JP2004271032A - Engine-driven heat pump device - Google Patents

Engine-driven heat pump device Download PDF

Info

Publication number
JP2004271032A
JP2004271032A JP2003061674A JP2003061674A JP2004271032A JP 2004271032 A JP2004271032 A JP 2004271032A JP 2003061674 A JP2003061674 A JP 2003061674A JP 2003061674 A JP2003061674 A JP 2003061674A JP 2004271032 A JP2004271032 A JP 2004271032A
Authority
JP
Japan
Prior art keywords
air
engine
clutch
conditioning
temperature
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2003061674A
Other languages
Japanese (ja)
Other versions
JP4293342B2 (en
Inventor
Yasushi Maeda
泰史 前田
Takao Egaitsu
孝生 荏開津
Hiroshi Tsuruoka
浩 鶴岡
Tadashi Fukuda
正 福田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Osaka Gas Co Ltd
Original Assignee
Osaka Gas Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Osaka Gas Co Ltd filed Critical Osaka Gas Co Ltd
Priority to JP2003061674A priority Critical patent/JP4293342B2/en
Publication of JP2004271032A publication Critical patent/JP2004271032A/en
Application granted granted Critical
Publication of JP4293342B2 publication Critical patent/JP4293342B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Landscapes

  • Air Conditioning Control Device (AREA)
  • Connection Of Motors, Electrical Generators, Mechanical Devices, And The Like (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To inexpensively provide an engine-driven heat pump device of high durability while simplifying its constitution, though the rated operation of an engine is performed corresponding to the variation of the air conditioning load. <P>SOLUTION: A generator is interlocked and connected to the engine through a clutch for power generation, and a compressor is interlocked and connected to the engine through a clutch for air conditioning. The air conditioning load is operated by an air conditioning load operating means on the basis of an indoor temperature measured by an indoor temperature sensor, a target temperature set by an air conditioning temperature setting device, and an outside air temperature measured by an outside air temperature sensor, a ratio of air conditioning time for operating the compressor and power generation time for operating the generator is calculated on the basis of the air conditioning load by a ratio calculating means, and the switching of the clutch for power generation and the clutch for air conditioning is controlled by a clutch control means to control the ratio of the air conditioning time and the power generation time within a set time, on the basis of the ratio calculated by the ratio calculating means. <P>COPYRIGHT: (C)2004,JPO&NCIPI

