JP2004269964A - Method for producing high strength steel sheet - Google Patents

Method for producing high strength steel sheet Download PDF

Info

Publication number
JP2004269964A
JP2004269964A JP2003062197A JP2003062197A JP2004269964A JP 2004269964 A JP2004269964 A JP 2004269964A JP 2003062197 A JP2003062197 A JP 2003062197A JP 2003062197 A JP2003062197 A JP 2003062197A JP 2004269964 A JP2004269964 A JP 2004269964A
Authority
JP
Japan
Prior art keywords
strength
temperature
steel sheet
less
cooling
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2003062197A
Other languages
Japanese (ja)
Other versions
JP4385622B2 (en
Inventor
Nobuyuki Ishikawa
信行 石川
Shigeru Endo
茂 遠藤
Toyohisa Shingu
豊久 新宮
Ryuji Muraoka
隆二 村岡
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
JFE Steel Corp
Original Assignee
JFE Steel Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by JFE Steel Corp filed Critical JFE Steel Corp
Priority to JP2003062197A priority Critical patent/JP4385622B2/en
Publication of JP2004269964A publication Critical patent/JP2004269964A/en
Application granted granted Critical
Publication of JP4385622B2 publication Critical patent/JP4385622B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Landscapes

  • Heat Treatment Of Steel (AREA)
  • Heat Treatment Of Sheet Steel (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a high strength steel sheet showing excellent SR resistant characteristic without adding a large quantity of alloy elements, in the high strength steel sheet having API X80 grade or higher. <P>SOLUTION: The method for producing the high strength steel sheet is as the followings, with which the steel is heated to 1,100-1,250°C and after hot-rolling at ≥ 750°C rolling finishing temperature, accelerated cooling is performed to 400-600°C at ≥5°C/s cooling speed and thereafter, reheating is performed to 550-700°C at ≥5°C/s rising temperature. Therein, this steel is contained, by mass% of, ≥0.03 to <0.07% C, 0.01-0.5% Si, 0.5-2.0% Mn, 0.1-0.5% Mo, ≤0.08% Al and one or more kinds among 0.005-0.035% Ti, 0.005-0.07% Nb and 0.005-0.10% V and Ceq value is ≥0.32 and total atomic% of Mo, Ti, Nb and V is ≥0.14% and [C]/([Mo]+[Ti]+[Nb]+[V]) is 0.6 to 1.7. <P>COPYRIGHT: (C)2004,JPO&NCIPI

