JP2004271326A - Seabed behavior measurement system - Google Patents

Seabed behavior measurement system Download PDF

Info

Publication number
JP2004271326A
JP2004271326A JP2003062082A JP2003062082A JP2004271326A JP 2004271326 A JP2004271326 A JP 2004271326A JP 2003062082 A JP2003062082 A JP 2003062082A JP 2003062082 A JP2003062082 A JP 2003062082A JP 2004271326 A JP2004271326 A JP 2004271326A
Authority
JP
Japan
Prior art keywords
measurement
behavior
seabed
point
water depth
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2003062082A
Other languages
Japanese (ja)
Inventor
Shuichi Nishizawa
西澤修一
Jun Kawakami
川上純
Michio Matsumoto
松本三千緒
Toshimi Kashiwase
柏瀬聡美
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Taisei Corp
Original Assignee
Taisei Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Taisei Corp filed Critical Taisei Corp
Priority to JP2003062082A priority Critical patent/JP2004271326A/en
Publication of JP2004271326A publication Critical patent/JP2004271326A/en
Pending legal-status Critical Current

Links

Images

Landscapes

  • Testing Or Calibration Of Command Recording Devices (AREA)
  • Geophysics And Detection Of Objects (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide the seabed behavior measurement system, making it possible to measure the seabed behavior with comparatively high accuracy, using a simple method. <P>SOLUTION: Two or more measure points 2 and a datum point 1 assumed to be the standard of the measurement of other measure points 2 are installed in the measuring sea area. The submarine depth is measured by installing fixed bases 3 that enable the re-measurement of the datum point 1 and the measure points 2 respectively in the datum point 1 and the measure points 2, mounting a sea-bottom pressure gauge 4 in the fixed bases 3. The system is constructed so as to calculate the relative behavior of a seabed 6 from each depth difference between the datum point 1 and two or more measure points 2 and the depth difference between the measure points 2. As a result, the seabed behavior can be measured simply and with accuracy. <P>COPYRIGHT: (C)2004,JPO&NCIPI