Description

【0001】
【発明の属する技術分野】
本発明は、エンジンに、発電用クラッチを介して発電機を連動連結するとともに、空調用クラッチを介して圧縮機を連動連結したエンジン駆動式ヒートポンプ装置に関する。
【0002】
【従来の技術】
この種のエンジン駆動式ヒートポンプ装置としては、従来、特許文献1に開示されているものがあった。
この従来例によれば、原動機(エンジン)の一方の出力軸に発電機を接続し、原動機の他方の出力軸に無段変速機を介して空調機(圧縮機)を接続し、空調負荷の変動にかかわらず、発電機の回転数を一定に維持するように無段変速機の変速比を制御するように構成している。
これにより、空調負荷が変動しても、発電機の回転数を、すなわち、原動機の回転数を一定に維持し、原動機を定格運転して効率低下を回避し、かつ、発電機を一定の回転数にして周波数一定の良質な電力を供給できるようにしている。
【0003】
【特許文献1】
特開2002−204598号公報
【0004】
【発明が解決しようとする課題】
しかしながら、空調負荷の変動に合わせて無段変速機の変速比を制御する場合、無段変速機自体が高価な上に、組付け構成が複雑化し、全体として高価で経済性が低下する欠点があった。
また、頻繁な変速操作が必要であり、耐久性が低い欠点があった。
発電機の回転数の低下に対し、周波数一定の電力を得るには、インバータを用いれば良いが、その場合、発電出力が低下する問題がある。
【0005】
本発明は、このような事情に鑑みてなされたものであって、請求項1に係る発明は、空調負荷の変動に対応しながらエンジンを定格運転するものでありながら、構成簡単で安価に、かつ、耐久性の高いものにできるようにすることを目的とし、請求項2に係る発明は、空調負荷に適確に対応できるようにすることを目的とし、請求項3に係る発明は、空調負荷の増大にも確実に対応しながら発電できるようにすることを目的とする。
【0006】
【課題を解決するための手段】
請求項1に係る発明は、上述のような目的を達成するために、
エンジンに、発電用クラッチを介して発電機を連動連結するとともに、空調用クラッチを介して圧縮機を連動連結したエンジン駆動式ヒートポンプ装置において、
前記エンジンを定格運転する状態で、前記発電用クラッチと前記空調用クラッチとを、空調需要に基づいて、間欠的かつ背反的に切り替えるように構成する。
【0007】
(作用・効果)
請求項1に係る発明のエンジン駆動式ヒートポンプ装置の構成によれば、空調需要があるときには、空調用クラッチを入り状態にして空調を行い、室内などの被空調空間内の温度が目標温度に維持されて空調が不要なときには、発電用クラッチを入り状態にして発電を行い、エンジンの回転数を変えないようにする。
したがって、空調用クラッチと発電用クラッチを設け、それらを間欠的かつ背反的に切り替えるように切り替えるだけでありながら、従来のような変速機を設けたりせずに、エンジンを常に定格で運転しながら空調と発電とを行うことができ、その効率を向上でき、空調負荷の変動に対応しながらエンジンを定格運転するものでありながら、構成簡単で安価に、かつ、耐久性の高いものにできる。しかも、空調が不要なときには、エンジンを定格で運転しながら発電を行うことができ、交流電力を得る場合でも、良質の電力を容易に得ることができる。
【0008】
また、請求項2に係る発明は、前述のような目的を達成するために、
請求項1に記載のエンジン駆動式ヒートポンプ装置において、
被空調空間内の温度を測定する室内温度センサと、
被空調空間内を空調する目標温度を設定する空調温度設定器と、
外気温度を測定する外気温度センサと、
前記室内温度センサで測定された被空調空間内の温度と、前記空調温度設定器で設定された目標温度と、前記外気温度センサで測定された外気温度とに基づいて空調負荷を演算する空調負荷演算手段と、
前記空調負荷演算手段で演算された空調負荷に基づいて、圧縮機を運転する空調時間と発電機を運転する発電時間との比率を算出する比率算出手段と、
設定時間内における空調時間と発電時間との比率が前記比率算出手段で算出された比率になるように、発電用クラッチと空調用クラッチとを切替制御するクラッチ制御手段とを備えて構成する。
【0009】
(作用・効果)
請求項2に係る発明のエンジン駆動式ヒートポンプ装置の構成によれば、室内などの被空調空間内の温度と、空調しようとする設定目標温度と、外気温度とに基づいて空調負荷を演算し、その空調負荷に基づいて、圧縮機を設定時間内で算出比率に相当する時間定格で運転し、それ以外の比率に相当する時間発電機を運転し、エンジンを常に定格で運転する。
したがって、空調負荷に適確に対応することができる。
【0010】
また、請求項3に係る発明は、前述のような目的を達成するために、
請求項1または2に記載のエンジン駆動式ヒートポンプ装置において、
エンジンの定格を、最大空調負荷よりも大に設定するように構成する。
【0011】
(作用・効果)
請求項3に係る発明のエンジン駆動式ヒートポンプ装置の構成によれば、夏場などで冷房負荷が急激に増大するなど、空調負荷が増大したときでも、その空調負荷を賄うに足る能力より大きい能力のエンジンを備える。
したがって、空調負荷の増大にも確実に対応しながら発電できる。
また、夏場などで冷房負荷が急激に増大したときでも、確実に発電を行うことができ、電力のピークカットに寄与できる。
【0012】
【発明の実施の形態】
次に、本発明の実施例を図面に基づいて詳細に説明する。
図1は、本発明に係るエンジン駆動式ヒートポンプ装置の実施例を示す概略構成図、図2は、エンジンとクラッチの関係を示す要部の平面図であり、ガスエンジン1の出力軸1aの一方に、第1のベルト式伝動機構2および空調用クラッチ3を介して圧縮機4が連動連結され、出力軸1aの他方に、第2のベルト式伝動機構5および発電用クラッチ6を介して発電機7が連動連結されている。なお、図1では、第1および第2ベルト式伝動機構2,5を省略している。
【0013】
圧縮機4を介装した冷媒回路8に、四路切換弁9、室外側熱交換器10、膨張弁11、室内側熱交換器12が介装されて、四路切換弁9の切り換えにより、室外側熱交換器10を凝縮器として作用させ、室内側熱交換器12を蒸発器として作用させる冷房運転状態と、室外側熱交換器10を蒸発器として作用させ、室内側熱交換器12を凝縮器として作用させる暖房運転状態とが得られるように構成されている。
【0014】
ガスエンジン1から排出される高温排ガスの排ガス配管13に、脱硝装置14と第1の熱交換器15とが介装されている。また、ガスエンジン1を冷却するジャケット冷却水の循環配管16に循環用ポンプ17と第2の熱交換器18とが介装されている。
【0015】
第1および第2の熱交換器15,18が直列になるように給水管19が導入され、その給水管19が貯湯槽20に接続され、ガスエンジン1から排出される排熱を回収して高温の湯を得、得られた湯を貯湯槽20に貯めるように構成されている。貯湯槽20に貯められた湯は、台所、洗面所、浴槽などに給湯管21を介して供給するようになっている。
【0016】
ガスエンジン1の定格が、予測される最大空調負荷よりも大に設定されており、夏場などで冷房負荷が急激に増大するなど、空調負荷が増大したときでも、その空調負荷を賄いながら発電を行えるように構成されている。また、夏場などにおいても確実に発電を行うことができて、電力のピークカットに寄与できる。
【0017】
図3の制御系のブロック図に示すように、室内側熱交換器12を設けた被空調空間としての室内に設けられて室内温度を測定する室内温度センサ22と、室内を空調する目標温度を設定する空調温度設定器23と、外気温度を測定する外気温度センサ24とがマイクロコンピュータ25に接続され、そのマイクロコンピュータ25に空調用クラッチ3および発電用クラッチ6が接続されている。
【0018】
マイクロコンピュータ25には、空調負荷演算手段26と、比率算出手段27と、クラッチ制御手段28とが備えられている。
空調負荷演算手段26では、室内温度センサ22で測定された室内の温度と、空調温度設定器23で設定された目標温度と、外気温度センサ24で測定された外気温度とに基づき、下記式により空調負荷を演算するようになっている。
X=α(Tr−Ts)+β(To−Tr)+γ
X :空調負荷
Tr:室内温度
Ts:設定目標温度
To:外気温度
α :室内空気の比熱
β :建物の断熱係数
γ :室内の熱負荷(これは、室内の人体やパソコンなどの熱の発生源を考慮したもので、想定される人数やパソコンの台数などによって予め求められるものである。)
【0019】
比率算出手段27では、空調負荷演算手段26で演算された空調負荷Xに基づいて圧縮機4を運転する空調時間taと発電機7を運転する発電時間tgとの比率を算出するようになっている。
すなわち、ガスエンジン1の能力をExとしたときに、
ta=X/Ex、
tg=1−X/Ex
となる。
【0020】
クラッチ制御手段28では、例えば、10分間などの設定時間内における空調時間と発電時間との比率が比率算出手段で算出された比率になるように、空調用クラッチ3と発電用クラッチ6とを間欠的かつ背反的に切替制御するようになっている。
【0021】
上記設定時間としては、切り替え頻度が余り高くならず、かつ、空調の快適さが損なわれない程度の時間が設定され、5〜20分間程度に設定するのが好ましい。また、外気温度に基づき、例えば、冷房の場合であれば、外気温度が設定温度よりも高いときには設定時間を短くし、外気温度が設定温度よりも低いときには設定時間を長くするといったように、設定時間を自動的に変更するように構成しても良い。
【0022】
上記構成により、空調負荷の変動に基づき、図4のクラッチの切り替え状態の説明に供するタイムチャートに示すように、空調負荷(ここでは冷房の場合を示す)が高いほど、設定時間内における冷房時間が長くなり、空調負荷が低くなるに伴って、設定時間内における冷房時間が短くなり、残余の時間が発電時間となって発電が行われるようになっている。このような発電時間の長短によって発電電力量が変動することになるが、不足分は系統連系により商用電力で補充でき、支障は無い。
【0023】
図5は、他の実施例のクラッチの切り替え状態の説明に供するタイムチャートであり、上記実施例と異なるところは次の通りである。
すなわち、図示しないが、室内温度センサで測定される室内温度と、空調温度設定器23で設定される目標温度tを間にした上限設定温度+Δtと下限設定温度−Δtとが比較され、室内温度が下限設定温度−Δtまで下降するに伴って空調用クラッチ3を切り(OFF)、それに伴い背反的に発電用クラッチ6を入れる(ON)ようになっている。
【0024】
しかる後、室内温度が上限設定温度+Δtまで上昇するに伴って空調用クラッチ3を入れ(ON)、それに伴い背反的に発電用クラッチ6を切る(OFF)ようになっている。
【0025】
