JP2004272204A - Collar changeable pixel - Google Patents

Collar changeable pixel Download PDF

Info

Publication number
JP2004272204A
JP2004272204A JP2003340544A JP2003340544A JP2004272204A JP 2004272204 A JP2004272204 A JP 2004272204A JP 2003340544 A JP2003340544 A JP 2003340544A JP 2003340544 A JP2003340544 A JP 2003340544A JP 2004272204 A JP2004272204 A JP 2004272204A
Authority
JP
Japan
Prior art keywords
plate
color variable
modulator
variable pixel
color
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2003340544A
Other languages
Japanese (ja)
Inventor
Wen-Jian Lin
リン ウェンジァン
Hsiung-Kuang Tsai
ツァイ シゥンクァン
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Prime View International Co Ltd
Original Assignee
Prime View International Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Prime View International Co Ltd filed Critical Prime View International Co Ltd
Publication of JP2004272204A publication Critical patent/JP2004272204A/en
Pending legal-status Critical Current

Links

Images

Classifications

    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F1/00Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
    • G02F1/01Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour 
    • G02F1/13Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  based on liquid crystals, e.g. single liquid crystal display cells
    • G02F1/133Constructional arrangements; Operation of liquid crystal cells; Circuit arrangements
    • G02F1/1333Constructional arrangements; Manufacturing methods
    • G02F1/1335Structural association of cells with optical devices, e.g. polarisers or reflectors
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B26/00Optical devices or arrangements for the control of light using movable or deformable optical elements
    • G02B26/001Optical devices or arrangements for the control of light using movable or deformable optical elements based on interference in an adjustable optical cavity
    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03CCHEMICAL COMPOSITION OF GLASSES, GLAZES OR VITREOUS ENAMELS; SURFACE TREATMENT OF GLASS; SURFACE TREATMENT OF FIBRES OR FILAMENTS MADE FROM GLASS, MINERALS OR SLAGS; JOINING GLASS TO GLASS OR OTHER MATERIALS
    • C03C17/00Surface treatment of glass, not in the form of fibres or filaments, by coating
    • C03C17/34Surface treatment of glass, not in the form of fibres or filaments, by coating with at least two coatings having different compositions
    • C03C17/3411Surface treatment of glass, not in the form of fibres or filaments, by coating with at least two coatings having different compositions with at least two coatings of inorganic materials
    • C03C17/3417Surface treatment of glass, not in the form of fibres or filaments, by coating with at least two coatings having different compositions with at least two coatings of inorganic materials all coatings being oxide coatings
    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03CCHEMICAL COMPOSITION OF GLASSES, GLAZES OR VITREOUS ENAMELS; SURFACE TREATMENT OF GLASS; SURFACE TREATMENT OF FIBRES OR FILAMENTS MADE FROM GLASS, MINERALS OR SLAGS; JOINING GLASS TO GLASS OR OTHER MATERIALS
    • C03C17/00Surface treatment of glass, not in the form of fibres or filaments, by coating
    • C03C17/34Surface treatment of glass, not in the form of fibres or filaments, by coating with at least two coatings having different compositions
    • C03C17/3411Surface treatment of glass, not in the form of fibres or filaments, by coating with at least two coatings having different compositions with at least two coatings of inorganic materials
    • C03C17/3429Surface treatment of glass, not in the form of fibres or filaments, by coating with at least two coatings having different compositions with at least two coatings of inorganic materials at least one of the coatings being a non-oxide coating
    • C03C17/3435Surface treatment of glass, not in the form of fibres or filaments, by coating with at least two coatings having different compositions with at least two coatings of inorganic materials at least one of the coatings being a non-oxide coating comprising a nitride, oxynitride, boronitride or carbonitride

Abstract

<P>PROBLEM TO BE SOLVED: To provide a color changeable pixel which is easy to manufacture and has good performance. <P>SOLUTION: The color changeable pixel has a 1st plate, a 2nd plate, and a 3rd plate. The three plates are provided in parallel. The 2nd plate is a reflective plate which can deform. An incident light beam from one side of the 1st plate is modulated and only a light beam of specified frequency is reflected by the 2nd plate. The frequency of the reflected light beam is related to the distance between the 1st plate and 2nd plate. The 2nd plate is displaced with a voltage applied to the 3rd plate to vary the distance between the 1st and 2nd plates. Consequently, the frequency of the reflected light beam varies. <P>COPYRIGHT: (C)2004,JPO&NCIPI

Description

本発明は、カラー可変ピクセルに関連する。より詳しく述べると本発明は、光学干渉ディスプレイプレートのカラー可変ピクセルに関連する。   The present invention relates to color variable pixels. More particularly, the present invention relates to a color variable pixel of an optical interference display plate.

軽量で小型サイズであるという性質のため、ディスプレイプレートは、スペースが制約される携帯用ディスプレイの市場で好まれている。現在までのところ、液晶ディスプレイ(LCD)と有機エレクトロルミネッセントディスプレイ(OLED)とプラズマディスプレイパネル(PDP)に加えて、光学干渉ディスプレイのモジュールの研究が行われている。   Due to their light weight and small size nature, display plates are preferred in the space-constrained portable display market. To date, research has been conducted on optical interference display modules in addition to liquid crystal displays (LCDs), organic electroluminescent displays (OLEDs), and plasma display panels (PDPs).

米国特許第5835255号には、ディスプレイプレートに使用できる可視光線のモジュレータアレイが開示されている。図1は、先行技術によるモジュレータの断面を示す。あらゆるモジュレータ100は、2枚の壁102,104を有する。これら2枚の壁は支柱106によって支持され、こうして空洞108が形成される。2枚の壁の間の距離つまり空洞108の長さは、Dである。吸収因子を持つ壁102,104の一方は、可視光線を部分的に吸収する半透明な層である。他方は、電圧が印加された時に変形可能な光線反射層である。入射光線が壁102または104を通過して空洞108に到達すると、数式1に対応する波長を持つ可視光線のみが出力される。つまり、 U.S. Pat. No. 5,835,255 discloses a modulator array of visible light that can be used in a display plate. FIG. 1 shows a cross section of a modulator according to the prior art. Every modulator 100 has two walls 102,104. These two walls are supported by columns 106, thus forming a cavity 108. The distance between the two walls, ie, the length of the cavity 108, is D. One of the walls 102, 104 having an absorption factor is a translucent layer that partially absorbs visible light. The other is a light reflecting layer that can be deformed when a voltage is applied. When the incident light beam passes through the wall 102 or 104 and reaches the cavity 108, only visible light having a wavelength corresponding to Equation 1 is output. That is,

2D=Nλ (1)   2D = Nλ (1)

上式において、Nは自然数である。   In the above equation, N is a natural number.

空洞108の長さDが何らかの自然数に波長を掛けた数の半分に等しい時、建設的干渉が発生し、急な光線波形が発せられる。その間に観察者が入射光線の方向を辿ると、波長λ1の反射光線を観察できる。そのため、モジュレータ100は「開いて」いる。   When the length D of the cavity 108 is equal to half the natural number times the wavelength, constructive interference occurs and a steep ray waveform is emitted. If the observer follows the direction of the incident light during this time, the reflected light having the wavelength λ1 can be observed. Therefore, modulator 100 is "open."