Description

【0001】
【発明の属する技術分野】
本発明は、海底地盤の挙動を計測するための海底地盤挙動計測システムに関するものである。
【0002】
【従来の技術】
我が国の周辺海底地盤に相当量存在するといわれているメタンハイドレート(メタン含水化合物)の探査方法や採掘方法、採掘にともなう環境影響評価などの開発、整備が現在進められている。
ところで、海底地下資源の採掘は、海上に採掘架構などを構築しておこなわれている。しかし、地下資源の採掘にともなって採掘架構基礎下の海底地盤が相対変位を引き起こすことにより、採掘架構の傾斜や倒壊といった問題が十分想定される。そのため、採掘予定海域における採掘時の海底地盤の相対変位計測はもとより、採掘前の計画段階においても常時の相対変位計測の実施が望ましい。
従来の海底地形の計測に際しては水中音波や水中レーザーを使用することによりおこなわれている。水中レーザーによれば透明度5〜10mの海域において水深50m程度までを±5cm程度の精度にて計測でき、水中音波によれば水深5000m程度までを計測できる。
測量船にて海底地形を計測する場合は、測量船に搭載したGPS受信機を使用して計測ポイントに到達し、水中の温度分布に応じて補正した音波の伝播速度から水深を算出するなどしている。この際に、GPSによる計測ポイントの座標と、水深データとを時間的に一致させる必要がある。
【0003】
一方、海嶺における火山活動の観測方法として、3台の海底圧力計を海底の3箇所に設置しておき、かかる海底圧力計による海底圧力計測値から水深を換算し、夫々の相対変位量を算定する方法が提案されている(非特許文献1参照)。かかる方法にて海底地盤の挙動を同定することで、海底地盤の変動とマグマの消長過程との関連性や水温変化・潮汐等との関連性を明らかにしようとする試みがおこなわれている。
【0004】
【非特許文献1】
藤本博巳、「海嶺における火山活動の観測」、海嶺におけるエネルギー・物質のフラックスの解明に関する国際共同研究、科学技術庁研究開発局、平成12年2月、第II期 平成8年〜平成10年度成果報告書
【0005】
【発明が解決しようとする課題】
前記した従来の海底地盤挙動計測システムにあっては、次のような問題点がある。
<イ>大陸棚等の海底地形においては水深が非常に深くなることから高い計測精度の確保が困難となる。
<ロ>水中音波により海底地形を計測する場合、音波は一定の広がりをもって海底地形へ伝播していくため、海底地形が起伏に富んでいる場合に多重反射などの理由から真の反射面が得られ難い。
<ハ>水深計測中に船のピッチング、ローリング、ヨーイングといった揺動が生じる場合、これを検知して音波の発信方向角の正確な補正が困難である。
【0006】
【発明の目的】
本発明は上記したような従来の問題を解決するためになされたもので、水深が深い場合でも比較的容易に高精度の計測ができる海底地形計測システムを提供することを目的とする。また、海底地形が起伏に富んでいる場合にも高精度の計測ができる海底地形計測システムを提供することを目的とする。さらに、水深計測中に船のピッチング、ローリング、ヨーイングといった揺動が生じる場合においても水深計測に支障を来すことのない海底地形計測システムを提供することを目的とする。
本発明は、これらの目的の少なくとも一つを達成するものである。
【0007】
【課題を解決するための手段】
上記のような目的を達成するために、本発明の海底地盤挙動計測システムは、海底地盤の挙動を計測するための海底地盤挙動計測システムであって、計測海域に設けた複数の計測点と、複数の前記計測点における計測値の基準とする計測海域に設けた基準点と、前記基準点及び前記計測点に設けて、基準点及び計測点の再計測を可能とする固定基台と、前記固定基台に設置して水深を計測するための海底圧力計と、前記基準点と複数の前記計測点との夫々の水深差より前記海底地盤の相対的な挙動を算定する相対挙動算定手段とからなることを特徴とする海底地盤挙動計測システムである。ここで、相対挙動算定手段により前記計測点相互の水深差についても算定することができる。
【0008】
【発明の実施の形態】
以下、図面を参照しながら本発明の実施の形態について説明する。
【0009】
<イ>海底地盤挙動計測システム(図1)
本発明における海底地盤挙動計測システムにおいては、まず、計測海域91にて基準となる基準点1を例えば一点設ける。ここで、基準点1を設ける理由は、複数の計測点2での計測値相互の相対量を算定する前に各計測点2での計測値を同一の基準から決定するためである。かかる基準点1は計測海域91の中でも海底地盤6の採掘による地盤変動の影響がない位置に設けるのが好ましい。そして、計測海域91において、例えばメッシュ状に複数の計測点2を設けることができる(図5参照)。メッシュの格点間隔は採掘範囲にもよるが、例えば数十メートルから100メートル間隔程度に設定できる。
本発明において、基準点1及び計測点2での水深計測は、後述する海底圧力計4を使用しておこなうものである。基準点1での水圧と計測点2での水圧を計測し、計測基準点における水圧データ(水深データ)の時刻歴と計測点における水圧データ(水深データ)の時刻歴から水圧差の変動量を算定する(図1(b)参照)。
ここで、平均海面高さは計測海域91でほぼ同レベルと仮定することができる。採掘範囲が1〜数キロメートル四方に及ぶ場合であっても、例えば静海面であってほぼ同時刻であれば、かかる範囲で海水レベルが大きく変動することはないと考えられるからである。また、海面5高さの変動は潮汐や海水温度などによって変動することから、基準点1と任意の計測点2の水深計測は連続して、または同時におこなうことが好ましい。なお、採掘範囲に応じて、適宜、ジオイド補正をおこないながら平均海面高さを決定してもよい。
【0010】
海底圧力計4は、時間の経過に伴い、水温変化などの影響により、水圧値が変化してくる。かかる変化の傾向は、どの海底圧力計4も似てはいるももの、変化量は異なる。この変化量は、大きくて1ヶ月間で数cm程度である。
そこで、複数の海底圧力計4を用いて長期間の同時観測をおこなう場合、各海底圧力計4ごとの水圧値変化の影響をなくすため、同一の固定基台3に複数の海底圧力計4を載せて水圧値(水深値)のゼロ調整をおこなうのが好ましい。
【0011】
ここで、平均海面高さの決定は、例えば測量船7に搭載したGPS移動局71に基づいたGPS測位にて求められる三次元座標を使用することができる。ただし、本発明における海底地盤挙動計測システムは各計測点2相互の相対変位量を求めることを目的としているため、基準点1および計測点2における絶対標高を正確に求めることを要しない。基準点1において海底圧力計4から水深を換算算定し、計測点2においても同様に海底圧力計4にて水深を算定することで基準点1と各計測点2との相対地盤高や相対変位量を求めることができる。このように海底圧力計4を使用することにより、水中音波や水中レーザーを使用する場合の問題点、水深計測中に船のピッチング、ローリング、ヨーイングといった揺動により生じる計測誤差などの問題点が解消できる。
【0012】
<ロ>固定基台
固定基台3は、海底地盤6の相対地盤高や相対変位量を求めるために海底地盤6上に設置するブロック体のことである。ブロック体の形状の実施例を図2に示すが、かかる形状は実施例に限定されるものではなく、任意の形状及び大きさに製作することができる。また、ブロック体を構成する材料は、例えば、コンクリート材料や鋼製材料などにより製作することができる。
ブロック体の上面には凹部31(測点)を設けておいて、常時はかかる凹部31に上蓋32をしておき、水圧計測時(水深計測時)には上蓋を開けて凹部31に海底圧力計4を設置して水深を計測することができる。
固定基台3は、基準点1及び計測点2において予め固定基台3を設置しておくのが好ましい。従来の海底圧力計を使用した海底地盤の相対変位量計測においては、かかる固定基台3を使用することがなかったため、同一計測点における再度の計測をおこなうことが困難であった。しかし、固定基台3を設置しておくことにより、10年以上といわれる海底地盤6下の資源採掘工事の計画段階から工事段階までの長期にわたり、同一地点の水深計測が可能となる。なお、1000メートル程度の深海底においては、海上のごとく波浪や高潮などが発生しないため、一度設定した固定基台3はその位置に留まりつづけることが可能となる。
【0013】
固定基台3の所定地盤上への設置方法は、例えば水中運搬艇8を使用しておこなうことができる。すなわち、水中運搬艇8に固定基台を搭載し、海上の測量船7より遠隔操作により設置箇所付近まで水中運搬艇を誘導させることができる(図4参照)。水中運搬艇8に搭載した音波探査機やCCD画像機により地形の平坦部を見つけ出し、水中運搬艇8より固定基台3を吊り下げたワイヤーを延ばして所定位置に固定基台3を設置する。
【0014】
<ハ>海底圧力計
従来、海域において使用する海底圧力計は、主に津波の計測に利用されていた。我が国の沿岸部においても、現在、多数の海底圧力計が設置されている。
本発明においては、海底地盤6の相対挙動を同定するために、海底圧力計4を使用して簡易かつ精度の高い水深計測を実現することを目的とする。
基準点1及び計測点2の海底圧力計測(水深計測)は、例えば潜水艇を遠隔操作又は自律的に固定基台付近まで誘導して水中停止させながら、潜水艇から海底圧力計を吊り下げていく(図示せず)。別途潜水艇から吊り下げたフックにて固定基台3の上蓋32を外し、凹部31内の汚れを圧力水にて除去した後、海底圧力計4を凹部31(測点)に設置する。海底圧力計4の設置時はCCDカメラを利用しながら設置することもできる。なお、潜水艇には上下方向、左右方向及び前後方向の加速度を検知できる計器を搭載しておき、かかる計器データに基づいて潜水艇の各部に設置された複数のスクリューを回転させながら遠隔操作により潜水艇を標的付近で水中停止させることもできる。
【0015】
<ニ>相対挙動算定手段
各計測点2ごとに、海底圧力計4にて求められた水圧値を水深値に換算することで、各計測点2ごとの相対地盤高を算定することができる。この場合、例えば3点以上の計測点における水深値を相互に比較することにより計測誤差を補正しながら計測値の精度を高めることもできる。例えば、図3に示すように、L≒L+ΔLであり、また、L≒L+ΔL+ΔLであり、ΔL≒ΔL+ΔLである。かかる関係式より、基準点1から各計測点2(計測点A、計測点B、計測点C)までの相互の水深差および各測定点2相互間の水深差より水深計測値の誤差を補正することができる。
また、各計測点2相互の相対地盤高や相対変位量を計測点2を設けたメッシュごとにプロットして相対挙動観測結果を等高線92図に表すこともできる(図5参照)。さらに、かかる計測を定期的におこなうことにより、計測海域91における海底地盤6の相対挙動やその経時変化を把握することができる。
【発明の効果】
本発明の海底地盤挙動計測システムは以上説明したようになるから次のような効果を得ることができる。
<イ>水深が深くなった場合や計測海域が面的に広範に及ぶ場合でも、比較的精度のよい海底地盤の相対地盤高や相対変位量を求めることができる。
<ロ>計測方法は専門性を必要としないため、比較的簡易な方法で海底地盤の相対地盤高や相対変位量を求めることができる。
【図面の簡単な説明】
【図1】(a)本発明の海底地盤挙動計測システムを説明した説明図。(b)基準点水深データ及び計測点水深データの各時刻歴と両データから水深差の時系列を求めることを説明した説明図。
【図2】(a)固定基台の実施例を示した斜視図。(b)固定基台の上蓋を取り外して海底圧力計を設置した状態を示した斜視図。
【図3】基準点と計測点(A、B、C)との各水深差および各計測点相互の水深差を説明した説明図。
【図4】水中運搬艇にて固定基台を運搬し、海底地盤上に設置していることを示した説明図。
【図5】各計測点における基準点からの水深差に基づいて作成した海底地盤相対高さや相対変位量を等高線で示した説明図。
【符号の説明】
1・・・基準点
2・・・計測点
3・・・固定基台
4・・・海底圧力計
6・・・海底地盤
[0001]
TECHNICAL FIELD OF THE INVENTION
The present invention relates to a submarine ground behavior measurement system for measuring the behavior of a submarine ground.
[0002]
[Prior art]
