JP2004269878A - Fiber-reinforced composite material, method for producing the same and integrally molded product - Google Patents

Fiber-reinforced composite material, method for producing the same and integrally molded product Download PDF

Info

Publication number
JP2004269878A
JP2004269878A JP2004045963A JP2004045963A JP2004269878A JP 2004269878 A JP2004269878 A JP 2004269878A JP 2004045963 A JP2004045963 A JP 2004045963A JP 2004045963 A JP2004045963 A JP 2004045963A JP 2004269878 A JP2004269878 A JP 2004269878A
Authority
JP
Japan
Prior art keywords
fiber
composite material
reinforced composite
resin composition
thermoplastic resin
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2004045963A
Other languages
Japanese (ja)
Other versions
JP4543696B2 (en
Inventor
Atsuki Tsuchiya
敦岐 土谷
Haruo Ohara
春夫 尾原
Masato Honma
雅登 本間
Soichi Ishibashi
壮一 石橋
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toray Industries Inc
Original Assignee
Toray Industries Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toray Industries Inc filed Critical Toray Industries Inc
Priority to JP2004045963A priority Critical patent/JP4543696B2/en
Publication of JP2004269878A publication Critical patent/JP2004269878A/en
Application granted granted Critical
Publication of JP4543696B2 publication Critical patent/JP4543696B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C65/00Joining or sealing of preformed parts, e.g. welding of plastics materials; Apparatus therefor
    • B29C65/48Joining or sealing of preformed parts, e.g. welding of plastics materials; Apparatus therefor using adhesives, i.e. using supplementary joining material; solvent bonding
    • B29C65/4805Joining or sealing of preformed parts, e.g. welding of plastics materials; Apparatus therefor using adhesives, i.e. using supplementary joining material; solvent bonding characterised by the type of adhesives
    • B29C65/481Non-reactive adhesives, e.g. physically hardening adhesives
    • B29C65/4815Hot melt adhesives, e.g. thermoplastic adhesives
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C65/00Joining or sealing of preformed parts, e.g. welding of plastics materials; Apparatus therefor
    • B29C65/48Joining or sealing of preformed parts, e.g. welding of plastics materials; Apparatus therefor using adhesives, i.e. using supplementary joining material; solvent bonding
    • B29C65/50Joining or sealing of preformed parts, e.g. welding of plastics materials; Apparatus therefor using adhesives, i.e. using supplementary joining material; solvent bonding using adhesive tape, e.g. thermoplastic tape; using threads or the like
    • B29C65/5057Joining or sealing of preformed parts, e.g. welding of plastics materials; Apparatus therefor using adhesives, i.e. using supplementary joining material; solvent bonding using adhesive tape, e.g. thermoplastic tape; using threads or the like positioned between the surfaces to be joined
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C65/00Joining or sealing of preformed parts, e.g. welding of plastics materials; Apparatus therefor
    • B29C65/82Testing the joint
    • B29C65/8207Testing the joint by mechanical methods
    • B29C65/8215Tensile tests
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C66/00General aspects of processes or apparatus for joining preformed parts
    • B29C66/01General aspects dealing with the joint area or with the area to be joined
    • B29C66/05Particular design of joint configurations
    • B29C66/10Particular design of joint configurations particular design of the joint cross-sections
    • B29C66/11Joint cross-sections comprising a single joint-segment, i.e. one of the parts to be joined comprising a single joint-segment in the joint cross-section
    • B29C66/112Single lapped joints
    • B29C66/1122Single lap to lap joints, i.e. overlap joints
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C66/00General aspects of processes or apparatus for joining preformed parts
    • B29C66/40General aspects of joining substantially flat articles, e.g. plates, sheets or web-like materials; Making flat seams in tubular or hollow articles; Joining single elements to substantially flat surfaces
    • B29C66/41Joining substantially flat articles ; Making flat seams in tubular or hollow articles
    • B29C66/43Joining a relatively small portion of the surface of said articles
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C66/00General aspects of processes or apparatus for joining preformed parts
    • B29C66/70General aspects of processes or apparatus for joining preformed parts characterised by the composition, physical properties or the structure of the material of the parts to be joined; Joining with non-plastics material
    • B29C66/72General aspects of processes or apparatus for joining preformed parts characterised by the composition, physical properties or the structure of the material of the parts to be joined; Joining with non-plastics material characterised by the structure of the material of the parts to be joined
    • B29C66/721Fibre-reinforced materials
    • B29C66/7212Fibre-reinforced materials characterised by the composition of the fibres
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C66/00General aspects of processes or apparatus for joining preformed parts
    • B29C66/70General aspects of processes or apparatus for joining preformed parts characterised by the composition, physical properties or the structure of the material of the parts to be joined; Joining with non-plastics material
    • B29C66/72General aspects of processes or apparatus for joining preformed parts characterised by the composition, physical properties or the structure of the material of the parts to be joined; Joining with non-plastics material characterised by the structure of the material of the parts to be joined
    • B29C66/721Fibre-reinforced materials
    • B29C66/7214Fibre-reinforced materials characterised by the length of the fibres
    • B29C66/72143Fibres of discontinuous lengths
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C66/00General aspects of processes or apparatus for joining preformed parts
    • B29C66/70General aspects of processes or apparatus for joining preformed parts characterised by the composition, physical properties or the structure of the material of the parts to be joined; Joining with non-plastics material
    • B29C66/73General aspects of processes or apparatus for joining preformed parts characterised by the composition, physical properties or the structure of the material of the parts to be joined; Joining with non-plastics material characterised by the intensive physical properties of the material of the parts to be joined, by the optical properties of the material of the parts to be joined, by the extensive physical properties of the parts to be joined, by the state of the material of the parts to be joined or by the material of the parts to be joined being a thermoplastic or a thermoset
    • B29C66/739General aspects of processes or apparatus for joining preformed parts characterised by the composition, physical properties or the structure of the material of the parts to be joined; Joining with non-plastics material characterised by the intensive physical properties of the material of the parts to be joined, by the optical properties of the material of the parts to be joined, by the extensive physical properties of the parts to be joined, by the state of the material of the parts to be joined or by the material of the parts to be joined being a thermoplastic or a thermoset characterised by the material of the parts to be joined being a thermoplastic or a thermoset
    • B29C66/7394General aspects of processes or apparatus for joining preformed parts characterised by the composition, physical properties or the structure of the material of the parts to be joined; Joining with non-plastics material characterised by the intensive physical properties of the material of the parts to be joined, by the optical properties of the material of the parts to be joined, by the extensive physical properties of the parts to be joined, by the state of the material of the parts to be joined or by the material of the parts to be joined being a thermoplastic or a thermoset characterised by the material of the parts to be joined being a thermoplastic or a thermoset characterised by the material of at least one of the parts being a thermoset
    • B29C66/73941General aspects of processes or apparatus for joining preformed parts characterised by the composition, physical properties or the structure of the material of the parts to be joined; Joining with non-plastics material characterised by the intensive physical properties of the material of the parts to be joined, by the optical properties of the material of the parts to be joined, by the extensive physical properties of the parts to be joined, by the state of the material of the parts to be joined or by the material of the parts to be joined being a thermoplastic or a thermoset characterised by the material of the parts to be joined being a thermoplastic or a thermoset characterised by the material of at least one of the parts being a thermoset characterised by the materials of both parts being thermosets

Abstract

<P>PROBLEM TO BE SOLVED: To provide a fiber-reinforced composite material (I) having excellent adhesion to a structural member (II) and physical characteristics, and to provide an integrally molded product (III) given by using the fiber-reinforced composite material. <P>SOLUTION: This fiber-reinforced composite material contains a reinforcing fiber and a thermosetting resin composition, wherein a film made out of a thermoplastic resin composition is formed on at least a part of a surface of the fiber-reinforced composite material, so that the film gives vertical adhesion values of ≥10 MPa at 40°C and of <10 MPa at 140°C which are given by subjecting a nylon 6 resin containing a short fiber of carbon in an amount of 30 wt% to injection molding on the film and then measuring the adhesion value in the vertical direction. <P>COPYRIGHT: (C)2004,JPO&NCIPI

Description

本発明は、マトリクス樹脂が連続した強化繊維で強化された繊維強化複合材料(FRP)およびその製造方法に関し、詳しくはこの繊維強化複合材料を用いた一体化成形品が、廃棄するときに、成形品を容易に剥離・分解ができ、再利用のための分別が極めて容易にできる繊維強化複合材料およびその製造方法を提供するものである。この繊維強化複合材料を用いた一体化成形品は電気・電子機器、OA機器、家電機器、自動車あるいは建材の、部品、部材あるいは筐体などに用いられる。   TECHNICAL FIELD The present invention relates to a fiber reinforced composite material (FRP) in which a matrix resin is reinforced with continuous reinforcing fibers and a method for producing the same, and more particularly, to an integrated molded article using this fiber reinforced composite material, which is molded when discarded. An object of the present invention is to provide a fiber-reinforced composite material which can be easily peeled and decomposed and can be easily separated for reuse, and a method for producing the same. An integrated molded article using the fiber-reinforced composite material is used for parts, members, housings, etc. of electric / electronic devices, OA devices, home electric appliances, automobiles or building materials.

繊維強化プラスチックは、成形性、薄肉、軽量、高剛性、生産性、経済性に優れ、電気・電子機器部品、自動車機器部品、パソコン、OA機器、AV機器、携帯電話、電話機、ファクシミリ、家電製品、玩具用品などの電気・電子機器の部品や筐体に頻繁に使用されている。しかし、例えば強化繊維の長繊維群が層状に積層されて配置された形態の繊維強化プラスチック板は、特に薄肉、軽量、高剛性に優れた素材であるが、複雑形状の成形品を量産性よく容易に生産するのには不向きであった。   Fiber reinforced plastics are excellent in moldability, thinness, light weight, high rigidity, productivity, and economic efficiency, electrical and electronic equipment parts, automotive equipment parts, personal computers, OA equipment, AV equipment, mobile phones, telephones, facsimiles, and home appliances. It is frequently used for parts and housings of electric and electronic devices such as toy articles. However, for example, a fiber-reinforced plastic plate in which long fibers of a group of reinforcing fibers are arranged in a layered manner is a material that is particularly thin, lightweight, and excellent in rigidity. It was not suitable for easy production.

一方、Mg合金などの金属材料も、複雑形状化が容易であるなどの利点から、パソコン、携帯電話、携帯情報端末、OA機器などの電子機器や自動車や建材などの部品、部材や筐体に用いられるようになった。しかし、全ての部品等に金属材料を採用しようとしても、Mg合金でも繊維強化プラスチックよりも比重が大きく十分な軽量化効果が得られない、またコスト高になるなどの問題があった。   On the other hand, metal materials such as Mg alloys are also used in electronic devices such as personal computers, mobile phones, personal digital assistants, OA equipment, and parts, members and housings such as automobiles and building materials because of their advantages such as easy formation of complicated shapes. Became used. However, even if an attempt is made to use a metal material for all parts and the like, there is a problem that the Mg alloy has a higher specific gravity than fiber-reinforced plastic, does not provide a sufficient weight-reducing effect, and is expensive.

そこで、繊維強化プラスチック板などの複合材料を、金属部材や他の射出成型品等と一体的に接合させる技術が求められている。このような異なる材質からなる部材同士を一体化させた成形品は、接合部における接着性がその機能上極めて重要な問題となる。   Therefore, there is a need for a technique for integrally joining a composite material such as a fiber reinforced plastic plate with a metal member or another injection molded product. In a molded product in which members made of such different materials are integrated with each other, the adhesion at the joint becomes a very important problem in terms of its function.

一体化方法としては、接着剤を使用したものが従来より一般に採用されていた。   As an integration method, a method using an adhesive has conventionally been generally employed.

例えば、特許文献1には、金属フレームと射出成形したリブをエポキシ樹脂系の塗料で接着した電子機器筐体が開示されている。   For example, Patent Document 1 discloses an electronic device housing in which a metal frame and an injection-molded rib are bonded with an epoxy resin-based paint.

しかし、特許文献1の接着剤を用いる方法では、接着剤の準備工程や塗布工程を必要とするため、生産コストの低減が難しく、また、接着強度の信頼性に十分な満足が得られていないのが現状である。さらに、一体化成形品の廃棄に際しても、異なる材料ごとの分別が困難であり、仮に分離できたとしても、残存する接着剤のコンタミネーションにより再利用が困難となるという問題があった。
特開2001−298277号公報(第1頁、第4行)
However, the method using the adhesive disclosed in Patent Document 1 requires a preparation step and an application step of the adhesive, so that it is difficult to reduce the production cost, and the reliability of the adhesive strength is not sufficiently satisfied. is the current situation. Furthermore, when the integrated molded product is discarded, it is difficult to separate different materials, and even if it can be separated, there is a problem that it is difficult to reuse the remaining adhesive due to contamination.
JP 2001-298277 A (page 1, line 4)

本発明は、かかる従来技術の問題点を解消し、他の部材との接着性と力学特性とに優れた繊維強化複合材料および一体化成形品を提供することを目的とする。また、一体化成形品の部材が使用済み後に容易に分解できて再利用可能であることをも目的とする。   An object of the present invention is to solve the problems of the prior art and to provide a fiber-reinforced composite material and an integrated molded product having excellent adhesion to other members and excellent mechanical properties. It is another object of the present invention that a member of an integrated molded product can be easily disassembled after use and can be reused.

すなわち本発明は、強化繊維と熱硬化性樹脂組成物とを含んでなる繊維強化複合材料であって、その表面の少なくとも一部分に熱可塑性樹脂組成物からなる被膜が形成され、かつ、当該被膜上に炭素繊維の単繊維を30重量%含有するナイロン6樹脂を射出成形したときの垂直接着強度が、40℃において10MPa以上であり、かつ140℃において10MPa未満であることを特徴とする繊維強化複合材料である(第1の本発明の繊維強化複合材料)。   That is, the present invention is a fiber-reinforced composite material comprising a reinforcing fiber and a thermosetting resin composition, wherein a film made of a thermoplastic resin composition is formed on at least a part of the surface thereof, and Vertical injection strength at the time of injection molding a nylon 6 resin containing 30% by weight of carbon fiber monofilament at 40 ° C. and less than 10 MPa at 140 ° C. (The first fiber-reinforced composite material of the present invention).

また本発明は、強化繊維と熱硬化性樹脂組成物とを含んでなる繊維強化複合材料であって、その表面の少なくとも一部分に熱可塑性樹脂組成物からなる被膜が形成され、かつ、当該被膜の熱可塑性樹脂組成物を構成する熱可塑性樹脂の溶解度パラメータδ(SP値)が9〜16であることを特徴とする繊維強化複合材料である(第2の本発明の繊維強化複合材料)。   Further, the present invention is a fiber-reinforced composite material comprising a reinforcing fiber and a thermosetting resin composition, wherein a film made of a thermoplastic resin composition is formed on at least a part of the surface thereof, and A fiber-reinforced composite material having a solubility parameter δ (SP value) of the thermoplastic resin constituting the thermoplastic resin composition of 9 to 16 (the second fiber-reinforced composite material of the present invention).

また本発明は、熱硬化性プリプレグ積層体の表面の少なくとも一部分に熱可塑性樹脂組成物を配置する積層工程と、熱硬化性樹脂の硬化反応と並行して熱可塑性樹脂組成物を溶融し被膜を形成させる加熱成形工程とを含むことを特徴とする繊維強化複合材料の製造方法である。   The present invention also provides a laminating step of arranging the thermoplastic resin composition on at least a part of the surface of the thermosetting prepreg laminate, and melting the thermoplastic resin composition in parallel with the curing reaction of the thermosetting resin to form a coating. And a thermoforming step of forming the fiber-reinforced composite material.

また本発明は、本発明の繊維強化複合材料と別の構造部材とが一体に結合されてなることを特徴とする一体化成形品である。   Further, the present invention is an integrated molded product, wherein the fiber-reinforced composite material of the present invention and another structural member are integrally joined.

本発明の繊維強化複合材料は、他の部材と容易に一体化でき、かつ、接合される部材間の優れた接着強度を有する。   The fiber-reinforced composite material of the present invention can be easily integrated with other members and has excellent adhesive strength between members to be joined.

また本発明の一体化成形品は、力学特性、軽量性に優れ、かつ、廃棄時には容易に解体ができる。さらに、優れた電磁波シールド性の他、薄型、軽量、高剛性を有しており、パソコン、ディスプレイや携帯情報端末などの電気・電子機器の筐体や自動車や建材の部品、部材、筐体として好適である。   Further, the integrated molded product of the present invention is excellent in mechanical properties and lightness, and can be easily disassembled at the time of disposal. In addition to having excellent electromagnetic wave shielding properties, it has low profile, light weight, and high rigidity, and is used as a housing for electric / electronic devices such as personal computers, displays, and personal digital assistants, as well as parts, members, and housings for automobiles and building materials. It is suitable.

本発明の繊維強化複合材料は、強化繊維と熱硬化性樹脂組成物とを含んでなる。   The fiber-reinforced composite material of the present invention comprises a reinforcing fiber and a thermosetting resin composition.

強化繊維としては例えば、アルミニウム、黄銅、ステンレスなどの金属繊維や、ポリアクリロニトリル系、レーヨン系、リグニン系、ピッチ系の炭素繊維や、黒鉛繊維や、ガラスなどの絶縁性繊維や、アラミド、PBO、ポリフェニレンスルフィド、ポリエステル、アクリル、ナイロン、ポリエチレンなどの有機繊維や、シリコンカーバイト、シリコンナイトライドなどの無機繊維が挙げられる。また、これらの繊維に表面処理が施されているものであっても良い。表面処理としては、導電体として金属の被着処理のほかに、カップリング剤による処理、サイジング剤による処理、添加剤の付着処理などがある。また、これらの強化繊維は1種類を単独で用いてもよいし、2種類以上を併用してもよい。   As the reinforcing fibers, for example, aluminum, brass, metal fibers such as stainless steel, polyacrylonitrile-based, rayon-based, lignin-based, pitch-based carbon fibers, graphite fibers, insulating fibers such as glass, aramid, PBO, Organic fibers such as polyphenylene sulfide, polyester, acrylic, nylon, and polyethylene; and inorganic fibers such as silicon carbide and silicon nitride. These fibers may be subjected to a surface treatment. Examples of the surface treatment include a treatment with a coupling agent, a treatment with a sizing agent, a treatment for attaching an additive, and the like, in addition to a treatment for attaching a metal as a conductor. In addition, one type of these reinforcing fibers may be used alone, or two or more types may be used in combination.

