JP2004271027A - Integrated heat exchanger for double-utility absorption refrigerator - Google Patents

Integrated heat exchanger for double-utility absorption refrigerator Download PDF

Info

Publication number
JP2004271027A
JP2004271027A JP2003061586A JP2003061586A JP2004271027A JP 2004271027 A JP2004271027 A JP 2004271027A JP 2003061586 A JP2003061586 A JP 2003061586A JP 2003061586 A JP2003061586 A JP 2003061586A JP 2004271027 A JP2004271027 A JP 2004271027A
Authority
JP
Japan
Prior art keywords
low
temperature regenerator
core
condenser
heat exchanger
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2003061586A
Other languages
Japanese (ja)
Inventor
Taiji Sakai
耐事 坂井
Tsutomu Wada
努 和田
Iichiro Kawamura
威一郎 川村
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toyo Radiator Co Ltd
Original Assignee
Toyo Radiator Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toyo Radiator Co Ltd filed Critical Toyo Radiator Co Ltd
Priority to JP2003061586A priority Critical patent/JP2004271027A/en
Publication of JP2004271027A publication Critical patent/JP2004271027A/en
Pending legal-status Critical Current

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02ATECHNOLOGIES FOR ADAPTATION TO CLIMATE CHANGE
    • Y02A30/00Adapting or protecting infrastructure or their operation
    • Y02A30/27Relating to heating, ventilation or air conditioning [HVAC] technologies
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02BCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO BUILDINGS, e.g. HOUSING, HOUSE APPLIANCES OR RELATED END-USER APPLICATIONS
    • Y02B30/00Energy efficient heating, ventilation or air conditioning [HVAC]
    • Y02B30/62Absorption based systems

Landscapes

  • Sorption Type Refrigeration Machines (AREA)
  • Heat-Exchange Devices With Radiators And Conduit Assemblies (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide an integrated heat exchanger capable of being miniaturized and reducing the cost by integrating a low-temperature regenerator and a condenser in a double-utility absorption refrigerator. <P>SOLUTION: In this double-utility absorption refrigerator utilizing high-temperature refrigerant vapor generated in a high-temperature regenerator for heating the low-temperature regenerator, the integrated heat exchanger 1 composed of the low-temperature regenerator and the condenser is used, elements 2c, 3c are formed by overlapping two plates of which both surfaces are made uneven, to each other, a plurality of elements 2c, 3c are overlapped to constitute a low-temperature regenerator core 2 and a condenser core 3, the low-temperature regenerator core 2 and the condenser core 3 are accommodated in one casing 5 in parallel with each other, and a space excluding an upper space of the casing 5 is partitioned into a low-temperature regenerator side and a condenser side by a partitioning plate 4. <P>COPYRIGHT: (C)2004,JPO&NCIPI