Development and maintenance of methane hydrate (methane hydrate), which is said to be present in a considerable amount in the seabed surrounding Japan, is being developed and improved, including methods for exploring and mining methane hydrates, and assessing the environmental impact of mining.
By the way, mining of undersea resources is carried out by constructing mining structures on the sea. However, due to the relative displacement of the seabed under the foundation of the mining frame accompanying the mining of underground resources, problems such as tilting and collapse of the mining frame are sufficiently expected. Therefore, it is desirable not only to measure the relative displacement of the seafloor ground at the time of mining in the sea area to be mined, but also to always perform the relative displacement measurement at the planning stage before mining.
In the conventional measurement of the seafloor topography, underwater sound waves and underwater lasers are used. The underwater laser can measure up to a depth of about 50 m with an accuracy of about ± 5 cm in a sea area having a transparency of 5 to 10 m, and the underwater sound wave can measure a depth of about 5000 m.
When measuring the seafloor topography with a survey ship, use a GPS receiver mounted on the survey ship to reach the measurement point and calculate the water depth from the sound wave propagation velocity corrected according to the temperature distribution in the water. ing. At this time, it is necessary to make the coordinates of the GPS measurement point coincide with the water depth data in time.
[0003]
On the other hand, as a method of observing volcanic activity at ridges, three submarine pressure gauges are installed at three places on the seabed, and the relative displacements are calculated by converting the water depth from the seafloor pressure measured by the seafloor pressure gauges. (See Non-Patent Document 1). Attempts have been made to identify the relationship between the change of the seabed ground and the magma decay process, the change in water temperature, the tide, etc. by identifying the behavior of the seabed ground by such a method.
[0004]
[Non-patent document 1]
Hiromi Fujimoto, "Observation of volcanic activity at ridges", International joint research on elucidation of energy and material fluxes at ridges, Science and Technology Agency, Research and Development Bureau, February 2000, Phase II, 1996-1998 results Report [0005]
[Problems to be solved by the invention]
The conventional undersea ground behavior measuring system described above has the following problems.
<B> In the seabed topography such as a continental shelf, it is difficult to ensure high measurement accuracy because the water depth becomes very deep.
<B> When measuring the seafloor topography using underwater sound waves, the sound waves propagate to the seafloor topography with a certain spread, so if the seafloor topography is rich in undulations, a true reflection surface can be obtained due to multiple reflections and other reasons. It is hard to be.
<C> When the ship is rocking, such as pitching, rolling, and yawing, during the measurement of the water depth, it is difficult to detect the rocking and correct the angle of the sound wave in the transmitting direction accurately.
[0006]
[Object of the invention]
The present invention has been made to solve the above-described conventional problems, and an object of the present invention is to provide a seafloor topography measurement system capable of relatively easily performing high-accuracy measurement even when the water depth is deep. It is another object of the present invention to provide a seafloor topography measurement system capable of performing highly accurate measurement even when the seafloor topography is rich in undulations. It is still another object of the present invention to provide a seafloor topography measurement system which does not hinder the measurement of the water depth even when the ship sways such as pitching, rolling, and yawing during the measurement of the water depth.
The present invention achieves at least one of these objects.
[0007]
[Means for Solving the Problems]
In order to achieve the above object, the submarine ground behavior measurement system of the present invention is a submarine ground behavior measurement system for measuring the behavior of the submarine ground, and a plurality of measurement points provided in the measurement sea area, A reference point provided in a measurement sea area as a reference of measurement values at a plurality of the measurement points, and a fixed base provided at the reference point and the measurement point to enable re-measurement of the reference point and the measurement point; A seafloor pressure gauge for measuring water depth by being installed on a fixed base, and a relative behavior calculating means for calculating a relative behavior of the seafloor ground from a difference in water depth between the reference point and the plurality of measurement points, A submarine ground behavior measurement system characterized by comprising: Here, the relative behavior calculation means can also calculate the water depth difference between the measurement points.
[0008]
BEST MODE FOR CARRYING OUT THE INVENTION
Hereinafter, embodiments of the present invention will be described with reference to the drawings.
[0009]
<B> Undersea ground behavior measurement system (Fig. 1)