中でも、比強度、比剛性、軽量性や導電性のバランスの観点から炭素繊維、とりわけ安価なコストを実現できる点でポリアクリロニトリル系炭素繊維が好適に用いられる。   Above all, carbon fibers, particularly polyacrylonitrile-based carbon fibers, can be suitably used from the viewpoint of the balance between specific strength, specific rigidity, lightness and conductivity, because they can realize low cost.

また炭素繊維としては、X線光電子分光法により測定されるその繊維表面の酸素(O)と炭素(C)の原子数の比である表面酸素濃度{O/C}が0.05〜0.3であるものが好ましく、より好ましくは0.06〜0.25、さらに好ましくは0.07〜0.2である。表面酸素濃度{O/C}が0.05以上であることにより、炭素繊維表面の極性官能基量を確保し、熱可塑性樹脂組成物との親和性が高くなり強固な接着を得ることができる。また0.3以下であることにより、酸化による炭素繊維自体の強度の低下が少ない。   The carbon fiber has a surface oxygen concentration {O / C} of 0.05 to 0, which is a ratio of the number of atoms of oxygen (O) and carbon (C) on the surface of the fiber measured by X-ray photoelectron spectroscopy. 3, preferably 0.06 to 0.25, more preferably 0.07 to 0.2. When the surface oxygen concentration {O / C} is 0.05 or more, the amount of polar functional groups on the carbon fiber surface is secured, the affinity with the thermoplastic resin composition is increased, and strong adhesion can be obtained. . Further, when the ratio is 0.3 or less, the strength of the carbon fiber itself is hardly reduced by oxidation.

また、強化繊維の形態としては、平均長さが10mm以上のものが層状に積層され配置されているものが、強化繊維の補強効果を効率的に発現するうえで好ましい。強化繊維の層の形態としては、クロスや、フィラメント、ブレイド、フィラメント束、紡績糸等を一方向にひきそろえた形態を好適に使用できる。一方向にひきそろえた形態の層を積層する場合には、その方向を層ごとにずらしながら積層することが積層体の強度の異方性を小さくする上で好ましい。また、これらの層の形態は、1種類を単独で使用しても2種類以上を併用してもよい。   In addition, as the form of the reinforcing fibers, those having an average length of 10 mm or more, which are layered and arranged, are preferable from the viewpoint of efficiently exhibiting the reinforcing effect of the reinforcing fibers. As a form of the reinforcing fiber layer, a form in which cloth, filaments, braids, filament bundles, spun yarns, and the like are arranged in one direction can be suitably used. In the case of laminating the layers arranged in one direction, it is preferable to laminate the layers while shifting the direction for each layer in order to reduce the strength anisotropy of the laminate. These layers may be used alone or in combination of two or more.

本発明の繊維強化複合材料に対する強化繊維の割合としては、成形性、力学特性と電磁波シールド性の観点から5〜75体積%が好ましく、10〜65体積%がより好ましい。   The ratio of the reinforcing fibers to the fiber-reinforced composite material of the present invention is preferably from 5 to 75% by volume, more preferably from 10 to 65% by volume, from the viewpoint of moldability, mechanical properties and electromagnetic wave shielding properties.

熱硬化性樹脂を構成する熱硬化性樹脂としては、ガラス転移温度が60℃以上であることが好ましく、80℃以上であることがより好ましく、100℃以上であることがさらに好ましい。一体化した成形品はその機能が主に発熱体を収納する筐体であることから、通常40℃近辺がその使用環境であり、ガラス転移温度を60℃以上とすることで、力学特性に優れた繊維強化複合材料とすることができる。   The thermosetting resin constituting the thermosetting resin preferably has a glass transition temperature of 60 ° C. or higher, more preferably 80 ° C. or higher, even more preferably 100 ° C. or higher. Since the integrated molded product mainly has a function of housing a heating element, its use environment is usually around 40 ° C, and its glass transition temperature is 60 ° C or higher, which results in excellent mechanical properties. Fiber reinforced composite material.

熱硬化性樹脂としては例えば、不飽和ポリエステル、ビニルエステル、エポキシ、フェノール(レゾール型)、ユリア・メラミン、ポリイミド等や、これらの共重合体、変性体、あるいは2種類以上ブレンドした樹脂などを使用することができる。中でも、少なくともエポキシ樹脂を含有するものが、繊維強化複合材料の力学特性の観点から好ましい。   As the thermosetting resin, for example, unsaturated polyester, vinyl ester, epoxy, phenol (resole type), urea / melamine, polyimide, and the like, or a copolymer, a modified product thereof, or a resin in which two or more kinds are blended are used. can do. Above all, those containing at least an epoxy resin are preferable from the viewpoint of the mechanical properties of the fiber-reinforced composite material.

また、耐衝撃性向上のために、熱硬化性樹脂組成物中にエラストマーあるいはゴム成分を添加してもよい。   Further, an elastomer or a rubber component may be added to the thermosetting resin composition for improving impact resistance.

本発明の繊維強化複合材料は、その表面の少なくとも一部に熱可塑性樹脂組成物からなる被膜が形成されてなることが重要である。当該被膜により、他の部材に対する優れた接着性を得ることができる。   It is important that the fiber-reinforced composite material of the present invention has a film formed of a thermoplastic resin composition formed on at least a part of its surface. Due to the coating, excellent adhesion to other members can be obtained.

また、第2の本発明の繊維強化複合材料は、被膜の熱可塑性樹脂組成物を構成する熱可塑性樹脂の溶解度パラメータδ(SP値)が9〜16であることが重要であり、好ましくは10〜15、より好ましくは11〜14である。上記範囲内とすることにより、熱可塑性樹脂の分子鎖の凝集力が大きく、熱可塑性樹脂組成物自体が容易には破壊しにくくなり、さらに強化繊維との親和性が高まることで強固な接着力を発現することができる。   In the fiber-reinforced composite material according to the second aspect of the present invention, it is important that the solubility parameter δ (SP value) of the thermoplastic resin constituting the thermoplastic resin composition of the coating film is from 9 to 16, preferably from 10 to 10. To 15, more preferably 11 to 14. By setting it within the above range, the cohesive force of the molecular chains of the thermoplastic resin is large, the thermoplastic resin composition itself is not easily broken, and the affinity with the reinforcing fiber is increased, so that the strong adhesive force is obtained. Can be expressed.

かかる溶解度パラメータδを達成しうる熱可塑性樹脂としては例えば、アミド結合、エステル結合、ウレタン結合、エーテル結合、アミノ基、水酸基、カルボキシル基、芳香環などの炭化水素骨格よりも極性の高い結合、官能基あるいは構造を持つものを挙げることができる。かかる熱可塑性樹脂組成物として、アミド結合、エステル結合、ウレタン結合、水酸基等を含むものとしては例えば、ポリアミド系樹脂、ポリエステル系樹脂、ポリカーボネート系樹脂、EVA樹脂等が挙げられる。芳香環を含むものとしてはスチレン系樹脂やPPS系樹脂等が挙げられる。前記樹脂は、単体での使用だけでなく、これらの共重合体、変性体、およびこれらの少なくとも2種類をブレンドした樹脂等などでもよい。   Examples of the thermoplastic resin capable of achieving such a solubility parameter δ include, for example, an amide bond, an ester bond, a urethane bond, an ether bond, an amino group, a hydroxyl group, a carboxyl group, a bond having a higher polarity than a hydrocarbon skeleton such as an aromatic ring, and a functional bond. Those having a group or a structure can be mentioned. Examples of such a thermoplastic resin composition containing an amide bond, an ester bond, a urethane bond, a hydroxyl group, and the like include a polyamide resin, a polyester resin, a polycarbonate resin, and an EVA resin. Examples of those containing an aromatic ring include styrene-based resins and PPS-based resins. The resin is not limited to being used alone, but may be a copolymer thereof, a modified product thereof, a resin obtained by blending at least two of them, or the like.

また、被膜の熱可塑性樹脂組成物を構成する熱可塑性樹脂の重量平均分子量としては、2,000〜200,000が好ましく、5,000〜150,000がより好ましく、10,000〜100,000が更に好ましい。上記範囲内とすることにより、分子間力や分子鎖の絡み合いが多くなり、熱可塑性樹脂自体の強度が大きくなるため、容易に熱可塑性樹脂自体が破壊しにくくなり、さらに熱可塑性樹脂が溶融時に強化繊維へ含浸しやすくなり、強固な接着力を発現することができる。   Further, the weight average molecular weight of the thermoplastic resin constituting the thermoplastic resin composition of the coating is preferably 2,000 to 200,000, more preferably 5,000 to 150,000, and 10,000 to 100,000. Is more preferred. By being in the above range, the entanglement of the intermolecular force and the molecular chain is increased, and the strength of the thermoplastic resin itself is increased, so that the thermoplastic resin itself is not easily broken, and furthermore, when the thermoplastic resin is melted, It becomes easy to impregnate the reinforcing fibers, and can exhibit strong adhesive strength.

また、被膜の熱可塑性樹脂組成物を構成する熱可塑性樹脂のガラス転移温度としては、15〜300℃が好ましく、より好ましくは40〜250℃、さらに好ましくは80〜200℃である。ガラス転移温度が上記温度範囲内であれば、通常の使用温度である室温付近では熱可塑性樹脂組成物がゴム状態になりにくく、強固な接着性を発現し、高温においてはゴム状態となり接着強度を低くすることができる。   Further, the glass transition temperature of the thermoplastic resin constituting the thermoplastic resin composition of the coating film is preferably from 15 to 300C, more preferably from 40 to 250C, and still more preferably from 80 to 200C. If the glass transition temperature is within the above temperature range, the thermoplastic resin composition is unlikely to be in a rubber state near room temperature, which is a normal use temperature, expresses strong adhesiveness, and becomes a rubber state at high temperatures and has an adhesive strength. Can be lower.

また、被膜の熱可塑性樹脂組成物を構成する熱可塑性樹脂の融点としては、成形品の実用性から100℃以上が好ましく、また、熱硬化性樹脂を硬化させる温度において溶融していることが好ましいので350℃以下が好ましい。より好ましくは100℃〜250℃、さらに好ましくは150〜220℃である。   Further, the melting point of the thermoplastic resin constituting the thermoplastic resin composition of the coating film is preferably 100 ° C. or more from the practicality of the molded article, and it is preferable that the thermoplastic resin is molten at a temperature at which the thermosetting resin is cured. Therefore, the temperature is preferably 350 ° C. or lower. The temperature is more preferably from 100 ° C to 250 ° C, and still more preferably from 150 to 220 ° C.

また、強化繊維のうちの少なくとも一部が、同一繊維について熱硬化性樹脂組成物に埋没する部分と被膜の熱可塑性樹脂組成物に埋没する部分との双方を有していることが好ましい。同一の繊維が熱可塑性樹脂組成物と熱可塑性樹脂組成物との両層に埋没し、いわば串刺しの効果により接着界面が補強され、強固な接着を得ることができる。   Further, it is preferable that at least a part of the reinforcing fibers has both a portion of the same fiber buried in the thermosetting resin composition and a portion of the coating buried in the thermoplastic resin composition. The same fiber is buried in both layers of the thermoplastic resin composition and the thermoplastic resin composition, so that the bonding interface is reinforced by the effect of skewering, so that strong bonding can be obtained.

接着界面近傍の様子は、光学顕微鏡、SEMあるいはTEMにより観察することが可能である。観察にあたり、目視による区別を容易にするために、樹脂を染色するなどしてもよい。   The state near the bonding interface can be observed with an optical microscope, SEM or TEM. Upon observation, the resin may be dyed or the like to facilitate visual distinction.

また本発明の繊維強化複合材料は、熱可塑性樹脂組成物のトータル表面自由エネルギーEpと前記熱硬化性樹脂組成物のトータル表面自由エネルギーEsとの差の絶対値(|Ep−Es|)が10mJ/m2以下であることが好ましく、より好ましくは7mJ/m2以下、さらに好ましくは5mJ/m2以下である。接着する両者のトータル表面自由エネルギーが近いということは、互いの親和性が高いということになり、10mJ/m2以下とすることで、熱可塑性樹脂組成物が熱硬化性樹脂組成物から剥離してしまうのを防ぐことができる。 The fiber-reinforced composite material of the present invention has an absolute value (| Ep-Es |) of a difference between the total surface free energy Ep of the thermoplastic resin composition and the total surface free energy Ep of the thermosetting resin composition of 10 mJ. preferably / m 2 or less, more preferably 7 mJ / m 2, more preferably not more than 5 mJ / m 2. The fact that the total surface free energy of the two to be bonded is close means that they have a high affinity for each other. When the total free energy is 10 mJ / m 2 or less, the thermoplastic resin composition is peeled off from the thermosetting resin composition. Can be prevented.

また本発明の繊維強化複合材料は、熱可塑性樹脂組成物のトータル表面自由エネルギーEpと前記強化繊維のトータル表面自由エネルギーEfとの差の絶対値(|Ep−Ef|)が10mJ/m2以下であることが好ましく、より好ましくは7mJ/m2以下、さらに好ましくは5mJ/m2以下である。10mJ/m2以下とすることで、熱可塑性樹脂組成物が強化繊維から剥離してしまうのを防ぐことができる。 The fiber-reinforced composite material of the present invention has an absolute value (| Ep-Ef |) of a difference between the total surface free energy Ep of the thermoplastic resin composition and the total surface free energy Ef of the reinforcing fiber of 10 mJ / m 2 or less. It is preferably 7 mJ / m 2 or less, more preferably 5 mJ / m 2 or less. By setting it to 10 mJ / m 2 or less, it is possible to prevent the thermoplastic resin composition from peeling off the reinforcing fibers.

被膜の熱可塑性樹脂組成物には、用途等に応じて充填剤や添加剤が含まれていてもよい。充填剤あるいは添加剤としては、無機充填剤、難燃剤、導電性付与剤、結晶核剤、紫外線吸収剤、酸化防止剤、制振剤、抗菌剤、防虫剤、防臭剤、着色防止剤、熱安定剤、離型剤、帯電防止剤、可塑剤、滑剤、着色剤、顔料、発泡剤、カップリング剤などがある。   The thermoplastic resin composition of the coating film may contain fillers and additives depending on the use and the like. As fillers or additives, inorganic fillers, flame retardants, conductivity-imparting agents, crystal nucleating agents, ultraviolet absorbers, antioxidants, vibration damping agents, antibacterial agents, insect repellents, deodorants, coloring inhibitors, heat Examples include stabilizers, release agents, antistatic agents, plasticizers, lubricants, coloring agents, pigments, foaming agents, coupling agents, and the like.

特に、難燃性が要求される用途向けに難燃剤の添加や、導電性が要求される用途向けに導電性付与剤の添加が好ましく採用される。難燃剤としては例えば、ハロゲン化合物、アンチモン化合物、リン化合物、窒素化合物、シリコーン化合物、フッ素化合物、フェノール化合物、金属水酸化物などの難燃剤を使用することができる。中でも、環境負荷を抑えるという観点から、ポリリン酸アンモニウム、ポリホスファゼン、ホスフェート、ホスホネート、ホスフィネート、ホスフィンオキシド、赤リンなどのリン化合物が、好ましく使用できる。導電性付与剤としては例えば、カーボンブラック、アモルファスカーボン粉末、天然黒鉛粉末、人造黒鉛粉末、膨張黒鉛粉末、ピッチマイクロビーズ、気相成長炭素繊維、カーボンナノチューブ等を採用することができる。   In particular, addition of a flame retardant for applications requiring flame retardancy and addition of a conductivity-imparting agent for applications requiring conductivity are preferably employed. As the flame retardant, for example, a flame retardant such as a halogen compound, an antimony compound, a phosphorus compound, a nitrogen compound, a silicone compound, a fluorine compound, a phenol compound, and a metal hydroxide can be used. Among them, phosphorus compounds such as ammonium polyphosphate, polyphosphazene, phosphate, phosphonate, phosphinate, phosphine oxide, and red phosphorus can be preferably used from the viewpoint of suppressing environmental load. As the conductivity-imparting agent, for example, carbon black, amorphous carbon powder, natural graphite powder, artificial graphite powder, expanded graphite powder, pitch microbeads, vapor-grown carbon fiber, carbon nanotube, and the like can be used.

被膜の平均厚みとしては、0.1〜1000μmが好ましく、より好ましくは0.5〜500μmであり、さらに好ましくは1〜100μmである。被膜の平均厚みが上記範囲内であれば、強固な接着を得るのに十分である。被膜の平均厚みは、被膜の断面を光学顕微鏡、SEMあるいはTEMにて観察することにより測定できる。   The average thickness of the coating is preferably from 0.1 to 1000 μm, more preferably from 0.5 to 500 μm, and still more preferably from 1 to 100 μm. When the average thickness of the coating is within the above range, it is sufficient to obtain strong adhesion. The average thickness of the coating can be measured by observing the cross section of the coating with an optical microscope, SEM or TEM.

第1の本発明の繊維強化複合材料は、被膜上に炭素繊維の単繊維を30重量%含有するナイロン6樹脂を射出成型したときの垂直接着強度が、40℃において10MPa以上であり、かつ140℃において10MPa未満であることが重要である。例えば、本発明の一体化成形品の主な用途の一つとして、発熱体を収納する筐体では、通常40℃近辺がその使用環境であるから、その環境での使用に耐える接着強度として10MPa以上を確保することが重要であり、好ましくは13MPa以上、より好ましくは18MPa以上である。一方、通常の使用環境よりも高い温度として140℃における接着強度が10MPa未満、好ましくは8MPa以下、より好ましくは6MPa以下とすることにより、一体化成形品の使用済時に予熱することで異なる部材同士を容易に分別して回収・再利用することができる。通常の大気雰囲気下(常圧、50%RH)における熱硬化性樹脂のガラス転移温度は、およそ130〜150℃であって、それ以上の温度においては一般的に使用しないので、その温度領域において接着強度を下げ、繊維強化複合材料と他の成形品が分解しやすくしたことが本発明の大きな特徴である。また、本発明の繊維強化複合材料と接着させる他の部材としての標準材料として、炭素繊維の短繊維を30重量%含有するナイロン6樹脂を採用する。その更なる詳細は、実施例にて後述する。   The fiber-reinforced composite material according to the first aspect of the present invention has a vertical adhesive strength of 10 MPa or more at 40 ° C. when a nylon 6 resin containing 30% by weight of a single carbon fiber is injection-molded on a coating film, and 140 It is important that it is less than 10 MPa at ° C. For example, as one of the main uses of the integrated molded product of the present invention, in the case of housing the heating element, the use environment is usually around 40 ° C., so that the adhesive strength to withstand use in that environment is 10 MPa. It is important to secure the above, preferably 13 MPa or more, more preferably 18 MPa or more. On the other hand, when the adhesive strength at 140 ° C. as a temperature higher than the normal use environment is less than 10 MPa, preferably 8 MPa or less, and more preferably 6 MPa or less, the members which are different from each other by preheating at the time of use of the integrated molded product are used. Can be easily separated and collected and reused. The glass transition temperature of the thermosetting resin under a normal atmospheric atmosphere (normal pressure, 50% RH) is about 130 to 150 ° C., and is generally not used at a temperature higher than that. A major feature of the present invention is that the adhesive strength is reduced and the fiber-reinforced composite material and other molded products are easily decomposed. Further, as a standard material as another member to be bonded to the fiber-reinforced composite material of the present invention, a nylon 6 resin containing 30% by weight of short carbon fiber is adopted. Further details will be described later in Examples.