Description

【0001】
【発明の属する技術分野】
本発明は、高温再生器で発生した高温冷媒蒸気を低温再生器の加熱に使用する二重効用吸収冷凍機における熱交換器に関する。
【0002】
【従来の技術】
二重効用吸収冷凍機は、単効用吸収冷凍機の再生器(低温再生器)のほかにもう1基の再生器(高温再生器)を設け、高温再生器で稀吸収液を中間濃度吸収液まで濃縮し、このとき発生した高温冷媒蒸気を低温再生器に導いて中間濃度吸収液を加熱してさらに濃縮し濃吸収液に再生して吸収器に戻し、蒸気消費率の低下、その他成績係数(冷房能力/入熱量)の増加、入熱量の減少も図ったものである。
【0003】
低温再生器で発生した蒸気は、凝縮器に回送され、低温再生器と凝縮器は別体に構成されている(例えば、特許文献1参照。)。
【0004】
【特許文献1】
特開2002−061982号公報
【0005】
【発明が解決しようとする課題】
低温再生器と凝縮器が別置きにされることから、部品点数が多く、大型化し、コスト高であった。
【0006】
本発明は、斯かる点に鑑みなされたもので、その目的とする処は、二重効用吸収冷凍機における低温再生器と凝縮器とを一体に構成してコンパクト化と低コスト化を図ることができる一体型熱交換器を供する点にある。
【0007】
【課題を解決するための手段及び作用効果】
上記目的を達成するために、本請求項1記載の発明は、高温再生器で発生した高温冷媒蒸気を低温再生器の加熱に使用する二重効用吸収冷凍機において、前記低温再生器と凝縮器が組合された一体型熱交換器であって、両面に凹凸加工を施した2枚のプレートを互いに重ね合わせてエレメントを形成し同エレメントを複数重ね合わせて低温再生器コアと凝縮器コアが構成され、1ケーシング内に前記低温再生器コアと前記凝縮器コアが並んで収容され、同ケーシングの上方空間を除く空間が仕切板により低温再生器側と凝縮器側とに仕切られる二重効用吸収冷凍機の一体型熱交換器とした。
【0008】
2枚のプレートを互いに重ね合わせたエレメントを複数重ね合わせて低温再生器コアと凝縮器コアを構成し、両コアを並べて1ケーシング内に収容し一体に組付けた一体型熱交換器であるので、部品点数が少なくコンパクト化とともに低コスト化を図ることができる。
【0009】
請求項2記載の発明は、請求項1記載の二重効用吸収冷凍機の一体型熱交換器において、前記低温再生器コアと前記凝縮器コアを間に前記仕切板を介装して背中合せに重ねて前記ケーシング内に収容したことを特徴とする。
【0010】
低温再生器コアと凝縮器コアとを仕切板で仕切って一体型熱交換器全体をコンパクトに構成することができる。
【0011】
請求項3記載の発明は、請求項1記載の二重効用吸収冷凍機の一体型熱交換器において、前記低温再生器コアと前記凝縮器コアを間に前記仕切板を介装して横並びに配置して前記ケーシング内に収容したことを特徴とする。
【0012】
低温再生器コアと凝縮器コアとを仕切板で仕切って一体型熱交換器全体をコンパクトに構成することができる。
【0013】
請求項4記載の発明は、請求項1から請求項3までのいずれかの項記載の二重効用吸収冷凍機の一体型熱交換器において、前記低温再生器は、エレメント内に高温冷媒蒸気を通し、同エレメントに上から中間濃度吸収液を流下させる流下液膜式構造とすることを特徴とする。
【0014】
吸収冷凍機の低温再生器を流下液膜式構造とすることで、沸騰熱伝達率を高く維持して再生効率を向上させることができる。
【0015】
【発明の実施の形態】
以下本発明に係る一実施の形態について図1ないし図3に基づき説明する。
本実施の形態に係る二重効用吸収冷凍機10の一体型熱交換器1について図1および図2に基づき説明する。
【0016】
一体型熱交換器1は、二重効用吸収冷凍機10の低温再生器と凝縮器を一体に構成した一体型熱交換器である。
【0017】
両面に凹凸加工を施した2枚のステンレス製のプレート2a,2bを互いに重ね合せて再生器側エレメント2cを形成し、同様に両面に凹凸加工を施した2枚のステンレス製または銅製のプレート3a,3bを互いに重ね合せて凝縮器側エレメント3cを形成する。
【0018】
そして再生器側エレメント2cをさらに複数平行に重ね合わせて各エレメント内部を互いに連通させて高温冷媒蒸気の通路とした低温再生器コア2を形成し、最外側のエレメント2cから冷媒蒸気供給管2dと冷媒蒸気排出管2eが延出している。
【0019】
同様に凝縮器側エレメント3cを複数平行に重ね合わせて各エレメント内部を互いに連通させて冷却水の通路とした凝縮器コア3を形成し、最外側のエレメント3cから冷却水供給管3dと冷却水排出管3eが延出している。
【0020】
このような低温再生器コア2と凝縮器コア3を、図2に示すように間に仕切板4を介装して背中合せに重ねてケーシング5内に収容され、位置決めされて、これらが一体に組み付けられる。