Description

【0001】
【発明の属する技術分野】
本発明は、鋼管や圧力容器等の製造に用いるAPI X80グレード以上の強度を有する高強度鋼板に関し、特に溶接後に行う応力除去焼鈍(SR)後においても優れた強度と靱性を有する耐SR特性に優れた高強度鋼板の製造方法に関する。
【0002】
【従来の技術】
石油またはガスの掘削用等に用いられるライザー鋼管は円周溶接によって合金元素量が非常に多い鍛造品(例えばコネクタ等)を溶接する場合が多い。また、発電プラント等の配管用鋼管やその他強度部材として用いられる鋼材または鋼板はCr―Mo鋼等と溶接接合される場合が多い。このような場合には、通常、溶接による残留応力除去を目的としてSR処理(応力除去焼鈍)が施されるが、熱処理によって強度低下や靱性低下を招くことが懸念されるため、SR処理が施される鋼管や鋼材に対してはSR処理後も強度、靱性が確保されることが要求される。また近年、圧力上昇による操業効率向上や素材コストの削減から、API X80グレード以上の高強度鋼管または鋼材に対する要求も高まっている。
【0003】
このような要求に対して、API X80グレード以上の耐SR特性に優れた鋼板または鋼管が知られている(例えば、特許文献1、特許文献2参照。)。
【0004】
【特許文献1】
特開平11−50188号公報
【0005】
【特許文献2】
特開2001−158939号公報
【0006】
【発明が解決しようとする課題】
しかし、特許文献1に記載の鋼板はSR処理による強度低下をSR時のCr炭化物の析出によって補っているため、多量のCrの添加が必要となっており、素材コストが高いだけでなく、溶接性や靱性の低下が問題となっている。一方、特許文献2に記載の鋼管はシーム溶接金属の特性改善を主眼においており、母材に対しては特段の配慮がなされておらず、SR処理による母材強度の低下が避けられないため、制御圧延や加速冷却によってSR前の強度を高めておく必要がある。
【0007】
したがって本発明の目的は、このような従来技術の課題を解決し、API X80グレード以上の高強度鋼板であって、多量の合金元素の添加なしに、優れた耐SR特性を示す高強度鋼板を提供することにある。
【0008】
【課題を解決するための手段】
このような課題を解決するための本発明の特徴は以下の通りである。
(1)質量%で、C:0.03%以上、0.07%未満、Si:0.01〜0.5%、Mn:0.5〜2%、Mo:0.1〜0.5%、Al:0.08%以下を含有し、Ti:0.005〜0.035%、Nb:0.005〜0.07%、V:0.005〜0.1%の1種又は2種以上を含有し、下記(1)式で示されるCeq値が0.32以上であり、さらに、原子%でのMo、Ti、Nb、Vの合計量が0.14%以上で、かつ原子%でのC量との比である[C]/([Mo]+[Ti]+[Nb]+[V])が0.6〜1.7である鋼を、1100〜1250℃の温度に加熱し、750℃以上の圧延終了温度で熱間圧延した後、5℃/s以上の冷却速度で400〜600℃の温度まで加速冷却を行い、その後0.5℃/s以上の昇温速度で550〜700℃の温度まで再加熱を行うことを特徴とする、高強度鋼板の製造方法。
Ceq値=C+Mn/6+(Cu+Ni)/12+(Cr+Mo+V)/5・・・・(1)
但し、(1)式の元素記号は各含有元素の質量%を示す。
(2)さらに、質量%で、Cu:0.5%以下、Ni:0.5%以下、Cr:0.5%以下、Ca:0.0005〜0.0035%の中から選ばれる1種又は2種以上を含有することを特徴とする(1)に記載の高強度鋼板の製造方法。
【0009】
【発明の実施の形態】
本発明者らは耐SR特性向上と高強度の両立のために、SR処理による鋼材のミクロ組織変化について詳細な検討を行った。一般に溶接鋼管用の鋼板や溶接構造用の鋼板は溶接性の観点から化学成分が厳しく制限されるため、X65グレード以上の高強度鋼板は熱間圧延後に加速冷却されて製造されている。そのため、ミクロ組織はベイナイト主体か、またはベイナイト中にマルテンサイト(MA)を含んだ組織となるが、このような組織の鋼にSR処理を施すと、ベイナイト中のセメンタイト組織またはマルテンサイトが焼戻しにより分解するため強度低下は避けられない。また、焼戻しによる強度低下を補うために、SR時にCr炭化物等を析出させる方法があるが、炭化物が容易に粗大化するために靭性低下を生じてしまう。このように変態強化によって、SR後でも強度、靭性を確保することには限界があることが明白である。そこで、本発明者らは優れた耐SR特性が得られるミクロ組織形態に関して鋭意研究を行った結果、以下のa) ̄c)の知見を得るに至った。
【0010】
a)、鋼のミクロ組織を、SR処理の前後において形態変化を生じないミクロ組織とすれば良い。そのためにはSR処理によって分解するセメンタイトまたはマルテンサイトを抑制し、鋼中の炭素を熱的に安定な微細炭化物として分散析出させることによって強化すれば良い。
【0011】
b)、鋼中で析出する種々の析出物について検討した結果、Ti、Nb、Vの一種または二種以上と、Moとからなる複合炭化物は適正な成分バランスの元では、10nm以下の極めて微細な析出物となり、かつ熱的にも安定である。
【0012】
c)、上記b)の微細炭化物を析出させるためには、特定の合金成分を有する鋼を用いて、熱間圧延後に加速冷却によって冷却する過程で、ベイナイト変態終了温度よりも高い温度、すなわち未変態オーステナイトが残存する温度域で冷却を停止し、直ちに再加熱を行えばよい。
【0013】
上記c)のような熱履歴を受けた鋼の金属組織は、フェライトとベイナイトからなる複合組織となるが、再加熱過程において未変態オーステナイトからのフェライト変態が生じ、このときに微細炭化物が変態界面上で析出するため、微細炭化物によって析出強化されたフェライト組織を含むベイナイト組織となる。一方、加速冷却時に生じたベイナイト組織では、Moによってセメンタイトの生成が抑制され、炭素が過飽和な状態で存在するため、その後の再加熱によってMo、Ti、NbまたはVと結合し微細炭化物として析出する。
【0014】
上記のようなTi、Nb、Vの一種または二種以上と、Moとからなる複合炭化物が分散析出した鋼は、析出強化によって高強度が得られるだけでなく、700℃程度以下の加熱によっても微細炭化物が分解または粗大化することが無いため、SR処理を行う場合、SR処理後もその高い強度が維持されるものである。
【0015】
以下、本発明の高強度鋼板の製造方法について詳しく説明する。まず、本発明の高強度鋼板の化学成分について説明する。以下の説明において%で示す単位は全て質量%である。
【0016】
C:0.03%以上、0.07%未満とする。Cは炭化物として析出強化に寄与する元素であるが、0.03%未満では十分な強度が確保できず、0.07%以上では靭性を劣化させるため、C含有量を0.03%以上、0.07%未満に規定する。
【0017】
Si:0.01〜0.5%とする。Siは脱酸のため添加するが、0.01%未満では脱酸効果が十分でなく、0.5%を超えると靭性や溶接性を劣化させるため、Si含有量を0.01〜0.5%に規定する。
【0018】
Mn:0.5〜2%とする。Mnは強度、靭性のため添加するが、0.5%未満ではその効果が十分でなく、2%を超えると冷却時にマルテンサイト(MA)を生じるためSR処理後の強度が劣化するだけでなく、溶接性が劣化するため、Mn含有量を0.5〜2%に規定する。
【0019】
Al:0.08%以下とする。Alは脱酸剤として添加されるが、0.08%を超えると鋼の清浄度が低下し、靱性が劣化するため、Al含有量は0.08%以下に規定する。望ましくは0.01%〜0.08%である。
【0020】
Mo:0.1〜0.5%とする。Moは本発明において重要な元素であり、0.1%以上含有させることで、熱間圧延後冷却時のパーライト変態を抑制しつつ、Ti、Nb、Vとの微細な複合析出物を形成し、強度上昇に大きく寄与する。しかし、0.5%を超えると溶接熱影響部靭性の劣化を招くことから、Mo含有量を0.1〜0.5%に規定する。
【0021】
Ti:0.005〜0.035%とする。TiはMoと同様に本発明において重要な元素である。0.005%以上添加することで、Moと複合析出物を形成し、強度上昇に大きく寄与する。しかし、0.035%を超える添加は溶接熱影響部靭性及び母材靱性の劣化を招くため、Ti含有量は0.005〜0.035%に規定する。
【0022】
Nb:0.005〜0.07%とする。Nbは組織の微細粒化により靭性を向上させるが、Moと共に複合析出物を形成し、強度上昇に寄与する。しかし、0.005%未満では効果がなく、0.07%を超えると溶接熱影響部の靭性が劣化するため、Nb含有量は0.005〜0.07%に規定する。
【0023】
V:0.005〜0.1%とする。VもNbと同様にMoと共に複合析出物を形成し、強度上昇に寄与する。しかし、0.005%未満では効果がなく、0.1%を超えると溶接熱影響部の靭性が劣化するため、V含有量は0.005〜0.1%に規定する。
【0024】
Ceq値:0.32以上とする。
【0025】
Ceq値は合金元素の質量%を用いて下記(1)式で示されるが、このCeq値が0.32未満ではAPI X80グレードの高強度が得られないため、0.32以上に規定する。溶接性・靭性の観点からは、Ceq値の上限を0.55とすることが好ましい。下記(1)式の元素記号は各含有元素の質量%を示す。
Ceq値=C+Mn/6+(Cu+Ni)/12+(Cr+Mo+V)/5・・・・(1)
