背面を研削する工程と、(d)前記半導体ウエハから前記背面研削テープを剥離し、この時前記樹脂層を前記背面研削テープと共に剥離する工程と、を含む半導体装置の製造方法が提供される。
【0019】
本発明の他の観点によれば、(a)半導体基板上方にはんだ接合用突起を備えた半導体ウエハのはんだ接合用突起を備えた表面上に、フラックス機能を付与され、半導体ウエハに対して第1の接着力を示す樹脂層を形成する工程と、(b)前記樹脂層に対して前記第1の接着力より低い第2の接着力を示す背面研削テープを、前記樹脂層上に貼着する工程と、(c)前記半導体基板の背面を研削する工程と、(d)前記背面研削テープを前記樹脂層から剥離する工程と、(e)前記樹脂層を備えた前記半導体ウエハを回路基板上にフリップチップ実装する工程と、を含む半導体電子部品の製造方法が提供される。
【0020】
本発明のさらに他の観点によれば、(a)半導体基板上方にはんだ接合用突起を備え、はんだ接合用突起間をフラックス機能を備えた樹脂層が充填する複数の半導体チップを準備する工程と、(b)前記複数の半導体チップをはんだ接合用金属パターンを有する回路基板上にフリップチップ実装する工程と、(c)前記回路基板上の前記複数の半導体チップをポッティング樹脂で覆う工程と、(d)前記ポッティング樹脂、前記複数の半導体チップの背面を研磨する工程と、を含む半導体電子部品の製造方法が提供される。
【0021】
本発明の他の観点によれば、はんだ接合用金属パターンを有する回路基板と、半導体基板上方にはんだ接合用突起を備え、前記回路基板の金属パターン上にフリップチップ実装された複数の半導体チップと、前記複数の半導体チップの各々と、前記回基板との間の空間を充填する樹脂層と、前記複数の半導体チップの側面を覆うポッティング樹脂と、を有する半導体電子部品が提供される。
【0022】
【発明の実施の形態】
以下、図面を参照して本発明の実施例を説明する。
図1(A)〜(F)は、本発明の第1の実施例による半導体装置の製造方法を示す断面図である。
【0023】
図1(A)に示すように、半導体素子を形成した半導体基板10の表面には、パッド電極11が形成されている。パッド電極11の周辺部を覆うように、カバー樹脂層12が形成される。パッド電極11の表面から、カバー樹脂層12の上に延在するように、金属層14が形成される。金属層14は、その上にはんだ層を形成し、溶融してにはんだバンプ16を形成する際、はんだバンプ16の径を制限する機能を有する層である。
【0024】
図1(B)は、半導体基板10の構成例を概略的に示す。シリコン基板21の表面には、シャロートレンチアイソレーション(STI)による素子分離領域22が形成されている。素子分離領域22は、シリコン基板21の表面に多数の活性領域を画定する。活性領域には、p型ウエルWp及びn型ウエルWnが形成される。p型ウエルWpには、nチャネルトランジスタTnが形成され、n型ウエルWnには、pチャネルトランジスタTpが形成される。
【0025】
トランジスタのゲート電極を覆って、第1層間絶縁膜23が形成され、第1層間絶縁膜を貫通するビア孔が形成される。ビア孔には、例えばタングステンプラグ等の導電性プラグ24が形成される。第1層間絶縁膜23の表面上に、第1配線層25が形成され、第2層間絶縁膜26で覆われる。第2層間絶縁膜26に必要な接続孔を形成し、第2配線層27が形成される。第2配線層27は、第3層間絶縁膜28で覆われる。
【0026】
このようにして、多層配線を形成した後、最上層としてパッシベーション層29が形成され、パッシベーション層29の表面上に、パッド電極11が形成される。パッド電極11の周辺部を覆うように、カバー樹脂層12が形成されている。
【0027】
図1(A)に戻って、はんだバンプ16を覆うように、樹脂層2aを形成する。樹脂層2aは、バンプ間の充填性がよい柔軟な材料を用いる。溶媒に溶融した樹脂材料を用いることにより、半導体ウエハに過度の応力を印加することなく、充填性のよい樹脂層を形成できる。又、樹脂層2aは、ベーキング後半導体ウエハ1に対して適度の接着性を有する。
【0028】
樹脂層2aは、例えば扇化学製SMP−100、日立化成製HIMAL、太陽インキ製KSSZ等で形成することができる。樹脂層2aは、例えばスピンコート、印刷充填、ラミネート等により形成する。粘度調整、取扱いが簡便な印刷充填法がより好ましい。
【0029】
図1(C)に示すように、樹脂層2aの溶媒を蒸発させ、樹脂を乾燥させると、厚さの減少した樹脂層2bが得られる。例えば、図1(A)の状態で、高さ100μmのバンプ16を埋め込むように、厚さ140μmの樹脂層2aを形成する。ベーキングを行ない溶媒を蒸発させた後、樹脂層2bは厚さ約90μmになる。はんだバンプ16の表面は、樹脂層2bで薄く覆われている。
【0030】
図1(D)に示すように、乾燥させた樹脂層2bの表面上に、背面研削用テープ4を貼り付ける。背面研削テープ4は、樹脂層2bと半導体ウエハとの接着力よりも、テープ4と樹脂層2bとの接着力の大きいように材料を選択する。背面研削テープは、例えば三井化学製スーパーソフトテープで構成できる。樹脂層2bがバンプ間を充填し、その上にテープ4を貼り付けることにより、半導体ウエハは強固に保持され、背面研削工程を行なうことが可能になる。半導体基板10の背面を研削し、例えば厚さ60μmまで薄膜化する。
【0031】
図1(E)に示すように、研削工程の後、半導体ウエハを接着性を有する支持表面30の上に保持し、テープ4を半導体ウエハから剥離する。この時、樹脂層2bはテープ4に対し、半導体ウエハよりも強い力で接着されているため、テープ4と共に剥離される。
【0032】
図1(F)に示すように、支持表面30に保持された半導体ウエハに対してダイシング工程を行ない、各半導体チップに分離する。その後、半導体チップを支持表面30から分離する。本実施例に従い、通常の剥離条件を用い、バンプ間を充填した樹脂をテープと共に剥離することができた。
【0033】
この技術はウエハレベルのCSPの背面研削にも応用できる。ウエハレベルのCSPの一形態である、Simplified Super CSPで、高さ250μm、ピッチ500μmのはんだバンプをウエハ全体に形成した。このバンプ付ウエハを用い図1(A)の様にはんだバンプ16を覆うように樹脂層2aを厚さ300μmで形成する。ベーキングを行ない溶媒を蒸発させた後、樹脂層2bは厚さ約200μmになる。又、はんだバンプ16の表面は樹脂層2bで薄く覆われている。
【0034】
図1(D)に示す様にこのウエハ表面に、背面研削用テープを貼り付け、厚さ200μmまで研削する。図1(E)に示す様に、研削後、このウエハを接着性を有する支持表面30上に保持し、テープ4と共に樹脂層をウエハから剥離する。
【0035】
図2(A)〜(D)、図3(E)〜(H)は、本発明の第2の実施例による電子部品の製造方法を示す断面図である。
図2(A)に示すように、前述同様のはんだバンプ付半導体ウエハ1の表面にバンプ間を充填する樹脂層5aを塗膜する。例えば、印刷により樹脂層5aの塗膜を行ない、バンプをほぼ埋め込んだ状態で樹脂層5aを形成する。例えば、高さ250μmのはんだバンプ16を埋め込んで、厚さ約300μmの樹脂層5aを形成する。本実施例において塗膜する樹脂は、カルボン基等のフラックス機能が付与され、Bステージ状態で保持でき、背面研削後に研削用テープをピールする際、半導体ウエハ上にそのまま残る程度の接着性を半導体ウエハとの間で有する樹脂である。
【0036】
図2(B)に示すように、樹脂層5aをベーキングし、乾燥させる。乾燥した樹脂層5bは、例えば厚さ約230μmになる。110℃でベークすることにより樹脂をBステージ化できる。樹脂層5bは、半導体ウエハに対し、強い第1の接着力を有し、その上に貼り付けられるテープに対しては第1の接着力よりも弱いが、背面研削を可能とする接着力を示す材料である。例えば、樹脂層5aとして住友ベークライト製ウエハレベルアンダーフィル材料を用いることができる。
【0037】
図2(C)に示すように、ベーキングした樹脂層5bの表面上に、背面研削用テープ4を貼り付ける。背面研削テープ4は、例えば三井化学製スーパーソフトテープで構成できる。この状態で、半導体基板10の背面研削を行ない、例えば厚さ200μmにする。
【0038】
図2(D)に示すように、半導体ウエハの背面を支持表面30上に支持し、テープ4を剥離する。樹脂層5bは、強い接着力で半導体ウエハに接着しており、テープ4のみが剥離される。その後、前述の実施例同様ダイシング工程を行ない、半導体ウエハから個々の半導体チップを分離する。
【0039】
図3(E)は、図2(D)の工程を経て作成した半導体チップを、フリップチップ実装するために裏返した状態を示す。
図3(F)に示すように、絶縁基板61にバンプ接着用ランド等の配線層62を形成した回路基板6の上に、薄膜化した半導体基板10xを有する半導体チップを配置する。
【0040】
図3(G)に示すように、半導体チップを下方に押圧しつつ加熱する。はんだバンプ16はリフロー、変形して扁平なはんだバンプ16cとなり、接着面積を増加させる。この時、樹脂層5bも変形し、5cの状態となる。
【0041】
図3(H)に示すように、加熱、押圧を続けることにより、樹脂5cが回路基板6の表面にボイドなく密着し、バンプ16dが半導体チップ上の金属層14と回路基板6上のランド62間を低抵抗で接続する。樹脂層5dは、半導体チップと回路基板間の空間をボイドなく充填するが、半導体チップ側面においては若干側方に張り出すものの、半導体基板の側面は覆わない。
【0042】
本実施例において、半導体チップは、半導体基板の厚さが薄いにもかかわらず、アンダーフィル樹脂層の機械強度で補強されているため、ハンドリングで半導体チップが破壊することが防止される。通常のフリップチップボンダーで実装することも、パッケージの搭載に用いる実装装置で実装することも可能である。
【0043】
Bステージ状態の樹脂を温度80〜100℃で搭載すると、タック性が発現し、搭載時に位置ずれすることが防止される。はんだリフロー時には、アンダーフィル樹脂の持つフラックス機能により、チップは回路基板に効率的に実装される。又、アンダーフィル樹脂をそのまま残せるため、搭載後のアンダーフィル充填工程を省略することができる。
【0044】
図4(A)〜(D)は、本発明の第3の実施例による電子部品の製造方法を示す断面図である。
先ず、2(A)、(B)に示すように、半導体ウエハ上にフラックス機能を付与した樹脂層5bを塗布する。背面研削することなく、図2(D)に示すように、ダイシングを行ない、半導体ウエハから半導体チップを分離する。
【0045】
図4(A)に示すように、絶縁基板61と配線62とを含む回路基板6の上に、複数の半導体チップ3a、3bをフリップチップ実装する。各半導体チップにおける半導体基板10は、背面研削されておらず初期の厚さを有する。
【0046】
図4(B)に示すように、ポッティング樹脂7で半導体チップ3a、3bを覆い、チップ間の間隙を充填する。
図4(C)に示すように、ポッティング樹脂7で覆われた状態の半導体チップ3a、3bの背面を研削する。ポッティング樹脂7は、1GPa以上のヤング率を有するものを選択する。ヤング率が高いと、半導体チップの研削面に欠けを発生させることが防止される。半導体基板がポッティング樹脂内に埋め込まれた構造で研削工程を行なうため、チップ裏面に欠け等が生じ難い。
図4(D)に示すように、必要に応じ研削した半導体チップ裏面に放熱板8を取り付ける。放熱特性が改善できるト共に、半導体電子部品の機械的強度を補強することもできる。
【0047】
以上実施例に沿って本発明を説明したが、本発明はこれらに限定されるものではない。例えば、種々の変更、改良、組み合せが可能なことは当業者に自明であろう。
【0048】
【発明の効果】
以上説明したように、本発明によれば、欠陥を生じさせることを低減しつつ、半導体装置又は電子部品の薄膜化を実現することが可能である。ウエハ厚が薄くなった事により放熱効果が増し、熱特性に優れた半導体部品を提供することができる。
【図面の簡単な説明】
【図1】本発明の第1の実施例による半導体装置の製造方法の主要工程を示す断面図である。
【図2】本発明の第2の実施例による電子部品の製造方法の主要工程を示す断面図である。
【図3】本発明の第2の実施例による電子部品の製造方法の主要工程を示す断面図である。
【図4】本発明の第3の実施例による電子部品の製造方法を概略的に示す断面図である。
【符号の説明】
1 半導体ウエハ
2 樹脂層
3 半導体チップ
4 背面研削用テープ
6 回路基板
7 ポッティング樹脂
8 放熱板
10 半導体基板
11 パッド電極
12 カバー樹脂層
14 金属層
16 はんだバンプ
61 絶縁基板
62 配線
[0001]
TECHNICAL FIELD OF THE INVENTION