In the submarine ground behavior measurement system according to the present invention, first, for example, one reference point 1 serving as a reference is provided in the measurement sea area 91. Here, the reason for providing the reference point 1 is to determine the measurement value at each measurement point 2 from the same reference before calculating the relative amount of the measurement values at the plurality of measurement points 2. The reference point 1 is preferably provided at a position in the measurement sea area 91 where there is no influence of ground fluctuation due to mining of the seabed ground 6. Then, in the measurement sea area 91, a plurality of measurement points 2 can be provided, for example, in a mesh shape (see FIG. 5). The mesh spacing of the mesh depends on the mining range, but can be set to, for example, about several tens of meters to about 100 meters.
In the present invention, the water depth measurement at the reference point 1 and the measurement point 2 is performed using a seabed pressure gauge 4 described later. The water pressure at the reference point 1 and the water pressure at the measurement point 2 are measured, and the variation of the water pressure difference is determined from the time history of the water pressure data (depth data) at the measurement reference point and the time history of the water pressure data (depth data) at the measurement point. It is calculated (see FIG. 1 (b)).
Here, it can be assumed that the average sea level is substantially the same level in the measurement sea area 91. This is because even if the mining range extends from one to several kilometers square, the seawater level is not expected to fluctuate greatly in such a range, for example, on a still sea surface at approximately the same time. In addition, since the fluctuation of the sea level 5 fluctuates depending on the tide, seawater temperature, and the like, it is preferable that the water depth measurement at the reference point 1 and the arbitrary measurement point 2 be performed continuously or simultaneously. In addition, the average sea level may be determined while performing the geoid correction as appropriate according to the mining range.
[0010]
The water pressure value of the seafloor pressure gauge 4 changes over time due to the influence of a change in water temperature or the like. Although the tendency of such a change is similar to any of the seafloor pressure gauges 4, the amount of change is different. This variation is as large as several cm for one month.
Therefore, when performing long-term simultaneous observation using a plurality of seafloor manometers 4, a plurality of seafloor manometers 4 are mounted on the same fixed base 3 in order to eliminate the influence of the water pressure value change for each seafloor manometer 4. It is preferable to carry out the zero adjustment of the water pressure value (water depth value) by mounting.
[0011]
Here, the three-dimensional coordinates obtained by the GPS positioning based on the GPS mobile station 71 mounted on the survey ship 7 can be used for the determination of the average sea level. However, since the seafloor ground behavior measuring system according to the present invention aims to determine the relative displacement between the measuring points 2, it is not necessary to accurately determine the absolute elevation at the reference point 1 and the measuring point 2. At the reference point 1, the water depth is converted and calculated from the seafloor pressure gauge 4, and at the measurement point 2, the water depth is similarly calculated by the seafloor pressure gauge 4 to obtain the relative ground height and relative displacement between the reference point 1 and each measurement point 2. The quantity can be determined. By using the seafloor pressure gauge 4 in this way, the problems of using underwater sound waves and underwater lasers and the problems of measurement errors caused by fluctuations such as pitching, rolling, and yawing of the ship during depth measurement are eliminated. it can.
[0012]
<B> Fixed base The fixed base 3 is a block body installed on the submarine ground 6 in order to obtain the relative ground height and the relative displacement of the submarine ground 6. FIG. 2 shows an embodiment of the shape of the block body. However, the shape is not limited to the embodiment, and the block body can be manufactured to have any shape and size. Further, the material constituting the block body can be manufactured from, for example, a concrete material or a steel material.
A concave portion 31 (measuring point) is provided on the upper surface of the block body, and an upper lid 32 is always provided on the concave portion 31. When water pressure is measured (when measuring the water depth), the upper lid is opened and the sea bottom pressure is applied to the concave portion 31. A total of 4 can be installed to measure the water depth.
It is preferable that the fixed base 3 be set in advance at the reference point 1 and the measurement point 2. In the measurement of the relative displacement of the seafloor ground using the conventional seafloor pressure gauge, since the fixed base 3 was not used, it was difficult to measure again at the same measurement point. However, by installing the fixed base 3, it is possible to measure the water depth at the same point over a long period from the planning stage to the construction stage of the resource mining work under the seabed 6, which is said to be 10 years or more. At the deep sea floor of about 1000 meters, since waves and storm surges do not occur as on the sea, the fixed base 3 once set can remain at that position.