上記実施例では、ガスエンジン1からの排熱により給湯を行うようにしているが、排熱を冷媒回路8の室外側熱交換器12などで、暖房時の冷媒加熱に利用するとか、あるいは、吸収式冷凍機における再生器の加熱源に利用して冷房を行うとか、更には、ガスボイラの熱源に利用して発生した蒸気でガスタービンを駆動し、発電機や各種の機械装置を駆動するように構成するなど、その排熱の利用形態は各種の変形が可能である。
【0026】
また、上記実施例では、室内温度と目標温度と外気温度などに基づいて演算した空調負荷を空調需要とし、その空調需要に基づいて空調用クラッチ3と発電用クラッチ6とを間欠的かつ背反的に切り替え制御しているが、本発明としては、例えば、空調需要を室内温度と目標温度とに基づく空調負荷によって判断し、冷房の場合であれば、室内温度が目標温度よりも低くなったとき(空調負荷が設定値よりも低くなったとき)に、空調用クラッチ3を切って発電用クラッチ6を入れ、逆に、室内温度が目標温度よりも高くなったとき(空調負荷が設定値よりも高くなったとき)に、空調用クラッチ3を入れて発電用クラッチ6を切るといったようにして、空調用クラッチ3と発電用クラッチ6とを間欠的かつ背反的に切り替え制御するように構成するものでも良い。
【0027】
また、上記実施例では、ガスエンジン1によって発電機3を駆動して電力を取り出す、いわゆるコジェネレーションシステムを示したが、ガスエンジン1によって各種の機械装置を駆動する場合にも適用できる。
【0028】
上述実施例のガスエンジン1としては、汎用のガスエンジンやディーゼルエンジンやガソリンエンジンなど各種のエンジンを用いることができる。
【0029】
【発明の効果】
以上説明したように、請求項1に係る発明のエンジン駆動式ヒートポンプ装置によれば、空調需要があるときには、空調用クラッチを入り状態にして空調を行い、室内などの被空調空間内の温度が目標温度に維持されて空調が不要なときには、発電用クラッチを入り状態にして発電を行い、エンジンの回転数を変えないようにするから、空調用クラッチと発電用クラッチを設け、それらを間欠的かつ背反的に切り替えるように切り替えるだけでありながら、従来のような変速機を設けたりせずに、エンジンを常に定格で運転しながら空調と発電とを行うことができ、その効率を向上でき、空調負荷の変動に対応しながらエンジンを定格運転するものでありながら、構成簡単で安価に、かつ、耐久性の高いものにできる。しかも、空調が不要なときには、エンジンを定格で運転しながら発電を行うことができ、交流電力を得る場合でも、良質の電力を容易に得ることができる。
【図面の簡単な説明】
【図1】本発明に係るエンジン駆動式ヒートポンプ装置の実施例を示す概略構成図である。
【図2】エンジンとクラッチの関係を示す要部の平面図である。
【図3】制御系を示すブロック図である。
【図4】クラッチの切り替え状態の説明に供するタイムチャートである。
【図5】他の実施例のクラッチの切り替え状態の説明に供するタイムチャートである。
【符号の説明】
1…ガスエンジン
3…空調用クラッチ
4…圧縮機
6…発電用クラッチ
7…発電機
22…室内温度センサ
23…空調温度設定器
24…外気温度センサ
26…空調負荷演算手段
27…比率算出手段
28…クラッチ制御手段
[0001]
TECHNICAL FIELD OF THE INVENTION
The present invention relates to an engine-driven heat pump device in which a generator is interlocked to an engine via a clutch for power generation and a compressor is interlocked to the compressor via a clutch for air conditioning.
[0002]
[Prior art]
As this type of engine-driven heat pump device, there has been one disclosed in Patent Document 1 conventionally.
According to this conventional example, a generator is connected to one output shaft of a prime mover (engine), and an air conditioner (compressor) is connected to the other output shaft of the prime mover through a continuously variable transmission to reduce the air conditioning load. The speed ratio of the continuously variable transmission is controlled so as to keep the rotation speed of the generator constant irrespective of the fluctuation.
Thereby, even if the air-conditioning load fluctuates, the rotation speed of the generator, that is, the rotation speed of the prime mover, is kept constant, the prime mover is operated at rated operation to avoid a decrease in efficiency, and the rotation of the generator is kept constant. High-quality power with a constant frequency can be supplied.
[0003]
[Patent Document 1]
JP-A-2002-204598
[Problems to be solved by the invention]
However, when controlling the speed ratio of the continuously variable transmission in accordance with the fluctuation of the air conditioning load, the continuously variable transmission itself is expensive, and the assembly configuration is complicated, and the overall cost is high and the economic efficiency is reduced. there were.
Further, frequent shift operations are required, and there is a disadvantage that durability is low.
In order to obtain electric power having a constant frequency with respect to a decrease in the rotation speed of the generator, an inverter may be used.
[0005]
The present invention has been made in view of such circumstances, and the invention according to claim 1 performs a rated operation of an engine while responding to a change in an air conditioning load. In addition, it is an object of the present invention to provide a highly durable one. The invention according to claim 2 aims to appropriately cope with an air conditioning load. It is an object of the present invention to enable power generation while reliably responding to an increase in load.
[0006]
[Means for Solving the Problems]
The invention according to claim 1 achieves the above object by
In an engine-driven heat pump device in which a generator is linked to an engine via a clutch for power generation and a compressor is linked to a compressor via a clutch for air conditioning,
In a state where the engine is in rated operation, the power generation clutch and the air conditioning clutch are switched intermittently and reciprocally based on air conditioning demand.
[0007]
(Action / Effect)
According to the configuration of the engine-driven heat pump device according to the first aspect of the invention, when there is demand for air conditioning, the air conditioning clutch is engaged to perform air conditioning, and the temperature in the space to be air-conditioned such as a room is maintained at the target temperature. When air conditioning is not required, the power generation clutch is engaged to generate power, and the engine speed is not changed.