The present invention relates to a method for manufacturing a semiconductor device or a semiconductor electronic component and a semiconductor electronic component, and more particularly to a method for manufacturing a semiconductor device or a semiconductor electronic component and a semiconductor electronic component in which a back surface of a semiconductor substrate is ground.
[0002]
[Prior art]
By mounting the semiconductor chip directly on the circuit board by flip chip mounting, the thickness of the electronic component can be reduced. For flip-chip mounting, a plurality of solder bonding projections (bumps) are formed on a semiconductor chip, and are solder-bonded to a solder bonding metal layer pattern (land) formed on a circuit board such as an epoxy circuit board.
[0003]
In order to reduce the thickness of the final product such as an IC card, it is desired to reduce the thickness of the circuit board and the thickness of the semiconductor chip to be flip-chip mounted. A semiconductor wafer usually has a thickness of about 500 μm to 1000 μm, but a region functioning as a semiconductor integrated circuit is a layer having a thickness of at most 2 to 3 μm from the surface.
[0004]
That is, only a part of the thickness of the semiconductor chip, for example, 1% or less, which is electrically used, is several hundreds μm, and the remaining thickness is used to provide physical supporting force. I have. As long as the electrical function of the final product is secured and the physical supporting force is satisfied, the thinner the semiconductor chip, the more effective the thinner the final product.
[0005]
In the process of treating a semiconductor wafer as a wafer, the semiconductor wafer desirably has a supporting force as a wafer. However, in a process in which a semiconductor wafer is scribed and handled as a large number of semiconductor chips, a wafer-level supporting force is unnecessary. That is, the possibility of thinning the semiconductor substrate increases. By reducing the thickness of the semiconductor substrate, a final product such as an IC card can be reduced in thickness.
[0006]
Hereinafter, a specific example of a technique for flip-chip mounting a semiconductor chip will be described.
Japanese Patent Application Laid-Open No. 2000-188308 discloses that in order to improve the uniformity of a plurality of bonding pads formed on the upper surface of a semiconductor chip to be flip-chip bonded, a solder ball is embedded in a connection portion of a semiconductor wafer and one of resin layers in which the solder ball is embedded. There has been proposed a method of efficiently manufacturing a semiconductor electronic component by removing a portion, exposing a surface of a solder ball, and exposing a conductive surface.
[0007]
Japanese Patent Application Laid-Open No. 2001-168124 discloses a method in which a protective tape provided with an adhesive layer is attached to a surface of a semiconductor wafer on which bumps are formed, the adhesion between the protective tape and the semiconductor wafer is increased, and then the back surface of the semiconductor wafer is ground. Has been proposed.
[0008]
Japanese Patent Application Laid-Open No. 2002-118147 discloses a method in which a tape provided with a resin layer on a base tape is attached to a semiconductor wafer provided with bumps, the back surface of the semiconductor substrate is ground, and then the resin layer is left on the surface of the semiconductor substrate. A method of removing only the material tape is proposed.
[0009]
Japanese Patent Application Laid-Open No. 2000-31185 discloses a method in which a flux layer is applied on the surface of a semiconductor wafer provided with a solder layer, the solder layer is reflowed and rounded, a tape for back grinding is adhered on the surface, and the back surface of the semiconductor wafer is back ground. Then, a method of removing the tape and removing the flux layer has been proposed. It has also been proposed that after the solder layer is reflowed and rounded, the flux layer is once removed, a protective layer such as a resist is formed, and a tape for back grinding is adhered thereon.
[0010]
Japanese Patent Application Laid-Open No. 2001-168275 proposes flip-chip mounting a plurality of semiconductor chips on a circuit board and grinding the back surfaces of the plurality of semiconductor chips in common to reduce the thickness.
[0011]
[Patent Document 1]
JP 2000-188308 A [Patent Document 2]
JP 2001-168124 A [Patent Document 3]
JP 2002-118147 A [Patent Document 4]
JP 2000-31185 A [Patent Document 5]
JP 2001-168275 A
[Problems to be solved by the invention]
As described above, various techniques for thinning a semiconductor chip have been proposed. However, it has not been easy to manufacture defect-free semiconductor chips with high yield.
[0013]
Methods for reducing the thickness of a bump-type wafer are disclosed in JP-A-2001-168124 and JP-A-2002-118147. In JP-A-2001-168124, an adhesive layer fills the space between the bumps to reduce the holding force of the wafer. However, if the bump height is as high as 100 μm or more, the filling property tends to be insufficient. When the bump height is 100 μm, for example, when the wafer thickness is ground to 80 μm or less, the wafer often breaks due to vibration during grinding.
[0014]
In Japanese Patent Application Laid-Open No. 2002-118147, it is necessary to remove the resin layer after grinding. However, a wafer having a wafer thickness of less than 200 μm is easily cracked, and cracks are easily generated in a dipping step or a drying step. If the wafer has a thickness of less than 100 μm, it is difficult to remove the resin after grinding to hold the entire back surface of the wafer.