原子%でのMo、Ti、Nb、Vの合計量:0.14%以上とする。Mo、Ti、Nb、Vは微細炭化物として析出強化に寄与し、さらにSR後の強度保持に有効な元素である。析出強化量はこれらの原子%での合計量に従って増加するが、0.14%未満ではその効果が不足し十分な強度が得られないため、Mo、Ti、Nb、Vの原子%での合計量は0.14%以上とする。なお、上記元素の原子%での合計量は、鋼に含まれるMo、Ti、Nb、Vの原子数の和と、Fe、Mo、Ti、Nb、Vおよび他の合金元素の全原子数との比で求められるが、Mo、Ti、Nb、Vの質量%での含有量を用いた下記(2)式により求めることもできる。下記(2)式の元素記号は各含有元素の質量%である。
【0026】
(Mo/95.9+Nb/92.91+V/50.94+Ti/47.9)/(100/55.85)×100・・・・(2)
さらに、C量と、Mo、Ti、Nb、Vの合計量との比である、[C]/([Mo]+[Ti]+[Nb]+[V]):0.6〜1.7とする。ここで、[C]、[Mo]、[Ti]、[Nb]、[V]はその成分の原子%の含有量(at%)を示す。本発明鋼板における高強度化はMoとTi、Nb、Vを含む複合析出物(炭化物)によるものである。この複合析出物による析出強化を有効に利用するためには、C量と炭化物形成元素であるMo、Ti、Nb、V量の関係が重要であり、これらの元素を適正なバランスのもとで添加する事によって、熱的に安定でかつ非常に微細な複合析出物を得ることができる。このときCの原子%での含有量と、Mo、Ti、Nb、V量の原子%での含有量の合計量の比である[C]/([Mo]+[Ti]+[Nb]+[V])の値は、0.6〜1.7とする。[C]/([Mo]+[Ti]+[Nb]+[V])の値が0.6未満または1.7を超える場合はいずれかの元素量が過剰であり、本発明の複合析出物以外の硬化組織が過度に形成されて、耐SR特性の劣化や、靭性の劣化を招くため、[C]/([Mo]+[Ti]+[Nb]+[V])の値を0.6〜1.7に規定する。なお、質量%の含有量を用いる場合は、以下の(3)式を用いて計算して、その値を0.6〜1.7とする。下記(3)式の元素記号は各含有元素の質量%である。
【0027】
(C/12.01)/(Mo/95.9+Nb/92.91+V/50.94+Ti/47.9)・・・・(3)
本発明では鋼板の強度や靱性をさらに改善する目的で、以下に示すCu、Ni、Cr、Caの1種または2種以上を含有してもよい。
【0028】
Cu:0.5%以下とする。Cuは靭性の改善と強度の上昇に有効な元素であるが、多く添加すると溶接性が劣化するため、添加する場合は0.5%を上限とする。
【0029】
Ni:0.5%以下とする。Niは靭性の改善と強度の上昇に有効な元素であるが、多く添加すると耐SR特性が低下するため、添加する場合は0.5%を上限とする。
【0030】
Cr:0.5%以下とする。CrはMnと同様に低Cでも十分な強度を得るために有効な元素であるが、多く添加すると溶接性を劣化するため、添加する場合は0.5%を上限とする。
【0031】
Ca:0.0005〜0.0035%とする。Caは硫化物系介在物の形態制御による靭性向上に有効な元素であるが、0.0005%未満ではその効果が十分でなく、0.0035%を超えて添加しても効果が飽和し、むしろ、鋼の清浄度の低下により靭性を劣化させるので、添加する場合はCa含有量を0.0005〜0.0035%に規定する。
【0032】
上記以外の残部は実質的にFeからなる。残部が実質的にFeからなるとは、本発明の作用効果を無くさない限り、不可避不純物をはじめ、他の微量元素を含有するものが本発明の範囲に含まれ得ることを意味する。
【0033】
次に、上記組成の鋼を用いた本発明の高強度鋼板の製造方法について説明する。
【0034】
本発明は、加速冷却時のベイナイト変態による変態強化と、加速冷却後の再加熱時にフェライト中に析出する微細炭化物による析出強化を複合して活用することにより、合金元素を多量に添加することなく高強度化が可能で、さらにSR処理を行う場合にも、SR処理時に微細炭化物はそのまま熱的に安定であるので、SR処理後でもその強度が確保される技術である。本発明では、加速冷却によりベイナイト変態領域まで過冷することにより、その後の再加熱時に温度保持することなくフェライト変態を完了させることが可能である。
【0035】
本発明の高強度鋼板は上記の成分組成を有する鋼を用い、加熱温度:1100〜1250℃、圧延終了温度:750℃以上で熱間圧延を行い、その後5℃/s以上の冷却速度で400〜600℃まで加速冷却を行い、その後直ちに0.5℃/s以上の昇温速度で550〜700℃の温度まで再加熱を行うことで、金属組織をフェライトとベイナイトの2相組織とし、Moと、Ti、Nb、Vの1種または2種以上とからなる微細な複合炭化物をフェライト相中に分散析出することができる。ここで、温度は鋼板の平均温度とする。以下、各製造条件について詳しく説明する。
【0036】
加熱温度:1100〜1250℃とする。加熱温度が1100℃未満では炭化物の固溶が不十分で必要な強度が得られず、1250℃を超えると靭性が劣化するため、1100〜1250℃とする。
【0037】
圧延終了温度:750℃以上とする。圧延終了温度が低いと、その後のフェライト変態速度が低下するため、再加熱によるフェライト変態時に十分な微細析出物の分散析出が得られず、強度が低下するため、圧延終了温度を750℃以上とする。
【0038】
圧延終了後、直ちに5℃/s以上の冷却速度で冷却する。冷却速度が5℃/s未満では冷却時にフェライトを生成するため、ベイナイトによる強化が得られないだけでなく、700℃以上の高温域でのフェライト変態時に生じた析出物が容易に粗大化するため、十分な強度が得られない。よって、圧延終了後の冷却速度を5℃/s以上に規定する。このときの冷却方法については製造プロセスによって任意の冷却設備を用いることが可能である。
【0039】
冷却停止温度:400〜600℃とする。圧延終了後加速冷却でベイナイト変態域である400〜600℃まで急冷することにより、ベイナイト相を生成させ、かつ、ベイナイト変態途中で冷却を停止することによって、未変態のオーステナイトをその後の再加熱時にフェライトに変態させることが可能となる。さらに、過冷却により駆動力が大きくなるため、再加熱過程でのフェライト変態が促進され、短時間の再加熱でフェライト変態を完了させることが可能となる。冷却停止温度が400℃未満では、島状マルテンサイト(MA)が生成するため再加熱時の微細炭化物の析出が不十分となり、また600℃を超えるとフェライト変態の駆動力が十分でなく、再加熱時にフェライト変態が完了せずパーライトが析出するため微細炭化物の析出が不十分であり十分な強度が得られないため、加速冷却停止温度を400〜600℃に規定する。
【0040】
加速冷却後直ちに0.5℃/s以上の昇温速度で550〜700℃の温度まで再加熱を行う。このプロセスは本発明における重要な製造条件である。フェライト相の強化に寄与する微細析出物は、再加熱時のフェライト変態と同時に析出する。このような微細析出物を得るためには、加速冷却後直ちに550〜700℃の温度域まで再加熱する必要がある。昇温速度が0.5℃/s未満では、目的の再加熱温度に達するまでに長時間を要するため製造効率が悪化し、またパーライト変態が生じるため、微細析出物の分散析出が得られず十分な強度を得ることができない。再加熱温度が550℃未満ではフェライト変態が進行せずに、ベイナイト変態を生じるため、十分な析出強化が図れず、700℃を超えると析出物が粗大化し十分な強度が得られないため、再加熱の温度域を550〜700℃に規定する。再加熱温度において、特に温度保持時間を設定する必要はない。本発明の製造方法を用いれば再加熱後直ちに冷却しても、フェライト変態が十分に進行するため、微細析出による高い強度が得られる。しかし、確実にフェライト変態を終了させるために、30分以内の温度保持を行うことができる。30分を超えて温度保持を行うと、析出物の粗大化を生じ強度低下を招く場合がある。また、再加熱後の冷却過程でもフェライト変態が進行するので、再加熱後の冷却速度は基本的には空冷とする。しかし、フェライト変態を阻害しない程度の早い冷却速度で冷却を行うこともできる。
【0041】
加速冷却後の再加熱を行うための設備として、加速冷却を行なうための冷却設備の下流側に加熱装置を設置することができる。加熱装置としては、鋼板の急速加熱が可能であるガス燃焼炉や誘導加熱装置を用いる事が好ましい。誘導加熱装置は均熱炉等に比べて温度制御が容易でありコストも比較的低く、冷却後の鋼板を迅速に加熱できるので特に好ましい。また複数の誘導加熱装置を直列に連続して配置することにより、ライン速度や鋼板の種類・寸法が異なる場合にも、通電する誘導加熱装置の数を任意に設定するだけで、昇温速度、再加熱温度を自在に操作することが可能である。
【0042】
図1は、本発明の製造方法を実施するための設備の一例である。図1に示すように、圧延ライン1には上流から下流側に向かって熱間圧延機3、加速冷却装置4、インライン型誘導加熱装置5、ホットレベラー6が配置されている。インライン型誘導加熱装置5あるいは他の熱処理装置を、圧延設備である熱間圧延機3およびそれに引き続く冷却設備である加速冷却装置4と同一ライン上に設置する事によって、圧延、冷却終了後迅速に再加熱処理が行えるので、圧延冷却後の鋼板温度を過度に低下させることなく加熱することができる。
【0043】
【実施例】
表1に示す化学成分の鋼(鋼種A〜O)を連続鋳造法によりスラブとし、これを用いて板厚19mmの厚鋼板(No.1〜20)を製造した。
【0044】
【表1】