【0021】
ケーシング5内は、上方空間5aを除き仕切板4によって低温再生器側と凝縮器側とに仕切られ、ケーシング5外に冷媒蒸気供給管2d,冷媒蒸気排出管2e,冷却水供給管3d,冷却水排出管3eが突出している。
【0022】
このようにして低温再生器コア2,凝縮器コア3,仕切板4とケーシング5の組立体の仮の組付け工程後、これらはロウ付け工程に移され、各接触部がロウ付けされ、全体が堅固に結合されて多板式の一体型熱交換器1が製造される。
【0023】
低温再生器コア2の上方には散布ノズル6が、ケーシング5を貫通して配設され、散布ノズル6には中間濃度吸収液が供給されて低温再生器コア2に上方から散布され、再生器側エレメント2cの外表面を流下する流下液膜式構造をなしている。
【0024】
低温再生器コア2の下方のケーシング底部には、貯留した濃吸収液を排出する吸収溶液排出口2fが設けられている。
他方凝縮器コア3の下方のケーシング底部には、水蒸気が凝縮した凝縮液を排出する液冷媒排出口3fが設けられている。
【0025】
以上のように本一体型熱交換器1は、低温再生器コア2と凝縮器コア3とを1ケーシング5内に収容して全体が堅固に結合されて一体に構成されているので、部品点数が少なくコンパクト化とともに低コスト化を図ることができる。
【0026】
本一体型熱交換器1を組み込んだ二重効用吸収冷凍機10による冷房サイクルフロー図を図3に示す。
吸収液(LiBr水溶液)が封入された吸収器12で水分を吸収して薄くなった稀吸収液が、溶液ポンプ20により低温溶液熱交換器21および高温溶液熱交換器22を経て高温再生器11に送られ、高温再生器11で熱源機11aによる加熱により稀吸収液から水分を追い出し中間濃度吸収液まで濃縮する。
【0027】
このとき発生した高温冷媒蒸気を、本一体型熱交換器1の低温再生器コア2の冷媒蒸気供給管2dに導き再生器側エレメント2c内に供給して加熱する。
一方、高温再生器11で濃縮された中間濃度吸収液は、高温溶液熱交換器22を経て散布ノズル6に供給され、低温再生器コア2に散布される。
【0028】
したがって低温再生器コア2の再生器側エレメント2cの外表面を流下する中間濃度吸収液は、再生器側エレメント2c内を通る高温冷媒蒸気により加熱されて効率良く水分を蒸発させてさらに濃縮され、濃縮された濃吸収液は吸収溶液排出口2fから排出される。
この濃吸収液は低温溶液熱交換器21を経て吸収器12に戻される。
【0029】
低温再生器コア2で蒸発した水蒸気は、ケーシング5内の仕切板4を跨ぐ上方空間5aを介して凝縮器コア3側に移動し、凝縮器コア3の凝縮器側エレメント3c内には冷却水ポンプ23によりクーリングタワー14から吸収器12を経由した冷却水が冷却水供給管3dを介して供給される。
【0030】
したがって凝縮器コア3側に移動した水蒸気は、冷却水により凝縮器側エレメント3cの外表面で凝縮されて凝縮器コア3下方に溜まり、液冷媒排出口3fから排出され、膨張弁24を介して蒸発器13に送られる。
【0031】
蒸発器13は、室内機15との間に冷温水ポンプ25により冷水が循環する構成をなしており、吸収器12中の吸収液が水分を吸収するに伴い連通する蒸発器13内の水分は蒸発し、その蒸発の潜熱により水が冷却されて室内機15に送られ冷房が行われる。
【0032】
以上のように冷房サイクルフローに用いられた二重効用吸収冷凍機10において、低温再生器と凝縮器とを一体化した一体型熱交換器1が適用される。
【0033】
なお低温再生器は、上記のように再生器側エレメント2cの外表面を流下する流下液膜式構造とせずに、中間濃度吸収液で低温再生器コア2が完全に満たされる満液式または低温再生器コア2が半分満たされる半満液式の再生器としてもよい。
【0034】
しかし前記実施の形態にある流下液膜式が、沸騰熱伝達率を高く維持でき再生効率が最も良い。
【0035】
以上の一体型熱交換器1は、図2に示すように低温再生器コア2と凝縮器コア3を間に仕切板4を介装して背中合せに重ねてケーシング5内に収容される構造のものであったが、別の実施の形態に係る一体型熱交換器51は、図4に示すように低温再生器コア52と凝縮器コア53を間に仕切板54を介装して横並びに配置してケーシング内に収容する構造である。
【0036】
低温再生器コア52の再生器側エレメント52cと凝縮器コア53の凝縮器側エレメント53cが仕切板54を間に挟んで略一列に配列され、低温再生器コア52の冷媒蒸気供給管52d,冷媒蒸気排出管52eおよび凝縮器コア53の冷却水供給管53d,冷却水排出管53eは全て同一方向に突出している。
【0037】
本一体型熱交換器51の使用の仕方および作用効果は、前記一体型熱交換器1と全く同じであり、低温再生器コア52と凝縮器コア53とを仕切板54で仕切って一体型熱交換器51全体をコンパクトに構成することができる。