Therefore, while only providing the air-conditioning clutch and the power-generating clutch and switching them intermittently and reciprocally, the engine is always operated at the rated speed without providing a conventional transmission. Air conditioning and power generation can be performed, the efficiency thereof can be improved, and the engine can be operated at a rated speed while responding to fluctuations in the air conditioning load. In addition, when air conditioning is unnecessary, power can be generated while the engine is operating at a rated value, and even when AC power is obtained, high-quality power can be easily obtained.
[0008]
In addition, the invention according to claim 2 achieves the above object by:
The engine-driven heat pump device according to claim 1,
An indoor temperature sensor that measures the temperature in the air-conditioned space;
An air-conditioning temperature setting device for setting a target temperature for air-conditioning the air-conditioned space;
An outside air temperature sensor for measuring the outside air temperature,
An air-conditioning load that calculates an air-conditioning load based on the temperature in the air-conditioned space measured by the indoor temperature sensor, the target temperature set by the air-conditioning temperature setter, and the outside air temperature measured by the outside air temperature sensor. Arithmetic means;
Based on the air-conditioning load calculated by the air-conditioning load calculating means, a ratio calculating means for calculating a ratio between the air-conditioning time for operating the compressor and the power generation time for operating the generator,
A clutch control unit that controls switching between the power-generation clutch and the air-conditioning clutch so that the ratio between the air-conditioning time and the power generation time within the set time is the ratio calculated by the ratio calculation unit.
[0009]
(Action / Effect)
According to the configuration of the engine-driven heat pump device of the invention according to claim 2, the air conditioning load is calculated based on the temperature in the space to be air-conditioned such as a room, the set target temperature to be air-conditioned, and the outside air temperature, Based on the air-conditioning load, the compressor is operated at a time rating corresponding to the calculated ratio within the set time, the generator is operated for a time corresponding to other ratios, and the engine is always operated at the rated value.
Therefore, it is possible to appropriately respond to the air conditioning load.
[0010]
In addition, the invention according to claim 3 achieves the above object by:
The engine-driven heat pump device according to claim 1 or 2,
The engine rating is set to be larger than the maximum air conditioning load.
[0011]
(Action / Effect)
According to the configuration of the engine-driven heat pump device according to the third aspect of the present invention, even when the air-conditioning load increases, such as when the cooling load suddenly increases in summer or the like, the capacity is greater than the capacity sufficient to cover the air-conditioning load. Equipped with an engine.
Therefore, it is possible to generate power while reliably responding to an increase in the air conditioning load.
Further, even when the cooling load suddenly increases in summer or the like, it is possible to reliably generate power and contribute to the peak cut of power.
[0012]
BEST MODE FOR CARRYING OUT THE INVENTION
Next, embodiments of the present invention will be described in detail with reference to the drawings.
FIG. 1 is a schematic configuration diagram showing an embodiment of an engine-driven heat pump device according to the present invention, and FIG. 2 is a plan view of a main part showing a relationship between an engine and a clutch. The compressor 4 is interlocked and connected via a first belt-type transmission mechanism 2 and an air-conditioning clutch 3, and power is generated via the second belt-type transmission mechanism 5 and a power-generation clutch 6 to the other output shaft 1a. Machine 7 is interlocked and connected. In FIG. 1, the first and second belt-type transmission mechanisms 2 and 5 are omitted.
[0013]
A four-way switching valve 9, an outdoor heat exchanger 10, an expansion valve 11, and an indoor heat exchanger 12 are interposed in a refrigerant circuit 8 with the compressor 4 interposed therebetween. A cooling operation state in which the outdoor heat exchanger 10 functions as a condenser and the indoor heat exchanger 12 functions as an evaporator, and a cooling operation state in which the outdoor heat exchanger 10 functions as an evaporator, It is configured to obtain a heating operation state that acts as a condenser.
[0014]