図2は、電圧が印加された後のモジュレータの断面図を示す。図2に見られるように、電圧のため、壁104は変形して壁102へと降下している。壁102と104の間の距離つまり空洞108の長さは、正確にはゼロではない。これはdであり、dはゼロのこともある。数式1においてDの代わりにdを使用すると、数式1を満たす波長つまりλ2を持つ可視光線のみが、建設的干渉を発生させて通過が可能である。波長λ2の光線に対する壁102の高い吸収率のため、すべての入射可視光線がフィルタリングされ、そのため入射光線の方向を辿る観察者は、反射可視光線を観察できない。この時モジュレータは「閉じて」いる。   FIG. 2 shows a cross-sectional view of the modulator after a voltage has been applied. As can be seen in FIG. 2, due to the voltage, the wall 104 has deformed and descended to the wall 102. The distance between walls 102 and 104, ie, the length of cavity 108, is not exactly zero. This is d, and d may be zero. When d is used instead of D in Equation 1, only visible light having a wavelength that satisfies Equation 1, that is, λ2, can generate constructive interference and pass through. Due to the high absorption of the wall 102 for light of wavelength λ2, all incident visible light is filtered so that observers following the direction of the incident light cannot see the reflected visible light. At this time, the modulator is "closed."

モジュレータ100を有するモジュレータのアレイは、単色ディスプレイプレートには充分であるが、カラー平面ディスプレイには充分でない。当該技術で周知の方法は、空洞の長さが異なる3種類のモジュレータを有するピクセルを製造することである。図3と図4は、当該技術で周知のモジュレータを有するカラー平面ディスプレイを示す断面図である。図3は、先行技術による多層カラー平面ディスプレイの断面図を示す。多層カラー平面ディスプレイ200は、3層つまりモジュレータ202,204,206を有する。入射光線208はモジュレータ202,204,206によって反射される。反射光線の波長は異なり、例えば、赤色光線、緑色光線、青色光線となり得る。三つの異なる波長を持つ反射光線が生じる理由は、モジュレータ202,204,206の空洞の長さが異なり、また反射率の異なるミラーが使用されていることである。多層カラー平面ディスプレイの短所の一つは、解像度の低さである。また図3に見られるように、青色光線は赤色光線よりも輝度が低い。   An array of modulators with modulators 100 is sufficient for a monochrome display plate, but not for a color flat panel display. A method well known in the art is to produce a pixel having three types of modulators with different lengths of the cavity. 3 and 4 are cross-sectional views illustrating a color flat panel display having a modulator as is well known in the art. FIG. 3 shows a cross-sectional view of a multilayer color flat panel display according to the prior art. The multilayer color flat display 200 has three layers or modulators 202, 204, 206. Incident light beam 208 is reflected by modulators 202, 204, 206. The wavelengths of the reflected light are different and can be, for example, red light, green light, blue light. The reason that reflected light beams having three different wavelengths occur is that the modulators 202, 204, and 206 have different cavity lengths and use mirrors having different reflectivities. One of the disadvantages of multilayer color flat displays is the low resolution. Also, as seen in FIG. 3, blue light has lower brightness than red light.

図4は、先行技術によるマトリックスカラー平面ディスプレイの断面図を示す。基板300には、3個のモジュレータつまりモジュレータ302,304,306が形成されている。入射光線308は、モジュレータ302,304,306によって反射される。反射光線の波長は異なり、例えば赤色光線、緑色光線、青色光線となる。反射光線が3種類の異なる波長を持つ理由は、モジュレータ302,304,306の空洞の長さが異なることである。反射率の異なるミラーを使用する必要はない。解像度は良好で、各色の光線の輝度は似通っている。しかし3種類の長さの異なる空洞を持つモジュレータは別々に製造される必要があり、例えば、モジュレータ302を製作する工程が実行される間、モジュレータ304と306を製作するための範囲はフォトレジストによって遮蔽される。製造工程は複雑で、歩留りは低い。さらに製造工程中に生じる誤差、例えば空洞長さの誤差は、赤色シフトまたは青色シフトを起こす。失敗は修正不可能で、基板が無駄になる。   FIG. 4 shows a cross-sectional view of a matrix color flat panel display according to the prior art. On the substrate 300, three modulators, that is, modulators 302, 304, and 306 are formed. Incident light beam 308 is reflected by modulators 302, 304, 306. The wavelengths of the reflected light are different, for example, red light, green light, and blue light. The reason that the reflected light has three different wavelengths is that the cavities of the modulators 302, 304 and 306 have different lengths. There is no need to use mirrors with different reflectivity. The resolution is good, and the brightness of the light rays of each color is similar. However, modulators having three different cavities of different lengths need to be manufactured separately, for example, while the process of fabricating modulator 302 is performed, the area for fabricating modulators 304 and 306 is limited by photoresist. Be shielded. The manufacturing process is complicated and the yield is low. In addition, errors that occur during the manufacturing process, such as errors in cavity length, cause a red or blue shift. Failure is uncorrectable and wastes the board.

そのため、解像度と輝度が高くて製造が容易なカラー光学干渉ディスプレイプレートを開発することが重要である。   Therefore, it is important to develop a color optical interference display plate that has high resolution and brightness and is easy to manufacture.

米国特許第5835255号明細書U.S. Pat. No. 5,835,255

本発明の目的の一つは、多色光学干渉ディスプレイプレートの生産に使用されるカラー可変ピクセルを提供することである。カラー可変ピクセルの解像度と輝度は、高い。   One of the objects of the present invention is to provide a color variable pixel used in the production of multicolor optical interference display plates. The resolution and brightness of the color variable pixels are high.

本発明の第二の目的は、カラー光学干渉ディスプレイプレートの生産に使用されるカラー可変ピクセルを提供することである。製造工程は簡単で、製造の歩留りは高い。   A second object of the present invention is to provide a color variable pixel used in the production of a color optical interference display plate. The manufacturing process is simple and the production yield is high.

本発明の第三の目的は、カラー光学干渉ディスプレイプレートの生産に使用されるカラー可変ピクセルを提供することである。製造工程中に生じた誤差の修正が可能である。   A third object of the present invention is to provide a color variable pixel used in the production of a color optical interference display plate. It is possible to correct errors caused during the manufacturing process.

本発明の目的により、本発明の好適な実施例の一つでは、カラー可変ピクセルとして使用できるモジュレータが提供される。これは、少なくとも第1プレートと第2プレートと第3プレートとを有する。3枚のプレートが平行に取り付けられ、第2プレートは第1および第3プレートの間に設けられる。第1プレートは半透明な電極であり、第2プレートは変形自在な反射性電極である。2枚のプレートは支柱によって支持され、空洞が形成される。空洞の長さはDである。   For the purposes of the present invention, in one of the preferred embodiments of the present invention, there is provided a modulator that can be used as a color variable pixel. It has at least a first plate, a second plate and a third plate. Three plates are mounted in parallel and a second plate is provided between the first and third plates. The first plate is a translucent electrode, and the second plate is a deformable reflective electrode. The two plates are supported by columns, forming a cavity. The length of the cavity is D.