[0015]
Although a method of transferring solder bumps after wafer grinding can be devised, if the wafer thickness is less than 100 μm, the wafer is greatly warped due to the stress of the surface wiring and the protective film, and it is difficult to fix the wafer.
[0016]
SUMMARY OF THE INVENTION An object of the present invention is to provide a method for manufacturing a semiconductor device capable of manufacturing a thinned semiconductor device at a high yield.
Another object of the present invention is to provide a manufacturing method for manufacturing an electronic component having a thinned semiconductor device at a high yield.
[0017]
Still another object of the present invention is to provide a semiconductor electronic component having a plurality of thinned semiconductor devices.
[0018]
[Means for Solving the Problems]
According to one aspect of the present invention, (a) filling a space between soldering projections on a surface of a semiconductor wafer having soldering projections above a semiconductor substrate; Forming a resin layer exhibiting a first adhesive force to the resin layer; and (b) applying a back grinding tape exhibiting a second adhesive force greater than the first adhesive force to the resin layer to the resin layer. (C) grinding the back surface of the semiconductor substrate; and (d) peeling the back grinding tape from the semiconductor wafer, and peeling the resin layer together with the back grinding tape. And a method of manufacturing a semiconductor device including the steps of:
[0019]
According to another aspect of the present invention, (a) a flux function is provided on a surface of a semiconductor wafer having a solder bonding projection above a semiconductor substrate, the flux function being provided on the surface of the semiconductor wafer. Forming a resin layer exhibiting an adhesive force of 1; and (b) adhering a back grinding tape exhibiting a second adhesive force lower than the first adhesive force to the resin layer on the resin layer. (C) grinding the back surface of the semiconductor substrate, (d) separating the back grinding tape from the resin layer, and (e) removing the semiconductor wafer provided with the resin layer from the circuit board. And a step of flip-chip mounting on the semiconductor device.
[0020]
According to still another aspect of the present invention, there are provided (a) a step of preparing a plurality of semiconductor chips having solder bonding projections above a semiconductor substrate and filling a resin layer having a flux function between the solder bonding projections; (B) a step of flip-chip mounting the plurality of semiconductor chips on a circuit board having a solder bonding metal pattern, and (c) a step of covering the plurality of semiconductor chips on the circuit board with a potting resin. d) a step of polishing the back surfaces of the plurality of semiconductor chips and the potting resin.
[0021]
According to another aspect of the present invention, a circuit board having a solder bonding metal pattern, a plurality of semiconductor chips having a solder bonding protrusion above the semiconductor substrate, and being flip-chip mounted on the metal pattern of the circuit board, According to another aspect of the present invention, there is provided a semiconductor electronic component including: a resin layer that fills a space between each of the plurality of semiconductor chips and the substrate; and a potting resin that covers side surfaces of the plurality of semiconductor chips.
[0022]
BEST MODE FOR CARRYING OUT THE INVENTION
Hereinafter, embodiments of the present invention will be described with reference to the drawings.
1A to 1F are cross-sectional views illustrating a method for manufacturing a semiconductor device according to a first embodiment of the present invention.
[0023]
As shown in FIG. 1A, a pad electrode 11 is formed on a surface of a semiconductor substrate 10 on which a semiconductor element is formed. Cover resin layer 12 is formed so as to cover the periphery of pad electrode 11. The metal layer 14 is formed so as to extend from the surface of the pad electrode 11 onto the cover resin layer 12. The metal layer 14 is a layer having a function of limiting the diameter of the solder bump 16 when a solder layer is formed thereon and the solder bump 16 is formed by melting.
[0024]
FIG. 1B schematically illustrates a configuration example of the semiconductor substrate 10. An element isolation region 22 is formed on the surface of the silicon substrate 21 by shallow trench isolation (STI). The element isolation region 22 defines a number of active regions on the surface of the silicon substrate 21. A p-type well Wp and an n-type well Wn are formed in the active region. An n-channel transistor Tn is formed in the p-type well Wp, and a p-channel transistor Tp is formed in the n-type well Wn.
[0025]
A first interlayer insulating film is formed to cover the gate electrode of the transistor, and a via hole penetrating the first interlayer insulating film is formed. A conductive plug 24 such as a tungsten plug is formed in the via hole. A first wiring layer 25 is formed on the surface of the first interlayer insulating film 23, and is covered with a second interlayer insulating film 26. A necessary connection hole is formed in the second interlayer insulating film 26, and a second wiring layer 27 is formed. The second wiring layer 27 is covered with a third interlayer insulating film.
[0026]