Figure 2004269964
【0045】
加熱したスラブを熱間圧延により圧延した後、直ちに水冷型の加速冷却設備を用いて冷却を行い、誘導加熱炉またはガス燃焼炉を用いて再加熱を行った。誘導加熱炉は加速冷却設備と同一ライン上に設置した。各鋼板(No.1〜20)の製造条件を表2に示す。
【0046】
以上のようにして製造した鋼板の引張特性は、圧延垂直方向の全厚試験片を引張試験片として引張試験を行い、引張強度を測定した。降伏強度551MPa以上、引張強度620MPa以上を本発明に必要な強度とした。溶接熱影響部(HAZ)靭性については、再現熱サイクル装置によって入熱40kJ/cmに相当する熱履歴を加えた試験片を用いてシャルピー試験を行った。そして、−10℃でのシャルピー吸収エネルギーが100J以上の物を良好とした。
【0047】
また耐SR特性を調査するため、各鋼板をガス雰囲気炉を用いてSR処理を行った。このときの熱処理条件は650℃で2時間とし、その後炉から取り出し空冷によって室温まで冷却した。そして、SR処理前後の鋼板の引張特性及びシャルピー衝撃特性を測定した。結果を表2に併せて示す。
【0048】
【表2】
Figure 2004269964
【0049】
表2において、本発明例であるNo.1〜10はいずれも、化学成分および製造方法が本発明の範囲内であり、SR処理の前後で、降伏強度551MPa以上、引張強度620MPa以上の高強度であり、さらに母材靱性及び溶接熱影響部靭性も良好であった。
【0050】
No.11〜15は、化学成分は本発明の範囲内であるが、製造方法が本発明の範囲外であるため、微細炭化物が分散析出しない場合があり、強度不足であった。No.16〜20は化学成分が本発明の範囲外であるので、十分な強度が得られないか、溶接熱影響部靭性が劣っていた。
【0051】
【発明の効果】
以上述べたように、本発明によれば、API X80グレード以上の高強度を有し、かつSR処理後も強度靭性の優れた鋼板が得られる。このため、特にSR処理を行う可能性のある鋼管や圧力容器等への利用に好適である。
【図面の簡単な説明】
【図1】本発明の製造方法を実施するための製造ラインの一例を示す概略図。
【符号の説明】
1:圧延ライン、
2:鋼板、
3:熱間圧延機、
4:加速冷却装置、
5:インライン型誘導加熱装置、
6:ホットレベラー[0001]
TECHNICAL FIELD OF THE INVENTION
The present invention relates to a high-strength steel sheet having a strength of API X80 grade or higher used for manufacturing steel pipes, pressure vessels, and the like, and in particular, has excellent strength and toughness even after stress relief annealing (SR) performed after welding. The present invention relates to a method for producing an excellent high-strength steel sheet.
[0002]
[Prior art]
Riser steel pipes used for oil or gas drilling or the like often weld a forged product (for example, a connector or the like) having a very large amount of alloying elements by circumferential welding. Further, steel materials or steel plates used as steel pipes for pipes or other strength members of power generation plants or the like are often welded to Cr-Mo steel or the like. In such a case, SR treatment (stress relief annealing) is usually performed for the purpose of removing residual stress by welding. However, there is a concern that the heat treatment may cause a decrease in strength or toughness. It is required that the strength and toughness of the steel pipe and the steel material to be manufactured are maintained even after the SR treatment. In recent years, demands for high-strength steel pipes or steel materials of API X80 grade or higher have been increasing in order to improve operation efficiency and reduce material costs due to increased pressure.
[0003]
In response to such a demand, a steel plate or a steel pipe excellent in SR resistance of API X80 grade or higher is known (for example, see Patent Documents 1 and 2).
[0004]
[Patent Document 1]
JP-A-11-50188
[Patent Document 2]
JP 2001-158939 A
[Problems to be solved by the invention]
However, since the steel sheet described in Patent Document 1 compensates for the decrease in strength due to SR treatment by the precipitation of Cr carbide during SR, it is necessary to add a large amount of Cr, which not only increases the material cost but also increases the welding cost. There is a problem of deterioration in toughness and toughness. On the other hand, the steel pipe described in Patent Literature 2 is focused on improving the properties of the seam weld metal, and no special consideration is given to the base material, and a reduction in base material strength due to SR processing is inevitable. It is necessary to increase the strength before SR by controlled rolling or accelerated cooling.
[0007]
Accordingly, an object of the present invention is to solve such problems of the prior art and provide a high-strength steel sheet of API X80 grade or higher, which shows excellent SR resistance characteristics without adding a large amount of alloying elements. To provide.
[0008]
[Means for Solving the Problems]
The features of the present invention for solving such a problem are as follows.
(1) In mass%, C: 0.03% or more, less than 0.07%, Si: 0.01 to 0.5%, Mn: 0.5 to 2%, Mo: 0.1 to 0.5 %, Al: 0.08% or less, Ti: 0.005 to 0.035%, Nb: 0.005 to 0.07%, V: 0.005 to 0.1% At least 0.12%, and the Ceq value represented by the following formula (1) is not less than 0.32, and the total amount of Mo, Ti, Nb, and V in atomic% is not less than 0.14%. % [C] / ([Mo] + [Ti] + [Nb] + [V]), which is a ratio to the C content in%, is 0.6 to 1.7 at a temperature of 1100 to 1250 ° C. After hot rolling at a rolling end temperature of 750 ° C. or more, accelerated cooling is performed at a cooling rate of 5 ° C./s or more to a temperature of 400 to 600 ° C., and then a temperature rise of 0.5 ° C./s or more Speed In and carrying out re-heating to a temperature of 550 to 700 ° C., the method of producing a high strength steel sheet.
Ceq value = C + Mn / 6 + (Cu + Ni) / 12 + (Cr + Mo + V) / 5 (1)
Here, the element symbols in the formula (1) indicate mass% of each contained element.
(2) Further, one type selected from Cu: 0.5% or less, Ni: 0.5% or less, Cr: 0.5% or less, and Ca: 0.0005 to 0.0035% by mass%. Alternatively, the method for producing a high-strength steel sheet according to (1), comprising two or more types.
[0009]
BEST MODE FOR CARRYING OUT THE INVENTION
The present inventors have conducted a detailed study on the change in the microstructure of a steel material due to SR treatment in order to achieve both improvement in SR resistance and high strength. Generally, the chemical composition of a steel plate for a welded steel pipe or a steel plate for a welded structure is severely restricted from the viewpoint of weldability, and a high-strength steel plate of X65 grade or higher is manufactured by accelerated cooling after hot rolling. For this reason, the microstructure is mainly bainite or a structure containing martensite (MA) in bainite. When a steel having such a structure is subjected to SR treatment, the cementite structure or martensite in bainite is tempered. Because of decomposition, a decrease in strength is inevitable. Further, there is a method of precipitating Cr carbide or the like at the time of SR in order to compensate for a decrease in strength due to tempering. However, the carbide is easily coarsened to cause a decrease in toughness. Thus, it is clear that there is a limit in securing strength and toughness even after SR by transformation strengthening. The inventors of the present invention have conducted intensive studies on the microstructure morphology that provides excellent SR resistance, and have obtained the following findings a) to c).
[0010]
a), the microstructure of the steel may be a microstructure that does not cause a morphological change before and after the SR treatment. For this purpose, cementite or martensite decomposed by the SR treatment is suppressed, and carbon in the steel may be strengthened by dispersing and precipitating it as thermally stable fine carbide.
[0011]
b), as a result of examining various precipitates precipitated in the steel, it was found that a complex carbide composed of one or more of Ti, Nb, V, and Mo and an extremely fine particle of 10 nm or less under an appropriate component balance. Precipitates and are thermally stable.
[0012]
c) In order to precipitate the fine carbides of b) above, in a process of cooling by accelerated cooling after hot rolling using steel having a specific alloy component, a temperature higher than the bainite transformation end temperature, that is, Cooling may be stopped in a temperature range where the transformed austenite remains, and reheating may be performed immediately.
[0013]
The metal structure of the steel that has undergone the thermal history as in the above c) becomes a composite structure composed of ferrite and bainite. In the reheating process, ferrite transformation occurs from untransformed austenite, and at this time, fine carbides are formed at the transformation interface. Since it precipitates above, it becomes a bainite structure including a ferrite structure strengthened by precipitation by fine carbides. On the other hand, in the bainite structure generated at the time of accelerated cooling, generation of cementite is suppressed by Mo, and carbon is present in a supersaturated state, so that it is combined with Mo, Ti, Nb or V by reheating, and precipitates as fine carbide. .
[0014]
A steel in which a complex carbide composed of one or more of Ti, Nb, and V and Mo as described above is dispersed and precipitated not only can obtain high strength by precipitation strengthening, but also can be heated by about 700 ° C. or less. When the SR treatment is performed, the high strength is maintained even after the SR treatment because the fine carbides are not decomposed or coarsened.
[0015]
Hereinafter, the method for producing a high-strength steel sheet of the present invention will be described in detail. First, the chemical components of the high-strength steel sheet of the present invention will be described. In the following description, all units indicated by% are mass%.
[0016]