モジュレータが「開いて」いる時には、第1および第2プレートには電圧は印加されない。第1プレートの片側からの入射光線が変調され、数式1を満たす波長を持つ光線のみに建設的干渉が発生して、この光線は第2プレートに反射されて第1プレートを通過する。反射光線の周波数は、空洞の長さと関係する。第3プレートは動作電極であって、ここに電圧が印加される。第3プレートに電圧が印加されると第2プレートが変位するため、第1および第2プレートの間の距離が変化する、つまり空洞の長さが変化する。数式1に見られるように、反射光線の波長は変化して、赤色光線や緑色光線や青色光線など、色の異なる光線が得られる。さらに、第1および第2プレートの間に第2電圧が印加されると、第2プレートが変形して第1プレートへと降下することが知られている。モジュレータは「閉じて」おり、可視光線は反射されない。   When the modulator is "open", no voltage is applied to the first and second plates. The incident light from one side of the first plate is modulated so that only light having a wavelength that satisfies Equation 1 causes constructive interference, which is reflected by the second plate and passes through the first plate. The frequency of the reflected light is related to the length of the cavity. The third plate is a working electrode, to which a voltage is applied. When a voltage is applied to the third plate, the second plate is displaced, so that the distance between the first and second plates changes, that is, the length of the cavity changes. As can be seen from Equation 1, the wavelength of the reflected light changes, and light of different colors, such as a red light, a green light, and a blue light, is obtained. Further, it is known that when a second voltage is applied between the first and second plates, the second plate is deformed and drops to the first plate. The modulator is "closed" and no visible light is reflected.

本発明の目的によれば、本発明の別の好適な実施例では、モジュレータのアレイを備える多色平面ディスプレイが提供される。モジュレータのアレイは、同じ基板に形成される。3個のモジュレータごとに、一つのピクセルを形成する。ピクセルは、少なくとも第1プレートと第2プレートと第3プレートとを有する。3枚のプレートは平行に取り付けられ、第2プレートは第1および第3プレートの間に設けられる。第1プレートは半透明な電極であり、第2プレートは変形可能な反射性電極である。2枚のプレートは支柱によって支持され、空洞が形成される。空洞の長さはDである。3個のモジュレータの3枚の第3プレートのうち2枚または3枚に異なる電圧が印加されると、移動可能な第2プレートが変位して、第1および第2プレートの間の距離が変化する、つまり空洞の長さが変化する。そのため、これら3個の空洞の長さは異なる。モジュレータが「開いて」いる時には、第1および第2プレートには電圧は印加されない。数式1によれば、空洞の長さの変化により反射光線の波長が変化する。さらに、第1および第2プレートの間に第2電圧が印加されると、第2プレートが変形して第1プレートへと降下することが知られている。モジュレータは「閉じて」おり、可視光線は反射されない。   According to an object of the present invention, in another preferred embodiment of the present invention, there is provided a multicolor flat display comprising an array of modulators. The array of modulators is formed on the same substrate. One pixel is formed for every three modulators. The pixel has at least a first plate, a second plate, and a third plate. The three plates are mounted in parallel and the second plate is provided between the first and third plates. The first plate is a translucent electrode and the second plate is a deformable reflective electrode. The two plates are supported by columns, forming a cavity. The length of the cavity is D. When different voltages are applied to two or three of the three third plates of the three modulators, the movable second plate is displaced and the distance between the first and second plates changes. That is, the length of the cavity changes. Therefore, these three cavities have different lengths. When the modulator is "open", no voltage is applied to the first and second plates. According to Equation 1, the wavelength of the reflected light beam changes according to the change in the length of the cavity. Further, it is known that when a second voltage is applied between the first and second plates, the second plate is deformed and drops to the first plate. The modulator is "closed" and no visible light is reflected.

本発明で提供されるモジュレータのアレイを備えるカラー平面ディスプレイは、当該技術で周知のマトリックスカラー平面ディスプレイの長所、つまり高い解像度と輝度とを持ち、さらに、当該技術で周知の多層カラー平面ディスプレイの長所、つまり単純な製造工程と高い歩留りを持つ。そのうえ、空洞の長さは第3プレートに印加される電圧に影響されるため、製造工程中に生じる空洞長さの誤差を修正できる。そのため歩留りも高くなる。   The color flat panel display provided with the array of modulators provided by the present invention has the advantages of a matrix color flat panel display known in the art, that is, high resolution and brightness, and further has the advantages of a multi-layer color flat panel display known in the art. In other words, it has a simple manufacturing process and a high yield. In addition, since the length of the cavity is affected by the voltage applied to the third plate, errors in the cavity length that occur during the manufacturing process can be corrected. Therefore, the yield also increases.

上記の概説と以下の詳細な説明は例示的なものであって、請求項に記載された本発明についてさらに説明を加えようとするものであることは、理解できるだろう。   It will be understood that the foregoing general description and the following detailed description are exemplary, and are intended to provide further explanation of the invention as claimed.

カラー可変ピクセルの構造についてさらなる情報を提供することを目的として、本発明のあらゆるモジュレータの構造を説明するため第一実施例が提示される。加えて、モジュレータのアレイを備える光学干渉ディスプレイプレートについてさらなる情報を与えるために、第2実施例が提示される。   In order to provide further information about the structure of the color variable pixel, a first embodiment is presented to illustrate the structure of any modulator of the present invention. In addition, a second embodiment is presented to give more information about an optical interference display plate with an array of modulators.

図5Aを参照してほしい。図5Aは、本発明の第一実施例で設けられるモジュレータの断面図を示す。カラー可変ピクセルとして機能するモジュレータ500は、少なくとも第1プレート502と第2プレート504と第3プレート506とを有する。3枚のプレートは平行に取り付けられ、第2プレート504は第1プレート502と第3プレート506との間に設けられている。第1プレート502と第2プレート504とは、狭帯域ミラーと広帯域ミラーと非金属ミラーと金属ミラーとこれらの組合せとで構成される群から選択される。   See FIG. 5A. FIG. 5A shows a cross-sectional view of the modulator provided in the first embodiment of the present invention. The modulator 500 functioning as a color variable pixel has at least a first plate 502, a second plate 504, and a third plate 506. The three plates are mounted in parallel, and the second plate 504 is provided between the first plate 502 and the third plate 506. The first plate 502 and the second plate 504 are selected from the group consisting of a narrow band mirror, a wide band mirror, a non-metal mirror, a metal mirror, and a combination thereof.