[0013]
The fixed base 3 can be installed on a predetermined ground using, for example, an underwater transport boat 8. That is, a fixed base is mounted on the underwater transport boat 8, and the underwater transport boat can be guided to the vicinity of the installation location by remote control from the surveying boat 7 at sea (see FIG. 4). A flat part of the terrain is found by an acoustic sounder or a CCD image machine mounted on the underwater transport boat 8, and the wire on which the fixed base 3 is suspended from the underwater transport boat 8 is extended to set the fixed base 3 at a predetermined position.
[0014]
<C> Submarine pressure gauge Conventionally, submarine pressure gauges used in sea areas have been mainly used for tsunami measurement. A number of seafloor pressure gauges are currently installed in the coastal areas of Japan.
An object of the present invention is to realize simple and highly accurate water depth measurement using the seabed pressure gauge 4 in order to identify the relative behavior of the seabed ground 6.
The seafloor pressure measurement (depth measurement) at the reference point 1 and the measurement point 2 is performed, for example, by suspending the seafloor pressure gauge from the submersible while remotely controlling or autonomously guiding the submersible to near the fixed base and stopping underwater. Go (not shown). After removing the upper lid 32 of the fixed base 3 with a hook separately suspended from the submersible and removing dirt in the concave portion 31 with pressurized water, the submarine pressure gauge 4 is installed in the concave portion 31 (measuring point). When installing the seafloor pressure gauge 4, it can be installed using a CCD camera. In addition, the submersible is equipped with an instrument that can detect acceleration in the vertical direction, left and right direction, and front and rear direction, and based on such instrument data, remote control while rotating multiple screws installed in each part of the submarine The submersible can also be stopped underwater near the target.
[0015]
<D> Relative behavior calculation means By converting the water pressure value obtained by the seafloor pressure gauge 4 into a water depth value at each measurement point 2, the relative ground height at each measurement point 2 can be calculated. In this case, for example, by comparing the water depth values at three or more measurement points with each other, the accuracy of the measurement value can be improved while correcting the measurement error. For example, as shown in FIG. 3, L 3 ≒ L 1 + ΔL 2 , L 3 ≒ L 1 + ΔL 1 + ΔL 3 , and ΔL 2 ≒ ΔL 1 + ΔL 3 . From such a relational expression, the error of the water depth measurement value is corrected from the mutual water depth difference from the reference point 1 to each measurement point 2 (measurement point A, measurement point B, measurement point C) and the water depth difference between each measurement point 2. can do.
Further, the relative ground height and the relative displacement amount of each of the measurement points 2 can be plotted for each mesh provided with the measurement points 2 and the relative behavior observation result can be represented by a contour line 92 (see FIG. 5). Further, by performing such measurement periodically, the relative behavior of the seabed 6 in the measurement sea area 91 and its temporal change can be grasped.
【The invention's effect】
The undersea ground behavior measuring system of the present invention is as described above, so that the following effects can be obtained.
<A> Even when the water depth is deep or the measurement sea area is wide in area, relatively accurate relative ground height and relative displacement of the seafloor ground can be obtained.
<B> Since the measurement method does not require specialty, the relative ground height and relative displacement of the seabed can be obtained by a relatively simple method.
[Brief description of the drawings]
FIG. 1 (a) is an explanatory view illustrating a submarine ground behavior measuring system of the present invention. (B) Explanatory drawing explaining the time series of the water depth difference from each time history of reference point water depth data and measurement point water depth data, and both data.
FIG. 2A is a perspective view showing an embodiment of a fixed base. (B) The perspective view which showed the state which removed the upper lid of the fixed base and installed the seafloor pressure gauge.
FIG. 3 is an explanatory diagram illustrating water depth differences between a reference point and measurement points (A, B, C) and water depth differences between measurement points.
FIG. 4 is an explanatory view showing that a fixed base is transported by an underwater transport boat and is installed on the seabed.
FIG. 5 is an explanatory diagram showing contours of the relative height and relative displacement of the seabed ground created based on the water depth difference from the reference point at each measurement point.
[Explanation of symbols]
DESCRIPTION OF SYMBOLS 1 ... Reference point 2 ... Measurement point 3 ... Fixed base 4 ... Submarine pressure gauge 6 ... Submarine ground