【0038】
しかし両者は全体の形状が異なり、一体型熱交換器51の方が若干偏平に構成することができ、また冷媒蒸気供給管52d,冷媒蒸気排出管52e,冷却水供給管53d,冷却水排出管53eの突出方向も異なり、使用状況により使い分けることができる。
【図面の簡単な説明】
【図1】本発明の一実施の形態に係る二重効用吸収冷凍機の一体型熱交換器の断面図である。
【図2】低温再生器コアと凝縮器コアの配置構造を示す斜視図である。
【図3】同二重効用吸収冷凍機による冷房サイクルフローを示す図である。
【図4】別の実施の形態に係る低温再生器コアと凝縮器コアの配置構造を示す斜視図である。
【符号の説明】
1…一体型熱交換器、
2…低温再生器コア、2a,2b…プレート、2c…再生器側エレメント、2d…冷媒蒸気供給管、2e…冷媒蒸気排出管、2f…吸収溶液排出口、
3…凝縮器コア、3a,3b…プレート、3c…凝縮器側エレメント、3d…冷却水供給管、3e…冷却水排出管、3f…液冷媒排出口、
4…仕切板、5…ケーシング、6…散布ノズル、11…高温再生器、11a…熱源機、12…吸収器、13…蒸発器、
15…室内機、20…溶液ポンプ、21…低温溶液熱交換器、22…高温溶液熱交換器、23…冷却水ポンプ、24…膨張弁、25…冷温水ポンプ、
51…一体型熱交換器、
52…低温再生器コア、52c…再生器側エレメント、52d…冷媒蒸気供給管、52e…冷媒蒸気排出管、
53…凝縮器コア、53c…凝縮器側エレメント、53d…冷却水供給管、53e…冷却水排出管、
54…仕切板。
[0001]
TECHNICAL FIELD OF THE INVENTION
The present invention relates to a heat exchanger in a double-effect absorption refrigerator that uses high-temperature refrigerant vapor generated in a high-temperature regenerator for heating a low-temperature regenerator.
[0002]
[Prior art]
The double-effect absorption refrigerator has another regenerator (high-temperature regenerator) in addition to the regenerator (low-temperature regenerator) of the single-effect absorption refrigerator. The high-temperature refrigerant vapor generated at this time is led to a low-temperature regenerator, where the intermediate-concentration absorbent is heated and further concentrated to regenerate into a concentrated absorbent and returned to the absorber, reducing the steam consumption rate and other coefficients of performance. (Cooling capacity / heat input) was also increased, and the heat input was also reduced.
[0003]
The steam generated in the low-temperature regenerator is sent to the condenser, and the low-temperature regenerator and the condenser are configured separately (for example, see Patent Document 1).
[0004]
[Patent Document 1]
Japanese Patent Application Laid-Open No. 2002-061982
[Problems to be solved by the invention]
Since the low-temperature regenerator and the condenser are placed separately, the number of parts is large, the size is large, and the cost is high.
[0006]
The present invention has been made in view of such a point, and an object thereof is to configure a low-temperature regenerator and a condenser in a double-effect absorption refrigerator integrally to achieve compactness and cost reduction. The point is to provide an integrated heat exchanger that can be used.
[0007]
Means for Solving the Problems and Functions and Effects
In order to achieve the above object, the invention according to claim 1 is directed to a double-effect absorption refrigerator in which high-temperature refrigerant vapor generated in a high-temperature regenerator is used for heating a low-temperature regenerator. Is an integrated heat exchanger in which two plates, each of which has an uneven surface, are superimposed on each other to form an element, and a plurality of the elements are superposed to form a low-temperature regenerator core and a condenser core. And the low-temperature regenerator core and the condenser core are housed side by side in one casing, and a space other than an upper space of the casing is partitioned into a low-temperature regenerator side and a condenser side by a partition plate. An integrated heat exchanger for the refrigerator was used.
[0008]
A low-temperature regenerator core and a condenser core are formed by superposing a plurality of elements in which two plates are superimposed on each other, and both cores are arranged side by side and housed in a single casing and integrally assembled. In addition, the number of parts is small, and the size and cost can be reduced.
[0009]
According to a second aspect of the present invention, in the integrated heat exchanger of the double-effect absorption refrigerator according to the first aspect, the low-temperature regenerator core and the condenser core are interposed with the partition plate interposed therebetween to be back to back. It is characterized by being housed in the casing in an overlapping manner.
[0010]
By partitioning the low-temperature regenerator core and the condenser core with a partition plate, the entire integrated heat exchanger can be made compact.
[0011]
According to a third aspect of the present invention, in the integrated heat exchanger of the double effect absorption refrigerator according to the first aspect, the low-temperature regenerator core and the condenser core are arranged side by side with the partition plate interposed therebetween. It is characterized by being arranged and housed in the casing.
[0012]
By partitioning the low-temperature regenerator core and the condenser core with a partition plate, the entire integrated heat exchanger can be made compact.
[0013]
According to a fourth aspect of the present invention, in the integrated heat exchanger of the double effect absorption refrigerator according to any one of the first to third aspects, the low-temperature regenerator includes a high-temperature refrigerant vapor in an element. It is characterized in that it has a falling liquid film structure in which the intermediate concentration absorbing liquid flows down from above through the same element.
[0014]