第1プレート502は、導電性基板5021と吸収層5022と誘電層5023とを有する半透明電極である。入射光線電極502を通過する入射光線は、吸収層5022によって部分的に吸収される。導電性基板5021は、ITOやIZOなど、導電性の透明材料である。吸収層5022は、アルミニウムや銀などの金属で製作される。誘電層5023は、吸収層5022の一部の酸化によって得ることのできる酸化ケイ素または窒化ケイ素または金属酸化物から製作される。第2プレート504は、変形可能な反射性電極である。これは、印加される電圧によって変位する。第2プレート504は、誘電性材料、導電性の半透明または不透明材料、または金属/導電性透明材料から製作される。   The first plate 502 is a translucent electrode having a conductive substrate 5021, an absorption layer 5022, and a dielectric layer 5023. Incident light passing through the incident light electrode 502 is partially absorbed by the absorbing layer 5022. The conductive substrate 5021 is a conductive transparent material such as ITO or IZO. The absorption layer 5022 is made of a metal such as aluminum or silver. The dielectric layer 5023 is made of silicon oxide or silicon nitride or metal oxide, which can be obtained by oxidizing a part of the absorption layer 5022. The second plate 504 is a deformable reflective electrode. This is displaced by the applied voltage. The second plate 504 is made from a dielectric material, a conductive translucent or opaque material, or a metal / conductive transparent material.

2枚のプレート502,504は支柱508によって支持され、空洞510が形成されている。空洞の長さはDである。第2プレート504と第3プレート506も、支柱512によって支持されている。   The two plates 502 and 504 are supported by columns 508, forming a cavity 510. The length of the cavity is D. The second plate 504 and the third plate 506 are also supported by the columns 512.

モジュレータ500が「開いて」いる時には、空洞510の長さはDである。第1プレート502の片側からの入射光線514は、空洞510で変調され、数式1を満たす波長を持つ光線のみが第2プレート504に反射されて、第1プレート502を通過する。反射光線の周波数は、空洞の長さに関係する。   When the modulator 500 is "open", the length of the cavity 510 is D. An incident light beam 514 from one side of the first plate 502 is modulated by the cavity 510, and only a light beam having a wavelength satisfying Equation 1 is reflected by the second plate 504 and passes through the first plate 502. The frequency of the reflected light is related to the length of the cavity.

図5Bを参照すると、図5Bはモジュレータの第3プレートの断面図である。図5Bに見られるように、電圧V1が第3プレート506に印加された時に第2プレート504は変位する。第2プレート504は、第3プレート506に対して近接する(位置5041)か、あるいは離間する(位置5042)。そのため、第1プレート502と第2プレート504との距離つまり空洞501の長さDが変化して、空洞の長さはDからD1またはD2に変化する。数式1に見られるように、反射光線の波長は、空洞501の長さの変化によって変わる。赤色光線、緑色光線、青色光線など、色の異なる光線が得られる。   Referring to FIG. 5B, FIG. 5B is a cross-sectional view of the third plate of the modulator. As seen in FIG. 5B, when a voltage V1 is applied to the third plate 506, the second plate 504 displaces. The second plate 504 is close to the third plate 506 (position 5041) or separated from the third plate 506 (position 5042). Therefore, the distance between the first plate 502 and the second plate 504, that is, the length D of the cavity 501 changes, and the length of the cavity changes from D to D1 or D2. As can be seen from Equation 1, the wavelength of the reflected light changes according to a change in the length of the cavity 501. Light rays of different colors such as red light rays, green light rays, and blue light rays can be obtained.

さらに図5Bを参照すると、第1プレート502と第2プレート504との間に第2電圧V2が印加されると、第2プレート504が変形して第1プレート502へと降下する(位置5043)ことが図5Bから分かる。モジュレータ500は「閉じて」おり、可視光線は反射されない。   Still referring to FIG. 5B, when a second voltage V2 is applied between the first plate 502 and the second plate 504, the second plate 504 is deformed and descends to the first plate 502 (position 5043). This can be seen from FIG. 5B. Modulator 500 is "closed" and no visible light is reflected.

単色の光学干渉ディスプレイプレートについては、本発明で提供されるモジュレータの使用は、当該技術で周知のモジュレータと比較して製造工程を複雑しない。そのうえ、空洞の長さは第3プレートに印加される電圧に影響されるため、製造工程中に発生する空洞長さの誤差は、修正が可能である。そのため歩留りが向上する。   For monochromatic optical interference display plates, the use of the modulator provided in the present invention does not complicate the manufacturing process compared to modulators known in the art. Moreover, because the length of the cavity is affected by the voltage applied to the third plate, errors in the cavity length that occur during the manufacturing process can be corrected. Therefore, the yield is improved.

図6を参照すると、本発明の第二実施例で設けられるモジュレータのアレイの断面図が図6に図示されている。モジュレータのアレイ600は、3個のモジュレータ、つまりモジュレータ602とモジュレータ604とモジュレータ606とを有する。どのモジュレータも、カラー可変ピクセルである。モジュレータの構造は実施例1で設けられたものと同じである。第3プレート6023,6043,6063には少なくとも一つの制御回路が接続されている。制御回路は、3枚のプレートすべてに、一緒にまたは別々に取り付けられている。第3プレート6023,6043,6063に加えられる電圧は、同一であるか、または異なっている。第2プレート6022,6042,6062は、移動可能な反射性のプレートなので、第3プレート6023,6043,6063に印加される電圧の影響を受ける。第1プレート6021,6041,6061と第2プレート6022,6042,6062との間の距離、つまり空洞610の長さDは、変化する。そのため、空洞6102,6104,6106、つまりd1,d2,d3は異なる。数式1に見られるように、反射光線の波長は、空洞の長さの変化によって変わる。赤色光線、緑色光線、青色光線など、異なる色の光線が得られる。   Referring to FIG. 6, a cross-sectional view of an array of modulators provided in a second embodiment of the present invention is shown in FIG. Modulator array 600 has three modulators, modulator 602, modulator 604, and modulator 606. Each modulator is a color variable pixel. The structure of the modulator is the same as that provided in the first embodiment. At least one control circuit is connected to the third plates 6023, 6043, and 6063. The control circuit is mounted on all three plates together or separately. The voltages applied to the third plates 6023, 6043, 6063 are the same or different. Since the second plates 6022, 6042, and 6062 are movable reflective plates, they are affected by the voltage applied to the third plates 6023, 6043, and 6063. The distance between the first plate 6021, 6041, 6061 and the second plate 6022, 6042, 6062, that is, the length D of the cavity 610 varies. Therefore, the cavities 6102, 6104, and 6106, that is, d1, d2, and d3 are different. As can be seen in Equation 1, the wavelength of the reflected light varies with changes in cavity length. Light of different colors, such as red light, green light, and blue light, can be obtained.

そのうえ、モジュレータ602,604,606に駆動回路が接続されると、第1プレート6021,6041,6061と第2プレート6022,6042,6062との間に、一緒にまたは別々に電圧が加えられることが分かる。第2プレート6022,6042,6062は変形して、第1プレート6021,6041,6061へと降下する。モジュレータ(602,604,606)の全部または一部は「閉じて」いる。可視光線が反射されないか、あるいは色の異なる光線が得られる。   In addition, when a driving circuit is connected to the modulators 602, 604, and 606, a voltage may be applied between the first plate 6021, 6041, 6061 and the second plate 6022, 6042, 6062 together or separately. I understand. The second plates 6022, 6042, 6062 are deformed and descend to the first plates 6021, 6041, 6061. All or some of the modulators (602, 604, 606) are "closed." Either no visible light is reflected or light of a different color is obtained.