本発明の繊維強化複合材料は、その主な用途の一つが例えば電磁波シールド成形品としての電気・電子機器の筐体であるので、その形状に適合させるため、少なくとも1つの略平面部を有していることが好ましく、さらには繊維強化複合材料の最大面積を持つ面の50%以上が略平面を形成していることがより好ましい。用途として電気、電子機器の筐体を想定した場合は、薄肉・軽量性の観点から、積層体の平均厚みは0.1〜3mmであることが好ましく、0.3〜2mmであることがより好ましく、0.4〜1.6mmであることがさらに好ましく、0.5〜1.2mmであることがとりわけ好ましい。ここで、積層体の平均厚みは、上記略平面部における均等に分布した少なくとも5点の測定値の平均値である。なお、平均厚みの測定に当たっては、リブ部、ヒンジ部、凸凹部など意図的に形状を付与した部位は除くものとする。   The fiber-reinforced composite material of the present invention has at least one substantially flat portion in order to conform to its shape, because one of its main applications is, for example, a housing of an electric / electronic device as an electromagnetic shielding molded product. More preferably, 50% or more of the surface having the maximum area of the fiber-reinforced composite material forms a substantially flat surface. Assuming that the housing of an electric or electronic device is used as an application, the average thickness of the laminate is preferably 0.1 to 3 mm, more preferably 0.3 to 2 mm from the viewpoint of thinness and light weight. Preferably, it is 0.4 to 1.6 mm, more preferably, 0.5 to 1.2 mm. Here, the average thickness of the laminate is an average value of measured values of at least five points evenly distributed in the above-mentioned substantially flat portion. In the measurement of the average thickness, a part intentionally provided with a shape such as a rib part, a hinge part, and a concave and convex part is excluded.

また、本発明の繊維強化複合材料は、電気・電子機器の筐体としての用途を想定すると、成形品の破損、撓み、変形から実装する部材を保護するという観点から、ASTM D790に基づく曲げ弾性率が20GPa以上であることが好ましく、より好ましくは30GPa以上である。繊維強化複合材料が面内に曲げ弾性率の異方性を有するときは、その最小値をとり評価する。測定方法の更なる詳細は、実施例にて後述する。   Further, assuming that the fiber-reinforced composite material of the present invention is used as a housing of an electric / electronic device, a bending elasticity based on ASTM D790 is considered from the viewpoint of protecting a mounted member from damage, bending, and deformation of a molded product. The rate is preferably 20 GPa or more, and more preferably 30 GPa or more. When the fiber-reinforced composite material has in-plane anisotropy of flexural modulus, the minimum value is evaluated. Further details of the measurement method will be described later in Examples.

また、本発明の繊維強化複合材料は、アドバンテスト法にて測定される周波数1GHzにおける電波シールド性が30dB以上であることが好ましく、より好ましくは40dB以上、さらに好ましくは50dB以上である。その測定方法の更なる詳細は、実施例にて後述する。   In addition, the fiber-reinforced composite material of the present invention preferably has a radio wave shielding property at a frequency of 1 GHz measured by an Advantest method of 30 dB or more, more preferably 40 dB or more, and still more preferably 50 dB or more. Further details of the measurement method will be described later in Examples.

次に、本発明の一体化成形品は、本発明の繊維強化複合材料と別の構造部材とが熱可塑性樹脂組成物からなる被膜を介して一体に結合されてなる。被膜を介して結合されることにより、強固な一体性を得ることができる。さらには、高温、具体的には構成要素の一部である本発明の繊維強化複合材料の被膜の熱可塑性樹脂膜の融点または軟化点以上の温度、の雰囲気下での剥離・分解性があることにより、廃棄の際にもそれぞれの部材に分離分別することが極めて容易になる。このことは廃棄した成形品を再利用するための労力を大幅に低減させることができる優れた特性である。   Next, the integrated molded article of the present invention is obtained by integrally bonding the fiber-reinforced composite material of the present invention and another structural member via a coating made of a thermoplastic resin composition. By being bonded via the coating, strong integrity can be obtained. Furthermore, there is a peeling / decomposing property under an atmosphere at a high temperature, specifically, a temperature higher than the melting point or softening point of the thermoplastic resin film of the coating of the fiber reinforced composite material of the present invention which is a part of the constituent element. This makes it extremely easy to separate and separate each member even during disposal. This is an excellent property that can greatly reduce the labor for reusing a discarded molded product.

その接合面においては、接合面の50面積%以上に本発明の繊維強化複合材料の被膜を有していることが好ましく、接合面面積の70%以上がさらに好ましく、接合面の全面に接着層を有していることがとりわけ好ましい。   The joint surface preferably has a coating of the fiber-reinforced composite material of the present invention in 50% by area or more of the joint surface, more preferably 70% or more of the joint surface area, and an adhesive layer on the entire joint surface. It is particularly preferred to have

また、補助的に、嵌合や嵌め込みなどを併用してなることも好ましい。   In addition, it is also preferable to use a combination of fitting and fitting.

当該「別の部材」としては例えば、アルミニウム、鉄、マグネシウム、チタンおよびこれらとの合金等の金属材料によるものでもよいし、本発明の繊維強化複合材料同士でもよいし、熱可塑性樹脂組成物からなるものでよい。   As the "another member", for example, may be a metal material such as aluminum, iron, magnesium, titanium and alloys thereof, or may be fiber-reinforced composite materials of the present invention, or from a thermoplastic resin composition It is good.

また、強化繊維で強化された熱可塑性樹脂組成物を「別の部材」として用いると、金属材料を採用した場合には実現できない軽量性が得られるので好ましい。   Further, it is preferable to use a thermoplastic resin composition reinforced with reinforcing fibers as “another member” because a lightweight property that cannot be realized when a metal material is employed is obtained.

「別の部材」に使用される熱可塑性樹脂としては例えば、ポリエチレンテレフタレート(PET)、ポリブチレンテレフタレート(PBT)、ポリトリメチレンテレフタレート(PTT)、ポリエチレンナフタレート(PEN)、液晶ポリエステル等のポリエステルや、ポリエチレン(PE)、ポリプロピレン(PP)、ポリブチレン等のポリオレフィンや、スチレン系樹脂の他や、ポリオキシメチレン(POM)、ポリアミド(PA)、ポリカーボネート(PC)、ポリメチレンメタクリレート(PMMA)、ポリ塩化ビニル(PVC)、ポリフェニレンスルフィド(PPS)、ポリフェニレンエーテル(PPE)、変性PPE、ポリイミド(PI)、ポリアミドイミド(PAI)、ポリエーテルイミド(PEI)、ポリスルホン(PSU)、変性PSU、ポリエーテルスルホン、ポリケトン(PK)、ポリエーテルケトン(PEK)、ポリエーテルエーテルケトン(PEEK)、ポリエーテルケトンケトン(PEKK)、ポリアリレート(PAR)、ポリエーテルニトリル(PEN)、フェノール系樹脂、フェノキシ樹脂、ポリテトラフルオロエチレンなどのフッ素系樹脂、更にポリスチレン系、ポリオレフィン系、ポリウレタン系、ポリエステル系、ポリアミド系、ポリブタジエン系、ポリイソプレン系、フッ素系等の熱可塑エラストマー等や、これらの共重合体、変性体、および2種類以上ブレンドした樹脂などであってもよい。とりわけ、耐熱性、耐薬品性の観点からはPPS樹脂が、成形品外観、寸法安定性の観点からはポリカーボネート樹脂やスチレン系樹脂が、成形品の強度、耐衝撃性の観点からはポリアミド樹脂がより好ましく用いられる。   Examples of the thermoplastic resin used for “another member” include polyester such as polyethylene terephthalate (PET), polybutylene terephthalate (PBT), polytrimethylene terephthalate (PTT), polyethylene naphthalate (PEN), and liquid crystal polyester. , Polyethylene (PE), polypropylene (PP), polyolefins such as polybutylene, styrene resins, polyoxymethylene (POM), polyamide (PA), polycarbonate (PC), polymethylene methacrylate (PMMA), polychlorinated Vinyl (PVC), polyphenylene sulfide (PPS), polyphenylene ether (PPE), modified PPE, polyimide (PI), polyamideimide (PAI), polyetherimide (PEI), polysulfone (PSU) , Modified PSU, polyether sulfone, polyketone (PK), polyetherketone (PEK), polyetheretherketone (PEEK), polyetherketoneketone (PEKK), polyarylate (PAR), polyethernitrile (PEN), phenol Resins, phenoxy resins, fluororesins such as polytetrafluoroethylene, and thermoplastic elastomers such as polystyrene, polyolefin, polyurethane, polyester, polyamide, polybutadiene, polyisoprene, and fluorine, and the like. And modified resins, and resins blended with two or more types. In particular, PPS resin is preferred from the viewpoint of heat resistance and chemical resistance, polycarbonate resin and styrene resin are preferred from the viewpoint of molded product appearance and dimensional stability, and polyamide resin is preferred from the viewpoint of molded product strength and impact resistance. More preferably used.

また、耐衝撃性向上のために、他のエラストマーあるいはゴム成分を添加してもよい。また、用途等に応じ、本発明の目的を損なわない範囲で他の充填材や添加剤を含有しても良い。例えば、無機充填材、難燃剤、導電性付与剤、結晶核剤、紫外線吸収剤、酸化防止剤、制振剤、抗菌剤、防虫剤、防臭剤、着色防止剤、熱安定剤、離型剤、帯電防止剤、可塑剤、滑剤、着色剤、顔料、染料、発泡剤、制泡剤、カップリング剤などが挙げられる。導電性付与剤としては、例えばカーボンブラック、アモルファスカーボン粉末、天然黒鉛粉末、人造黒鉛粉末、膨張黒鉛粉末、ピッチマイクロビーズ、気相成長炭素繊維、カーボンナノチューブなどが例示でき、これらは電磁波シールド性をより高める目的で好ましく使用される。   Further, another elastomer or rubber component may be added to improve impact resistance. Further, other fillers and additives may be contained within a range that does not impair the purpose of the present invention, depending on the use and the like. For example, inorganic fillers, flame retardants, conductivity-imparting agents, crystal nucleating agents, ultraviolet absorbers, antioxidants, vibration damping agents, antibacterial agents, insect repellents, deodorants, coloring inhibitors, heat stabilizers, release agents , An antistatic agent, a plasticizer, a lubricant, a coloring agent, a pigment, a dye, a foaming agent, an antifoaming agent, and a coupling agent. Examples of the conductivity-imparting agent include carbon black, amorphous carbon powder, natural graphite powder, artificial graphite powder, expanded graphite powder, pitch microbeads, vapor-grown carbon fiber, carbon nanotube, and the like. It is preferably used for the purpose of further enhancing.

「別の構造部材」で使用する強化繊維の素材としては、前述の本発明の繊維強化複合材料における強化繊維と同様の思想により選定することができる。ただし「別の構造部材」を射出成型により形成する場合には、強化繊維は短繊維とし、熱可塑性樹脂組成物中に均一に分散していることが好ましい。この場合の熱可塑性樹脂と強化繊維との配合比率としては、強化繊維が炭素繊維のとき、成形性、強度、軽量性とのバランスの観点から、熱可塑性樹脂が25〜95重量%、炭素繊維が5〜75重量%が好ましく、より好ましくは熱可塑性樹脂が35〜85重量%、炭素繊維が15〜65重量%である。   The material of the reinforcing fiber used in "another structural member" can be selected based on the same concept as the reinforcing fiber in the fiber-reinforced composite material of the present invention described above. However, when "another structural member" is formed by injection molding, it is preferable that the reinforcing fibers be short fibers and are uniformly dispersed in the thermoplastic resin composition. In this case, the compounding ratio of the thermoplastic resin to the reinforcing fibers is such that when the reinforcing fibers are carbon fibers, the thermoplastic resin is 25 to 95% by weight, and the carbon fibers are carbon fibers in view of the balance between moldability, strength and lightness. Is preferably 5 to 75% by weight, more preferably 35 to 85% by weight of a thermoplastic resin and 15 to 65% by weight of a carbon fiber.

「別の構造部材」は、電気・電子機器の筐体としての用途を想定すると、体積固有抵抗率が100Ω・cm以下であることが好ましく、70Ω・cm以下がより好ましく、50Ω・cm以下がさらに好ましい。   "Another structural member" has a volume resistivity of preferably 100 Ω · cm or less, more preferably 70 Ω · cm or less, and preferably 50 Ω · cm or less, assuming use as a housing of an electric / electronic device. More preferred.

本発明の一体化成型品において、本発明の繊維強化複合材料の好ましい一態様である強化繊維が層状に積層されたものは、電気・電子機器の筐体としての用途を想定すると、電磁波シールド性の観点から、本発明の繊維強化複合材料が筐体の天面の少なくとも一部を構成することが好ましく、天面の投影面積の50%以上を構成することがさらに好ましく、天面の投影面積の70%以上を構成することがとりわけ好ましい。ここで、投影面積とは成形品の外形寸法から求めた成形品面の大きさを表す尺度である。   In the monolithic molded article of the present invention, the layered layer of the reinforcing fiber, which is a preferred embodiment of the fiber-reinforced composite material of the present invention, has an electromagnetic wave shielding property assuming the use as a housing of electric / electronic equipment. In view of the above, the fiber-reinforced composite material of the present invention preferably forms at least a part of the top surface of the housing, more preferably 50% or more of the projected area of the top surface, and the projected area of the top surface It is particularly preferable to constitute 70% or more of the above. Here, the projected area is a scale representing the size of the molded product surface obtained from the external dimensions of the molded product.

本発明の一体化成形品の形状としては、曲面、リブ、ヒンジ、ボス、中空部を有していてもよい。また、成形品にはメッキ、塗装、蒸着、インサート、スタンピング、レーザー照射などによる表面加飾の処理が施されていてもよい。   The shape of the integrated molded product of the present invention may have a curved surface, a rib, a hinge, a boss, and a hollow portion. Further, the molded product may be subjected to a surface decoration treatment by plating, painting, vapor deposition, insert, stamping, laser irradiation, or the like.

本発明の一体化成形品の用途としては例えば、パソコン、ディスプレイ、OA機器、携帯電話、携帯情報端末、ファクシミリ、コンパクトディスク、ポータブルMD、携帯用ラジオカセット、PDA(電子手帳などの携帯情報端末)、ビデオカメラ、デジタルスチルカメラ、光学機器、オーディオ、エアコン、照明機器、娯楽用品、玩具用品、その他家電製品などの電気、電子機器の筐体及びトレイやシャーシなどの内部部材やそのケース、機構部品、パネルなどの建材用途、モーター部品、オルタネーターターミナル、オルタネーターコネクター、ICレギュレーター、ライトディヤー用ポテンショメーターベース、サスペンション部品、排気ガスバルブなどの各種バルブ、燃料関係、排気系または吸気系各種パイプ、エアーインテークノズルスノーケル、インテークマニホールド、各種アーム、各種フレーム、各種ヒンジ、各種軸受、燃料ポンプ、ガソリンタンク、CNGタンク、エンジン冷却水ジョイント、キャブレターメインボディー、キャブレタースペーサー、排気ガスセンサー、冷却水センサー、油温センサー、ブレーキパットウェアーセンサー、スロットルポジションセンサー、クランクシャフトポジションセンサー、エアーフローメーター、ブレーキバット磨耗センサー、エアコン用サーモスタットベース、暖房温風フローコントロールバルブ、ラジエーターモーター用ブラッシュホルダー、ウォーターポンプインペラー、タービンべイン、ワイパーモーター関係部品、ディストリビュター、スタータースィッチ、スターターリレー、トランスミッション用ワイヤーハーネス、ウィンドウオッシャーノズル、エアコンパネルスィッチ基板、燃料関係電磁気弁用コイル、ヒューズ用コネクター、バッテリートレイ、ATブラケット、ヘッドランプサポート、ペダルハウジング、ハンドル、ドアビーム、プロテクター、シャーシ、フレーム、アームレスト、ホーンターミナル、ステップモーターローター、ランプソケット、ランプリフレクター、ランプハウジング、ブレーキピストン、ノイズシールド、ラジエターサポート、スペアタイヤカバー、シートシェル、ソレノイドボビン、エンジンオイルフィルター、点火装置ケース、アンダーカバー、スカッフプレート、ピラートリム、プロペラシャフト、ホイール、フェンダー、フェイシャー、バンパー、バンパービーム、ボンネット、エアロパーツ、プラットフォーム、カウルルーバー、ルーフ、インストルメントパネル、スポイラーおよび各種モジュールなどの自動車、二輪車関連部品、部材および外板やランディングギアポッド、ウィングレット、スポイラー、エッジ、ラダー、エレベーター、フェイリング、リブなどの航空機関連部品、部材および外板などが挙げられる。とりわけ、本発明の一体化成型品は電磁波シールド成形品としてその優れた電磁波シールド性を生かして、電気、電子機器用の筐体や外部部材用に好適であり、さらには薄肉で広い投影面積を必要とするノート型パソコンや携帯情報端末などの筐体として好適である。   Examples of the use of the integrated molded product of the present invention include a personal computer, a display, an OA device, a mobile phone, a portable information terminal, a facsimile, a compact disk, a portable MD, a portable radio cassette, a PDA (a portable information terminal such as an electronic notebook). , Video cameras, digital still cameras, optical equipment, audio equipment, air conditioners, lighting equipment, recreational goods, toy goods, and other home appliances, electric and electronic equipment housings and internal members such as trays and chassis, their cases, and mechanical parts , Panels and other building materials, motor parts, alternator terminals, alternator connectors, IC regulators, potentiometer bases for light days, suspension parts, various valves such as exhaust gas valves, fuel related, various exhaust or intake pipes, air intake Rusnorkel, intake manifold, various arms, various frames, various hinges, various bearings, fuel pump, gasoline tank, CNG tank, engine cooling water joint, carburetor main body, carburetor spacer, exhaust gas sensor, cooling water sensor, oil temperature sensor , Brake pad wear sensor, throttle position sensor, crankshaft position sensor, air flow meter, brake butt wear sensor, thermostat base for air conditioner, heating hot air flow control valve, brush holder for radiator motor, water pump impeller, turbine vane, Wiper motor related parts, distributor, starter switch, starter relay, transmission wire Harness, window washer nozzle, air conditioner panel switch board, fuel related electromagnetic valve coil, fuse connector, battery tray, AT bracket, headlamp support, pedal housing, handle, door beam, protector, chassis, frame, armrest, horn terminal, Step motor rotor, lamp socket, lamp reflector, lamp housing, brake piston, noise shield, radiator support, spare tire cover, seat shell, solenoid bobbin, engine oil filter, ignition device case, under cover, scuff plate, pillar trim, propeller shaft, Wheels, fenders, fascias, bumpers, bumper beams, bonnets, aero parts, platforms Foams, cowl louvers, roofs, instrument panels, spoilers and various modules, etc., parts related to automobiles and motorcycles, components and skins, landing gear pods, winglets, spoilers, edges, rudder, elevators, failings, ribs and other aircraft Related parts, members, and outer plates are included. In particular, the integrated molded product of the present invention makes use of its excellent electromagnetic wave shielding properties as an electromagnetic wave shield molded product, and is suitable for electric and electronic equipment housings and external members. It is suitable as a housing for a necessary notebook personal computer or portable information terminal.