When the low-temperature regenerator of the absorption refrigerator has a falling liquid film type structure, the boiling heat transfer coefficient can be maintained high and the regeneration efficiency can be improved.
[0015]
BEST MODE FOR CARRYING OUT THE INVENTION
An embodiment according to the present invention will be described below with reference to FIGS.
The integrated heat exchanger 1 of the double effect absorption refrigerator 10 according to the present embodiment will be described with reference to FIGS.
[0016]
The integrated heat exchanger 1 is an integrated heat exchanger in which the low-temperature regenerator and the condenser of the double-effect absorption refrigerator 10 are integrated.
[0017]
Two stainless steel plates 2a and 2b having both surfaces roughened are superimposed on each other to form a regenerator-side element 2c, and two stainless steel or copper plates 3a similarly roughened on both surfaces are formed. , 3b are superimposed on each other to form a condenser-side element 3c.
[0018]
Then, a plurality of regenerator-side elements 2c are further overlapped in parallel to form a low-temperature regenerator core 2 serving as a passage for high-temperature refrigerant vapor by connecting the insides of the respective elements to each other, and forming a refrigerant vapor supply pipe 2d from the outermost element 2c. A refrigerant vapor discharge pipe 2e extends.
[0019]
Similarly, a plurality of condenser-side elements 3c are overlapped in parallel to form a condenser core 3 serving as a cooling water passage by communicating the insides of the respective elements with each other. From the outermost element 3c, a cooling water supply pipe 3d and a cooling water The discharge pipe 3e extends.
[0020]
The low-temperature regenerator core 2 and the condenser core 3 are placed back to back with a partition plate 4 interposed therebetween as shown in FIG. Assembled.
[0021]
The inside of the casing 5 is divided into a low-temperature regenerator side and a condenser side by a partition plate 4 except for an upper space 5a, and outside the casing 5, a refrigerant vapor supply pipe 2d, a refrigerant vapor discharge pipe 2e, a cooling water supply pipe 3d, and a cooling water supply pipe. The water discharge pipe 3e protrudes.
[0022]
After the provisional assembly process of the assembly of the low-temperature regenerator core 2, the condenser core 3, the partition plate 4 and the casing 5 in this way, these are transferred to a brazing process, and the respective contact portions are brazed. Are firmly connected to produce a multi-plate integrated heat exchanger 1.
[0023]
A spray nozzle 6 is disposed above the low-temperature regenerator core 2 so as to penetrate the casing 5. The spray nozzle 6 is supplied with an intermediate-concentration absorbing liquid and sprayed onto the low-temperature regenerator core 2 from above. It has a falling liquid film structure that flows down the outer surface of the side element 2c.
[0024]
At the bottom of the casing below the low-temperature regenerator core 2, an absorbing solution outlet 2f for discharging the stored concentrated absorbing solution is provided.
On the other hand, at the bottom of the casing below the condenser core 3, a liquid refrigerant discharge port 3f for discharging a condensed liquid in which water vapor is condensed is provided.
[0025]
As described above, the integrated heat exchanger 1 has the low-temperature regenerator core 2 and the condenser core 3 housed in one casing 5 and is firmly connected as a whole to be integrally formed. Therefore, it is possible to reduce the size and cost as well as the size.
[0026]
FIG. 3 shows a cooling cycle flow chart of the double effect absorption refrigerator 10 incorporating the integrated heat exchanger 1.
The diluted absorbing liquid, which has become thinner by absorbing water in the absorber 12 in which the absorbing liquid (LiBr aqueous solution) is enclosed, is passed through the low-temperature solution heat exchanger 21 and the high-temperature solution heat exchanger 22 by the solution pump 20 and the high-temperature regenerator 11. And the high-temperature regenerator 11 removes moisture from the rare absorbing solution by heating by the heat source device 11a and concentrates it to the intermediate concentration absorbing solution.
[0027]
The high-temperature refrigerant vapor generated at this time is guided to the refrigerant vapor supply pipe 2d of the low-temperature regenerator core 2 of the integrated heat exchanger 1, and is supplied to the regenerator-side element 2c to be heated.
On the other hand, the intermediate-concentration absorbent concentrated in the high-temperature regenerator 11 is supplied to the spray nozzle 6 through the high-temperature solution heat exchanger 22 and is sprayed on the low-temperature regenerator core 2.
[0028]
Therefore, the intermediate-concentration absorbing liquid flowing down the outer surface of the regenerator-side element 2c of the low-temperature regenerator core 2 is heated by the high-temperature refrigerant vapor passing through the inside of the regenerator-side element 2c, evaporates moisture efficiently, and is further concentrated. The concentrated concentrated absorbing solution is discharged from the absorbing solution discharge port 2f.