An exhaust pipe 13 for high-temperature exhaust gas discharged from the gas engine 1 is provided with a denitration device 14 and a first heat exchanger 15. Further, a circulation pump 17 and a second heat exchanger 18 are interposed in the circulation pipe 16 of the jacket cooling water for cooling the gas engine 1.
[0015]
A water supply pipe 19 is introduced so that the first and second heat exchangers 15 and 18 are arranged in series, and the water supply pipe 19 is connected to a hot water storage tank 20 to recover waste heat discharged from the gas engine 1. The hot water of high temperature is obtained, and the obtained hot water is stored in the hot water storage tank 20. Hot water stored in the hot water storage tank 20 is supplied to a kitchen, a washroom, a bathtub, and the like via a hot water supply pipe 21.
[0016]
The rating of the gas engine 1 is set larger than the predicted maximum air-conditioning load, and even when the air-conditioning load increases, such as when the cooling load suddenly increases in summer or the like, power generation is performed while covering the air-conditioning load. It is configured to be able to do it. In addition, power can be reliably generated even in summer or the like, which can contribute to peak power cut.
[0017]
As shown in the block diagram of the control system in FIG. 3, an indoor temperature sensor 22 that is provided in a room as an air-conditioned space provided with the indoor heat exchanger 12 and measures the indoor temperature, and a target temperature for air-conditioning the room is provided. An air conditioning temperature setter 23 to be set and an outside air temperature sensor 24 for measuring the outside air temperature are connected to a microcomputer 25, and the air conditioning clutch 3 and the power generation clutch 6 are connected to the microcomputer 25.
[0018]
The microcomputer 25 includes an air conditioning load calculating unit 26, a ratio calculating unit 27, and a clutch control unit 28.
The air-conditioning load calculating means 26 calculates the following equation based on the indoor temperature measured by the indoor temperature sensor 22, the target temperature set by the air-conditioning temperature setter 23, and the outside air temperature measured by the outside air temperature sensor 24. The air-conditioning load is calculated.
X = α (Tr−Ts) + β (To−Tr) + γ
X: air conditioning load Tr: indoor temperature Ts: set target temperature To: outside air temperature α: specific heat of indoor air β: thermal insulation coefficient of building γ: indoor heat load (this is a source of heat such as a human body or a personal computer in the room) Is considered in advance, and is obtained in advance based on the assumed number of persons and the number of personal computers.)
[0019]
The ratio calculation means 27 calculates the ratio between the air conditioning time ta for operating the compressor 4 and the power generation time tg for operating the generator 7 based on the air conditioning load X calculated by the air conditioning load calculation means 26. I have.
That is, when the capacity of the gas engine 1 is Ex,
ta = X / Ex,
tg = 1−X / Ex
It becomes.
[0020]
The clutch control means 28 intermittently controls the air-conditioning clutch 3 and the power-generation clutch 6 such that the ratio between the air-conditioning time and the power generation time within a set time such as 10 minutes becomes the ratio calculated by the ratio calculation means. Switching control is performed reciprocally and reciprocally.
[0021]
As the set time, a time is set such that the switching frequency does not become too high and the comfort of the air conditioning is not impaired, and is preferably set to about 5 to 20 minutes. Also, based on the outside air temperature, for example, in the case of cooling, the setting time is shortened when the outside air temperature is higher than the set temperature, and the setting time is lengthened when the outside air temperature is lower than the set temperature. The time may be automatically changed.
[0022]
With the above configuration, based on the fluctuation of the air conditioning load, as shown in a time chart for explaining the switching state of the clutch in FIG. 4, the higher the air conditioning load (here, the case of cooling), the more the cooling time within the set time. As the air conditioning load decreases, the cooling time within the set time becomes shorter, and the remaining time becomes the power generation time to generate power. Although the amount of generated power fluctuates depending on the length of the power generation time, the shortage can be supplemented with commercial power by system interconnection, and there is no problem.
[0023]
FIG. 5 is a time chart for explaining the clutch switching state of another embodiment, and the difference from the above embodiment is as follows.