C: 0.03% or more and less than 0.07%. C is an element that contributes to precipitation strengthening as carbide, but if it is less than 0.03%, sufficient strength cannot be ensured, and if it is 0.07% or more, toughness is deteriorated. It is specified to be less than 0.07%.
[0017]
Si: 0.01 to 0.5%. Si is added for deoxidation, but if it is less than 0.01%, the deoxidizing effect is not sufficient, and if it exceeds 0.5%, toughness and weldability are deteriorated. Specify 5%.
[0018]
Mn: 0.5 to 2%. Mn is added for strength and toughness, but if it is less than 0.5%, its effect is not sufficient, and if it exceeds 2%, martensite (MA) is generated upon cooling, so that not only the strength after SR treatment is deteriorated but also Since the weldability deteriorates, the Mn content is specified to be 0.5 to 2%.
[0019]
Al: 0.08% or less. Although Al is added as a deoxidizing agent, if it exceeds 0.08%, the cleanliness of the steel decreases and the toughness deteriorates. Therefore, the Al content is specified to be 0.08% or less. Desirably, it is 0.01% to 0.08%.
[0020]
Mo: 0.1 to 0.5%. Mo is an important element in the present invention. By containing 0.1% or more, Mo forms a fine composite precipitate with Ti, Nb, and V while suppressing pearlite transformation during cooling after hot rolling. Greatly contributes to the increase in strength. However, if it exceeds 0.5%, the toughness of the weld heat-affected zone is deteriorated. Therefore, the Mo content is specified to be 0.1 to 0.5%.
[0021]
Ti: 0.005 to 0.035%. Ti is an important element in the present invention like Mo. By adding 0.005% or more, a composite precipitate is formed with Mo, which greatly contributes to an increase in strength. However, the addition of more than 0.035% causes deterioration of the toughness of the weld heat affected zone and the toughness of the base metal. Therefore, the Ti content is specified to be 0.005 to 0.035%.
[0022]
Nb: 0.005 to 0.07%. Nb improves the toughness by making the structure finer, but forms a composite precipitate with Mo and contributes to an increase in strength. However, if it is less than 0.005%, there is no effect, and if it exceeds 0.07%, the toughness of the heat affected zone deteriorates, so the Nb content is specified to be 0.005 to 0.07%.
[0023]
V: 0.005 to 0.1%. V forms a composite precipitate with Mo similarly to Nb, and contributes to an increase in strength. However, if the content is less than 0.005%, there is no effect, and if it exceeds 0.1%, the toughness of the heat affected zone deteriorates, so the V content is specified to be 0.005 to 0.1%.
[0024]
Ceq value: 0.32 or more.
[0025]
The Ceq value is expressed by the following equation (1) using the mass% of the alloying element. However, if the Ceq value is less than 0.32, high strength of API X80 grade cannot be obtained. From the viewpoint of weldability and toughness, the upper limit of the Ceq value is preferably set to 0.55. Element symbols in the following formula (1) indicate mass% of each contained element.
Ceq value = C + Mn / 6 + (Cu + Ni) / 12 + (Cr + Mo + V) / 5 (1)
The total amount of Mo, Ti, Nb, and V in atomic%: 0.14% or more. Mo, Ti, Nb, and V are elements that contribute to precipitation strengthening as fine carbides and are effective elements for maintaining strength after SR. The amount of precipitation strengthening increases in accordance with the total amount of these atomic percentages, but if it is less than 0.14%, the effect is insufficient and sufficient strength cannot be obtained, so that the total amount of Mo, Ti, Nb, and V in atomic% The amount is 0.14% or more. The total amount of the above elements in atomic% is the sum of the number of atoms of Mo, Ti, Nb, V contained in steel, and the total number of atoms of Fe, Mo, Ti, Nb, V and other alloy elements. , But can also be determined by the following equation (2) using the contents of Mo, Ti, Nb, and V in mass%. The element symbols in the following formula (2) are mass% of each contained element.
[0026]
(Mo / 95.9 + Nb / 92.91 + V / 50.94 + Ti / 47.9) / (100 / 55.85) × 100 (2)
Further, [C] / ([Mo] + [Ti] + [Nb] + [V]), which is the ratio of the amount of C to the total amount of Mo, Ti, Nb, and V: 0.6 to 1. 7 is assumed. Here, [C], [Mo], [Ti], [Nb], and [V] indicate the content (at%) of the component in atomic%. The high strength of the steel sheet of the present invention is due to a composite precipitate (carbide) containing Mo, Ti, Nb, and V. In order to effectively utilize the precipitation strengthening by the composite precipitate, the relationship between the amount of C and the amounts of Mo, Ti, Nb, and V, which are carbide forming elements, is important. By adding it, a thermally stable and very fine composite precipitate can be obtained. At this time, [C] / ([Mo] + [Ti] + [Nb], which is a ratio of the content of C in atomic% and the total content of Mo, Ti, Nb, and V in atomic%. + [V]) is set to 0.6 to 1.7. When the value of [C] / ([Mo] + [Ti] + [Nb] + [V]) is less than 0.6 or more than 1.7, the amount of any one of the elements is excessive, and the composite of the present invention is used. Since the hardened structure other than the precipitates is excessively formed to cause deterioration of SR resistance characteristics and toughness, the value of [C] / ([Mo] + [Ti] + [Nb] + [V]) Is defined as 0.6 to 1.7. In addition, when using content of mass%, it calculates using the following formula (3) and makes the value 0.6-1.7. Element symbols in the following formula (3) are mass% of each contained element.
[0027]
(C / 12.01) / (Mo / 95.9 + Nb / 92.91 + V / 50.94 + Ti / 47.9) (3)
In the present invention, for the purpose of further improving the strength and toughness of the steel sheet, one or more of Cu, Ni, Cr, and Ca shown below may be contained.
[0028]
Cu: 0.5% or less. Cu is an element effective for improving the toughness and increasing the strength. However, when added in a large amount, the weldability deteriorates. Therefore, when added, the upper limit is 0.5%.
[0029]
Ni: 0.5% or less. Ni is an element effective for improving the toughness and increasing the strength. However, the addition of a large amount lowers the SR resistance, so the upper limit is 0.5% when added.
[0030]
Cr: 0.5% or less. Cr is an element effective for obtaining sufficient strength even at a low C like Mn, but when added in a large amount, the weldability is deteriorated. Therefore, when added, the upper limit is 0.5%.
[0031]
Ca: 0.0005 to 0.0035%. Ca is an element effective for improving the toughness by controlling the form of the sulfide-based inclusions, but its effect is not sufficient if it is less than 0.0005%, and the effect is saturated even if it is added more than 0.0035%, Rather, the toughness is degraded due to a decrease in the cleanliness of the steel. Therefore, when Ca is added, the Ca content is specified to be 0.0005 to 0.0035%.
[0032]
The balance other than the above substantially consists of Fe. The fact that the balance is substantially made of Fe means that the substance containing other trace elements including unavoidable impurities can be included in the scope of the present invention unless the effects of the present invention are eliminated.
[0033]
Next, a method for producing the high-strength steel sheet of the present invention using the steel having the above composition will be described.
[0034]
The present invention uses a combination of transformation strengthening by bainite transformation during accelerated cooling and precipitation strengthening by fine carbides precipitated in ferrite during reheating after accelerated cooling, without adding a large amount of alloying elements. This is a technique that can secure high strength even after SR treatment because fine carbides are thermally stable during SR treatment even when SR treatment is performed. In the present invention, by supercooling to the bainite transformation region by accelerated cooling, it is possible to complete the ferrite transformation without maintaining the temperature during the subsequent reheating.
[0035]
The high-strength steel sheet of the present invention uses steel having the above-mentioned composition, and is subjected to hot rolling at a heating temperature of 1100 to 1250 ° C and a rolling end temperature of 750 ° C or more, and then at a cooling rate of 5 ° C / s or more. To 600 ° C., and immediately thereafter, reheating at a heating rate of 0.5 ° C./s or more to a temperature of 550 to 700 ° C. to change the metal structure to a two-phase structure of ferrite and bainite. And one or more of Ti, Nb and V can be dispersed and precipitated in the ferrite phase. Here, the temperature is the average temperature of the steel sheet. Hereinafter, each manufacturing condition will be described in detail.
[0036]
Heating temperature: 1100 to 1250 ° C. If the heating temperature is lower than 1100 ° C., the required solidity cannot be obtained due to insufficient solid solution of carbide, and if it exceeds 1250 ° C., the toughness deteriorates.
[0037]