This concentrated absorbent is returned to the absorber 12 via the low-temperature solution heat exchanger 21.
[0029]
The water vapor evaporated in the low-temperature regenerator core 2 moves to the condenser core 3 side via the upper space 5a straddling the partition plate 4 in the casing 5, and the cooling water is contained in the condenser-side element 3c of the condenser core 3. Pump 23 supplies cooling water from cooling tower 14 via absorber 12 via cooling water supply pipe 3d.
[0030]
Therefore, the water vapor that has moved to the condenser core 3 side is condensed by the cooling water on the outer surface of the condenser-side element 3 c and accumulates below the condenser core 3, is discharged from the liquid refrigerant discharge port 3 f, and passes through the expansion valve 24. It is sent to the evaporator 13.
[0031]
The evaporator 13 has a configuration in which chilled water is circulated between the evaporator 13 and the indoor unit 15 by a chilled / hot water pump 25. The water evaporates and is cooled by the latent heat of the evaporation and sent to the indoor unit 15 to be cooled.
[0032]
As described above, in the double effect absorption refrigerator 10 used in the cooling cycle flow, the integrated heat exchanger 1 in which the low-temperature regenerator and the condenser are integrated is applied.
[0033]
The low-temperature regenerator does not have a falling liquid film type structure in which the outer surface of the regenerator-side element 2c flows down as described above, but is a liquid-filled type or a low-temperature type in which the low-temperature regenerator core 2 is completely filled with the intermediate concentration absorbing liquid. It may be a semi-full regenerator in which the regenerator core 2 is half filled.
[0034]
However, the falling liquid film type in the above embodiment can maintain a high boiling heat transfer coefficient and has the best regeneration efficiency.
[0035]
The above integrated heat exchanger 1 has a structure in which a low-temperature regenerator core 2 and a condenser core 3 are stacked back to back with a partition plate 4 interposed therebetween and housed in a casing 5 as shown in FIG. However, as shown in FIG. 4, an integrated heat exchanger 51 according to another embodiment has a low-temperature regenerator core 52 and a condenser core 53 interposed with a partition plate 54 interposed therebetween and arranged side by side. It is a structure that is arranged and accommodated in the casing.
[0036]
The regenerator-side element 52c of the low-temperature regenerator core 52 and the condenser-side element 53c of the condenser core 53 are arranged substantially in a row with a partition plate 54 interposed therebetween. The steam discharge pipe 52e, the cooling water supply pipe 53d of the condenser core 53, and the cooling water discharge pipe 53e all project in the same direction.
[0037]
The manner of use and the function and effect of the integrated heat exchanger 51 are exactly the same as those of the integrated heat exchanger 1, and the low-temperature regenerator core 52 and the condenser core 53 are separated by a partition plate 54 to form an integrated heat exchanger. The entire exchanger 51 can be made compact.
.
[0038]
However, both have different overall shapes, and the integrated heat exchanger 51 can be configured to be slightly flatter. In addition, the refrigerant vapor supply pipe 52d, the refrigerant vapor discharge pipe 52e, the cooling water supply pipe 53d, and the cooling water discharge pipe The projecting direction of 53e is also different, and can be properly used depending on the use situation.
[Brief description of the drawings]
FIG. 1 is a cross-sectional view of an integrated heat exchanger of a double-effect absorption refrigerator according to one embodiment of the present invention.
FIG. 2 is a perspective view showing an arrangement structure of a low-temperature regenerator core and a condenser core.
FIG. 3 is a diagram showing a cooling cycle flow by the double effect absorption refrigerator.
FIG. 4 is a perspective view showing an arrangement structure of a low-temperature regenerator core and a condenser core according to another embodiment.
[Explanation of symbols]
1… Integral heat exchanger,
2 ... low temperature regenerator core, 2a, 2b ... plate, 2c ... regenerator side element, 2d ... refrigerant vapor supply pipe, 2e ... refrigerant vapor discharge pipe, 2f ... absorption solution discharge port,
3 condenser core, 3a, 3b plate, 3c condenser element, 3d cooling water supply pipe, 3e cooling water discharge pipe, 3f liquid refrigerant discharge port,
DESCRIPTION OF SYMBOLS 4 ... Partition plate, 5 ... Casing, 6 ... Spray nozzle, 11 ... High temperature regenerator, 11a ... Heat source device, 12 ... Absorber, 13 ... Evaporator,
15 indoor unit, 20 solution pump, 21 low temperature solution heat exchanger, 22 high temperature solution heat exchanger, 23 cooling water pump, 24 expansion valve, 25 cold / hot water pump
51… Integral heat exchanger,
52: low temperature regenerator core, 52c: regenerator side element, 52d: refrigerant vapor supply pipe, 52e: refrigerant vapor discharge pipe,
53: condenser core, 53c: condenser side element, 53d: cooling water supply pipe, 53e: cooling water discharge pipe,
54 ... Partition plate.