That is, although not shown, the upper limit temperature + Δt and the lower limit set temperature −Δt between the indoor temperature measured by the indoor temperature sensor and the target temperature t set by the air conditioning temperature setter 23 are compared, and the indoor temperature is compared. Is lowered to the lower limit set temperature −Δt, the air-conditioning clutch 3 is disengaged (OFF), and the power generation clutch 6 is reciprocally engaged (ON) accordingly.
[0024]
Thereafter, the air-conditioning clutch 3 is turned on (ON) as the room temperature rises to the upper limit set temperature + Δt, and the power-generating clutch 6 is turned off (OFF) accordingly.
[0025]
In the above embodiment, the hot water is supplied by the exhaust heat from the gas engine 1. However, the exhaust heat is used for heating the refrigerant during heating by the outdoor heat exchanger 12 of the refrigerant circuit 8, or the like. For example, cooling is performed using a heating source of a regenerator in an absorption refrigerator, or a steam generated by using a heat source of a gas boiler is used to drive a gas turbine to drive a generator and various mechanical devices. For example, the exhaust heat can be used in various forms.
[0026]
In the above embodiment, the air conditioning load calculated based on the room temperature, the target temperature, the outside air temperature, and the like is used as the air conditioning demand, and the air conditioning clutch 3 and the power generation clutch 6 are intermittently and reciprocally based on the air conditioning demand. However, according to the present invention, for example, the air conditioning demand is determined based on the air conditioning load based on the room temperature and the target temperature, and in the case of cooling, when the room temperature becomes lower than the target temperature. When the air-conditioning load becomes lower than the set value, the air-conditioning clutch 3 is disengaged and the power-generating clutch 6 is turned on. Conversely, when the room temperature becomes higher than the target temperature (when the air-conditioning load becomes lower than the set value). The air-conditioning clutch 3 is engaged and the power-generating clutch 6 is disengaged, so that the air-conditioning clutch 3 and the power-generating clutch 6 are intermittently and reciprocally switched. It may be intended to be formed.
[0027]
Further, in the above-described embodiment, a so-called cogeneration system in which the generator 3 is driven by the gas engine 1 to extract electric power has been described. However, the present invention can also be applied to a case where various mechanical devices are driven by the gas engine 1.
[0028]
As the gas engine 1 of the above embodiment, various engines such as a general-purpose gas engine, a diesel engine, and a gasoline engine can be used.
[0029]
【The invention's effect】
As described above, according to the engine-driven heat pump device of the first aspect of the invention, when there is demand for air conditioning, the air-conditioning clutch is engaged to perform air-conditioning, and the temperature in the space to be air-conditioned such as a room is reduced. When the target temperature is maintained and air conditioning is not required, the power generation clutch is engaged to generate power and to keep the engine speed unchanged. In addition, it is possible to perform air-conditioning and power generation while always operating the engine at the rated speed without providing a conventional transmission, while improving the efficiency. The engine can be rated at a rated operation while responding to fluctuations in the air-conditioning load. In addition, when air conditioning is unnecessary, power can be generated while the engine is operating at a rated value, and even when AC power is obtained, high-quality power can be easily obtained.
[Brief description of the drawings]
FIG. 1 is a schematic configuration diagram showing an embodiment of an engine-driven heat pump device according to the present invention.
FIG. 2 is a plan view of a main part showing a relationship between an engine and a clutch.
FIG. 3 is a block diagram showing a control system.
FIG. 4 is a time chart for explaining a clutch switching state;
FIG. 5 is a time chart for describing a clutch switching state according to another embodiment.
[Explanation of symbols]
DESCRIPTION OF SYMBOLS 1 ... Gas engine 3 ... Air-conditioning clutch 4 ... Compressor 6 ... Power generation clutch 7 ... Generator 22 ... Indoor temperature sensor 23 ... Air-conditioning temperature setter 24 ... Outside air temperature sensor 26 ... Air-conditioning load calculation means 27 ... Ratio calculation means 28 ... Clutch control means