Claims (1)

海底地盤の挙動を計測するための海底地盤挙動計測システムであって、
計測海域に設けた複数の計測点と、
複数の前記計測点における計測値の基準とする計測海域に設けた基準点と、
前記基準点及び前記計測点に設けて、基準点及び計測点の再計測を可能とする固定基台と、
前記固定基台に設置して水深を計測するための海底圧力計と、
前記基準点と複数の前記計測点との夫々の水深差より前記海底地盤の相対的な挙動を算定する相対挙動算定手段と、からなることを特徴とする、
海底地盤挙動計測システム。
A submarine ground behavior measurement system for measuring the behavior of the submarine ground,
Multiple measurement points provided in the measurement sea area,
Reference points provided in the measurement sea area as a reference of the measurement values at the plurality of measurement points,
Provided at the reference point and the measurement point, a fixed base that allows re-measurement of the reference point and the measurement point,
A seafloor pressure gauge for measuring the water depth installed on the fixed base,
Relative behavior calculation means for calculating the relative behavior of the seabed ground from the respective water depth difference between the reference point and the plurality of measurement points,
Submarine ground behavior measurement system.
JP2003062082A 2003-03-07 2003-03-07 Seabed behavior measurement system Pending JP2004271326A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2003062082A JP2004271326A (en) 2003-03-07 2003-03-07 Seabed behavior measurement system