Claims (4)

高温再生器で発生した高温冷媒蒸気を低温再生器の加熱に使用する二重効用吸収冷凍機において、
前記低温再生器と凝縮器が組合された一体型熱交換器であって、
両面に凹凸加工を施した2枚のプレートを互いに重ね合わせてエレメントを形成し同エレメントを複数重ね合わせて低温再生器コアと凝縮器コアが構成され、
1ケーシング内に前記低温再生器コアと前記凝縮器コアが並んで収容され、
同ケーシングの上方空間を除く空間が仕切板により低温再生器側と凝縮器側とに仕切られることを特徴とする二重効用吸収冷凍機の一体型熱交換器。
In a double-effect absorption refrigerator that uses high-temperature refrigerant vapor generated by a high-temperature regenerator to heat a low-temperature regenerator,
An integrated heat exchanger in which the low-temperature regenerator and the condenser are combined,
A low-temperature regenerator core and a condenser core are formed by superimposing two plates having irregularities on both sides to form an element, and superposing a plurality of the same elements,
The low temperature regenerator core and the condenser core are housed side by side in one casing,
An integrated heat exchanger for a double-effect absorption refrigerator, wherein a space excluding a space above the casing is partitioned by a partition plate into a low-temperature regenerator and a condenser.
前記低温再生器コアと前記凝縮器コアを間に前記仕切板を介装して背中合せに重ねて前記ケーシング内に収容したことを特徴とする請求項1記載の二重効用吸収冷凍機の一体型熱交換器。The double-effect absorption refrigerator according to claim 1, wherein the low-temperature regenerator core and the condenser core are housed in the casing with the partition plate interposed therebetween and stacked back to back. Heat exchanger. 前記低温再生器コアと前記凝縮器コアを間に前記仕切板を介装して横並びに配置して前記ケーシング内に収容したことを特徴とする請求項1記載の二重効用吸収冷凍機の一体型熱交換器。2. The double effect absorption refrigerator according to claim 1, wherein the low temperature regenerator core and the condenser core are arranged side by side with the partition plate interposed therebetween and housed in the casing. Body heat exchanger. 前記低温再生器は、エレメント内に高温冷媒蒸気を通し、同エレメントに上から中間濃度吸収液を流下させる流下液膜式構造とすることを特徴とする請求項1から請求項3までのいずれかの項記載の二重効用吸収冷凍機の一体型熱交換器。4. The low-temperature regenerator according to claim 1, wherein the low-temperature regenerator has a falling liquid film structure in which high-temperature refrigerant vapor is passed through the element and the intermediate-concentration absorbing liquid flows down from above the element. The integrated heat exchanger of the double-effect absorption refrigerator described in the paragraph.
JP2003061586A 2003-03-07 2003-03-07 Integrated heat exchanger for double-utility absorption refrigerator Pending JP2004271027A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2003061586A JP2004271027A (en) 2003-03-07 2003-03-07 Integrated heat exchanger for double-utility absorption refrigerator