本発明で設けられるモジュレータのアレイを備えるカラー平面ディスプレイは、当該技術で周知の先行技術によるマトリックスカラー平面ディスプレイの長所、つまり高い解像度と輝度とを持ち、さらに、当該技術で周知の多層カラー平面ディスプレイの長所、つまり単純な製造工程と高い歩留りを持つ。当該技術で周知のマトリックスカラー平面ディスプレイと比較すると、長さの変化が制御ICによって制御されるので、すべてのモジュレータの空洞長さは同じである。そのため、空洞長さの異なるモジュレータを生産する必要はない。製造工程は単純で、歩留りは高い。当該技術で周知の多層カラー平面ディスプレイと比較して、すべてのモジュレータが同一平面上にあり、そのため入射光線が多層モジュレータを通過する必要がない。解像度と輝度は高い。そのうえ、先行技術による多層カラー平面ディスプレイでは、入射光線に第1モジュレータを通過させ、第2モジュレータによって効果的に反射させるため、3種類のモジュレータの第1プレートと第2プレートの組成と厚さは異なる。実際には、製造工程は予想よりも複雑である。本発明で設けられるモジュレータの製造は、当該技術で周知のモジュレータよりも困難でない。   A color flat panel display comprising an array of modulators provided in the present invention has the advantages of prior art matrix color flat panel displays known in the art, i.e., high resolution and brightness, and furthermore, a multi-layer color flat panel display known in the art. It has the advantages of simple manufacturing process and high yield. Compared to a matrix color flat display known in the art, the cavity length of all modulators is the same since the change in length is controlled by the control IC. Therefore, there is no need to produce modulators with different cavity lengths. The manufacturing process is simple and the yield is high. Compared to multilayer color flat displays known in the art, all modulators are co-planar, so that incident light need not pass through the multilayer modulator. Resolution and brightness are high. Moreover, in prior art multilayer color flat displays, the composition and thickness of the first and second plates of the three types of modulators are such that the incident light passes through the first modulator and is effectively reflected by the second modulator. different. In practice, the manufacturing process is more complicated than expected. The manufacture of modulators provided in the present invention is less difficult than modulators known in the art.

加えて、空洞の長さは、第3プレートに印加される電圧に影響されるため、製造工程中に発生する空洞長さの誤差は修正できる。そのため歩留りが上昇する。   In addition, because the length of the cavity is affected by the voltage applied to the third plate, errors in the cavity length that occur during the manufacturing process can be corrected. Therefore, the yield increases.

本発明の範囲と趣旨を逸脱せずに本発明の構造に様々な変形と変更を加えられることは、当該技術の熟練者には明らかだろう。以上のことから、本発明の変形と変更は、上の請求項とその均等物の範囲に包含されるのであれば、本発明に包含されるものとする。   It will be apparent to those skilled in the art that various modifications and variations can be made in the structure of the present invention without departing from the scope or spirit of the invention. From the foregoing, it is to be understood that modifications and variations of the present invention are included in the present invention if they fall within the scope of the following claims and their equivalents.

添付図面は、本発明をさらに理解するために設けられ、本明細書に組み込まれてその一部を成す。図面は、説明とともに本発明の実施例を例示し、本発明の原理の説明に役立つ。図面において、
先行技術によるモジュレータの断面図である。 電圧が印加された後の先行技術によるモジュレータの断面図である。 当該技術で公知の多層カラー平面ディスプレイを示す断面図である。 先行技術によるマトリックスカラーディスプレイを示す断面図である。 本発明の好適な一実施例によるモジュレータの断面図である。 本発明の好適な一実施例によるモジュレータの第3プレートの断面図である。 本発明の好適な一実施例により、本発明の実施例2に設けられたモジュレータの断面図である。
The accompanying drawings are provided to provide a further understanding of the invention, and are incorporated in and constitute a part of this specification. The drawings, together with the description, illustrate embodiments of the invention and, together with the description, serve to explain the principles of the invention. In the drawing,
1 is a cross-sectional view of a prior art modulator. FIG. 2 is a cross-sectional view of a prior art modulator after a voltage has been applied. 1 is a cross-sectional view showing a multilayer color flat display known in the art. 1 is a sectional view showing a matrix color display according to the prior art. 1 is a cross-sectional view of a modulator according to a preferred embodiment of the present invention. FIG. 4 is a cross-sectional view of a third plate of the modulator according to the preferred embodiment of the present invention. FIG. 7 is a cross-sectional view of a modulator provided in a second embodiment of the present invention according to a preferred embodiment of the present invention.

符号の説明Explanation of reference numerals

500 モジュレータ
502 第1プレート
5021 導電性基板
5022 吸収層
5023 誘電層
504 第2プレート
506 第3プレート
508 支柱または支持体
510 空洞
D 空洞の長さ
600 モジュレータアレイ
602 モジュレータ
604 モジュレータ
606 モジュレータ
6021,6041,6061 第1プレート
6022,6042,6062 第2プレート
6023,6043,6063 第3プレート
6102,6104,6106 空洞
d1,d2,d3 空洞の長さ
608 制御回路
612 駆動回路

500 modulator 502 first plate 5021 conductive substrate 5022 absorption layer 5023 dielectric layer 504 second plate 506 third plate 508 post or support 510 cavity D cavity length 600 modulator array 602 modulator 604 modulator 606 modulator 6021, 6041, 6061 First plate 6022, 6042, 6062 Second plate 6023, 6043, 6063 Third plate 6102, 6104, 6106 Cavity d1, d2, d3 Cavity length 608 Control circuit 612 Drive circuit

Claims (13)