次に、本発明の繊維強化複合材料の製造方法は、熱硬化性樹脂を含むプリプレグ積層体の表面の少なくとも一部分に熱可塑性樹脂組成物を配置する積層工程と、熱硬化性樹脂組成物の硬化反応と並行して熱可塑性樹脂組成物を溶融し被膜を形成させる加熱成形工程とを含む。すなわち、硬化前の熱硬化性樹脂組成物の表層に、熱可塑性樹脂を膜状に配置してから熱可塑性樹脂の融点以上で硬化させるのであり、これにより熱硬化性樹脂組成物と熱可塑性樹脂が良く接着した状態の本発明の繊維強化複合材料を得ることができる。   Next, the method for producing a fiber-reinforced composite material of the present invention includes a laminating step of disposing a thermoplastic resin composition on at least a part of the surface of a prepreg laminate including a thermosetting resin, and curing the thermosetting resin composition. A heat molding step of melting the thermoplastic resin composition to form a film in parallel with the reaction. That is, the thermoplastic resin is disposed on the surface layer of the thermosetting resin composition before curing in a film form, and then cured at a temperature equal to or higher than the melting point of the thermoplastic resin, whereby the thermosetting resin composition and the thermoplastic resin are cured. Can be obtained.

強化繊維は、ドラムワインド等で引き揃えることができる。   The reinforcing fibers can be aligned with a drum wind or the like.

積層体の形成手段としては例えば、ハンドレイアップ成形法、スプレーアップ成形法、真空バック成形法、加圧成形法、オートクレーブ成形法、プレス成形法、トランスファー成形法など、とりわけ、プロセス性、力学特性の観点から真空バック成形法、プレス成形法、トランスファー成形法などが好適に用いられる。   Examples of the means for forming a laminate include a hand lay-up molding method, a spray-up molding method, a vacuum back molding method, a pressure molding method, an autoclave molding method, a press molding method, and a transfer molding method. From the viewpoint, a vacuum back molding method, a press molding method, a transfer molding method and the like are preferably used.

「別の構造部材」における、熱可塑性樹脂に強化繊維を分散させる方法としては例えば、熱可塑性樹脂と強化繊維を溶融混練する公知の方法を採用できる。また「別の構造部材」の成形手段としては例えば、射出成形、押出成形およびプレス成形などが挙げられ、とりわけ射出成形が生産性が高く工業的に好適であり、かつリブ、ヒンジ、ボスを有する複雑な形状の成形品を容易に量産できることから好適に用いられる。   As a method of dispersing the reinforcing fibers in the thermoplastic resin in “another structural member”, for example, a known method of melt-kneading the thermoplastic resin and the reinforcing fibers can be adopted. Examples of the molding means of "another structural member" include, for example, injection molding, extrusion molding, and press molding. In particular, injection molding has high productivity and is industrially suitable, and has ribs, hinges, and bosses. It is preferably used because a molded article having a complicated shape can be easily mass-produced.

本発明の繊維強化複合材料と「別の構造部材」とを一体化させる手順としては例えば、以下の工法1〜3を例示できる。   As a procedure for integrating the fiber-reinforced composite material of the present invention and “another structural member”, for example, the following construction methods 1 to 3 can be exemplified.

工法1:本発明の繊維強化複合材料を予め成形しておき「別の構造部材」の成形と同時に両者を一体化させる工法。例えば、本発明の繊維強化複合材料をプレス成形にて予め製造、所定のサイズに加工、後処理し、射出成形金型にインサートした後、「別の構造部材」を射出成形することで一体化させる方法。   Method 1: A method in which the fiber-reinforced composite material of the present invention is preliminarily formed and both are integrated simultaneously with the formation of “another structural member”. For example, the fiber reinforced composite material of the present invention is manufactured in advance by press molding, processed to a predetermined size, post-processed, inserted into an injection mold, and then integrated by injection molding "another structural member". How to let.

工法2:「別の構造部材」を予め成形しておき本発明の繊維強化複合材料の成形と同時に両者を一体化させる工法。例えば、「別の構造部材」を射出成形にて予め製造、後処理したものをプレス金型にインサートし、次いで本発明の繊維強化複合材料となるプリプレグをレイアップし、熱可塑性樹脂の融点以上の温度で真空バック成形することで一体化させる方法。   Method 2: A method in which “another structural member” is preliminarily formed, and the fiber-reinforced composite material of the present invention is formed simultaneously with the molding. For example, "another structural member" is manufactured in advance by injection molding and post-processed is inserted into a press die, and then the prepreg that will be the fiber-reinforced composite material of the present invention is laid up, and the melting point of the thermoplastic resin or higher. A method that integrates by vacuum back molding at a temperature of

工法3:予め本発明の繊維強化複合材料と「別の構造部材」とを別個に成形し、両者を一体化させる工法。例えば、プレス成形にて予め製造、所定のサイズに加工、後処理した本発明の繊維強化複合材料と、射出成形にて予め製造、後処理した「別の構造部材」とを工法2と同様にして一体化させる方法。   Method 3: A method in which the fiber-reinforced composite material of the present invention and “another structural member” are separately formed in advance, and the two are integrated. For example, the fiber-reinforced composite material of the present invention, which is manufactured in advance by press molding, processed to a predetermined size, and post-processed, and "another structural member" manufactured and post-processed in advance by injection molding, in the same manner as in Method 2, How to integrate.

本発明の繊維強化複合材料と「別の構造部材」とを接合して本発明の一体化成形品を製造する手段としては例えば、本発明の繊維強化複合材料における被膜の熱可塑性樹脂組成物を構成する熱可塑性樹脂の融点以上のプロセス温度で「別の構造部材」を貼り付け、次いで冷却することにより本発明の繊維強化複合材料と「別の構造部材」とを接合することで、接着と一体化を同時に達成できる。   Means for producing the integrated molded article of the present invention by bonding the fiber-reinforced composite material of the present invention and “another structural member” include, for example, a thermoplastic resin composition of a film in the fiber-reinforced composite material of the present invention. Attach "another structural member" at a process temperature equal to or higher than the melting point of the constituting thermoplastic resin, and then join the fiber-reinforced composite material of the present invention and the "another structural member" by cooling, thereby achieving adhesion and Integration can be achieved simultaneously.

以下に実施例と比較例を示す。実施例及び比較例中に示された配合割合において特に注釈のない「%」は全て重量%を意味する。   Examples and comparative examples are shown below. In the compounding ratios shown in the examples and comparative examples, "%" without any particular comment means% by weight.

(評価・測定方法)
(1)垂直接着強度評価
繊維強化複合材料の目標とする接着面上に、ナイロン系樹脂をベースとする熱可塑性成形材料を射出成形にてその融点以上の温度で溶融接着させた成形品を用いて行う。以下に具体的な例を示す。
(Evaluation and measurement method)
(1) Evaluation of vertical adhesive strength A molded product obtained by melt-bonding a thermoplastic molding material based on a nylon-based resin at a temperature equal to or higher than its melting point by injection molding on a target bonding surface of a fiber-reinforced composite material. Do it. Specific examples are shown below.

(被接着部材の素材)
日本製鋼所(株)TEX−30α型2軸押出機(スクリュー直径30mm、L/D=32)に対して、熱可塑性樹脂として東レ(株)製ナイロン6樹脂CM1001をメインホッパーより供給し、次いでその下流のサイドホッパーより東レ(株)製チョップド炭素繊維“トレカ”TS−12(チョップド糸長6mm)を供給し、バレル温度260℃、スクリュー回転数150rpmにて十分に混練し、さらに下流の真空ベントより脱気を行った。供給は重量フィーダーにより炭素繊維の含有率が30重量%となるように調整した。溶融樹脂をダイス口(内径5mm)より吐出し、得られたストランドを冷却後、カッターにて切断してペレット状の成形材料とした。得られたペレットを熱風乾燥で90℃×3hr、さらに真空下で80℃×6hrの乾燥を行い、水分率0.1%以下になるよう十分に乾燥させた。
(Material of the member to be bonded)
A nylon 6 resin CM1001 manufactured by Toray Co., Ltd. was supplied from a main hopper to a TEX-30α type twin screw extruder (screw diameter 30 mm, L / D = 32) of Nippon Steel Works Co., Ltd. A chopped carbon fiber “Torayca” TS-12 (chopped yarn length 6 mm) manufactured by Toray Industries, Inc. is supplied from a downstream side hopper, and sufficiently kneaded at a barrel temperature of 260 ° C. and a screw rotation speed of 150 rpm. Degassing was performed from the vent. The supply was adjusted by a weight feeder so that the carbon fiber content was 30% by weight. The molten resin was discharged from a die opening (inner diameter 5 mm), and the obtained strand was cooled and cut with a cutter to obtain a pellet-shaped molding material. The obtained pellets were dried at 90 ° C. for 3 hours by hot air drying and then at 80 ° C. for 6 hours under vacuum, and sufficiently dried so that the water content became 0.1% or less.

(射出成形)
次に日本製鋼所(株)製J350EIII型射出成形機を用い、金型内に各実施例・比較例の繊維強化複合材料を、熱可塑性樹脂組成物からなる被膜を有する表面を射出成形材料と一体化できるように載置し、上記被接着部材の素材を280℃の温度で射出成形材料部分の厚みが3mmとなるように射出成形し、図2に示すような一体化成形品とした。
(injection molding)
Next, using a J350EIII type injection molding machine manufactured by Japan Steel Works, the fiber-reinforced composite material of each Example and Comparative Example was placed in a mold, and the surface having a coating made of a thermoplastic resin composition was treated as an injection molding material. It was placed so that it could be integrated, and the material of the member to be bonded was injection-molded at a temperature of 280 ° C. so that the thickness of the injection-molded material portion became 3 mm to obtain an integrated molded product as shown in FIG.

(引張試験)
当該一体化成形品から垂直接着強度評価サンプル(図6中b)を10mm角で切り出した。測定装置としては“インストロン”(登録商標)5565型万能材料試験機(インストロン・ジャパン(株)製)を使用して、サンプルを治具(図6中a)で固定し、40℃と140℃との2点の温度下で、引張速度1.27mm/分にて、両者の接着面から90°方向に引っ張る引張試験を行い、その最大荷重を接着面積で割って垂直接着強度(MPa)を求めた。
試料数はn=5とした。
(Tensile test)
A vertical adhesive strength evaluation sample (b in FIG. 6) was cut out into a 10 mm square from the integrated molded product. As a measuring device, using "Instron" (registered trademark) 5565 type universal material testing machine (manufactured by Instron Japan Co., Ltd.), the sample was fixed with a jig (a in FIG. 6), At a temperature of two points of 140 ° C., a tensile test was performed in which the tensile load was pulled in a direction of 90 ° from the bonded surface at a tensile speed of 1.27 mm / min, and the maximum load was divided by the bonded area to obtain a vertical bond strength (MPa). ).
The number of samples was n = 5.

成形品がインストロンのチャックに把持できるものはそのままチャックに挟み引張試験を行った。把持できないものは成形体に接着剤(スリーボンド1782、株式会社スリーボンド製)を塗布し23±5℃で4時間、次いで50±5%RHで4時間放置して治具と接着させた。試験結果は接着して一体化した部分が引き剥がされる値のみを採用し、治具と成形品が引き剥がされた結果は削除した。   For a molded product that can be gripped by an Instron chuck, the molded product was directly held between the chucks and a tensile test was performed. Those that could not be gripped were coated with an adhesive (ThreeBond 1782, manufactured by ThreeBond Co., Ltd.) and left at 23 ± 5 ° C. for 4 hours and then at 50 ± 5% RH for 4 hours to adhere to the jig. As the test result, only the value at which the bonded and integrated portion was peeled off was adopted, and the result of peeling off the jig and the molded product was deleted.

(2)ISO4587に基づく接着強度
各実施例・比較例の繊維強化複合材料から、ISO4587の規定に基づき、試験片TP1を1試料当たり2本ずつ切り出した。その形状および寸法は、ISO4587の規定に基づき、長さ(図4中TP1L)100mm、幅(図4中TP1W)25mmとした。尚、この寸法からなる試験片の切り出しが困難な場合は、同寸法を比例的に縮小した寸法にて代用してもよい。
用意された2本の試験片TP1同士を、それぞれの熱可塑性樹脂組成物の被膜が接合部になるように向かい会わせた。この接合部の長さ(図4中BPL)は12.5mmとした。熱可塑性樹脂組成物の樹脂が十分に溶融する温度(その融点よりも10℃高い温度)まで、双方の試験片TP1を加熱して、両者を50MPaの圧力で1分間接着させ、クランプしながら冷却し、両者を接合させたものを引張試験片とした。
(2) Adhesive strength based on ISO4587 Two test pieces TP1 per sample were cut out from the fiber-reinforced composite materials of Examples and Comparative Examples based on the rules of ISO4587. The shape and dimensions were 100 mm in length (TP1L in FIG. 4) and 25 mm in width (TP1W in FIG. 4) based on the provisions of ISO4587. If it is difficult to cut out a test piece having this size, the same size may be substituted with a proportionally reduced size.
The two prepared test pieces TP1 were faced to each other so that the coating of each thermoplastic resin composition became a joint. The length of the joint (BPL in FIG. 4) was 12.5 mm. The two test pieces TP1 are heated to a temperature at which the resin of the thermoplastic resin composition sufficiently melts (a temperature 10 ° C. higher than the melting point), and the two test pieces TP1 are adhered at a pressure of 50 MPa for 1 minute, and cooled while clamping. Then, the two were joined to form a tensile test piece.

引張試験装置としては、“インストロン”(商標)5565型万能材料試験機(インストロン・ジャパン(株)製)を用い、試験の際の40℃と140℃との2点の温度下で、引張速度1.27mm/分にて、引張試験を行った。接合位置近傍(境界近傍)で破壊したことを確認し、その強力(単位:kN)を接合部表面積で除した値を接着強度(単位:MPa)とした。
試料数はn=5とした。
As the tensile tester, “Instron” (trademark) 5565 type universal material testing machine (manufactured by Instron Japan Co., Ltd.) was used. At the two temperatures of 40 ° C. and 140 ° C. during the test, A tensile test was performed at a tensile speed of 1.27 mm / min. It was confirmed that it was broken near the joining position (near the boundary), and the value obtained by dividing the strength (unit: kN) by the surface area of the joining portion was defined as the adhesive strength (unit: MPa).
The number of samples was n = 5.

(3)曲げ弾性率
ASTM D790に準拠して評価した。繊維強化複合材料の略平面部から、繊維強化複合材料の長手方向を基準にして、0度、45度、90度、135度の異なる角度において切り出した4本の試験片を用意した。試験片にリブ部、ヒンジ部、凹凸部などの形状が意図的に付されている場合、試験片の厚みの測定は、この部位を除いて行われる。これらの試験片において得られる曲げ弾性率の内の最小値を、ここで云う曲げ弾性率として採用した。
(3) Flexural modulus Evaluated in accordance with ASTM D790. Four test pieces cut out from substantially flat portions of the fiber-reinforced composite material at different angles of 0, 45, 90, and 135 degrees with respect to the longitudinal direction of the fiber-reinforced composite material were prepared. When the test piece is intentionally provided with a shape such as a rib portion, a hinge portion, and a concavo-convex portion, the measurement of the thickness of the test piece is performed excluding this portion. The minimum value of the flexural modulus obtained in these test pieces was adopted as the flexural modulus referred to herein.

(4)電磁波シールド性
アドバンテスト法にて評価を行った。各実施例・比較例の繊維強化複合材料から120mm×120mmの平板を切出して試験片とした。評価にあたり、試験片を絶乾状態(水分率0.1%以下)とし、四辺に導電性ペースト(藤倉化成(株)製ドータイト)を塗布し、十分に導電性ペーストを乾燥させた。
(4) Electromagnetic wave shielding performance Evaluation was performed by the Advantest method. A 120 mm x 120 mm flat plate was cut out from the fiber reinforced composite material of each of the examples and comparative examples to obtain a test piece. In the evaluation, the test piece was placed in a completely dry state (water content: 0.1% or less), and a conductive paste (Doitite manufactured by Fujikura Kasei Co., Ltd.) was applied to the four sides, and the conductive paste was sufficiently dried.

シールドボックス中に試験片をはさみこんで、スペクトラムアナライザーにて周波数1GHzでの電波シールド性(単位:dB)を測定し、電磁波シールド性とした。電波シールド性が高いほど、電磁波シールド性に優れていることを表している。   The test piece was inserted into a shield box, and the electromagnetic wave shielding property (unit: dB) at a frequency of 1 GHz was measured with a spectrum analyzer to determine the electromagnetic wave shielding property. The higher the radio wave shielding property, the better the electromagnetic wave shielding property.