After the formation of the multilayer wiring, the passivation layer 29 is formed as the uppermost layer, and the pad electrode 11 is formed on the surface of the passivation layer 29. A cover resin layer 12 is formed so as to cover the periphery of pad electrode 11.
[0027]
Returning to FIG. 1A, a resin layer 2a is formed so as to cover the solder bumps 16. For the resin layer 2a, a flexible material having a good filling property between bumps is used. By using a molten resin material for the solvent, a resin layer with good filling properties can be formed without applying excessive stress to the semiconductor wafer. Further, the resin layer 2a has an appropriate adhesiveness to the semiconductor wafer 1 after baking.
[0028]
The resin layer 2a can be formed of, for example, SMP-100 manufactured by Ougi Chemical, HIMAL manufactured by Hitachi Chemical, KSSZ manufactured by Taiyo Ink, or the like. The resin layer 2a is formed by, for example, spin coating, printing filling, laminating, or the like. A printing and filling method that is simple in viscosity adjustment and handling is more preferable.
[0029]
As shown in FIG. 1C, when the solvent of the resin layer 2a is evaporated and the resin is dried, a resin layer 2b having a reduced thickness is obtained. For example, in the state of FIG. 1A, a resin layer 2a having a thickness of 140 μm is formed so as to bury the bump 16 having a height of 100 μm. After baking and evaporating the solvent, the resin layer 2b has a thickness of about 90 μm. The surface of the solder bump 16 is thinly covered with the resin layer 2b.
[0030]
As shown in FIG. 1D, a tape 4 for grinding the back surface is attached on the surface of the dried resin layer 2b. The material of the back grinding tape 4 is selected such that the adhesive force between the tape 4 and the resin layer 2b is larger than the adhesive force between the resin layer 2b and the semiconductor wafer. The back grinding tape can be composed of, for example, a super soft tape manufactured by Mitsui Chemicals. By filling the space between the bumps with the resin layer 2b and affixing the tape 4 thereon, the semiconductor wafer is held firmly and the back grinding step can be performed. The back surface of the semiconductor substrate 10 is ground and thinned, for example, to a thickness of 60 μm.
[0031]
As shown in FIG. 1E, after the grinding step, the semiconductor wafer is held on the support surface 30 having adhesiveness, and the tape 4 is peeled off from the semiconductor wafer. At this time, since the resin layer 2b is bonded to the tape 4 with a stronger force than the semiconductor wafer, the resin layer 2b is peeled off together with the tape 4.
[0032]
As shown in FIG. 1F, a dicing process is performed on the semiconductor wafer held on the support surface 30 to separate each semiconductor chip. Thereafter, the semiconductor chip is separated from the support surface 30. According to this example, the resin filled between the bumps was able to be peeled off together with the tape under normal peeling conditions.
[0033]
This technique can also be applied to wafer level CSP back grinding. Solder bumps having a height of 250 μm and a pitch of 500 μm were formed on the entire wafer by using a simplified super CSP, which is a form of a wafer-level CSP. Using this wafer with bumps, a resin layer 2a is formed with a thickness of 300 μm so as to cover the solder bumps 16 as shown in FIG. After baking and evaporating the solvent, the resin layer 2b has a thickness of about 200 μm. The surface of the solder bump 16 is thinly covered with the resin layer 2b.
[0034]
As shown in FIG. 1 (D), a tape for grinding the back surface is attached to the surface of the wafer, and the wafer is ground to a thickness of 200 μm. As shown in FIG. 1E, after grinding, the wafer is held on a supporting surface 30 having adhesiveness, and the resin layer together with the tape 4 is peeled off from the wafer.
[0035]
FIGS. 2A to 2D and 3E to 3H are cross-sectional views illustrating a method for manufacturing an electronic component according to a second embodiment of the present invention.
As shown in FIG. 2A, a resin layer 5a for filling the space between the bumps is coated on the surface of the semiconductor wafer 1 with solder bumps as described above. For example, the coating of the resin layer 5a is performed by printing, and the resin layer 5a is formed in a state where the bumps are almost embedded. For example, a resin layer 5a having a thickness of about 300 μm is formed by embedding a solder bump 16 having a height of 250 μm. In the present embodiment, the resin to be coated is provided with a flux function such as a carboxylic group, and can be held in a B-stage state. When peeling the grinding tape after back grinding, the adhesive has such an adhesive property that it remains on the semiconductor wafer as it is. It is a resin that is held between the wafer and the wafer.
[0036]
As shown in FIG. 2B, the resin layer 5a is baked and dried. The dried resin layer 5b has a thickness of, for example, about 230 μm. By baking at 110 ° C., the resin can be B-staged. The resin layer 5b has a strong first adhesive force with respect to the semiconductor wafer and is weaker than the first adhesive force with respect to the tape attached thereon, but has an adhesive force that enables back grinding. The material shown. For example, a Sumitomo Bakelite wafer level underfill material can be used as the resin layer 5a.
[0037]
As shown in FIG. 2 (C), a tape 4 for back grinding is attached on the surface of the baked resin layer 5b. The back grinding tape 4 can be composed of, for example, a super soft tape manufactured by Mitsui Chemicals, Inc. In this state, the back surface of the semiconductor substrate 10 is ground to a thickness of, for example, 200 μm.