Rolling end temperature: 750 ° C. or higher. If the rolling end temperature is low, the subsequent ferrite transformation rate decreases, so that sufficient dispersion of fine precipitates cannot be obtained during ferrite transformation by reheating, and the strength decreases. I do.
[0038]
Immediately after the rolling is completed, cooling is performed at a cooling rate of 5 ° C./s or more. If the cooling rate is less than 5 ° C./s, ferrite is formed during cooling, so that not only strengthening by bainite is not obtained, but also precipitates generated during ferrite transformation in a high temperature region of 700 ° C. or more easily become coarse. And sufficient strength cannot be obtained. Therefore, the cooling rate after the completion of rolling is specified to be 5 ° C./s or more. Regarding the cooling method at this time, any cooling equipment can be used depending on the manufacturing process.
[0039]
Cooling stop temperature: 400 to 600 ° C. By rapid cooling to 400 to 600 ° C., which is a bainite transformation region by accelerated cooling after the end of rolling, a bainite phase is generated, and by stopping cooling during bainite transformation, untransformed austenite is re-heated during subsequent reheating. It becomes possible to transform into ferrite. Furthermore, since the driving force is increased by the supercooling, the ferrite transformation in the reheating process is promoted, and the ferrite transformation can be completed by reheating in a short time. If the cooling stop temperature is less than 400 ° C., precipitation of fine carbides at the time of reheating becomes insufficient because island martensite (MA) is generated, and if it exceeds 600 ° C., the driving force of ferrite transformation is not sufficient, and Since the ferrite transformation is not completed at the time of heating and pearlite precipitates, precipitation of fine carbides is insufficient and sufficient strength cannot be obtained. Therefore, the accelerated cooling stop temperature is set to 400 to 600 ° C.
[0040]
Immediately after the accelerated cooling, reheating is performed to a temperature of 550 to 700 ° C. at a heating rate of 0.5 ° C./s or more. This process is an important manufacturing condition in the present invention. Fine precipitates that contribute to the strengthening of the ferrite phase precipitate at the same time as the ferrite transformation during reheating. In order to obtain such fine precipitates, it is necessary to reheat to a temperature range of 550 to 700 ° C. immediately after accelerated cooling. If the heating rate is less than 0.5 ° C./s, it takes a long time to reach the target reheating temperature, so that the production efficiency is deteriorated, and pearlite transformation occurs, so that fine precipitates cannot be dispersed and deposited. Sufficient strength cannot be obtained. If the reheating temperature is lower than 550 ° C, ferrite transformation does not proceed and bainite transformation occurs, so that sufficient precipitation strengthening cannot be achieved. If the reheating temperature exceeds 700 ° C, precipitates become coarse and sufficient strength cannot be obtained. The temperature range of the heating is specified to be 550 to 700 ° C. At the reheating temperature, there is no particular need to set the temperature holding time. When the production method of the present invention is used, the ferrite transformation proceeds sufficiently even when cooling is performed immediately after reheating, so that high strength due to fine precipitation can be obtained. However, the temperature can be maintained within 30 minutes in order to surely terminate the ferrite transformation. If the temperature is maintained for more than 30 minutes, the precipitates may become coarse and the strength may be reduced. In addition, since the ferrite transformation proceeds during the cooling process after reheating, the cooling rate after reheating is basically air cooling. However, cooling can be performed at a high cooling rate that does not hinder ferrite transformation.
[0041]
As equipment for performing reheating after accelerated cooling, a heating device can be installed downstream of cooling equipment for performing accelerated cooling. As the heating device, it is preferable to use a gas combustion furnace or an induction heating device capable of rapidly heating a steel sheet. The induction heating device is particularly preferable because the temperature control is easy and the cost is relatively low as compared with the soaking furnace and the like, and the steel plate after cooling can be quickly heated. In addition, by arranging a plurality of induction heating devices in series, even if the line speed and the type and size of the steel sheet are different, simply setting the number of induction heating devices to be energized arbitrarily, the heating rate, It is possible to freely control the reheating temperature.
[0042]
FIG. 1 shows an example of equipment for carrying out the production method of the present invention. As shown in FIG. 1, a hot rolling mill 3, an accelerating cooling device 4, an in-line induction heating device 5, and a hot leveler 6 are arranged in the rolling line 1 from upstream to downstream. By installing the in-line induction heating device 5 or another heat treatment device on the same line as the hot rolling mill 3 as a rolling facility and the accelerated cooling device 4 as a subsequent cooling facility, the rolling and cooling can be quickly performed. Since reheating treatment can be performed, heating can be performed without excessively lowering the temperature of the steel sheet after rolling and cooling.
[0043]
【Example】
Steels having the chemical components shown in Table 1 (steel types A to O) were formed into slabs by a continuous casting method, and thick steel plates (No. 1 to 20) having a thickness of 19 mm were manufactured using the slabs.
[0044]
[Table 1]
Figure 2004269964
[0045]
After the heated slab was rolled by hot rolling, it was immediately cooled using a water-cooled accelerated cooling facility, and reheated using an induction heating furnace or a gas combustion furnace. The induction heating furnace was installed on the same line as the accelerated cooling equipment. Table 2 shows the manufacturing conditions of each steel plate (Nos. 1 to 20).
[0046]
As for the tensile properties of the steel sheet manufactured as described above, a tensile test was performed using a full thickness test piece in the direction perpendicular to the rolling direction as a tensile test piece, and the tensile strength was measured. Yield strength of 551 MPa or more and tensile strength of 620 MPa or more were determined as strengths required for the present invention. Regarding the weld heat affected zone (HAZ) toughness, a Charpy test was performed using a test piece to which a heat history corresponding to a heat input of 40 kJ / cm was added by a reproducible heat cycle device. And the thing whose Charpy absorption energy at -10 degreeC was 100 J or more was set to favorable.
[0047]
Further, in order to investigate the SR resistance characteristics, each steel sheet was subjected to SR treatment using a gas atmosphere furnace. At this time, the heat treatment was performed at 650 ° C. for 2 hours, and then taken out of the furnace and cooled to room temperature by air cooling. Then, the tensile properties and the Charpy impact properties of the steel sheet before and after the SR treatment were measured. The results are shown in Table 2.
[0048]
[Table 2]
Figure 2004269964
[0049]
In Table 2, in Example No. of the present invention. 1 to 10 each have a chemical component and a production method within the scope of the present invention, and have high yield strength of 551 MPa or more and tensile strength of 620 MPa or more before and after SR treatment, and further have a base material toughness and a welding heat effect. The toughness was also good.
[0050]
No. In Nos. 11 to 15, the chemical components were within the scope of the present invention, but the production method was out of the scope of the present invention, so that fine carbides could not be dispersed and precipitated, resulting in insufficient strength. No. Nos. 16 to 20 had chemical components outside the range of the present invention, so that sufficient strength was not obtained or the toughness of the weld heat affected zone was poor.
[0051]
【The invention's effect】
As described above, according to the present invention, a steel sheet having high strength of API X80 grade or more and excellent in strength toughness even after SR treatment can be obtained. For this reason, it is particularly suitable for use in steel pipes, pressure vessels, and the like that may be subjected to SR processing.
[Brief description of the drawings]
FIG. 1 is a schematic diagram showing an example of a production line for performing a production method of the present invention.
[Explanation of symbols]
1: rolling line,
2: steel plate,
3: hot rolling mill,
4: accelerated cooling device,
5: In-line induction heating device,
6: Hot leveler