(5)体積固有電気抵抗
「別の構造部材」から幅12.7mm×長さ65mmの試験片を切り出し、絶乾状態(水分率0.1%以下)で測定に供した。測定は、まず、試験片の両端の断面に導電性ペースト(藤倉化成株式会社製ドータイト)を塗布し、十分に導電性ペーストを乾燥させてから、その両面を電極に圧着し、電極間の電気抵抗値をデジタルマルチメーター(FLUKE社製)にて測定した。前記電気抵抗値から測定機器、治具等の接触抵抗を減じた値に、導電性ペースト塗布面の面積を乗じ、その値を試験片長さで除したものを体積固有電気抵抗値(単位:Ω・cm)とした。
(5) Volume specific electric resistance A test piece having a width of 12.7 mm and a length of 65 mm was cut out from “another structural member” and subjected to measurement in a completely dry state (water content: 0.1% or less). First, a conductive paste (Doitite manufactured by Fujikura Kasei Co., Ltd.) was applied to the cross section of both ends of the test piece, and the conductive paste was sufficiently dried. The resistance value was measured with a digital multimeter (made by FLUKE). The value obtained by subtracting the contact resistance of a measuring instrument, a jig, etc. from the electric resistance value is multiplied by the area of the conductive paste application surface, and the value is divided by the length of the test piece to obtain a volume specific electric resistance value (unit: Ω). Cm).

(6)溶解度パラメータδ(SP値)の決定
本発明において、溶解度パラメータδ(SP値)は、フェダーズ(Fedors)の方法により決定される25℃におけるポリマーの繰り返し単位の値を指す。当該方法は、R.F.Fedors,Polym.Eng.Sci.,14(2),147(1974)に記載されている。即ち、求める化合物の構造式において、原子および原子団の蒸発エネルギーとモル体積のデータより次式により決定される。
δ=(ΣΔei/ΣΔvi)1/2
ただし、式中、ΔeiおよびΔviは、それぞれ原子または原子団の蒸発エネルギーおよびモル体積を表す。求める化合物の構造式はIR、NMR、マススペクトルなどの通常の構造分析手法を用いて決定する。
(6) Determination of Solubility Parameter δ (SP Value) In the present invention, the solubility parameter δ (SP value) refers to a value of a repeating unit of a polymer at 25 ° C. determined by the method of Fedors. The method is described in RFFedors, Polym. Eng. Sci., 14 (2), 147 (1974). That is, in the structural formula of the compound to be determined, it is determined by the following formula from the data of the evaporation energy and the molar volume of the atoms and atomic groups.
δ = (ΣΔei / ΣΔvi) 1/2
Here, in the formula, Δei and Δvi represent the evaporation energy and the molar volume of the atom or atomic group, respectively. The structural formula of the compound to be determined is determined by using ordinary structural analysis techniques such as IR, NMR, and mass spectrum.

(7)トータル表面自由エネルギー
トータル表面自由エネルギーは、以下のように評価した。
(7) Total surface free energy The total surface free energy was evaluated as follows.

(A)熱硬化性樹脂組成物のトータル表面自由エネルギー(Es)
各実施例・比較例で用いた熱硬化性樹脂組成物の未硬化のもの40gを、“テフロン(登録商標)”製容器(50×50×50mm)に入れて150℃で30分間加熱して硬化させ、樹脂硬化物とした。
(A) Total surface free energy (Es) of thermosetting resin composition
40 g of the uncured thermosetting resin composition used in each of Examples and Comparative Examples was placed in a container made of “Teflon (registered trademark)” (50 × 50 × 50 mm) and heated at 150 ° C. for 30 minutes. It was cured to obtain a cured resin.

このエポキシ樹脂硬化物を長さ30mm、幅15mmの大きさに切り出した後、表面を研磨機(リファインテック(株)社製リファイン・ポリッシャー200とオートマックスAMO−210)を使用して粒度#600のサンドペーパーで5分間、粒度#800で5分間、粒度#1000で15分間、粒度#1200で20分間、粒度#1500で30分間、それぞれ回転速度100rpmで順に乾式研磨した。その後、研磨バフのパンクロス(リファインテック(株)社製)で研磨粒子METAPOLISH(フジミインコーポレーテッド(株)社製No.1)を水と同時に流しながら100rpmで5分間研磨した。その後、研磨バフのスエードクロス(リファインテック(株)社製)で研磨粒子METAPOLISH(フジミインコーポレーテッド(株)社製No.5)を前記同様に水と同時に流しながら100rpmで5分間研磨した。   After this epoxy resin cured product was cut into a size of 30 mm in length and 15 mm in width, the surface was polished with a grinder (Refine Polisher 200 and Automax AMO-210 manufactured by Refinetech Co., Ltd.) to a particle size of # 600. , 5 minutes at # 800, 15 minutes at # 1000, 20 minutes at # 1200, and 30 minutes at # 1500 for 30 minutes at a rotation speed of 100 rpm. Thereafter, polishing particles METAPOLISH (No. 1 manufactured by Fujimi Incorporated Co., Ltd.) were polished with a polishing buff pan cloth (manufactured by Refinetech Co., Ltd.) at 100 rpm for 5 minutes while flowing simultaneously with water. Thereafter, polishing particles METAPOLISH (No. 5 manufactured by Fujimi Incorporated) were polished with a suede cloth (manufactured by Refinetech Co., Ltd.) at 100 rpm for 5 minutes while flowing simultaneously with water in the same manner as described above.

この平板上に水、エチレングリコール、燐酸トリクレゾールの各液体を50μl滴下し、各々平板上に形成される液滴を観察し、平板と液滴のなす接触角θsを測定した(図5参照)。   50 μl of each liquid of water, ethylene glycol, and tricresol phosphate was dropped on this flat plate, and the droplet formed on each flat plate was observed, and the contact angle θs between the flat plate and the droplet was measured (see FIG. 5). .

得られた接触角θsをオーエンスの近似式(各液体固有の表面張力の極性成分と非極性成分、さらに接触角θsにより構成させる式)に各液体の表面張力の成分とともに代入しX、Yにプロットした後、最小自乗法により直線近似したときの傾きaの自乗により熱硬化性樹脂組成物表面自由エネルギーの極性成分が求められる。   The obtained contact angle θs is substituted into the approximate expression of Owens (a polar component and a non-polar component of the surface tension unique to each liquid, and an expression constituted by the contact angle θs) together with the surface tension components of each liquid, and X and Y are substituted for X and Y. After plotting, the polar component of the surface free energy of the thermosetting resin composition is determined by the square of the slope a when a straight line is approximated by the least square method.

同様にそのときのY切片より熱硬化性樹脂組成物の表面自由エネルギーの非極性成分が求められる。両者を加えたものを、熱硬化性樹脂組成物を構成する熱可塑性樹脂のトータル表面自由エネルギーとした。
Y=a・X+b
X=(液体の表面張力の極性成分(単位:mJ/m2))1/2/(液体の表面張力の非極性成分(単位:mJ/m2))1/2
Y=(1+COSθs)・(液体の表面張力の極性成分(単位:mJ/m2))/2(液体の表面張力の非極性成分(mJ/m2))1/2
熱硬化性樹脂組成物の表面自由エネルギーの極性成分=a2
熱硬化性樹脂組成物の表面自由エネルギーの非極性成分=b2
熱硬化性樹脂組成物のトータル表面自由エネルギー
(Es)=a2+b2
各液体の表面張力の極性成分および非極性成分は、次のとおりである。
・精製水
表面張力72.8mJ/m2 、極性成分51.0mJ/m2 、非極性成分21.8mJ/m2
・エチレングリコール
表面張力48.0mJ/m2 、極性成分19.0mJ/m2 、非極性成分29.0mJ/m2
・燐酸トリクレゾール
表面張力40.9mJ/m2 、極性成分1.7mJ/m2 、非極性成分39.2mJ/m2
(B)熱可塑性樹脂組成物のトータル表面自由エネルギー(Ep)
各実施例・比較例で被膜の形成に用いた熱可塑性樹脂組成物を180℃で6MPaの圧力をかけながら、3分間加熱後、冷却して長さ30mm、幅15mm、厚み2mmの平板を作製した。
Similarly, the non-polar component of the surface free energy of the thermosetting resin composition is determined from the Y slice at that time. The sum of the two was defined as the total surface free energy of the thermoplastic resin constituting the thermosetting resin composition.
Y = aX + b
X = (polar component of liquid surface tension (unit: mJ / m 2 )) 1/2 / (non-polar component of liquid surface tension (unit: mJ / m 2 )) 1/2
Y = (1 + COS θs) · (polar component of liquid surface tension (unit: mJ / m 2 )) / 2 (non-polar component of liquid surface tension (mJ / m 2 )) 1/2
Polar component of surface free energy of thermosetting resin composition = a 2
Non-polar component of surface free energy of thermosetting resin composition = b 2
Total surface free energy (Es) of the thermosetting resin composition = a 2 + b 2
The polar and non-polar components of the surface tension of each liquid are as follows.
・ Purified water Surface tension 72.8 mJ / m 2 , polar component 51.0 mJ / m 2 , non-polar component 21.8 mJ / m 2
・ Ethylene glycol Surface tension 48.0 mJ / m 2 , polar component 19.0 mJ / m 2 , non-polar component 29.0 mJ / m 2
Tricresol phosphate Surface tension 40.9 mJ / m 2 , polar component 1.7 mJ / m 2 , non-polar component 39.2 mJ / m 2
(B) Total surface free energy (Ep) of thermoplastic resin composition
The thermoplastic resin composition used for forming the coating film in each Example and Comparative Example was heated at 180 ° C. for 3 minutes while applying a pressure of 6 MPa, and then cooled to produce a flat plate having a length of 30 mm, a width of 15 mm and a thickness of 2 mm. did.

この平板を上記(A)と同様の条件で表面を研磨した。この平板上に水、エチレングリコール、燐酸トリクレゾールの各液体50μlを滴下し、各々平板上に形成される液滴を観察し、平板と液滴のなす接触角θpを測定する。   The surface of this flat plate was polished under the same conditions as in the above (A). 50 μl of each liquid of water, ethylene glycol, and tricresole phosphate is dropped on this flat plate, and the droplet formed on each flat plate is observed, and the contact angle θp between the flat plate and the droplet is measured.

上記(A)と同様に、得られた接触角θpをもとにオーエンスの近似式に代入して算出し、熱可塑性樹脂組成物のトータル表面自由エネルギーとする。   Similarly to the above (A), the obtained contact angle θp is calculated by substituting it into an approximate equation of Owens, and is set as the total surface free energy of the thermoplastic resin composition.

(C)強化繊維の表面自由エネルギー(Ef)
強化繊維に炭素繊維を用いた場合について記載する。
(C) Surface free energy of reinforcing fiber (Ef)
The case where carbon fiber is used as the reinforcing fiber will be described.

炭素繊維の単繊維を、精製水、エチレングリコール、燐酸トリクレゾールの各液体においてウィルヘルミ法によって測定される各接触角をもとに、オーエンスの近似式を用いて算出した。   A single fiber of carbon fiber was calculated using the approximate equation of Owens based on each contact angle measured by the Wilhelmi method in each liquid of purified water, ethylene glycol, and tricresol phosphate.

DataPhysics社製DCAT11を用いて、まず炭素繊維束から1本の単繊維を取り出し、長さ12±2mmに8本にカットした後、専用ホルダーFH12(表面が粘着物質でコーティングされた平板)に単繊維間隔が2〜3mmで平行に貼り付ける。その後、単繊維の先端を切り揃えてホルダーのDCAT11にセットする。測定は、各液体の入ったセルを8本の単繊維の下端に0.2mm/sの速度で近づけ、単繊維の先端から5mmまで浸漬させる。その後、0.2mm/sの速度で単繊維を引き上げる。この操作を4回以上繰り返す。液中に浸漬している時の単繊維の受ける力Fを電子天秤で測定する。この値を用いて次式で接触角θfを算出する。   First, one single fiber is taken out from a carbon fiber bundle using a DCAT11 manufactured by DataPhysics, cut into eight pieces with a length of 12 ± 2 mm, and then cut into a dedicated holder FH12 (a flat plate whose surface is coated with an adhesive substance). Affix in parallel with a fiber spacing of 2-3 mm. Thereafter, the ends of the single fibers are trimmed and set in the DCAT 11 of the holder. In the measurement, the cell containing each liquid is brought close to the lower ends of the eight single fibers at a speed of 0.2 mm / s, and immersed to 5 mm from the tips of the single fibers. Thereafter, the single fiber is pulled up at a speed of 0.2 mm / s. This operation is repeated four times or more. The force F applied to the single fiber while immersed in the liquid is measured by an electronic balance. Using this value, the contact angle θf is calculated by the following equation.

COSθf=(8本の単繊維が受ける力F(単位:mN))/((8(単繊維の数)×単繊維の円周(単位:m)×液体の表面張力(単位:mJ/m2))
なお、測定は、3箇所の炭素繊維束の異なる場所から抜き出した単繊維について実施した。すなわち、一つの炭素繊維束に対して合計24本の単繊維についての接触角の平均値を求めた。
COS θf = (force F (unit: mN) received by eight single fibers) / ((8 (number of single fibers) × circumference of single fibers (unit: m) × surface tension of liquid (unit: mJ / m)) 2 ))
In addition, the measurement was implemented about the single fiber extracted from three different places of the carbon fiber bundle. That is, the average value of the contact angles for a total of 24 single fibers for one carbon fiber bundle was determined.

得られた接触角θfをオーエンスの近似式(各液体固有の表面張力の極性成分と非極性成分、さらに接触角θfにより構成される式)に各液体の表面張力の成分とともに代入しX、Yにプロットした後、最小自乗法により直線近似したときの傾きaの自乗により強化繊維の表面自由エネルギーの極性成分が求められる。   The obtained contact angle θf is substituted into the approximate expression of Owens (the polar and non-polar components of the surface tension unique to each liquid, and the expression composed of the contact angle θf) together with the surface tension components of each liquid, and X, Y After that, the polar component of the surface free energy of the reinforcing fiber is determined by the square of the slope a when a straight line is approximated by the least square method.

同様にそのときのY切片より強化繊維の表面自由エネルギーの非極性成分が求められる。両者を加えたものを、強化繊維のトータル表面自由エネルギーとする。
Y=a・X+b
X=(液体の表面張力の極性成分(単位:mJ/m2))1/2/(液体の表面張力の非極性成分(単位:mJ/m2))1/2
Y=(1+COSθf)・(液体の表面張力の極性成分(単位:mJ/m2))/2(液体の表面張力の非極性成分(単位:mJ/m2))1/2
強化繊維の表面自由エネルギーの極性成分=a2
強化繊維の表面自由エネルギーの非極性成分=b2
強化繊維の表面自由エネルギー(Ef)=a2+b2
以上より求められるEs、Ep、Efを用いてトータル表面エネルギーの差の絶対値を算出した。
Similarly, the non-polar component of the surface free energy of the reinforcing fiber is determined from the Y slice at that time. The sum of both is defined as the total surface free energy of the reinforcing fibers.
Y = aX + b
X = (polar component of liquid surface tension (unit: mJ / m 2 )) 1/2 / (non-polar component of liquid surface tension (unit: mJ / m 2 )) 1/2
Y = (1 + COS θf) · (polar component of liquid surface tension (unit: mJ / m 2 )) / 2 (non-polar component of liquid surface tension (unit: mJ / m 2 )) 1/2
Polar component of surface free energy of reinforcing fiber = a 2
Non-polar component of surface free energy of reinforcing fiber = b 2
Surface free energy (Ef) of reinforcing fiber = a 2 + b 2
The absolute value of the difference between the total surface energies was calculated using Es, Ep, and Ef obtained as described above.

(8)ガラス転移温度、融点の評価
JIS K7121に準拠して示差走査熱量測定(DSC)により、昇温速度10℃/分で測定し、その測定片の吸熱ピークから、ガラス転移温度を特定した。試料の採取に当たっては、繊維強化複合材料の熱硬化樹脂層を、強化繊維群を分離せずに切り出した。
(8) Evaluation of Glass Transition Temperature and Melting Point The glass transition temperature was determined by differential scanning calorimetry (DSC) at a heating rate of 10 ° C./min in accordance with JIS K7121, and the glass transition temperature was specified from the endothermic peak of the measurement piece. . In collecting the sample, the thermosetting resin layer of the fiber-reinforced composite material was cut out without separating the reinforcing fiber group.

(9)炭素繊維表面の{O/C}評価
X線光電子分光法による公知の技術にて評価した。
(9) {O / C} Evaluation of Carbon Fiber Surface Evaluation was performed by a known technique using X-ray photoelectron spectroscopy.

(10)重量平均分子量評価
ゲルパーミエーションクロマトグラフィーによる公知の技術を用いて評価した。
(10) Evaluation of weight average molecular weight Evaluation was performed using a known technique by gel permeation chromatography.

(11)被膜の平均厚み評価
第7図に積層体断面の模式図を示す。積層体の断面のTEM観察写真より、熱可塑性樹脂組成物層cの表面から熱硬化性樹脂組成物の界面fまでの厚みを測定する。測定は10箇所で行い、その平均値をもって、平均の被膜厚みとする。
(11) Evaluation of average thickness of coating film FIG. 7 shows a schematic diagram of a cross section of the laminate. From the TEM observation photograph of the cross section of the laminate, the thickness from the surface of the thermoplastic resin composition layer c to the interface f of the thermosetting resin composition is measured. The measurement is performed at 10 points, and the average value is defined as the average coating thickness.

(実施例1)
本発明の繊維強化複合材料の製造方法の一実施例を、図3の電気・電子機器用モデル筐体の分解斜視図を用いて説明する。
(Example 1)
One embodiment of the method for producing a fiber-reinforced composite material of the present invention will be described with reference to an exploded perspective view of a model housing for electric / electronic equipment in FIG.