[0038]
As shown in FIG. 2D, the back surface of the semiconductor wafer is supported on the support surface 30, and the tape 4 is peeled off. The resin layer 5b adheres to the semiconductor wafer with a strong adhesive force, and only the tape 4 is peeled off. After that, a dicing process is performed as in the above-described embodiment to separate individual semiconductor chips from the semiconductor wafer.
[0039]
FIG. 3E shows a state in which the semiconductor chip created through the step of FIG. 2D is turned upside down for flip-chip mounting.
As shown in FIG. 3F, a semiconductor chip having a thinned semiconductor substrate 10x is arranged on a circuit board 6 in which a wiring layer 62 such as a land for bump bonding is formed on an insulating substrate 61.
[0040]
As shown in FIG. 3G, the semiconductor chip is heated while being pressed downward. The solder bumps 16 are reflowed and deformed into flat solder bumps 16c, which increase the bonding area. At this time, the resin layer 5b is also deformed and becomes the state 5c.
[0041]
As shown in FIG. 3H, by continuing heating and pressing, the resin 5c adheres to the surface of the circuit board 6 without voids, and the bumps 16d connect the metal layer 14 on the semiconductor chip and the lands 62 on the circuit board 6 to each other. Connect them with low resistance. The resin layer 5d fills the space between the semiconductor chip and the circuit board without voids, but slightly overhangs the side surface of the semiconductor chip, but does not cover the side surface of the semiconductor substrate.
[0042]
In this embodiment, the semiconductor chip is reinforced by the mechanical strength of the underfill resin layer despite the thin semiconductor substrate, so that the semiconductor chip is prevented from being broken by handling. It can be mounted by a normal flip chip bonder or by a mounting device used for mounting a package.
[0043]
When the resin in the B-stage state is mounted at a temperature of 80 to 100 ° C., tackiness is developed, and displacement during mounting is prevented. During solder reflow, the chip is efficiently mounted on the circuit board by the flux function of the underfill resin. Further, since the underfill resin can be left as it is, the underfill filling step after mounting can be omitted.
[0044]
4A to 4D are cross-sectional views illustrating a method for manufacturing an electronic component according to a third embodiment of the present invention.
First, as shown in FIGS. 2A and 2B, a resin layer 5b having a flux function is applied on a semiconductor wafer. As shown in FIG. 2D, dicing is performed without back grinding to separate semiconductor chips from the semiconductor wafer.
[0045]
As shown in FIG. 4A, a plurality of semiconductor chips 3a and 3b are flip-chip mounted on a circuit board 6 including an insulating substrate 61 and wirings 62. The semiconductor substrate 10 in each semiconductor chip is not ground back and has an initial thickness.
[0046]
As shown in FIG. 4B, the semiconductor chips 3a and 3b are covered with a potting resin 7 to fill a gap between the chips.
As shown in FIG. 4C, the back surfaces of the semiconductor chips 3a and 3b covered with the potting resin 7 are ground. As the potting resin 7, a resin having a Young's modulus of 1 GPa or more is selected. When the Young's modulus is high, occurrence of chipping on the ground surface of the semiconductor chip is prevented. Since the grinding process is performed in a structure in which the semiconductor substrate is embedded in the potting resin, chipping or the like on the back surface of the chip hardly occurs.
As shown in FIG. 4D, a heat sink 8 is attached to the back surface of the semiconductor chip which has been ground as necessary. The heat radiation characteristics can be improved, and the mechanical strength of the semiconductor electronic component can be reinforced.
[0047]
Although the present invention has been described with reference to the embodiments, the present invention is not limited thereto. For example, it will be apparent to those skilled in the art that various modifications, improvements, and combinations are possible.
[0048]
【The invention's effect】
As described above, according to the present invention, it is possible to reduce the thickness of a semiconductor device or an electronic component while reducing the occurrence of defects. As the wafer thickness is reduced, the heat radiation effect is increased, and a semiconductor component having excellent thermal characteristics can be provided.
[Brief description of the drawings]
FIG. 1 is a sectional view showing main steps of a method for manufacturing a semiconductor device according to a first embodiment of the present invention.
FIG. 2 is a sectional view showing main steps of a method for manufacturing an electronic component according to a second embodiment of the present invention.
FIG. 3 is a sectional view showing main steps of a method of manufacturing an electronic component according to a second embodiment of the present invention.
FIG. 4 is a sectional view schematically showing a method of manufacturing an electronic component according to a third embodiment of the present invention.
[Explanation of symbols]
DESCRIPTION OF SYMBOLS 1 Semiconductor wafer 2 Resin layer 3 Semiconductor chip 4 Back grinding tape 6 Circuit board 7 Potting resin 8 Heat sink 10 Semiconductor substrate 11 Pad electrode 12 Cover resin layer 14 Metal layer 16 Solder bump 61 Insulating substrate 62 Wiring