第1プレートと、
前記第1プレートと平行に設けられた動作プレートと、
前記第1プレートと前記動作プレートとの間に平行に設けられて該第1プレートとともに空洞を形成する第2プレートであって、該第1プレートの片側からの入射光線が変調され、特定周波数の光線のみが該第2プレートにより反射され、前記第3プレートに加えられた電圧により該第2プレートが変位して該第1プレートと該第2プレートとの間の距離を変化させて、該反射光線の周波数を変化させる、第2プレートと、
を有する、カラー可変ピクセル。
A first plate,
An operating plate provided in parallel with the first plate;
A second plate provided in parallel between the first plate and the operating plate to form a cavity with the first plate, wherein incident light from one side of the first plate is modulated, and Only light rays are reflected by the second plate, and the voltage applied to the third plate displaces the second plate to change the distance between the first plate and the second plate, thereby causing the reflection. A second plate for changing the frequency of the light beam,
, A color variable pixel.
干渉平面ディスプレイを形成するために使用され、前記干渉平面ディスプレイは、
制御回路と、駆動回路と、モジュレータアレイとを備え、
前記モジュレータアレイの全てのピクセルは、前記第1プレートと、前記第2プレートと、前記動作プレートとを有し、
前記制御回路が前記動作プレートに接続されて、特定の波長を持つ光線を反射するために前記モジュレータアレイのモジュレータの空洞の長さを制御し、前記駆動回路が前記第1プレートおよび前記第2プレートに接続されて、該モジュレータのオンまたはオフを制御する請求項1のカラー可変ピクセル。
Used to form an interference plane display, wherein the interference plane display comprises:
A control circuit, a drive circuit, and a modulator array,
All pixels of the modulator array have the first plate, the second plate, and the working plate;
The control circuit is connected to the operating plate to control the length of the modulator cavity of the modulator array to reflect light having a particular wavelength, and the drive circuit controls the first plate and the second plate. 2. The color variable pixel of claim 1, wherein said variable color pixel is connected to and controls on or off of said modulator.
前記第1プレートが少なくとも、基板と、吸収層と、誘電層とを有する、請求項1または2のカラー可変ピクセル。   3. The color variable pixel according to claim 1, wherein the first plate has at least a substrate, an absorbing layer, and a dielectric layer. 前記基板が透明な導電性基板である、請求項3のカラー可変ピクセル。   4. The color variable pixel of claim 3, wherein said substrate is a transparent conductive substrate. 前記誘電層を形成するための材料が、酸化ケイ素または窒化ケイ素または金属酸化物である、請求項3のカラー可変ピクセル。   The color variable pixel according to claim 3, wherein the material for forming the dielectric layer is silicon oxide or silicon nitride or metal oxide. 前記吸収層が金属から製作される、請求項3のカラー可変ピクセル。   4. The color variable pixel of claim 3, wherein said absorbing layer is made of metal. 前記基板がITOまたはIZOから製作される、請求項3のカラー可変ピクセル。   4. The color variable pixel of claim 3, wherein said substrate is fabricated from ITO or IZO. 前記第1プレートと前記第2プレートとが、狭帯域ミラーと広帯域ミラーと非金属ミラーと金属ミラー及びこれらの組合せとにより構成される群から選択される、請求項3のカラー可変ピクセル。   4. The color tunable pixel of claim 3, wherein the first plate and the second plate are selected from the group consisting of a narrow band mirror, a wide band mirror, a non-metallic mirror, a metal mirror, and combinations thereof. 前記第2プレートが変形可能なプレートである、請求項1または2のカラー可変ピクセル。   3. The color variable pixel according to claim 1, wherein said second plate is a deformable plate. 前記第2プレートが移動可能なプレートである、請求項1または2のカラー可変ピクセル。   3. The color variable pixel according to claim 1, wherein the second plate is a movable plate. 前記第2プレートが少なくとも、不透明材料または半透明材料を含む、請求項1または2のカラー可変ピクセル。   The color variable pixel of claim 1 or 2, wherein said second plate comprises at least an opaque or translucent material. 前記半透明材料が、ITOとIZOと薄層金属、及びこれらの組合せとにより構成される群から選択される、請求項11のカラー可変ピクセル。   12. The color variable pixel of claim 11, wherein said translucent material is selected from the group consisting of ITO, IZO, thin metal, and combinations thereof. さらに、前記第1プレートと前記第2プレートとの間、そして該第2プレートと前記動作プレートとの間に配置された複数の支持体を有する、請求項1または2のカラー可変ピクセル。
The color variable pixel according to claim 1, further comprising a plurality of supports disposed between the first plate and the second plate and between the second plate and the working plate.
JP2003340544A 2003-03-05 2003-09-30 Collar changeable pixel Pending JP2004272204A (en)

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
TW092104724A TW200417806A (en) 2003-03-05 2003-03-05 A structure of a light-incidence electrode of an optical interference display plate

Publications (1)

Publication Number Publication Date
JP2004272204A true JP2004272204A (en) 2004-09-30

Family

ID=32924588

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2003340544A Pending JP2004272204A (en) 2003-03-05 2003-09-30 Collar changeable pixel

Country Status (4)

Country Link
US (1) US20040175577A1 (en)
JP (1) JP2004272204A (en)
KR (1) KR20040079817A (en)
TW (1) TW200417806A (en)