図において、繊維強化複合材料として次のものを作成した。すなわち、長さ350mm×幅300mmの炭素繊維織物(東レ(株)製トレカ織物CO6343)にエポキシ樹脂を含浸させた炭素繊維量57体積%のプリプレグを積層し、さらにその最外面にナイロン系スパンボンド不織布シート(商品名:ダイナックLNS−0050 目付50g/m2、融点135℃、溶解度パラメータδ(SP値)13.0、重量平均分子量18000 呉羽化学社(株)製)を積層した。次いで真空バッグ成形し、140℃で1時間加熱して硬化させ厚さ0.9mmの繊維強化複合材料(I)とした。この繊維強化複合材料の表面は不織布が溶融して膜状に付着しており、その膜厚は25μmであった。また繊維強化複合材料のカラス転移温度は130℃であった。繊維強化複合材料の熱硬化性樹脂組成物と被膜状の熱可塑性樹脂組成物のトータル表面自由エネルギーの差の絶対値は9であった。また繊維強化複合材料の強化繊維と被膜状の熱可塑性樹脂組成物のトータル表面自由エネルギーの差の絶対値は8であった。この繊維強化複合材料の垂直接着強度は、40℃雰囲気では21MPaであり、さらに140℃雰囲気では2MPaであった。 In the figure, the following were made as fiber-reinforced composite materials. That is, a carbon fiber woven fabric having a length of 350 mm and a width of 300 mm (trade cloth CO6343 manufactured by Toray Industries, Inc.) is laminated with a prepreg having a carbon fiber content of 57% by volume impregnated with an epoxy resin, and a nylon-based spunbond is formed on the outermost surface thereof. A nonwoven fabric sheet (trade name: Dynac LNS-0050, basis weight 50 g / m 2 , melting point 135 ° C, solubility parameter δ (SP value) 13.0, weight average molecular weight 18,000, manufactured by Kureha Chemical Co., Ltd.) was laminated. Then, it was formed into a vacuum bag and cured by heating at 140 ° C. for 1 hour to obtain a fiber-reinforced composite material (I) having a thickness of 0.9 mm. On the surface of the fiber reinforced composite material, the nonwoven fabric was melted and adhered in a film form, and the film thickness was 25 μm. The crow transition temperature of the fiber-reinforced composite material was 130 ° C. The absolute value of the difference between the total surface free energy of the thermosetting resin composition of the fiber-reinforced composite material and that of the film-shaped thermoplastic resin composition was 9. The absolute value of the difference between the total surface free energy of the reinforcing fiber of the fiber-reinforced composite material and the film-shaped thermoplastic resin composition was 8. The vertical adhesive strength of this fiber reinforced composite material was 21 MPa in a 40 ° C. atmosphere, and 2 MPa in a 140 ° C. atmosphere.

次に日本製鋼所(株)製J350EIII型射出成形機を用い、金型内に繊維強化複合材料(I)を載置し、上記供試用熱可塑性樹脂製ペレットの項で説明した熱可塑性樹脂を使用し、図3に示す別の構造部材(II)を射出成形した。得られた一体化成形品(III)は(I)と(II)が強固に一体に接合された筐体が得られた。   Next, the fiber-reinforced composite material (I) is placed in a mold using a J350EIII type injection molding machine manufactured by Japan Steel Works, Ltd., and the thermoplastic resin described in the section of the test thermoplastic resin pellets is removed. In use, another structural member (II) shown in FIG. 3 was injection molded. As for the obtained integrally molded product (III), a casing in which (I) and (II) were firmly joined together was obtained.

そして、この筐体の曲げ弾性率、電磁波シールド性等を上述した方法で測定したところ、曲げ弾性率は55GPa、電磁波シールド性は55dB、別の構造部材(II)である筐体立ち壁部の体積固有抵抗は4.5Ω・cmであった。   When the bending elastic modulus, the electromagnetic wave shielding property, and the like of the housing were measured by the above-described methods, the bending elastic modulus was 55 GPa, the electromagnetic wave shielding property was 55 dB, and the standing wall portion of the housing, which is another structural member (II), was used. The volume resistivity was 4.5 Ω · cm.

(実施例2)
180℃硬化型プリプレグ(一方向に配列された多数本の炭素フィラメント(東レ(株)製トレカ、{O/C}=0.08)からなる強化繊維群からなり、強化繊維群の含有量が、重量割合(Wf)で70%、体積割合(Vf)で61%のプリプレグ)を積層し、その最外層にナイロンフィルム(タイプ1401 厚み50μm、融点210℃、溶解度パラメータδ(SP値)13.4、重量平均分子量20000、東レ合成フィルム(株)製)を用いて、プレス成形の前に、ホットプレートにて、225℃で3分間予熱して、ナイロンフィルムを溶融させた後、プレス成形機にて、6MPaの圧力をかけながら、150℃で30分間加熱して、平均の厚さ0.9mmの繊維強化複合材料(I)を得た。この繊維強化複合材料の表面はナイロンフィルムが溶融して膜状に付着しており、その膜厚は40μmであった。また繊維強化複合材料のカラス転移温度は180℃であった。繊維強化複合材料の熱硬化性樹脂組成物と被膜状の熱可塑性樹脂組成物のトータル表面自由エネルギーの差の絶対値は8であった。また繊維強化複合材料の強化繊維と被膜状の熱可塑性樹脂組成物のトータル表面自由エネルギーの差の絶対値は7であった。この繊維強化複合材料の垂直接着強度は、40℃雰囲気では15MPaでありさらに140℃雰囲気では8MPaであった。
(Example 2)
180 ° C.-curable prepreg (reinforced fiber group consisting of a large number of carbon filaments arranged in one direction (Toray Co., Ltd., trading card, {O / C} = 0.08)), the content of the reinforcing fiber group being 12. A prepreg having a weight ratio (Wf) of 70% and a volume ratio (Vf) of 61% is laminated, and a nylon film (type 1401, thickness 50 μm, melting point 210 ° C., solubility parameter δ (SP value)) is formed on the outermost layer. 4. Using a weight average molecular weight of 20,000, manufactured by Toray Synthetic Film Co., Ltd.), preheat at 225 ° C. for 3 minutes on a hot plate before press molding to melt the nylon film, and then press molding machine. The mixture was heated at 150 ° C. for 30 minutes while applying a pressure of 6 MPa to obtain a fiber-reinforced composite material (I) having an average thickness of 0.9 mm. On the surface of the fiber-reinforced composite material, a nylon film was melted and adhered in a film form, and the film thickness was 40 μm. The crow transition temperature of the fiber-reinforced composite material was 180 ° C. The absolute value of the difference between the total surface free energy of the thermosetting resin composition of the fiber-reinforced composite material and that of the film-shaped thermoplastic resin composition was 8. The absolute value of the difference between the total surface free energy of the reinforcing fibers of the fiber-reinforced composite material and the film-shaped thermoplastic resin composition was 7. The vertical adhesive strength of this fiber reinforced composite material was 15 MPa in a 40 ° C. atmosphere and 8 MPa in a 140 ° C. atmosphere.

この繊維強化複合材料から実施例1と同様にして筐体を成形し、強固に一体に接合された筐体が得られた。実施例1と同様にして筐体の曲げ弾性率 、電磁波シールド性を測定したところ、曲げ弾性率は54GPa、電磁波シールド性は53dB、別の構造部材(II)である筐体立ち壁部の体積固有抵抗は4.0Ω・cmであった。   A housing was molded from this fiber-reinforced composite material in the same manner as in Example 1, and a housing that was firmly and integrally joined was obtained. When the bending elastic modulus and the electromagnetic wave shielding property of the housing were measured in the same manner as in Example 1, the bending elastic modulus was 54 GPa, the electromagnetic wave shielding property was 53 dB, and the volume of the housing standing wall as another structural member (II). The specific resistance was 4.0 Ω · cm.

(実施例3)
マトリックス樹脂がエポキシ樹脂(熱硬化性樹脂)で、一方向に配列された多数本の炭素フィラメント(東レ(株)製トレカ、{O/C}=0.08)からなる強化繊維群からなり、強化繊維群の含有量が、重量割合(Wf)で70%、体積割合(Vf)で61%のプリプレグから、長さ方向を0°方向として、繊維方向が45°、−45°、90°、−45°、45°となるような長さ350mm、幅300mmに切り出したプリプレグシート5枚を準備し、繊維方向が、上から45°、−45°、90°、−45°、45°となるように積層し、積層プリプレグシートを作製した。
(Example 3)
The matrix resin is an epoxy resin (thermosetting resin) and is composed of a group of reinforcing fibers consisting of a large number of carbon filaments (Toray's trading card, {O / C} = 0.08) arranged in one direction, From the prepreg in which the content of the reinforcing fiber group is 70% in weight ratio (Wf) and 61% in volume ratio (Vf), the fiber direction is 45 °, −45 °, 90 ° with the length direction as 0 ° direction. , -45 °, prepare five prepreg sheets cut to a length of 350 mm and a width of 300 mm so as to be 45 °, and the fiber direction is 45 °, -45 °, 90 °, -45 °, 45 ° from above. To produce a laminated prepreg sheet.

一方、熱可塑性樹脂組成物として、3元共重合ポリアミド樹脂(東レ(株)製、3元共重合ポリアミド樹脂CM4000、ポリアミド6/66/610、融点150℃、溶解度パラメータδ(SP値)13.3、重量平均分子量20000)製の幅1,000mmの不織布を用いた。この不織布の目付は、30g/m2であった。この熱接着用基材から、長さ350mm、幅300mmの長方形状の熱接着用基材を作成した。熱接着用基材を2枚重ね、上記積層プリプレグシートの上面に長さ方向および幅方向が一致するように積層した。 On the other hand, as a thermoplastic resin composition, a terpolymer polyamide resin (manufactured by Toray Industries, Inc., terpolymer polyamide resin CM4000, polyamide 6/66/610, melting point 150 ° C., solubility parameter δ (SP value)) 13. 3, a nonwoven fabric having a weight average molecular weight of 20,000) and a width of 1,000 mm was used. The basis weight of this nonwoven fabric was 30 g / m 2 . From this heat bonding substrate, a rectangular heat bonding substrate having a length of 350 mm and a width of 300 mm was prepared. Two substrates for thermal bonding were laminated and laminated on the upper surface of the laminated prepreg sheet so that the length direction and the width direction coincided with each other.

次に、プレス成形を行った。プレス成形機にて、160℃で5分間予熱して、熱接着用基材を溶融させた後、6MPaの圧力をかけながら、150℃で30分間加熱して熱硬化性樹脂を硬化させた。硬化終了後、室温で冷却し、脱型して、平均の厚み0.7mmの積層体に熱可塑性樹脂組成物層が表面に形成された繊維強化複合材料を製造した。この繊維強化複合材料のガラス転移温度は130℃であった。また繊維強化複合材料の熱硬化性樹脂組成物と被膜状の熱可塑性樹脂組成物のトータル表面自由エネルギーの差の絶対値は5であった。また繊維強化複合材料の強化繊維と被膜状の熱可塑性樹脂組成物のトータル表面自由エネルギーの差の絶対値は4であった。この繊維強化複合材料のISO4587に基づく接着強度は、40℃雰囲気では20MPa、140℃雰囲気では8MPaであった。さらにこの繊維強化複合材料の曲げ弾性率は25GPa、電磁波シールド性は55dBであった。   Next, press molding was performed. After preheating at 160 ° C. for 5 minutes with a press molding machine to melt the substrate for thermal bonding, it was heated at 150 ° C. for 30 minutes while applying a pressure of 6 MPa to cure the thermosetting resin. After curing, the mixture was cooled at room temperature and released from the mold to produce a fiber-reinforced composite material having a thermoplastic resin composition layer formed on the surface of a laminate having an average thickness of 0.7 mm. The glass transition temperature of this fiber reinforced composite material was 130 ° C. The absolute value of the difference between the total surface free energy of the thermosetting resin composition of the fiber-reinforced composite material and that of the film-shaped thermoplastic resin composition was 5. The absolute value of the difference between the total surface free energy of the reinforcing fibers of the fiber-reinforced composite material and the film-like thermoplastic resin composition was 4. The adhesive strength based on ISO4587 of this fiber reinforced composite material was 20 MPa in a 40 ° C. atmosphere and 8 MPa in a 140 ° C. atmosphere. Further, the flexural modulus of this fiber-reinforced composite material was 25 GPa, and the electromagnetic wave shielding property was 55 dB.

得られた繊維強化複合材料についてTEMおよびSEMによる断面観察を行ったところ、熱可塑性樹脂層に、連続したフィラメントが配置されていることが分かった。つまり、繊維強化複合材料の熱硬化性樹脂層と熱可塑性樹脂層に強化繊維が存在し、両樹脂の界面を補強していることが示された。   When the cross section of the obtained fiber reinforced composite material was observed by TEM and SEM, it was found that continuous filaments were arranged in the thermoplastic resin layer. That is, it was shown that reinforcing fibers were present in the thermosetting resin layer and the thermoplastic resin layer of the fiber-reinforced composite material, and reinforced the interface between the two resins.

(実施例4)
マトリックス樹脂がエポキシ樹脂(熱硬化性樹脂)で、一方向に配列された多数本の炭素フィラメント(東レ(株)製トレカ、{O/C}=0.08)からなる強化繊維群からなり、強化繊維群の含有量が、重量割合(Wf)で70%、体積割合(Vf)で61%のプリプレグから、長さ方向を0°方向として、繊維方向が45°、−45°、90°、−45°、45°となるような長さ350mm、幅300mmに切り出したプリプレグシート5枚を準備し、繊維方向が、上から45°、−45°、90°、−45°、45°となるように積層し、積層プリプレグシートを作製した。
(Example 4)
The matrix resin is an epoxy resin (thermosetting resin) and is composed of a group of reinforcing fibers consisting of a large number of carbon filaments (Toray's trading card, {O / C} = 0.08) arranged in one direction, From the prepreg in which the content of the reinforcing fiber group is 70% in weight ratio (Wf) and 61% in volume ratio (Vf), the fiber direction is 45 °, −45 °, 90 ° with the length direction as 0 ° direction. , -45 °, prepare five prepreg sheets cut to a length of 350 mm and a width of 300 mm so as to be 45 °, and the fiber direction is 45 °, -45 °, 90 °, -45 °, 45 ° from above. To produce a laminated prepreg sheet.

一方、熱可塑性樹脂組成物として、共重合ポリエステル樹脂(東洋紡(株)製、共重合ポリエステル樹脂バイロンGM400、融点143℃、溶解度パラメータδ(SP値)10.7、重量平均分子量25000)のペレットを用い、18MPaの圧力をかけながら200℃で3分間プレスして目付80g/m2のフィルム状熱接着用基材を作製した。この熱接着用基材を長さ350mm、幅300mmの長方形状に切り取り、上記積層プリプレグシートの上面に1枚、長さ方向および幅方向が一致するように積層した。 On the other hand, pellets of a copolymerized polyester resin (manufactured by Toyobo Co., Ltd., Copolyester resin Byron GM400, melting point 143 ° C., solubility parameter δ (SP value) 10.7, weight average molecular weight 25000) were used as the thermoplastic resin composition. This was pressed at 200 ° C. for 3 minutes while applying a pressure of 18 MPa to prepare a film-like substrate for heat bonding having a basis weight of 80 g / m 2 . This substrate for thermal bonding was cut into a rectangular shape having a length of 350 mm and a width of 300 mm, and was laminated on the upper surface of the laminated prepreg sheet so that the length direction and the width direction coincided.

次に、プレス成形を行った。プレス成形機にて、160℃で5分間予熱して、熱接着用基材を溶融させた後、6MPaの圧力をかけながら、150℃で30分間加熱して熱硬化性樹脂を硬化させた。硬化終了後、室温で冷却し、脱型して、平均の厚み0.7mmの積層体に熱可塑性樹脂組成物層が表面に形成された繊維強化複合材料を製造した。この繊維強化複合材料のガラス転移温度は130℃であった。また繊維強化複合材料の熱硬化性樹脂組成物と被膜状の熱可塑性樹脂組成物のトータル表面自由エネルギーの差の絶対値は5であった。また繊維強化複合材料の強化繊維と被膜状の熱可塑性樹脂組成物のトータル表面自由エネルギーの差の絶対値は4であった。この繊維強化複合材料のISO4587に基づく接着強度は、40℃雰囲気では18MPa、140℃雰囲気では6MPaであった。さらにこの繊維強化複合材料の曲げ弾性率は25GPa、電磁波シールド性は55dBであった。   Next, press molding was performed. After preheating at 160 ° C. for 5 minutes with a press molding machine to melt the substrate for thermal bonding, it was heated at 150 ° C. for 30 minutes while applying a pressure of 6 MPa to cure the thermosetting resin. After curing, the mixture was cooled at room temperature and released from the mold to produce a fiber-reinforced composite material having a thermoplastic resin composition layer formed on the surface of a laminate having an average thickness of 0.7 mm. The glass transition temperature of this fiber reinforced composite material was 130 ° C. The absolute value of the difference between the total surface free energy of the thermosetting resin composition of the fiber-reinforced composite material and that of the film-shaped thermoplastic resin composition was 5. The absolute value of the difference between the total surface free energy of the reinforcing fibers of the fiber-reinforced composite material and the film-like thermoplastic resin composition was 4. The adhesive strength based on ISO4587 of this fiber reinforced composite material was 18 MPa in a 40 ° C. atmosphere and 6 MPa in a 140 ° C. atmosphere. Further, the flexural modulus of this fiber-reinforced composite material was 25 GPa, and the electromagnetic wave shielding property was 55 dB.

得られた繊維強化複合材料についてTEMおよびSEMによる断面観察を行ったところ、熱可塑性樹脂層に、連続したフィラメントが配置されていることが分かった。つまり、繊維強化複合材料の熱硬化性樹脂層と熱可塑性樹脂層に強化繊維が存在し、両樹脂の界面を補強していることが示された。   When the cross section of the obtained fiber reinforced composite material was observed by TEM and SEM, it was found that continuous filaments were arranged in the thermoplastic resin layer. That is, it was shown that reinforcing fibers were present in the thermosetting resin layer and the thermoplastic resin layer of the fiber-reinforced composite material, and reinforced the interface between the two resins.

(比較例1)
ナイロン系スパンボンド不織布を使用しなかった以外は全て実施例1と同様にして繊維強化複合材料(I)を得た。得られた繊維強化複合材料(I)同士を接着剤としてスリーボンド(株)製二液型アクリル系接着剤3921/3926を塗布し接着後、常温で24hr放置し接合して、強固に接着した接着強度試験片が得られた。垂直接着強度は、40℃雰囲気では25MPa、140℃では17MPaであった。
(Comparative Example 1)
A fiber-reinforced composite material (I) was obtained in the same manner as in Example 1 except that the nylon-based spunbond nonwoven fabric was not used. The two-component acrylic adhesive 3921/3926 manufactured by Three Bond Co., Ltd. was applied and bonded using the obtained fiber-reinforced composite materials (I) as an adhesive, and then left standing at room temperature for 24 hours to bond and bond strongly. A strength test specimen was obtained. The vertical adhesive strength was 25 MPa in a 40 ° C. atmosphere and 17 MPa at 140 ° C.