Claims (2)

質量%で、C:0.03%以上、0.07%未満、Si:0.01〜0.5%、Mn:0.5〜2%、Mo:0.1〜0.5%、Al:0.08%以下を含有し、Ti:0.005〜0.035%、Nb:0.005〜0.07%、V:0.005〜0.1%の1種又は2種以上を含有し、下記(1)式で示されるCeq値が0.32以上であり、さらに、原子%でのMo、Ti、Nb、Vの合計量が0.14%以上で、かつ原子%でのC量との比である[C]/([Mo]+[Ti]+[Nb]+[V])が0.6〜1.7である鋼を、1100〜1250℃の温度に加熱し、750℃以上の圧延終了温度で熱間圧延した後、5℃/s以上の冷却速度で400〜600℃の温度まで加速冷却を行い、その後0.5℃/s以上の昇温速度で550〜700℃の温度まで再加熱を行うことを特徴とする、高強度鋼板の製造方法。
Ceq値=C+Mn/6+(Cu+Ni)/12+(Cr+Mo+V)/5・・・・(1)
但し、(1)式の元素記号は各含有元素の質量%を示す。
In mass%, C: 0.03% or more, less than 0.07%, Si: 0.01 to 0.5%, Mn: 0.5 to 2%, Mo: 0.1 to 0.5%, Al : 0.08% or less, one or more of Ti: 0.005 to 0.035%, Nb: 0.005 to 0.07%, V: 0.005 to 0.1% And the Ceq value represented by the following formula (1) is 0.32 or more, and the total amount of Mo, Ti, Nb, and V in atomic% is 0.14% or more, and A steel having a ratio of [C] / ([Mo] + [Ti] + [Nb] + [V]), which is 0.6 to 1.7, is heated to a temperature of 1100 to 1250 ° C. After hot rolling at a rolling termination temperature of 750 ° C. or more, accelerated cooling is performed at a cooling rate of 5 ° C./s or more to a temperature of 400 to 600 ° C., and then at a heating rate of 0.5 ° C./s or more. And performing reheating to a temperature of from 0 to 700 ° C., the method of producing a high strength steel sheet.
Ceq value = C + Mn / 6 + (Cu + Ni) / 12 + (Cr + Mo + V) / 5 (1)
Here, the element symbols in the formula (1) indicate mass% of each contained element.
さらに、質量%で、Cu:0.5%以下、Ni:0.5%以下、Cr:0.5%以下、Ca:0.0005〜0.0035%の中から選ばれる1種又は2種以上を含有することを特徴とする請求項1に記載の高強度鋼板の製造方法。Further, in mass%, one or two kinds selected from Cu: 0.5% or less, Ni: 0.5% or less, Cr: 0.5% or less, and Ca: 0.0005 to 0.0035% The method for producing a high-strength steel sheet according to claim 1, comprising:
JP2003062197A 2003-03-07 2003-03-07 Manufacturing method of high-strength steel sheet Expired - Fee Related JP4385622B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2003062197A JP4385622B2 (en) 2003-03-07 2003-03-07 Manufacturing method of high-strength steel sheet