Families Citing this family (98)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6674562B1 (en) 1994-05-05 2004-01-06 Iridigm Display Corporation Interferometric modulation of radiation
US7907319B2 (en) 1995-11-06 2011-03-15 Qualcomm Mems Technologies, Inc. Method and device for modulating light with optical compensation
US7532377B2 (en) * 1998-04-08 2009-05-12 Idc, Llc Movable micro-electromechanical device
WO2003007049A1 (en) 1999-10-05 2003-01-23 Iridigm Display Corporation Photonic mems and structures
US7781850B2 (en) 2002-09-20 2010-08-24 Qualcomm Mems Technologies, Inc. Controlling electromechanical behavior of structures within a microelectromechanical systems device
TWI289708B (en) 2002-12-25 2007-11-11 Qualcomm Mems Technologies Inc Optical interference type color display
TW570896B (en) 2003-05-26 2004-01-11 Prime View Int Co Ltd A method for fabricating an interference display cell
US7342705B2 (en) 2004-02-03 2008-03-11 Idc, Llc Spatial light modulator with integrated optical compensation structure
US7706050B2 (en) 2004-03-05 2010-04-27 Qualcomm Mems Technologies, Inc. Integrated modulator illumination
US7855824B2 (en) 2004-03-06 2010-12-21 Qualcomm Mems Technologies, Inc. Method and system for color optimization in a display
US7476327B2 (en) 2004-05-04 2009-01-13 Idc, Llc Method of manufacture for microelectromechanical devices
US7808703B2 (en) 2004-09-27 2010-10-05 Qualcomm Mems Technologies, Inc. System and method for implementation of interferometric modulator displays
US7583429B2 (en) 2004-09-27 2009-09-01 Idc, Llc Ornamental display device
US7355780B2 (en) 2004-09-27 2008-04-08 Idc, Llc System and method of illuminating interferometric modulators using backlighting
US7944599B2 (en) 2004-09-27 2011-05-17 Qualcomm Mems Technologies, Inc. Electromechanical device with optical function separated from mechanical and electrical function
US7373026B2 (en) 2004-09-27 2008-05-13 Idc, Llc MEMS device fabricated on a pre-patterned substrate
US7813026B2 (en) 2004-09-27 2010-10-12 Qualcomm Mems Technologies, Inc. System and method of reducing color shift in a display
US7920135B2 (en) 2004-09-27 2011-04-05 Qualcomm Mems Technologies, Inc. Method and system for driving a bi-stable display
US8004504B2 (en) * 2004-09-27 2011-08-23 Qualcomm Mems Technologies, Inc. Reduced capacitance display element
US7684104B2 (en) 2004-09-27 2010-03-23 Idc, Llc MEMS using filler material and method
US7653371B2 (en) 2004-09-27 2010-01-26 Qualcomm Mems Technologies, Inc. Selectable capacitance circuit
US7372613B2 (en) 2004-09-27 2008-05-13 Idc, Llc Method and device for multistate interferometric light modulation
US7893919B2 (en) 2004-09-27 2011-02-22 Qualcomm Mems Technologies, Inc. Display region architectures
US7130104B2 (en) 2004-09-27 2006-10-31 Idc, Llc Methods and devices for inhibiting tilting of a mirror in an interferometric modulator
US8008736B2 (en) 2004-09-27 2011-08-30 Qualcomm Mems Technologies, Inc. Analog interferometric modulator device
US7420725B2 (en) 2004-09-27 2008-09-02 Idc, Llc Device having a conductive light absorbing mask and method for fabricating same
US7527995B2 (en) 2004-09-27 2009-05-05 Qualcomm Mems Technologies, Inc. Method of making prestructure for MEMS systems
US7807488B2 (en) 2004-09-27 2010-10-05 Qualcomm Mems Technologies, Inc. Display element having filter material diffused in a substrate of the display element
US7710636B2 (en) 2004-09-27 2010-05-04 Qualcomm Mems Technologies, Inc. Systems and methods using interferometric optical modulators and diffusers
US7304784B2 (en) 2004-09-27 2007-12-04 Idc, Llc Reflective display device having viewable display on both sides
US7719500B2 (en) 2004-09-27 2010-05-18 Qualcomm Mems Technologies, Inc. Reflective display pixels arranged in non-rectangular arrays
US7289259B2 (en) 2004-09-27 2007-10-30 Idc, Llc Conductive bus structure for interferometric modulator array
US7302157B2 (en) 2004-09-27 2007-11-27 Idc, Llc System and method for multi-level brightness in interferometric modulation
US7349141B2 (en) 2004-09-27 2008-03-25 Idc, Llc Method and post structures for interferometric modulation
US7564612B2 (en) 2004-09-27 2009-07-21 Idc, Llc Photonic MEMS and structures
US7446926B2 (en) * 2004-09-27 2008-11-04 Idc, Llc System and method of providing a regenerating protective coating in a MEMS device
US7630119B2 (en) 2004-09-27 2009-12-08 Qualcomm Mems Technologies, Inc. Apparatus and method for reducing slippage between structures in an interferometric modulator
US7369296B2 (en) 2004-09-27 2008-05-06 Idc, Llc Device and method for modifying actuation voltage thresholds of a deformable membrane in an interferometric modulator
US7936497B2 (en) 2004-09-27 2011-05-03 Qualcomm Mems Technologies, Inc. MEMS device having deformable membrane characterized by mechanical persistence
US7884989B2 (en) 2005-05-27 2011-02-08 Qualcomm Mems Technologies, Inc. White interferometric modulators and methods for forming the same
US7460292B2 (en) 2005-06-03 2008-12-02 Qualcomm Mems Technologies, Inc. Interferometric modulator with internal polarization and drive method
EP2495212A3 (en) 2005-07-22 2012-10-31 QUALCOMM MEMS Technologies, Inc. Mems devices having support structures and methods of fabricating the same
US7795061B2 (en) 2005-12-29 2010-09-14 Qualcomm Mems Technologies, Inc. Method of creating MEMS device cavities by a non-etching process
US7916980B2 (en) 2006-01-13 2011-03-29 Qualcomm Mems Technologies, Inc. Interconnect structure for MEMS device
US7652814B2 (en) 2006-01-27 2010-01-26 Qualcomm Mems Technologies, Inc. MEMS device with integrated optical element
US7643203B2 (en) 2006-04-10 2010-01-05 Qualcomm Mems Technologies, Inc. Interferometric optical display system with broadband characteristics
US7903047B2 (en) 2006-04-17 2011-03-08 Qualcomm Mems Technologies, Inc. Mode indicator for interferometric modulator displays
US7711239B2 (en) 2006-04-19 2010-05-04 Qualcomm Mems Technologies, Inc. Microelectromechanical device and method utilizing nanoparticles
US7369292B2 (en) 2006-05-03 2008-05-06 Qualcomm Mems Technologies, Inc. Electrode and interconnect materials for MEMS devices
US7649671B2 (en) 2006-06-01 2010-01-19 Qualcomm Mems Technologies, Inc. Analog interferometric modulator device with electrostatic actuation and release
US7835061B2 (en) 2006-06-28 2010-11-16 Qualcomm Mems Technologies, Inc. Support structures for free-standing electromechanical devices
US7527998B2 (en) 2006-06-30 2009-05-05 Qualcomm Mems Technologies, Inc. Method of manufacturing MEMS devices providing air gap control
US7763546B2 (en) 2006-08-02 2010-07-27 Qualcomm Mems Technologies, Inc. Methods for reducing surface charges during the manufacture of microelectromechanical systems devices
CN101600901A (en) 2006-10-06 2009-12-09 高通Mems科技公司 Be integrated in the optical loss structure in the lighting apparatus of display
US8872085B2 (en) 2006-10-06 2014-10-28 Qualcomm Mems Technologies, Inc. Display device having front illuminator with turning features
US8115987B2 (en) 2007-02-01 2012-02-14 Qualcomm Mems Technologies, Inc. Modulating the intensity of light from an interferometric reflector
US7733552B2 (en) 2007-03-21 2010-06-08 Qualcomm Mems Technologies, Inc MEMS cavity-coating layers and methods
US7742220B2 (en) 2007-03-28 2010-06-22 Qualcomm Mems Technologies, Inc. Microelectromechanical device and method utilizing conducting layers separated by stops
US7715085B2 (en) 2007-05-09 2010-05-11 Qualcomm Mems Technologies, Inc. Electromechanical system having a dielectric movable membrane and a mirror
US7643202B2 (en) 2007-05-09 2010-01-05 Qualcomm Mems Technologies, Inc. Microelectromechanical system having a dielectric movable membrane and a mirror
US7719752B2 (en) 2007-05-11 2010-05-18 Qualcomm Mems Technologies, Inc. MEMS structures, methods of fabricating MEMS components on separate substrates and assembly of same
US7782517B2 (en) 2007-06-21 2010-08-24 Qualcomm Mems Technologies, Inc. Infrared and dual mode displays
US7630121B2 (en) 2007-07-02 2009-12-08 Qualcomm Mems Technologies, Inc. Electromechanical device with optical function separated from mechanical and electrical function
WO2009018287A1 (en) 2007-07-31 2009-02-05 Qualcomm Mems Technologies, Inc. Devices for enhancing colour shift of interferometric modulators
US8072402B2 (en) 2007-08-29 2011-12-06 Qualcomm Mems Technologies, Inc. Interferometric optical modulator with broadband reflection characteristics
US7847999B2 (en) 2007-09-14 2010-12-07 Qualcomm Mems Technologies, Inc. Interferometric modulator display devices
US7773286B2 (en) 2007-09-14 2010-08-10 Qualcomm Mems Technologies, Inc. Periodic dimple array
CN101828146B (en) 2007-10-19 2013-05-01 高通Mems科技公司 Display with integrated photovoltaic device
US8058549B2 (en) 2007-10-19 2011-11-15 Qualcomm Mems Technologies, Inc. Photovoltaic devices with integrated color interferometric film stacks
KR20100103467A (en) 2007-10-23 2010-09-27 퀄컴 엠이엠스 테크놀로지스, 인크. Adjustably transmissive mems-based devices
US8941631B2 (en) 2007-11-16 2015-01-27 Qualcomm Mems Technologies, Inc. Simultaneous light collection and illumination on an active display
US7715079B2 (en) 2007-12-07 2010-05-11 Qualcomm Mems Technologies, Inc. MEMS devices requiring no mechanical support
US8068710B2 (en) 2007-12-07 2011-11-29 Qualcomm Mems Technologies, Inc. Decoupled holographic film and diffuser
US8164821B2 (en) 2008-02-22 2012-04-24 Qualcomm Mems Technologies, Inc. Microelectromechanical device with thermal expansion balancing layer or stiffening layer
US7944604B2 (en) 2008-03-07 2011-05-17 Qualcomm Mems Technologies, Inc. Interferometric modulator in transmission mode
US7612933B2 (en) 2008-03-27 2009-11-03 Qualcomm Mems Technologies, Inc. Microelectromechanical device with spacing layer
US7898723B2 (en) 2008-04-02 2011-03-01 Qualcomm Mems Technologies, Inc. Microelectromechanical systems display element with photovoltaic structure
US7969638B2 (en) 2008-04-10 2011-06-28 Qualcomm Mems Technologies, Inc. Device having thin black mask and method of fabricating the same
US7768690B2 (en) 2008-06-25 2010-08-03 Qualcomm Mems Technologies, Inc. Backlight displays
US7746539B2 (en) 2008-06-25 2010-06-29 Qualcomm Mems Technologies, Inc. Method for packing a display device and the device obtained thereof
US8023167B2 (en) 2008-06-25 2011-09-20 Qualcomm Mems Technologies, Inc. Backlight displays
US7859740B2 (en) 2008-07-11 2010-12-28 Qualcomm Mems Technologies, Inc. Stiction mitigation with integrated mech micro-cantilevers through vertical stress gradient control
US7855826B2 (en) 2008-08-12 2010-12-21 Qualcomm Mems Technologies, Inc. Method and apparatus to reduce or eliminate stiction and image retention in interferometric modulator devices
US8358266B2 (en) 2008-09-02 2013-01-22 Qualcomm Mems Technologies, Inc. Light turning device with prismatic light turning features
US8270056B2 (en) 2009-03-23 2012-09-18 Qualcomm Mems Technologies, Inc. Display device with openings between sub-pixels and method of making same
EP2435867A1 (en) 2009-05-29 2012-04-04 Qualcomm Mems Technologies, Inc. Illumination devices and methods of fabrication thereof
US8270062B2 (en) 2009-09-17 2012-09-18 Qualcomm Mems Technologies, Inc. Display device with at least one movable stop element
US8488228B2 (en) 2009-09-28 2013-07-16 Qualcomm Mems Technologies, Inc. Interferometric display with interferometric reflector
JP2013524287A (en) 2010-04-09 2013-06-17 クォルコム・メムズ・テクノロジーズ・インコーポレーテッド Mechanical layer of electromechanical device and method for forming the same
US8848294B2 (en) 2010-05-20 2014-09-30 Qualcomm Mems Technologies, Inc. Method and structure capable of changing color saturation
JP2013544370A (en) 2010-08-17 2013-12-12 クォルコム・メムズ・テクノロジーズ・インコーポレーテッド Operation and calibration of charge neutral electrodes in interference display devices
US9057872B2 (en) 2010-08-31 2015-06-16 Qualcomm Mems Technologies, Inc. Dielectric enhanced mirror for IMOD display
US9134527B2 (en) 2011-04-04 2015-09-15 Qualcomm Mems Technologies, Inc. Pixel via and methods of forming the same
US8963159B2 (en) 2011-04-04 2015-02-24 Qualcomm Mems Technologies, Inc. Pixel via and methods of forming the same
US8659816B2 (en) 2011-04-25 2014-02-25 Qualcomm Mems Technologies, Inc. Mechanical layer and methods of making the same
US8736939B2 (en) 2011-11-04 2014-05-27 Qualcomm Mems Technologies, Inc. Matching layer thin-films for an electromechanical systems reflective display device
CN103443748B (en) * 2011-11-11 2015-01-21 株式会社钟化 Substrate with transparent electrode, method for producing same, and touch panel
US20130130020A1 (en) * 2011-11-21 2013-05-23 Samsung Electro-Mechanics Co., Ltd. Electrode paste composition, electrode for electronic device using the same, and method of manufacturing the same