Claims (3)

エンジンに、発電用クラッチを介して発電機を連動連結するとともに、空調用クラッチを介して圧縮機を連動連結したエンジン駆動式ヒートポンプ装置において、
前記エンジンを定格運転する状態で、前記発電用クラッチと前記空調用クラッチとを、空調需要に基づいて、間欠的かつ背反的に切り替えるように構成してあることを特徴とするエンジン駆動式ヒートポンプ装置。
In an engine-driven heat pump device in which a generator is linked to an engine via a clutch for power generation and a compressor is linked to a compressor via a clutch for air conditioning,
An engine-driven heat pump device, wherein the power generation clutch and the air conditioning clutch are intermittently and reciprocally switched based on air conditioning demand in a state where the engine is operated at rated operation. .
請求項1に記載のエンジン駆動式ヒートポンプ装置において、
被空調空間内の温度を測定する室内温度センサと、
被空調空間内を空調する目標温度を設定する空調温度設定器と、
外気温度を測定する外気温度センサと、
前記室内温度センサで測定された被空調空間内の温度と、前記空調温度設定器で設定された目標温度と、前記外気温度センサで測定された外気温度とに基づいて空調負荷を演算する空調負荷演算手段と、
前記空調負荷演算手段で演算された空調負荷に基づいて、圧縮機を運転する空調時間と発電機を運転する発電時間との比率を算出する比率算出手段と、
設定時間内における空調時間と発電時間との比率が前記比率算出手段で算出された比率になるように、発電用クラッチと空調用クラッチとを切替制御するクラッチ制御手段と、を備えているエンジン駆動式ヒートポンプ装置。
The engine-driven heat pump device according to claim 1,
An indoor temperature sensor that measures the temperature in the air-conditioned space;
An air-conditioning temperature setting device for setting a target temperature for air-conditioning the air-conditioned space;
An outside air temperature sensor for measuring the outside air temperature,
An air-conditioning load that calculates an air-conditioning load based on the temperature in the air-conditioned space measured by the indoor temperature sensor, the target temperature set by the air-conditioning temperature setter, and the outside air temperature measured by the outside air temperature sensor. Arithmetic means;
Based on the air-conditioning load calculated by the air-conditioning load calculating means, a ratio calculating means for calculating a ratio between the air-conditioning time for operating the compressor and the power generation time for operating the generator,
An engine drive provided with clutch control means for switching control between the power generation clutch and the air conditioning clutch such that the ratio between the air conditioning time and the power generation time within the set time becomes the ratio calculated by the ratio calculation means. Type heat pump device.
請求項1または2に記載のエンジン駆動式ヒートポンプ装置において、
エンジンの定格を、最大空調負荷よりも大に設定してあるエンジン駆動式ヒートポンプ装置。
The engine-driven heat pump device according to claim 1 or 2,
An engine-driven heat pump device with an engine rating greater than the maximum air conditioning load.
JP2003061674A 2003-03-07 2003-03-07 Engine-driven heat pump device Expired - Fee Related JP4293342B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2003061674A JP4293342B2 (en) 2003-03-07 2003-03-07 Engine-driven heat pump device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2003061674A JP4293342B2 (en) 2003-03-07 2003-03-07 Engine-driven heat pump device