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2003062197A JP4385622B2 (en) 2003-03-07 2003-03-07 Manufacturing method of high-strength steel sheet

Publications (2)

Publication Number Publication Date
JP2004269964A true JP2004269964A (en) 2004-09-30
JP4385622B2 JP4385622B2 (en) 2009-12-16

Family

ID=33124189

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2003062197A Expired - Fee Related JP4385622B2 (en) 2003-03-07 2003-03-07 Manufacturing method of high-strength steel sheet

Country Status (1)

Country Link
JP (1) JP4385622B2 (en)

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007138210A (en) * 2005-11-16 2007-06-07 Jfe Steel Kk Steel sheet for high strength line pipe in with reduced lowering of yield stress caused by bauschinger effect and its production method
JP2007270194A (en) * 2006-03-30 2007-10-18 Jfe Steel Kk Method for producing high-strength steel sheet excellent in sr resistance property
US8361249B2 (en) 2006-12-15 2013-01-29 Kobe Steel, Ltd. High-strength steel plate resistant to strength reduction resulting from stress relief annealing and excellent in weldability
JP2017538583A (en) * 2014-10-16 2017-12-28 エス・エム・エス・グループ・ゲゼルシャフト・ミト・ベシュレンクテル・ハフツング Apparatus and method for the production of rough plates
CN109023091A (en) * 2018-09-10 2018-12-18 武汉科技大学 A kind of good hot rolling ultra-high strength steel plate of processability and preparation method thereof
US11001905B2 (en) * 2015-03-26 2021-05-11 Jfe Steel Corporation Steel plate for structural pipes or tubes, method of producing steel plate for structural pipes or tubes, and structural pipes and tubes

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103658170B (en) * 2012-09-26 2015-11-18 中国石油天然气集团公司 The milling method of pipe line steel and steel pipe

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007138210A (en) * 2005-11-16 2007-06-07 Jfe Steel Kk Steel sheet for high strength line pipe in with reduced lowering of yield stress caused by bauschinger effect and its production method
JP4677883B2 (en) * 2005-11-16 2011-04-27 Jfeスチール株式会社 Steel sheet for high-strength line pipe with low yield stress reduction due to the Bauschinger effect and method for producing the same
JP2007270194A (en) * 2006-03-30 2007-10-18 Jfe Steel Kk Method for producing high-strength steel sheet excellent in sr resistance property
US8361249B2 (en) 2006-12-15 2013-01-29 Kobe Steel, Ltd. High-strength steel plate resistant to strength reduction resulting from stress relief annealing and excellent in weldability
JP2017538583A (en) * 2014-10-16 2017-12-28 エス・エム・エス・グループ・ゲゼルシャフト・ミト・ベシュレンクテル・ハフツング Apparatus and method for the production of rough plates
US11001905B2 (en) * 2015-03-26 2021-05-11 Jfe Steel Corporation Steel plate for structural pipes or tubes, method of producing steel plate for structural pipes or tubes, and structural pipes and tubes
CN109023091A (en) * 2018-09-10 2018-12-18 武汉科技大学 A kind of good hot rolling ultra-high strength steel plate of processability and preparation method thereof

Also Published As

Publication number Publication date
JP4385622B2 (en) 2009-12-16

Similar Documents

Publication Publication Date Title
JP5266791B2 (en) High strength steel plate of X100 grade or more excellent in SR resistance and deformation performance and method for producing the same
JP4904774B2 (en) Manufacturing method of high-strength, high-toughness steel with excellent strength in the medium temperature range
EP2484792A1 (en) Steel plate with low yield ratio, high strength, and high toughness and process for producing same
JP4066905B2 (en) Manufacturing method of low yield ratio high strength high toughness steel sheet with excellent weld heat affected zone toughness
JP5092498B2 (en) Low yield ratio high strength high toughness steel sheet and method for producing the same
JP5903880B2 (en) High-strength steel sheet for line pipes with excellent sour resistance and weld heat-affected zone toughness and method for producing the same
JP2013139630A (en) High strength steel sheet for sour-resistant line pipe excellent in material uniformity in the steel sheet and method for producing the same
JP2006291349A (en) Line pipe steel sheet having high deformation performance and its manufacturing method
CN107429339B (en) High-strength steel and method for producing same, and steel pipe and method for producing same
JP2007270194A (en) Method for producing high-strength steel sheet excellent in sr resistance property
JP5509654B2 (en) High-strength steel sheet excellent in PWHT resistance and uniform elongation characteristics and method for producing the same
JP2010229441A (en) Method for manufacturing high toughness high tensile thick steel plate
JP5217413B2 (en) High strength steel plate with excellent weld heat affected zone toughness and method for producing the same
JP5151034B2 (en) Manufacturing method of steel plate for high tension line pipe and steel plate for high tension line pipe
JP4385622B2 (en) Manufacturing method of high-strength steel sheet
JP4904806B2 (en) Manufacturing method of high-strength, high-toughness steel sheet with excellent strength and deformability in the middle temperature range
JP4507730B2 (en) Low yield ratio high strength high toughness steel sheet and method for producing the same
JP4742617B2 (en) Manufacturing method of high-strength steel sheet with excellent weld heat-affected zone toughness
JP4311020B2 (en) Low yield ratio high strength high toughness steel sheet and method for producing the same
JP2004218081A (en) Method for producing high-tension steel plate
JP4412099B2 (en) High strength steel plate with excellent weld heat affected zone toughness and method for producing the same
JP4273825B2 (en) High strength steel plate with excellent weld heat affected zone toughness and method for producing the same
JP4273824B2 (en) High strength steel plate with excellent weld heat affected zone toughness and method for producing the same
JP3891030B2 (en) High strength steel plate and manufacturing method thereof
JP4048985B2 (en) Manufacturing method of high-strength steel sheet

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20060221

RD01 Notification of change of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7421

Effective date: 20060921

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20080328

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20090616

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20090811

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20090908

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20090921

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20121009

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20121009

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20131009

Year of fee payment: 4

LAPS Cancellation because of no payment of annual fees