Claims (10)

(a)半導体基板上方にはんだ接合用突起を備えた半導体ウエハのはんだ接合用突起を備えた表面上に、はんだ接合用突起間の空間を充填し、半導体ウエハに対して第1の接着力を示す樹脂層を形成する工程と、
(b)前記樹脂層に対して前記第1の接着力より大きい第2の接着力を示す背面研削テープを、前記樹脂層上に貼着する工程と、
(c)前記半導体基板の背面を研削する工程と、
(d)前記半導体ウエハから前記背面研削テープを剥離し、この時前記樹脂層を前記背面研削テープと共に剥離する工程と、
を含む半導体装置の製造方法。
(A) A space between the solder bonding projections is filled on the surface of the semiconductor wafer having the solder bonding projections provided above the semiconductor substrate, and the first adhesive force is applied to the semiconductor wafer. Forming a resin layer shown,
(B) adhering a back grinding tape having a second adhesive strength greater than the first adhesive strength to the resin layer on the resin layer;
(C) a step of grinding the back surface of the semiconductor substrate;
(D) removing the back grinding tape from the semiconductor wafer, and then removing the resin layer together with the back grinding tape;
A method for manufacturing a semiconductor device including:
前記工程(c)は、前記半導体基板の厚さを前記はんだ接合用突起の高さよりも小さくなるまで前記半導体基板の背面を研削し、前記工程(d)は、研削した前記半導体基板の背面を支持面上に支持して前記背面研削テープを剥離する請求項1記載の半導体装置の製造方法。In the step (c), the back surface of the semiconductor substrate is ground until the thickness of the semiconductor substrate becomes smaller than the height of the solder joint projection. In the step (d), the back surface of the ground semiconductor substrate is ground. 2. The method of manufacturing a semiconductor device according to claim 1, wherein the back grinding tape is peeled while being supported on a support surface. さらに、
(e)前記半導体ウエハを支持面上に支持し、前記半導体ウエハを半導体チップにダイシングする工程、
を含む請求項2記載の半導体装置の製造方法。
further,
(E) supporting the semiconductor wafer on a support surface and dicing the semiconductor wafer into semiconductor chips;
3. The method for manufacturing a semiconductor device according to claim 2, comprising:
(a)半導体基板上方にはんだ接合用突起を備えた半導体ウエハのはんだ接合用突起を備えた表面上に、フラックス機能を付与され、半導体ウエハに対して第1の接着力を示す樹脂層を形成する工程と、
(b)前記樹脂層に対して前記第1の接着力より低い第2の接着力を示す背面研削テープを、前記樹脂層上に貼着する工程と、
(c)前記半導体基板の背面を研削する工程と、
(d)前記背面研削テープを前記樹脂層から剥離する工程と、
(e)前記樹脂層を備えた前記半導体ウエハを回路基板上にフリップチップ実装する工程と、
を含む半導体電子部品の製造方法。
(A) Forming a resin layer provided with a flux function and exhibiting a first adhesive force to a semiconductor wafer on a surface of a semiconductor wafer having a solder bonding projection above a semiconductor substrate, the surface having the solder bonding projection. The process of
(B) attaching a back grinding tape having a second adhesive force lower than the first adhesive force to the resin layer on the resin layer;
(C) a step of grinding the back surface of the semiconductor substrate;
(D) peeling the back grinding tape from the resin layer;
(E) flip-chip mounting the semiconductor wafer provided with the resin layer on a circuit board;
The manufacturing method of the semiconductor electronic component containing.
前記回路基板は、はんだ接合用金属層パターンを有し、前記工程(e)は前記はんだ接合用突起を接合温度で溶融させ、前記金属層パターンに接合する請求項4記載の半導体電子部品の製造方法。5. The manufacturing of a semiconductor electronic component according to claim 4, wherein the circuit board has a metal layer pattern for solder bonding, and in the step (e), the protrusion for solder bonding is melted at a bonding temperature and bonded to the metal layer pattern. Method. 前記樹脂層は前記接合温度より低い軟化点を有し、前記工程(e)は前記半導体基板と前記回路基板との間の空間をボイドなく前記樹脂層で満たす請求項5記載の半導体電子部品の製造方法。6. The semiconductor electronic component according to claim 5, wherein the resin layer has a softening point lower than the bonding temperature, and the step (e) fills a space between the semiconductor substrate and the circuit board with the resin layer without voids. Production method. 前記工程(e)は、前記樹脂層を前記半導体基板側面には回り込ませない請求項6記載の半導体電子部品の製造方法。7. The method for manufacturing a semiconductor electronic component according to claim 6, wherein in the step (e), the resin layer is not wrapped around the side surface of the semiconductor substrate. (a)半導体基板上方にはんだ接合用突起を備え、はんだ接合用突起間をフラックス機能を備えた樹脂層が充填する複数の半導体チップを準備する工程と、
(b)前記複数の半導体チップをはんだ接合用金属パターンを有する回路基板上にフリップチップ実装する工程と、
(c)前記回路基板上の前記複数の半導体チップをポッティング樹脂で覆う工程と、
(d)前記ポッティング樹脂、前記複数の半導体チップの背面を研磨する工程と、
を含む半導体電子部品の製造方法。
(A) a step of preparing a plurality of semiconductor chips having solder bonding protrusions above a semiconductor substrate, and filling between the solder connection protrusions with a resin layer having a flux function;
(B) flip-chip mounting the plurality of semiconductor chips on a circuit board having a solder joint metal pattern;
(C) covering the plurality of semiconductor chips on the circuit board with a potting resin;
(D) polishing the back surface of the potting resin and the plurality of semiconductor chips;
The manufacturing method of the semiconductor electronic component containing.
さらに、
(e)背面を研削した前記複数の半導体チップの該背面に共通の放熱板を取り付ける工程、
を含む請求項8記載の半導体電子部品の製造方法。
further,
(E) attaching a common radiator plate to the back surfaces of the plurality of semiconductor chips whose back surfaces have been ground;
9. The method for manufacturing a semiconductor electronic component according to claim 8, comprising:
はんだ接合用金属パターンを有する回路基板と、
半導体基板上方にはんだ接合用突起を備え、前記回路基板の金属パターン上にフリップチップ実装された複数の半導体チップと、
前記複数の半導体チップの各々と、前記回路基板との間の空間を充填する樹脂層と、
前記複数の半導体チップの側面を覆うポッティング樹脂と、
を有する半導体電子部品。
A circuit board having a solder joint metal pattern,
A plurality of semiconductor chips having a solder joint protrusion above the semiconductor substrate, and flip-chip mounted on a metal pattern of the circuit board,
Each of the plurality of semiconductor chips, a resin layer filling a space between the circuit board,
Potting resin covering side surfaces of the plurality of semiconductor chips,
A semiconductor electronic component having:
JP2003059653A 2003-03-06 2003-03-06 Method of manufacturing semiconductor device and semiconductor electronic component, and semiconductor electronic component Pending JP2004273604A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2003059653A JP2004273604A (en) 2003-03-06 2003-03-06 Method of manufacturing semiconductor device and semiconductor electronic component, and semiconductor electronic component