Publications (2)

Publication Number Publication Date
JP2004271032A true JP2004271032A (en) 2004-09-30
JP4293342B2 JP4293342B2 (en) 2009-07-08

Family

ID=33123834

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2003061674A Expired - Fee Related JP4293342B2 (en) 2003-03-07 2003-03-07 Engine-driven heat pump device

Country Status (1)

Country Link
JP (1) JP4293342B2 (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008241159A (en) * 2007-03-27 2008-10-09 Matsushita Electric Works Ltd Air conditioning control system
JP2009074745A (en) * 2007-09-21 2009-04-09 Shinwa Tekku Kk Rooftop gas heat pump cogeneration apparatus
JP2009074744A (en) * 2007-09-21 2009-04-09 Shinwa Tekku Kk Gas heat pump cogeneration apparatus
JP2012229899A (en) * 2011-04-27 2012-11-22 Osaka Gas Co Ltd Method of starting-up power generating and air conditioning device and device for starting-up the same

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008241159A (en) * 2007-03-27 2008-10-09 Matsushita Electric Works Ltd Air conditioning control system
JP2009074745A (en) * 2007-09-21 2009-04-09 Shinwa Tekku Kk Rooftop gas heat pump cogeneration apparatus
JP2009074744A (en) * 2007-09-21 2009-04-09 Shinwa Tekku Kk Gas heat pump cogeneration apparatus
JP2012229899A (en) * 2011-04-27 2012-11-22 Osaka Gas Co Ltd Method of starting-up power generating and air conditioning device and device for starting-up the same

Also Published As

Publication number Publication date
JP4293342B2 (en) 2009-07-08

Similar Documents

Publication Publication Date Title
JP4548694B2 (en) Engine exhaust heat recovery device
EP1895248A2 (en) Air-conditioning and electric power generating system and control method for the same
EP1628094A3 (en) Air conditioning system combined with an electricity generating system
CN100337074C (en) Thermoelectric cold triple supply system based on gas engine hot pump and gas turbine engine
KR20010105235A (en) Multi Energy System
JP2010236711A (en) Power generating-air conditioning system
JP2004271033A (en) Engine-driven heat pump device
JP4934413B2 (en) Air conditioner
JP2006317121A (en) Air conditioner
JP4293342B2 (en) Engine-driven heat pump device
JP3770223B2 (en) Heating system and housing with heating system
JP2010007879A (en) Power generating-air conditioning system
US20150362231A1 (en) Gas heat pump air conditioning system
JP4208622B2 (en) Air-conditioning system using engine-driven heat pump
KR100462834B1 (en) Electricity and Air Conditioning Supply Method and the Device that use Co-Generation GHP
JP5545201B2 (en) Stationary cogeneration system
JP4986537B2 (en) Gas turbine built-in absorption refrigerator
JP2011007356A (en) Gas heat pump type air conditioning device
JP2004293881A (en) Engine driven heat pump device
JP4555718B2 (en) Air conditioning and power generation system
JP2006280075A (en) Air-conditioning/generation system
JP2004324545A (en) Cogeneration device
JP2005195184A (en) Engine driven heat pump device
KR101470545B1 (en) Co-generation system and a method of the same
JP4588511B2 (en) Air conditioning and power generation system

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20051228

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20080930

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20081007

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20081204

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20090401

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20090401

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120417

Year of fee payment: 3

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20150417

Year of fee payment: 6

LAPS Cancellation because of no payment of annual fees