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2003062082A JP2004271326A (en) 2003-03-07 2003-03-07 Seabed behavior measurement system

Publications (1)

Publication Number Publication Date
JP2004271326A true JP2004271326A (en) 2004-09-30

Family

ID=33124111

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2003062082A Pending JP2004271326A (en) 2003-03-07 2003-03-07 Seabed behavior measurement system

Country Status (1)

Country Link
JP (1) JP2004271326A (en)

Cited By (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007304100A (en) * 2006-05-11 2007-11-22 Schlumberger Holdings Ltd Method and apparatus for locating gas hydrate
JP2011209200A (en) * 2010-03-30 2011-10-20 Occ Corp Seabed observation system
JP2017128950A (en) * 2016-01-21 2017-07-27 千春 青山 Gas collecting method
CN107063196A (en) * 2016-12-27 2017-08-18 中国海洋大学 Seabed sand waves migration observation device and method based on pressure gauge
CN107631720A (en) * 2017-08-14 2018-01-26 中国海洋大学 Seabed sand waves original position real-time observation device and method
CN111664887A (en) * 2020-05-05 2020-09-15 中国海洋大学 Resistivity probe rod-based seabed floating mud layer dynamic change in-situ observation method
JPWO2021075145A1 (en) * 2019-10-18 2021-04-22
CN113218372A (en) * 2021-05-25 2021-08-06 哈尔滨工程大学 Calibration system and method for position of seabed datum point
CN113587908A (en) * 2021-08-03 2021-11-02 中国海洋大学 Device for measuring seabed sand wave migration based on triangular pressure sensor and working method
CN114323124A (en) * 2021-12-14 2022-04-12 浙江大学 Underwater superficial stratum information monitoring network system for seabed hydrate dune
KR20220127401A (en) * 2021-03-10 2022-09-20 한국도로공사 Method for producing three-dimensional scour map