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2003061586A JP2004271027A (en) 2003-03-07 2003-03-07 Integrated heat exchanger for double-utility absorption refrigerator

Publications (1)

Publication Number Publication Date
JP2004271027A true JP2004271027A (en) 2004-09-30

Family

ID=33123766

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2003061586A Pending JP2004271027A (en) 2003-03-07 2003-03-07 Integrated heat exchanger for double-utility absorption refrigerator

Country Status (1)

Country Link
JP (1) JP2004271027A (en)

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007247956A (en) * 2006-03-15 2007-09-27 Daikin Ind Ltd Refrigerant generator for absorption refrigerating machine
WO2008064383A2 (en) * 2006-11-30 2008-06-05 Österreichisches Forschungs- Und Prüfzentrum Arsenal Gesellschaft M.B.H. Module for an absorption-type refrigeration machine
JP2010043811A (en) * 2008-08-18 2010-02-25 Hitachi Appliances Inc Absorption water cooler-heater
JP2013007370A (en) * 2011-06-27 2013-01-10 Ihi Corp Waste heat power generator
WO2014045996A1 (en) * 2012-09-21 2014-03-27 ヤンマー株式会社 Second-class absorption heat pump
CN112283979A (en) * 2020-10-09 2021-01-29 普泛能源技术研究院(北京)有限公司 Multifunctional heat exchanger and composite absorption type system thereof
DE202019106674U1 (en) * 2019-11-29 2021-03-02 Hochschule für angewandte Wissenschaften München Plate apparatus for mass and heat transfer in sorption heat pumps with separation of liquid and vapor flow

Cited By (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007247956A (en) * 2006-03-15 2007-09-27 Daikin Ind Ltd Refrigerant generator for absorption refrigerating machine
JP4720558B2 (en) * 2006-03-15 2011-07-13 ダイキン工業株式会社 Absorption refrigerator generator
WO2008064383A2 (en) * 2006-11-30 2008-06-05 Österreichisches Forschungs- Und Prüfzentrum Arsenal Gesellschaft M.B.H. Module for an absorption-type refrigeration machine
WO2008064383A3 (en) * 2006-11-30 2008-11-20 Oesterreichisches Forschungs U Module for an absorption-type refrigeration machine
JP2010043811A (en) * 2008-08-18 2010-02-25 Hitachi Appliances Inc Absorption water cooler-heater
JP2013007370A (en) * 2011-06-27 2013-01-10 Ihi Corp Waste heat power generator
WO2014045996A1 (en) * 2012-09-21 2014-03-27 ヤンマー株式会社 Second-class absorption heat pump
DE202019106674U1 (en) * 2019-11-29 2021-03-02 Hochschule für angewandte Wissenschaften München Plate apparatus for mass and heat transfer in sorption heat pumps with separation of liquid and vapor flow
DE102020131615B4 (en) 2019-11-29 2022-03-03 Hochschule für angewandte Wissenschaften München - Körperschaft des öffentlichen Rechts Plate apparatus for mass and heat transfer in sorption heat pumps with separation of liquid and vapor flow
CN112283979A (en) * 2020-10-09 2021-01-29 普泛能源技术研究院(北京)有限公司 Multifunctional heat exchanger and composite absorption type system thereof

Similar Documents

Publication Publication Date Title
JP3193720B2 (en) Triple effect absorption heat exchanger combining a second cycle generator and a first cycle absorber
JP2007271197A (en) Absorption type refrigerating device
EP2549206B1 (en) Plate-based adsorption chiller subassembly
JP2004271027A (en) Integrated heat exchanger for double-utility absorption refrigerator
US20170343262A1 (en) Sorption module
JP4826314B2 (en) Evaporation / absorption unit for absorption refrigerator
JPH10220914A (en) Plate type evaporator and absorbing device of absorbing type freezer
JP6715228B2 (en) Heat exchanger and absorption refrigerator
JP5217264B2 (en) Waste heat driven absorption refrigeration system
JP3871080B2 (en) Combined integrated multi-plate heat exchanger such as evaporator, absorber, subcooler, etc.
JP2003106702A (en) Absorption refrigerating machine
JP2008304081A (en) Absorption type refrigerating device
JP3292663B2 (en) Plate heat exchanger
KR20080094985A (en) Hot-water using absorption chiller
JP2758685B2 (en) Adsorption refrigeration equipment
JP2004197984A (en) Integrated multiple plate type heat exchanger
JPH09310934A (en) Absorption heat pump device
JP3277349B2 (en) Evaporation absorber for absorption refrigerator
JP2001082824A (en) Absorption refrigerating machine
JP2004108712A (en) Heat exchanger for heat pump type hot-water supply device
JP2004198087A (en) Absorption refrigerating device, and absorption refrigerating system
JP2006162107A (en) Laminated plate absorber, absorption refrigerator and absorption heat pump
JP2004053097A (en) Triple effect absorption type freezing device
JP2004211978A (en) Regenerator of absorption refrigerating machine, and absorption refrigerating machine
JP2009002577A (en) Absorption type refrigerating device

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20060217

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20080201

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20080212

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20080624