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2003059653A JP2004273604A (en) 2003-03-06 2003-03-06 Method of manufacturing semiconductor device and semiconductor electronic component, and semiconductor electronic component

Publications (1)

Publication Number Publication Date
JP2004273604A true JP2004273604A (en) 2004-09-30

Family

ID=33122406

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2003059653A Pending JP2004273604A (en) 2003-03-06 2003-03-06 Method of manufacturing semiconductor device and semiconductor electronic component, and semiconductor electronic component

Country Status (1)

Country Link
JP (1) JP2004273604A (en)

Cited By (15)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007123362A (en) * 2005-10-25 2007-05-17 Disco Abrasive Syst Ltd Method of manufacturing device
JP2009530864A (en) * 2006-03-21 2009-08-27 プロメラス, エルエルシー Methods and materials useful for chip stacking and chip / wafer bonding
JP2011176069A (en) * 2010-02-24 2011-09-08 Casio Computer Co Ltd Method of manufacturing semiconductor device
JP2012119594A (en) * 2010-12-03 2012-06-21 Disco Abrasive Syst Ltd Processing method of plate-like object
JP2019525488A (en) * 2016-08-12 2019-09-05 コーボ ユーエス,インコーポレイティド Wafer level package with improved performance
US20200235054A1 (en) 2019-01-23 2020-07-23 Qorvo Us, Inc. Rf devices with enhanced performance and methods of forming the same
US20210296199A1 (en) 2018-11-29 2021-09-23 Qorvo Us, Inc. Thermally enhanced semiconductor package with at least one heat extractor and process for making the same
US11152363B2 (en) 2018-03-28 2021-10-19 Qorvo Us, Inc. Bulk CMOS devices with enhanced performance and methods of forming the same utilizing bulk CMOS process
US20220139862A1 (en) 2019-01-23 2022-05-05 Qorvo Us, Inc. Rf devices with enhanced performance and methods of forming the same
US11387157B2 (en) 2019-01-23 2022-07-12 Qorvo Us, Inc. RF devices with enhanced performance and methods of forming the same
US11646289B2 (en) 2019-12-02 2023-05-09 Qorvo Us, Inc. RF devices with enhanced performance and methods of forming the same
US11710680B2 (en) 2019-01-23 2023-07-25 Qorvo Us, Inc. RF devices with enhanced performance and methods of forming the same
JP7430111B2 (en) 2020-05-08 2024-02-09 株式会社ディスコ Processing method
US11923238B2 (en) 2019-12-12 2024-03-05 Qorvo Us, Inc. Method of forming RF devices with enhanced performance including attaching a wafer to a support carrier by a bonding technique without any polymer adhesive
JP7470409B2 (en) 2020-08-31 2024-04-18 フジコピアン株式会社 Laminate for wafer processing, method for manufacturing thin wafer using same, and method for dividing thin wafer