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS60180093A (en) * 1984-02-24 1985-09-13 ホ−ヤ株式会社 Thin film el element
US5835255A (en) * 1986-04-23 1998-11-10 Etalon, Inc. Visible spectrum modulator arrays

Also Published As

Publication number Publication date
US20040175577A1 (en) 2004-09-09
TW200417806A (en) 2004-09-16
KR20040079817A (en) 2004-09-16

Similar Documents

Publication Publication Date Title
JP2004272204A (en) Collar changeable pixel
KR100579770B1 (en) Apparatus with structure of an optical interference display cell
US6982820B2 (en) Color changeable pixel
US7198973B2 (en) Method for fabricating an interference display unit
US7016095B2 (en) Method for fabricating an interference display unit
KR100579769B1 (en) Method for fabricating an interference display unit
US11233099B2 (en) Display panel, method for manufacturing the same, and display device
US11088213B1 (en) Display substrate, display apparatus, method of controlling display substrate, and method of fabricating display substrate
JP2010540979A (en) Translucent / semi-transmissive light emitting interference device
TWI663447B (en) Display panel
JP2005234515A (en) Micro electrode mechanical system display cell and method for fabricating thereof
JP2004205973A (en) Flat plane display element and method of driving the same
CN108628035B (en) Photoluminescent device
JP2007123067A (en) Light emitting device and electronic equipment
CN108957813B (en) Reflective display and manufacturing method thereof
CN110646980B (en) Liquid crystal display
JP2008282602A (en) Electroluminescence device and electronic appliance
US9897847B2 (en) Display device
JP2004205974A (en) Two-dimensional matrix element, and two-dimensional matrix plane display element and its driving method
US20120147456A1 (en) Wavelength selective reflection element, wavelength selective reflection unit, and reflective display device
KR20040080899A (en) Color changeable pixel
US20240079536A1 (en) Display device and manufacturing method thereof
CN110556393B (en) Micro LED display device
TW202343100A (en) Electronic window and method for forming the same
JP2002365662A (en) Display medium, display element and display device

Legal Events

Date Code Title Description
A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20060116

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20060120

A601 Written request for extension of time

Free format text: JAPANESE INTERMEDIATE CODE: A601

Effective date: 20060420

A711 Notification of change in applicant

Free format text: JAPANESE INTERMEDIATE CODE: A711

Effective date: 20060420

A602 Written permission of extension of time

Free format text: JAPANESE INTERMEDIATE CODE: A602

Effective date: 20060515

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20060926