また別に射出成形金型に繊維強化複合材料(I)の代わりに繊維強化複合材料(I)と同じ形状の金属製のスペーサーを載置して実施例1と同様にして別の構造部材(II)を射出成形した。得られた繊維強化複合材料(I)と別の構造部材(II)に接着剤としてスリーボンド(株)製二液型アクリル系接着剤3921/3926を塗布し接着後、常温で24hr放置し接合した結果強固に接着した筐体が得られた。実施例1と同様にして評価した結果、弾性率は56GPa、電磁波シールド性は55dB、立ち壁部の体積固有抵抗は4.0Ω・cmであった。   Separately, a metal spacer having the same shape as that of the fiber-reinforced composite material (I) is placed on the injection molding die instead of the fiber-reinforced composite material (I). ) Was injection molded. The two-component acrylic adhesive 3921/3926 manufactured by Three Bond Co., Ltd. was applied as an adhesive to the obtained fiber-reinforced composite material (I) and another structural member (II) as an adhesive, and allowed to stand at room temperature for 24 hours for bonding. As a result, a firmly bonded housing was obtained. As a result of evaluation in the same manner as in Example 1, the elastic modulus was 56 GPa, the electromagnetic wave shielding property was 55 dB, and the volume resistivity of the standing wall was 4.0 Ω · cm.

(比較例2)
前記実施例3において、予熱することなしに、6MPaの圧力をかけながら、150℃で30分間加熱して、プレス成形を行い、硬化終了後、室温で冷却し、脱型して、平均の厚み0.7mmの積層体に熱可塑性樹脂組成物が形成された繊維強化複合材料を製造した。この繊維強化複合材料のガラス転移温度は130℃であった。また繊維強化複合材料の熱硬化性樹脂組成物と被膜状の熱可塑性樹脂組成物のトータル表面自由エネルギーの差の絶対値は5であった。また繊維強化複合材料の強化繊維と被膜状の熱可塑性樹脂組成物のトータル表面自由エネルギーの差の絶対値は4であった。この繊維強化複合材料の垂直接着強度は、40℃雰囲気では1MPa、140℃雰囲気では0.4MPaであった。さらにこの繊維強化複合材料の曲げ弾性率は25GPa、電磁波シールド性は55dBであった。
(Comparative Example 2)
In Example 3, without preheating, heating was performed at 150 ° C. for 30 minutes while applying a pressure of 6 MPa to perform press molding, and after completion of curing, cooled at room temperature, demolded, and average thickness. A fiber reinforced composite material in which a thermoplastic resin composition was formed on a 0.7 mm laminate was manufactured. The glass transition temperature of this fiber reinforced composite material was 130 ° C. The absolute value of the difference between the total surface free energy of the thermosetting resin composition of the fiber-reinforced composite material and that of the film-shaped thermoplastic resin composition was 5. The absolute value of the difference between the total surface free energy of the reinforcing fibers of the fiber-reinforced composite material and the film-like thermoplastic resin composition was 4. The vertical adhesive strength of this fiber reinforced composite material was 1 MPa in a 40 ° C. atmosphere and 0.4 MPa in a 140 ° C. atmosphere. Further, the flexural modulus of this fiber-reinforced composite material was 25 GPa, and the electromagnetic wave shielding property was 55 dB.

得られた繊維強化複合材料を、実施例3の場合と同じ要領で、TEMおよびSEMによる断面観察を行ったが、熱可塑性樹脂層には、連続したフィラメントが配置されていないことが分かった。   A cross section of the obtained fiber-reinforced composite material was observed by TEM and SEM in the same manner as in Example 3, but it was found that continuous filaments were not arranged in the thermoplastic resin layer.

(比較例3)
マトリックス樹脂がエポキシ樹脂(熱硬化性樹脂)で、一方向に配列された多数本の炭素フィラメント(東レ(株)製トレカ、{O/C}=0.08)からなる強化繊維群からなり、強化繊維群の含有量が、重量割合(Wf)で70%、体積割合(Vf)で61%のプリプレグから、長さ方向を0°方向として、繊維方向が45°、−45°、90°、−45°、45°となるような長さ350mm、幅300mmに切り出したプリプレグシート5枚を準備し、繊維方向が、上から45°、−45°、90°、−45°、45°となるように積層し、積層プリプレグシートを作製した。
一方、熱可塑性樹脂組成物として、ポリプレピレン樹脂(三井住友ポリオレフィン(株)製、融点165℃、溶解度パラメータδ(SP値)8.3)のペレットを用い、18MPaの圧力をかけながら200℃で3分間プレスして目付80g/m2のフィルム状熱接着用基材を作製した。この熱接着用基材を長さ350mm、幅300mmの長方形状に切り取り、上記積層プリプレグシートの上面に1枚、長さ方向および幅方向が一致するように積層した。
(Comparative Example 3)
The matrix resin is an epoxy resin (thermosetting resin) and is composed of a group of reinforcing fibers composed of a large number of carbon filaments (Toray Co., Ltd., trading card, {O / C} = 0.08) arranged in one direction, From the prepreg in which the content of the reinforcing fiber group is 70% in weight ratio (Wf) and 61% in volume ratio (Vf), the fiber direction is 45 °, −45 °, 90 ° with the length direction as 0 ° direction. , -45 °, prepare five prepreg sheets cut to a length of 350 mm and a width of 300 mm so as to be 45 °, and the fiber direction is 45 °, -45 °, 90 °, -45 °, 45 ° from above. To produce a laminated prepreg sheet.
On the other hand, as the thermoplastic resin composition, pellets of a polypropylene resin (manufactured by Sumitomo Mitsui Polyolefin Co., Ltd., melting point: 165 ° C., solubility parameter δ (SP value): 8.3) were used at 200 ° C. while applying a pressure of 18 MPa. After pressing for 1 minute, a film-like substrate for heat bonding having a basis weight of 80 g / m 2 was prepared. This substrate for thermal bonding was cut into a rectangular shape having a length of 350 mm and a width of 300 mm, and was laminated on the upper surface of the laminated prepreg sheet so that the length direction and the width direction coincided.

次に、プレス成形を行った。プレス成形機にて、180℃で5分間予熱して、熱接着用基材を溶融させた後、6MPaの圧力をかけながら、150℃で30分間加熱して熱硬化性樹脂を硬化させた。硬化終了後、室温で冷却し、脱型して、平均の厚み0.7mmの積層体に熱可塑性樹脂組成物が形成された繊維強化複合材料を製造した。この繊維強化複合材料のガラス転移温度は130℃であった。また繊維強化複合材料の熱硬化性樹脂組成物と被膜状の熱可塑性樹脂組成物のトータル表面自由エネルギーの差の絶対値は7であった。また繊維強化複合材料の強化繊維と被膜状の熱可塑性樹脂組成物のトータル表面自由エネルギーの差の絶対値は7であった。この繊維強化複合材料の垂直接着強度は、40℃雰囲気では1.5MPa、140℃雰囲気では1MPaであった。さらにこの繊維強化複合材料の曲げ弾性率は25GPa、電磁波シールド性は55dBであった。   Next, press molding was performed. After preheating at 180 ° C. for 5 minutes with a press molding machine to melt the base material for thermal bonding, the thermosetting resin was cured by heating at 150 ° C. for 30 minutes while applying a pressure of 6 MPa. After curing, the mixture was cooled at room temperature and released from the mold to produce a fiber-reinforced composite material having a thermoplastic resin composition formed on a laminate having an average thickness of 0.7 mm. The glass transition temperature of this fiber reinforced composite material was 130 ° C. The absolute value of the difference between the total surface free energy of the thermosetting resin composition of the fiber-reinforced composite material and that of the film-shaped thermoplastic resin composition was 7. The absolute value of the difference between the total surface free energy of the reinforcing fibers of the fiber-reinforced composite material and the film-shaped thermoplastic resin composition was 7. The vertical adhesive strength of this fiber reinforced composite material was 1.5 MPa in a 40 ° C. atmosphere and 1 MPa in a 140 ° C. atmosphere. Further, the flexural modulus of this fiber-reinforced composite material was 25 GPa, and the electromagnetic wave shielding property was 55 dB.

得られた繊維強化複合材料についてTEMおよびSEMによる断面観察を行ったところ、熱可塑性樹脂層に、連続したフィラメントが配置されていることが分かった。つまり、繊維強化複合材料の熱硬化性樹脂層と熱可塑性樹脂層に強化繊維が存在し、両樹脂の界面を補強していることが示された。   When the cross section of the obtained fiber reinforced composite material was observed by TEM and SEM, it was found that continuous filaments were arranged in the thermoplastic resin layer. That is, it was shown that reinforcing fibers were present in the thermosetting resin layer and the thermoplastic resin layer of the fiber-reinforced composite material, and reinforced the interface between the two resins.

実施例1〜4および比較例1〜3より以下のことが明らかになった。   The following is clear from Examples 1 to 4 and Comparative Examples 1 to 3.

実施例1〜4の一体化成形品は、繊維強化複合材料が強固に接着し、室温における接着強度の値も優れている。また、140℃雰囲気ではその接着強度が大幅にダウンし、剥離分解しやすくなり、熱硬化性樹脂組成物と熱可塑性樹脂組成物が各々分別しやすく再利用性に優れていることが明らかである。比較例1のアクリル系接着剤で接着させた筐体は40℃での接着強度には優れているが、140℃でもなお接着強度が高く、各々の樹脂組成物に分解が困難であり分別して再利用が容易でない。   In the integrated molded articles of Examples 1 to 4, the fiber-reinforced composite material adheres firmly, and the value of the adhesive strength at room temperature is also excellent. In the 140 ° C. atmosphere, the adhesive strength is greatly reduced, and the adhesive is easily separated and decomposed, and it is clear that the thermosetting resin composition and the thermoplastic resin composition are easily separated from each other and have excellent reusability. . The housing bonded with the acrylic adhesive of Comparative Example 1 has excellent adhesive strength at 40 ° C., but still has high adhesive strength even at 140 ° C., and is difficult to disintegrate into each resin composition, and is separated. Reuse is not easy.

実施例3、4の繊維強化複合材料は、二つの繊維強化複合材料が強固に接着し、接着強度の値も優れている。比較例2、3の繊維強化複合材料は、二つの繊維強化複合材料の接着が弱く、接着強度の値も低い。   In the fiber reinforced composite materials of Examples 3 and 4, the two fiber reinforced composite materials are firmly adhered to each other, and the adhesive strength is also excellent. In the fiber reinforced composite materials of Comparative Examples 2 and 3, the adhesion between the two fiber reinforced composite materials is weak, and the value of the adhesive strength is also low.

本発明の一体化成形品(III)を電磁波シールド成形品である電子機器筐体とした一実施例の斜視図である。It is a perspective view of an example in which an integrated molded product (III) of the present invention is used as an electronic device housing which is an electromagnetic shielding molded product. 本発明の垂直接着強度評価に用いる成形品の斜視図である。FIG. 2 is a perspective view of a molded product used for evaluation of vertical adhesive strength according to the present invention. 本発明の電磁波シールド成形品(III)を電気・電子機器のモデル筐体とした一実施例の製造工程を説明するための分解斜視図である。FIG. 4 is an exploded perspective view for explaining a manufacturing process of an embodiment in which the electromagnetic wave shield molded product (III) of the present invention is used as a model housing of an electric / electronic device. 本発明の繊維強化複合材料のISO4587に基づく接着強度評価試験片形状である。It is a test piece shape of the adhesive strength evaluation based on ISO4587 of the fiber reinforced composite material of this invention. 平板と溶媒のなす接触角θを図示したものである。3 illustrates a contact angle θ between a flat plate and a solvent. 本発明の繊維強化複合材料の垂直接着強度評価装置の模式図である。BRIEF DESCRIPTION OF THE DRAWINGS It is a schematic diagram of the perpendicular | vertical adhesive strength evaluation apparatus of the fiber reinforced composite material of this invention. 本発明の繊維強化複合材料の被膜の平均厚みを模式的に図示したものである。It is a figure which showed typically the average thickness of the coat of the fiber reinforced composite material of the present invention.

符号の説明Explanation of reference numerals

I:電磁波シールド成形品を構成する繊維強化複合材料(I)
II:電磁波シールド成形品を構成する別の構造部材(II)
III:電磁波シールド一体化成形品(III)
TP1:試験片
TP1L:試験片TP1の長さ
TP1W:試験片TP1の幅
BP:試験片の接合部
BPL:試験片の接合部の長さ
a:引張治具
b:一体化成形品
c:熱可塑性樹脂組成物
d:強化繊維
e:熱硬化性樹脂組成物
f:熱可塑性樹脂組成物と熱硬化性樹脂組成物との界面
I: Fiber reinforced composite material constituting electromagnetic wave shield molded product (I)
II: Another structural member that composes the electromagnetic shielding product (II)
III: Molded product with integrated electromagnetic shielding (III)
TP1: Test piece TP1L: Length of test piece TP1 TP1W: Width of test piece TP1 BP: Joint of test piece BPL: Length of joint of test piece a: Tensile jig b: Integrated molded product c: Heat Thermoplastic resin composition d: Reinforcing fiber e: Thermosetting resin composition f: Interface between thermoplastic resin composition and thermosetting resin composition

Claims (27)

強化繊維と熱硬化性樹脂組成物とを含んでなる繊維強化複合材料であって、その表面の少なくとも一部分に熱可塑性樹脂組成物からなる被膜が形成され、かつ、当該被膜上に炭素繊維の短繊維を30重量%含有するナイロン6樹脂を射出成形したときの垂直接着強度が、40℃において10MPa以上であり、かつ140℃において10MPa未満であることを特徴とする繊維強化複合材料。 A fiber-reinforced composite material comprising a reinforcing fiber and a thermosetting resin composition, wherein a film made of a thermoplastic resin composition is formed on at least a part of the surface thereof, and a short carbon fiber is formed on the film. A fiber-reinforced composite material having a vertical adhesive strength of not less than 10 MPa at 40 ° C. and less than 10 MPa at 140 ° C. when injection-molded with a nylon 6 resin containing 30% by weight of fibers. 強化繊維と熱硬化性樹脂組成物とを含んでなる繊維強化複合材料であって、その表面の少なくとも一部分に熱可塑性樹脂組成物からなる被膜が形成され、かつ、当該被膜の熱可塑性樹脂組成物を構成する熱可塑性樹脂の溶解度パラメータδ(SP値)が9〜16であることを特徴とする繊維強化複合材料。 A fiber-reinforced composite material comprising a reinforcing fiber and a thermosetting resin composition, wherein a film made of a thermoplastic resin composition is formed on at least a part of the surface thereof, and the thermoplastic resin composition of the film The fiber-reinforced composite material having a solubility parameter δ (SP value) of the thermoplastic resin constituting 9 to 16 which is 9 to 16. 前記強化繊維が炭素繊維である、請求項1または2記載の繊維強化複合材料。 3. The fiber-reinforced composite material according to claim 1, wherein the reinforcing fibers are carbon fibers. 前記炭素繊維のX線光電子分光法により測定される炭素繊維表面の酸素(O)と炭素(C)との原子数の比である表面酸素濃度{O/C}が0.05〜0.3である、請求項3記載の繊維強化複合材料。 The surface oxygen concentration {O / C}, which is the ratio of the number of atoms of oxygen (O) and carbon (C) on the surface of the carbon fiber measured by X-ray photoelectron spectroscopy of the carbon fiber, is 0.05 to 0.3. The fiber-reinforced composite material according to claim 3, wherein 前記強化繊維の平均長さが10mm以上であって、当該長繊維群が層状に積層され配置されている、請求項1〜4のいずれか記載の繊維強化複合材料。 The fiber-reinforced composite material according to any one of claims 1 to 4, wherein the average length of the reinforcing fibers is 10 mm or more, and the long fiber group is stacked and arranged in a layered manner. 前記強化繊維の含有量が5〜75体積%である、請求項1〜5のいずれか記載の繊維強化複合材料。 The fiber-reinforced composite material according to any one of claims 1 to 5, wherein the content of the reinforcing fiber is 5 to 75% by volume. 前記熱硬化性樹脂組成物を構成する熱硬化性樹脂のガラス転移温度が60℃以上である、請求項1〜6のいずれか記載の繊維強化複合材料。 The fiber-reinforced composite material according to any one of claims 1 to 6, wherein the thermosetting resin constituting the thermosetting resin composition has a glass transition temperature of 60 ° C or higher. 前記熱硬化性樹脂組成物が少なくともエポキシ樹脂を含有する、請求項1〜7のいずれか記載の繊維強化複合材料。 The fiber-reinforced composite material according to any one of claims 1 to 7, wherein the thermosetting resin composition contains at least an epoxy resin. 前記熱可塑性樹脂組成物を構成する熱可塑性樹脂のガラス転移温度が15〜300℃である、請求項1〜8のいずれか記載の繊維強化複合材料。 The fiber-reinforced composite material according to any one of claims 1 to 8, wherein the thermoplastic resin constituting the thermoplastic resin composition has a glass transition temperature of 15 to 300 ° C. 前記熱可塑性樹脂組成物を構成する熱可塑性樹脂の融点が100〜350℃である、請求項1〜9のいずれか記載の繊維強化複合材料。 The fiber reinforced composite material according to any one of claims 1 to 9, wherein the melting point of the thermoplastic resin constituting the thermoplastic resin composition is 100 to 350 ° C. 前記熱可塑性樹脂組成物が、ポリアミド系樹脂、ポリエステル系樹脂、スチレン系樹脂、ポリカーボネート系樹脂、PPS系樹脂、EVA樹脂、ウレタン系樹脂、アクリル系樹脂の群より選択される少なくとも1種を含む、請求項1〜10のいずれか記載の繊維強化複合材料。 The thermoplastic resin composition contains at least one selected from the group consisting of a polyamide resin, a polyester resin, a styrene resin, a polycarbonate resin, a PPS resin, an EVA resin, a urethane resin, and an acrylic resin. The fiber-reinforced composite material according to claim 1. 前記熱可塑性樹脂組成物を構成する熱可塑性樹脂の重量平均分子量が2,000〜200,000である、請求項1〜11のいずれか記載の繊維強化複合材料。 The fiber reinforced composite material according to any one of claims 1 to 11, wherein the thermoplastic resin constituting the thermoplastic resin composition has a weight average molecular weight of 2,000 to 200,000. 前記強化繊維のうちの少なくとも一部が、同一の繊維について前記熱硬化性樹脂組成物に埋没する部分と前記熱可塑性樹脂組成物に埋没する部分との双方を有する、請求項1〜12のいずれか記載の繊維強化複合材料。 At least a part of the reinforcing fibers has both a part buried in the thermosetting resin composition and a part buried in the thermoplastic resin composition for the same fiber, any one of claims 1 to 12. The fiber-reinforced composite material according to any one of the above. 前記熱可塑性樹脂組成物のトータル表面自由エネルギーEpと前記熱硬化性樹脂組成物のトータル表面自由エネルギーEsとの差の絶対値(|Ep−Es|)が10mJ/m2以下である、請求項1〜13のいずれか記載の繊維強化複合材料。 The absolute value (| Ep-Es |) of the difference between the total surface free energy Ep of the thermoplastic resin composition and the total surface free energy Ep of the thermosetting resin composition is 10 mJ / m 2 or less. 14. The fiber-reinforced composite material according to any one of 1 to 13. 熱可塑性樹脂組成物のトータル表面自由エネルギーEpと前記強化繊維のトータル表面自由エネルギーEfとの差の絶対値(|Ep−Ef|)が10mJ/m2以下である、請求項1〜14のいずれか記載の繊維強化複合材料。 Absolute value of the difference between the total surface free energy Ep and total surface free energy Ef of the reinforcing fibers of the thermoplastic resin composition (| Ep-Ef |) is 10 mJ / m 2 or less, more of claims 1 to 14 The fiber-reinforced composite material according to any one of the above. 前記熱可塑性樹脂組成物からなる被膜の平均厚みが0.1〜1000μmである、請求項1〜15のいずれか記載の繊維強化複合材料。 The fiber-reinforced composite material according to any one of claims 1 to 15, wherein an average thickness of the coating made of the thermoplastic resin composition is 0.1 to 1000 µm. 平均厚みが0.1〜3mmである請求項1〜16のいずれか記載の繊維強化複合材料。 The fiber-reinforced composite material according to any one of claims 1 to 16, having an average thickness of 0.1 to 3 mm. ASTM D790に基づく曲げ弾性率が20GPa以上である請求項1〜17のいずれか記載の繊維強化複合材料。 The fiber-reinforced composite material according to any one of claims 1 to 17, having a flexural modulus based on ASTM D790 of 20 GPa or more. アドバンテスト法にて測定される周波数1GHzにおける電波シールド性が30dB以上である請求項1〜18のいずれか記載の繊維強化複合材料。 The fiber-reinforced composite material according to any one of claims 1 to 18, wherein a radio wave shielding property at a frequency of 1 GHz measured by an Advantest method is 30 dB or more. 熱硬化性プリプレグ積層体の表面の少なくとも一部分に熱可塑性樹脂組成物を配置する積層工程と、熱硬化性樹脂の硬化反応と並行して熱可塑性樹脂組成物を溶融し被膜を形成させる加熱成形工程とを含むことを特徴とする繊維強化複合材料の製造方法。 A laminating step of disposing the thermoplastic resin composition on at least a part of the surface of the thermosetting prepreg laminate, and a heat molding step of melting the thermoplastic resin composition and forming a coating in parallel with the curing reaction of the thermosetting resin And a method for producing a fiber-reinforced composite material. 請求項1〜19のいずれか記載の繊維強化複合材料と別の構造部材とが前記熱可塑性樹脂組成物からなる被膜を介して一体に結合されてなることを特徴とする一体化成形品。 20. An integrated molded product, wherein the fiber-reinforced composite material according to any one of claims 1 to 19 and another structural member are integrally bonded via a film made of the thermoplastic resin composition. 前記「別の構造部材」が金属材料である、請求項21に記載の一体化成形品。 22. The integrated molded product according to claim 21, wherein the "another structural member" is a metal material. 前記「別の構造部材」が請求項1〜19のいずれか記載の繊維強化複合材料である、請求項21記載の一体化成形品。 22. The integrated molded product according to claim 21, wherein the "another structural member" is the fiber-reinforced composite material according to any one of claims 1 to 19. 前記「別の構造部材」が熱可塑性樹脂組成物からなる成形品である、請求項21記載の一体化成形品。 22. The integrated molded product according to claim 21, wherein the "another structural member" is a molded product made of a thermoplastic resin composition. 熱可塑性樹脂組成物からなる成形品がさらに炭素繊維を含有する、請求項24記載の一体化成形品。 25. The integrated molded product according to claim 24, wherein the molded product made of the thermoplastic resin composition further contains carbon fibers. 前記「別の構造部材」の体積固有抵抗率が100Ω・cm以下である、請求項21〜25のいずれか記載の一体化成形品。 The integrated molded product according to any one of claims 21 to 25, wherein the volume resistivity of the “another structural member” is 100 Ω · cm or less. 電気・電子機器、OA機器、家電機器、自動車または建材の、部品、部材または筐体のいずれかに用いられる、請求項21〜26のいずれか記載の一体化成形品。 The integrated molded product according to any one of claims 21 to 26, which is used for any one of a part, a member, and a housing of an electric / electronic device, an OA device, a home appliance, an automobile, or a building material.
JP2004045963A 2003-02-21 2004-02-23 FIBER-REINFORCED COMPOSITE MATERIAL, ITS MANUFACTURING METHOD, AND INTEGRATED MOLDED ARTICLE Expired - Lifetime JP4543696B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2004045963A JP4543696B2 (en) 2003-02-21 2004-02-23 FIBER-REINFORCED COMPOSITE MATERIAL, ITS MANUFACTURING METHOD, AND INTEGRATED MOLDED ARTICLE