Cited By (22)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007123362A (en) * 2005-10-25 2007-05-17 Disco Abrasive Syst Ltd Method of manufacturing device
JP2009530864A (en) * 2006-03-21 2009-08-27 プロメラス, エルエルシー Methods and materials useful for chip stacking and chip / wafer bonding
JP2011176069A (en) * 2010-02-24 2011-09-08 Casio Computer Co Ltd Method of manufacturing semiconductor device
JP2012119594A (en) * 2010-12-03 2012-06-21 Disco Abrasive Syst Ltd Processing method of plate-like object
JP7265052B2 (en) 2016-08-12 2023-04-25 コーボ ユーエス,インコーポレイティド Wafer level package with improved performance
JP2019525488A (en) * 2016-08-12 2019-09-05 コーボ ユーエス,インコーポレイティド Wafer level package with improved performance
JP7037544B2 (en) 2016-08-12 2022-03-16 コーボ ユーエス,インコーポレイティド Wafer level package with improved performance
JP2022071128A (en) * 2016-08-12 2022-05-13 コーボ ユーエス,インコーポレイティド Wafer-level package with enhanced performance
US11152363B2 (en) 2018-03-28 2021-10-19 Qorvo Us, Inc. Bulk CMOS devices with enhanced performance and methods of forming the same utilizing bulk CMOS process
US20210296199A1 (en) 2018-11-29 2021-09-23 Qorvo Us, Inc. Thermally enhanced semiconductor package with at least one heat extractor and process for making the same
US11942389B2 (en) 2018-11-29 2024-03-26 Qorvo Us, Inc. Thermally enhanced semiconductor package with at least one heat extractor and process for making the same
US11646242B2 (en) 2018-11-29 2023-05-09 Qorvo Us, Inc. Thermally enhanced semiconductor package with at least one heat extractor and process for making the same
US20200235054A1 (en) 2019-01-23 2020-07-23 Qorvo Us, Inc. Rf devices with enhanced performance and methods of forming the same
US11387157B2 (en) 2019-01-23 2022-07-12 Qorvo Us, Inc. RF devices with enhanced performance and methods of forming the same
US11710680B2 (en) 2019-01-23 2023-07-25 Qorvo Us, Inc. RF devices with enhanced performance and methods of forming the same
US11923313B2 (en) 2019-01-23 2024-03-05 Qorvo Us, Inc. RF device without silicon handle substrate for enhanced thermal and electrical performance and methods of forming the same
US20220139862A1 (en) 2019-01-23 2022-05-05 Qorvo Us, Inc. Rf devices with enhanced performance and methods of forming the same
US11961813B2 (en) 2019-01-23 2024-04-16 Qorvo Us, Inc. RF devices with enhanced performance and methods of forming the same
US11646289B2 (en) 2019-12-02 2023-05-09 Qorvo Us, Inc. RF devices with enhanced performance and methods of forming the same
US11923238B2 (en) 2019-12-12 2024-03-05 Qorvo Us, Inc. Method of forming RF devices with enhanced performance including attaching a wafer to a support carrier by a bonding technique without any polymer adhesive
JP7430111B2 (en) 2020-05-08 2024-02-09 株式会社ディスコ Processing method
JP7470409B2 (en) 2020-08-31 2024-04-18 フジコピアン株式会社 Laminate for wafer processing, method for manufacturing thin wafer using same, and method for dividing thin wafer

Similar Documents

Publication Publication Date Title
TWI659477B (en) Semiconductor device and manufacturing method thereof
JP5325736B2 (en) Semiconductor device and manufacturing method thereof
KR100555241B1 (en) An electronic component package with posts on the active surface
US7691672B2 (en) Substrate treating method and method of manufacturing semiconductor apparatus
EP2006908B1 (en) Electronic device and method of manufacturing the same
US8492896B2 (en) Semiconductor apparatus and semiconductor apparatus unit
US10734328B2 (en) Semiconductor package and manufacturing method thereof
JP2001144204A (en) Semiconductor device and manufacture thereof
US20100261313A1 (en) Semiconductor package and method of packaging semiconductor devices
JP2013518432A (en) Dual carrier for bonding IC die or wafer to TSV wafer
JPH11233687A (en) Semiconductor device having sub-chip scale package structure and manufacture thereof
JP2004273604A (en) Method of manufacturing semiconductor device and semiconductor electronic component, and semiconductor electronic component
JP2008130704A (en) Method of manufacturing semiconductor device
JP2007188967A (en) Substrate support, substrate treatment method, and method of manufacturing semiconductor device
TWI803310B (en) Integrated circuit device and methods of forming the same
JP2001127095A (en) Semiconductor device and its manufacturing method
KR100555237B1 (en) Integrated passive components and package with posts
US20110147905A1 (en) Semiconductor device and method of manufacturing the same
JP2004079658A (en) Semiconductor device and its manufacturing method
JP2004165277A (en) Electronic component mounting structure and manufacturing method therefor
US8072068B2 (en) Semiconductor device and a method for manufacturing the same
US7170167B2 (en) Method for manufacturing wafer level chip scale package structure
KR20090052282A (en) Semiconductor device and manufacturing method thereof
JP3892359B2 (en) Mounting method of semiconductor chip
US20110298124A1 (en) Semiconductor Structure

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20040726

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20060216

A131 Notification of reasons for refusal

Effective date: 20060228

Free format text: JAPANESE INTERMEDIATE CODE: A131

A521 Written amendment

Effective date: 20060427

Free format text: JAPANESE INTERMEDIATE CODE: A523

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20060530

A02 Decision of refusal

Effective date: 20061003

Free format text: JAPANESE INTERMEDIATE CODE: A02