Cited By (16)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007304100A (en) * 2006-05-11 2007-11-22 Schlumberger Holdings Ltd Method and apparatus for locating gas hydrate
JP2011209200A (en) * 2010-03-30 2011-10-20 Occ Corp Seabed observation system
US11370672B2 (en) 2016-01-21 2022-06-28 Chiharu Aoyama Gas collecting method
JP2017128950A (en) * 2016-01-21 2017-07-27 千春 青山 Gas collecting method
CN107063196A (en) * 2016-12-27 2017-08-18 中国海洋大学 Seabed sand waves migration observation device and method based on pressure gauge
CN107063196B (en) * 2016-12-27 2019-04-09 中国海洋大学 Seabed sand waves migration observation device and method based on pressure gauge
CN107631720A (en) * 2017-08-14 2018-01-26 中国海洋大学 Seabed sand waves original position real-time observation device and method
JPWO2021075145A1 (en) * 2019-10-18 2021-04-22
CN111664887A (en) * 2020-05-05 2020-09-15 中国海洋大学 Resistivity probe rod-based seabed floating mud layer dynamic change in-situ observation method
KR102528134B1 (en) * 2021-03-10 2023-05-08 한국도로공사 Method for producing three-dimensional scour map
KR20220127401A (en) * 2021-03-10 2022-09-20 한국도로공사 Method for producing three-dimensional scour map
CN113218372A (en) * 2021-05-25 2021-08-06 哈尔滨工程大学 Calibration system and method for position of seabed datum point
CN113218372B (en) * 2021-05-25 2021-10-29 哈尔滨工程大学 Calibration system and method for position of seabed datum point
CN113587908B (en) * 2021-08-03 2022-04-22 中国海洋大学 Device for measuring seabed sand wave migration based on triangular pressure sensor and working method
CN113587908A (en) * 2021-08-03 2021-11-02 中国海洋大学 Device for measuring seabed sand wave migration based on triangular pressure sensor and working method
CN114323124A (en) * 2021-12-14 2022-04-12 浙江大学 Underwater superficial stratum information monitoring network system for seabed hydrate dune

Similar Documents

Publication Publication Date Title
CN110208812A (en) Unmanned vehicles seabed dimensional topography detection device and method partly latent
KR101559488B1 (en) Method for manufacturing coastal fine-grid topographical map
CN112505750B (en) Deep-towed multi-channel seismic streamer attitude determination method and processing terminal
CN111350214B (en) Multi-beam underwater steel pipe pile position measuring method
JP3803177B2 (en) Tsunami detection system
JP2004271326A (en) Seabed behavior measurement system
CA2256964C (en) Method of locating hydrophones
CN103213657A (en) Ship draft amount detection system and detection method thereof
AU2012203038B2 (en) System for positioning a wire using sensor information
CN112068078A (en) Combined long-baseline deep sea underwater sound positioning method
Tomczak Modern methods of underwater positioning applied in subsea mining
JP6576624B2 (en) Underwater positioning system and underwater positioning method
Grządziel et al. Estimation of effective swath width for dual-head multibeam echosounder
GB2494974A (en) Method of determining the relative position of two detectors at the bottom of the sea
CN109765595B (en) Multi-beam detection system and detection method for underwater hidden engineering
JP2004170632A (en) Three-dimensional seabed topographic data preparation apparatus
CN206321338U (en) Acoustic velocity measurement device under a kind of Real-time Water based on semisubmersible drilling platform accommodation instrument
JP2001074834A (en) Method for measuring underwater structure
CN109343038A (en) A kind of sonar detection bracket and caisson seam method for measurement
KR102317005B1 (en) Method for making electronic nautical chart by measuring the submarine topography
KR102528134B1 (en) Method for producing three-dimensional scour map
WO2008037965A1 (en) Receiver orientation in an electromagnetic survey
CN114280543A (en) Submarine cable positioning method, device, computer equipment and computer program product
CN111735437A (en) Submarine landform interpretation method based on Jason-1 and CryoSat-2 satellite data
Zirek et al. Change detection of seafloor topography by modeling multitemporal multibeam echosounder measurements

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20060117

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20080428

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20080507

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20080624

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20080902