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2003043920 2003-02-21
JP2004045963A JP4543696B2 (en) 2003-02-21 2004-02-23 FIBER-REINFORCED COMPOSITE MATERIAL, ITS MANUFACTURING METHOD, AND INTEGRATED MOLDED ARTICLE

Publications (2)

Publication Number Publication Date
JP2004269878A true JP2004269878A (en) 2004-09-30
JP4543696B2 JP4543696B2 (en) 2010-09-15

Family

ID=33134224

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2004045963A Expired - Lifetime JP4543696B2 (en) 2003-02-21 2004-02-23 FIBER-REINFORCED COMPOSITE MATERIAL, ITS MANUFACTURING METHOD, AND INTEGRATED MOLDED ARTICLE

Country Status (1)

Country Link
JP (1) JP4543696B2 (en)

Cited By (22)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2005082982A1 (en) * 2004-02-27 2005-09-09 Toray Industries, Inc. Epoxy resin composition for carbon-fiber-reinforced composite material, prepreg, integrated molding, sheet of fiber-reinforced composite material and cabinet for electrical/electronic equipment
JP2007044665A (en) * 2005-08-12 2007-02-22 Daicen Membrane Systems Ltd Hollow fiber membrane module
WO2008013094A1 (en) 2006-07-28 2008-01-31 Toray Industries, Inc. Molded article and method for producing the same
JP2008540196A (en) * 2005-05-20 2008-11-20 カーボテック コンポジッツ ゲーエムベーハー Manufacturing process of laminated composite product and composite product produced by lamination process
JP2010533090A (en) * 2007-07-13 2010-10-21 リンデン・ダヴィット Bicycle pedal
JP2011037150A (en) * 2009-08-12 2011-02-24 Mitsubishi Plastics Inc Laminate
WO2013089228A1 (en) * 2011-12-16 2013-06-20 東レ株式会社 Frame structure and automobile component using same
JP2013210369A (en) * 2012-03-01 2013-10-10 Toyo Jushi Kk Optical inspection base having optical inspection window
KR20160054477A (en) * 2013-09-13 2016-05-16 야사 모터스 리미티드 Pole-piece Bonding
JP2016536968A (en) * 2013-09-13 2016-11-24 ワイエーエスエー モータース リミテッド Stator plate overmolding
KR101746026B1 (en) 2015-12-11 2017-06-13 주식회사 엑시아머티리얼스 Multilayer hybrid prepreg and its manufacturing method
KR101743198B1 (en) * 2010-12-16 2017-06-15 엘지전자 주식회사 Display Apparatus
JP2018535131A (en) * 2015-09-14 2018-11-29 リンテック オブ アメリカ インコーポレーテッドLintec of America, Inc. Shape-adaptive multi-layer composite
WO2020196600A1 (en) 2019-03-28 2020-10-01 東レ株式会社 Molded article of carbon-fiber-reinforced composite material and production method for molded article of carbon-fiber-reinforced composite material
WO2020235489A1 (en) * 2019-05-23 2020-11-26 東レ株式会社 Prepreg, layered body, and molded article
WO2020235488A1 (en) * 2019-05-23 2020-11-26 東レ株式会社 Method for producing fiber-reinforced resin substrate, fiber-reinforced resin substrate, and molded article integrated therewith
WO2021117461A1 (en) * 2019-12-11 2021-06-17 東レ株式会社 Prepreg, laminate, and integrated molded article
WO2021117460A1 (en) * 2019-12-11 2021-06-17 東レ株式会社 Prepreg, laminate and integrated molded article
KR20210080027A (en) * 2019-12-20 2021-06-30 주식회사 동희산업 Manufacturing method of trailing arm and trailing arm manufactured using the same
CN113811439A (en) * 2019-05-23 2021-12-17 东丽株式会社 Fiber-reinforced resin base material, integrated molded article, and method for producing fiber-reinforced resin base material
US11827005B2 (en) 2016-04-20 2023-11-28 Hankuk Carbon Co., Ltd. Structure applying the glass fiber-reinforced resin foam having excellent fatigue resistance and insulating properties and manufacturing method thereof
EP4074766A4 (en) * 2019-12-11 2023-12-27 Toray Industries, Inc. Prepreg, laminate and integrated molded article

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4774839B2 (en) * 2004-07-08 2011-09-14 東レ株式会社 Manufacturing method of fiber reinforced composite material
US20140127521A1 (en) 2011-04-05 2014-05-08 Toray Industries, Inc. Composite molded body and method for producing same

Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH01320146A (en) * 1988-06-23 1989-12-26 Toho Rayon Co Ltd Molding intermediate product and moldings
JPH0747152A (en) * 1993-08-06 1995-02-21 Asahi Chem Ind Co Ltd Fiber-reinforced resin racket frame
JPH07205171A (en) * 1994-01-10 1995-08-08 Shin Kobe Electric Mach Co Ltd Production of abrasive laminated sheet
JPH07214680A (en) * 1994-02-07 1995-08-15 Kanebo Ltd Production of fiber reinforced resin composite material
JPH09277420A (en) * 1996-04-19 1997-10-28 Toray Ind Inc Fiber reinforced plastic structure and its production
JPH10201882A (en) * 1997-01-23 1998-08-04 Sumitomo Rubber Ind Ltd Racket frame and its production
JP2005297417A (en) * 2004-04-14 2005-10-27 Toray Ind Inc Industrial structure member and its manufacturing method
JP2006044259A (en) * 2004-07-07 2006-02-16 Toray Ind Inc Integrated molded product and its manufacturing method
JP2006044261A (en) * 2004-07-08 2006-02-16 Toray Ind Inc Fiber-reinforced composite material, its production method and integrally structured material using it

Patent Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH01320146A (en) * 1988-06-23 1989-12-26 Toho Rayon Co Ltd Molding intermediate product and moldings
JPH0747152A (en) * 1993-08-06 1995-02-21 Asahi Chem Ind Co Ltd Fiber-reinforced resin racket frame
JPH07205171A (en) * 1994-01-10 1995-08-08 Shin Kobe Electric Mach Co Ltd Production of abrasive laminated sheet
JPH07214680A (en) * 1994-02-07 1995-08-15 Kanebo Ltd Production of fiber reinforced resin composite material
JPH09277420A (en) * 1996-04-19 1997-10-28 Toray Ind Inc Fiber reinforced plastic structure and its production
JPH10201882A (en) * 1997-01-23 1998-08-04 Sumitomo Rubber Ind Ltd Racket frame and its production
JP2005297417A (en) * 2004-04-14 2005-10-27 Toray Ind Inc Industrial structure member and its manufacturing method
JP2006044259A (en) * 2004-07-07 2006-02-16 Toray Ind Inc Integrated molded product and its manufacturing method
JP2006044261A (en) * 2004-07-08 2006-02-16 Toray Ind Inc Fiber-reinforced composite material, its production method and integrally structured material using it

Cited By (38)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5250972B2 (en) * 2004-02-27 2013-07-31 東レ株式会社 Epoxy resin composition for carbon fiber reinforced composite material, prepreg, integrated molded product, fiber reinforced composite material plate, and casing for electric / electronic device
WO2005082982A1 (en) * 2004-02-27 2005-09-09 Toray Industries, Inc. Epoxy resin composition for carbon-fiber-reinforced composite material, prepreg, integrated molding, sheet of fiber-reinforced composite material and cabinet for electrical/electronic equipment
US9963576B2 (en) 2004-02-27 2018-05-08 Toray Industríes, Inc. Fiber-reinforced composite sheet and integrated molding
US8021752B2 (en) 2004-02-27 2011-09-20 Toray Industries, Inc. Epoxy resin composition for carbon-fiber-reinforced composite material, prepreg, integrated molding, fiber-reinforced composite sheet, and casing for electrical/electronic equipment
US8877330B2 (en) 2004-02-27 2014-11-04 Toray Industries, Inc. Fiber-reinforced composite sheet
JP2008540196A (en) * 2005-05-20 2008-11-20 カーボテック コンポジッツ ゲーエムベーハー Manufacturing process of laminated composite product and composite product produced by lamination process
JP2007044665A (en) * 2005-08-12 2007-02-22 Daicen Membrane Systems Ltd Hollow fiber membrane module
WO2008013094A1 (en) 2006-07-28 2008-01-31 Toray Industries, Inc. Molded article and method for producing the same
JP2010533090A (en) * 2007-07-13 2010-10-21 リンデン・ダヴィット Bicycle pedal
JP2011037150A (en) * 2009-08-12 2011-02-24 Mitsubishi Plastics Inc Laminate
KR101743198B1 (en) * 2010-12-16 2017-06-15 엘지전자 주식회사 Display Apparatus
WO2013089228A1 (en) * 2011-12-16 2013-06-20 東レ株式会社 Frame structure and automobile component using same
JP2013210369A (en) * 2012-03-01 2013-10-10 Toyo Jushi Kk Optical inspection base having optical inspection window
KR20160054477A (en) * 2013-09-13 2016-05-16 야사 모터스 리미티드 Pole-piece Bonding
JP2016530870A (en) * 2013-09-13 2016-09-29 ワイエーエスエー モータース リミテッド Joining pole pieces
JP2016536968A (en) * 2013-09-13 2016-11-24 ワイエーエスエー モータース リミテッド Stator plate overmolding
KR102224435B1 (en) 2013-09-13 2021-03-05 야사 리미티드 Pole-piece Bonding
US10717844B2 (en) 2015-09-14 2020-07-21 Lintec Corporation Multilayer conformable composites
JP2018535131A (en) * 2015-09-14 2018-11-29 リンテック オブ アメリカ インコーポレーテッドLintec of America, Inc. Shape-adaptive multi-layer composite
US11377537B2 (en) 2015-09-14 2022-07-05 Lintec Of America, Inc. Multilayer composites comprising adhesive and one or more nanofiber sheets
US10995195B2 (en) 2015-09-14 2021-05-04 Lintec Of America, Inc. Composite nanofiber sheet
KR101746026B1 (en) 2015-12-11 2017-06-13 주식회사 엑시아머티리얼스 Multilayer hybrid prepreg and its manufacturing method
US11827005B2 (en) 2016-04-20 2023-11-28 Hankuk Carbon Co., Ltd. Structure applying the glass fiber-reinforced resin foam having excellent fatigue resistance and insulating properties and manufacturing method thereof
WO2020196600A1 (en) 2019-03-28 2020-10-01 東レ株式会社 Molded article of carbon-fiber-reinforced composite material and production method for molded article of carbon-fiber-reinforced composite material
CN113767007A (en) * 2019-05-23 2021-12-07 东丽株式会社 Method for producing fiber-reinforced resin base material, and integrated molded article thereof
CN113840706B (en) * 2019-05-23 2023-08-18 东丽株式会社 Prepreg, laminate, and molded article
WO2020235489A1 (en) * 2019-05-23 2020-11-26 東レ株式会社 Prepreg, layered body, and molded article
EP3974141A4 (en) * 2019-05-23 2023-06-21 Toray Industries, Inc. Prepreg, layered body, and molded article
WO2020235488A1 (en) * 2019-05-23 2020-11-26 東レ株式会社 Method for producing fiber-reinforced resin substrate, fiber-reinforced resin substrate, and molded article integrated therewith
CN113811439A (en) * 2019-05-23 2021-12-17 东丽株式会社 Fiber-reinforced resin base material, integrated molded article, and method for producing fiber-reinforced resin base material
CN113840706A (en) * 2019-05-23 2021-12-24 东丽株式会社 Prepreg, laminate, and molded article
US20220204710A1 (en) * 2019-05-23 2022-06-30 Toray Industries, Inc. Prepreg, layered body, and molding
WO2021117461A1 (en) * 2019-12-11 2021-06-17 東レ株式会社 Prepreg, laminate, and integrated molded article
WO2021117460A1 (en) * 2019-12-11 2021-06-17 東レ株式会社 Prepreg, laminate and integrated molded article
EP4074765A4 (en) * 2019-12-11 2023-12-20 Toray Industries, Inc. Prepreg, laminate, and integrated molded article
EP4074766A4 (en) * 2019-12-11 2023-12-27 Toray Industries, Inc. Prepreg, laminate and integrated molded article
KR102326467B1 (en) * 2019-12-20 2021-11-16 (주)동희산업 Manufacturing method of trailing arm and trailing arm manufactured using the same
KR20210080027A (en) * 2019-12-20 2021-06-30 주식회사 동희산업 Manufacturing method of trailing arm and trailing arm manufactured using the same

Also Published As

Publication number Publication date
JP4543696B2 (en) 2010-09-15

Similar Documents

Publication Publication Date Title
JP4543696B2 (en) FIBER-REINFORCED COMPOSITE MATERIAL, ITS MANUFACTURING METHOD, AND INTEGRATED MOLDED ARTICLE
JP3906319B2 (en) LAMINATE, INTEGRATED MOLDED ARTICLE, AND METHOD FOR PRODUCING THEM
JP4023515B2 (en) Preform using a base material for thermal bonding, and method for producing laminate
EP2527139B1 (en) Sandwich structure and integrated formed article using the same
EP3533575B1 (en) Prepreg laminate, fiber-reinforced composite material, and method for producing fiber-reinforced composite material
JP4774839B2 (en) Manufacturing method of fiber reinforced composite material
KR20160051727A (en) Sandwich structure and integrated molded article using same, as well as production methods therefor
JP2006044259A (en) Integrated molded product and its manufacturing method
JP2007110138A (en) Molded object for electromagnetic wave shielding and method of manufacturing the same
JP2006089734A (en) Thermoplastic resin composition
JP2006205436A (en) Fiber reinforced composite material sheet and molded product using it
JP2005297417A (en) Industrial structure member and its manufacturing method
JP2008169344A (en) Thermoplastic resin composition
JP2008120879A (en) Thermoplastic resin composition

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20061117

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20090526

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20090713

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20100420

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20100511

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20100608

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20100621

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130709

Year of fee payment: 3

R151 Written notification of patent or utility model registration

Ref document number: 4543696

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R151

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130709

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140709

Year of fee payment: 4