JP2004269435A - Method for producing bisaminomethyl-1,4-dithiane and intermediate therefor - Google Patents

Method for producing bisaminomethyl-1,4-dithiane and intermediate therefor Download PDF

Info

Publication number
JP2004269435A
JP2004269435A JP2003063391A JP2003063391A JP2004269435A JP 2004269435 A JP2004269435 A JP 2004269435A JP 2003063391 A JP2003063391 A JP 2003063391A JP 2003063391 A JP2003063391 A JP 2003063391A JP 2004269435 A JP2004269435 A JP 2004269435A
Authority
JP
Japan
Prior art keywords
formula
same meaning
represent
group
compound represented
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2003063391A
Other languages
Japanese (ja)
Other versions
JP4356917B2 (en
Inventor
Nobuo Matsui
宣夫 松井
Minoru Kaeriyama
稔 帰山
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Soda Co Ltd
Original Assignee
Nippon Soda Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Soda Co Ltd filed Critical Nippon Soda Co Ltd
Priority to JP2003063391A priority Critical patent/JP4356917B2/en
Publication of JP2004269435A publication Critical patent/JP2004269435A/en
Application granted granted Critical
Publication of JP4356917B2 publication Critical patent/JP4356917B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Landscapes

  • Heterocyclic Compounds Containing Sulfur Atoms (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a method for industrially advantageously producing a bisaminomethyl-1,4-dithiane compound useful as a material for producing optical materials, adhesives and coatings, etc. <P>SOLUTION: The method for producing the compound of formula[1] comprises the steps of preparing a compound of formula[4] by reaction between a compound of formula[2] and an amine of formula[3], preparing a compound of formula[7] by reaction between the compound of formula[4] and a compound of formula[5] or [6], and dealkylating and hydrolyzing the compound of formula[7]. In formulas[1], [2], [3], [4], [5], [6] and [7], X is a halogen atom; R<SB>1</SB>is H or a 1-6C alkyl; R<SB>2</SB>to R<SB>4</SB>are each a 1-6C alkyl or (substituted) aryl; R<SB>5</SB>is a 1-6C alkyl, 1-6C alkoxy or (substituted) aryl; and Y is a halogen atom or the like. <P>COPYRIGHT: (C)2004,JPO&NCIPI

Description

【0001】
【発明の属する技術分野】
本発明は、新規なビスアミノメチル−1,4−ジチアン化合物の製造方法及びその中間体に関する。本発明に係わるビスアミノメチル−1,4−ジチアン化合物は、光学材料、接着剤、塗料等の製造原料として有用である。
【0002】
【従来の技術】
従来、ビスアミノメチル−1,4−ジチアン化合物の製造方法としては、前記式[2]で表される化合物を加圧下、塩化第一銅を触媒としてアンモニアを反応させて製造する方法が知られている(特許文献1)。しかしながら、この方法は、多量のアンモニアを加圧下に使用するものであるため、工業的に有利な方法とは言いがたい。
【0003】
【特許文献1】
特開平10−130264号公報
【発明が解決しようとする課題】
本発明は、光学材料、接着剤、塗料等の有用な製造原料として有用なビスアミノメチル−1,4−ジチアン化合物を、工業的に有利に製造する方法、並びにこの製造方法に用いる新規化合物及びその製造方法を提供することを課題とする。
【0004】
【課題を解決するための手段】
上記課題を解決すべく、本発明は第1に、式[1]
【0005】
【化17】

Figure 2004269435
【0006】
(式中、Rは、水素原子又はC−Cアルキル基を表す。)で表される化合物の製造方法であって、
(1)式[2]
【0007】
【化18】
Figure 2004269435
【0008】
(式中、Xはハロゲン原子を表し、Rは前記と同じ意味を表す。)で表される化合物と、式[3]
【0009】
【化19】
Figure 2004269435
【0010】
(式中R、R及びRは、それぞれ独立してC−Cアルキル基又は置換基を有していてもよいアリール基を表す。)で表されるアミン類とを反応させ、式[4]
【0011】
【化20】
Figure 2004269435
【0012】
(式中、R、R、R及びRは前記と同じ意味を表す。)で表される化合物を製造する工程、
【0013】
(2)前記式[4]で表される化合物と、式[5]又は[6]
【0014】
【化21】
Figure 2004269435
【0015】
(式中、Rは、C−Cアルキル基、C−Cアルコキシ基又は置換基を有していてもよいアリール基を表し、Yはハロゲン原子又はC−Cアルコキシ基を表す。)で表される化合物を反応させ、式[7]
【0016】
【化22】
Figure 2004269435
【0017】
(式中、R、R、R、R及びRは前記と同じ意味を表す。)で表される化合物を製造する工程、並びに、
(3)前記式[7]で表される化合物を脱アルキル及び加水分解する工程、
を有することを特徴とする製造方法を提供する。
【0018】
本発明は第2に、式[4]
【0019】
【化23】
Figure 2004269435
【0020】
(式中、R、R、R及びRは前記と同じ意味を表す。)で表される新規化合物とその製造方法を提供する。
【0021】
また、本発明は第3に、式[7]
【0022】
【化24】
Figure 2004269435
【0023】
(式中、R、R、R、R及びRは前記と同じ意味を表す。)で表される新規化合物とその製造方法を提供する。
【0024】
【発明の実施の形態】
以下本発明を詳細に説明する。
本発明の製造方法は、前記式[1]で表される化合物の製造方法であって、次の第1工程(1)〜第3工程(3)を有することを特徴とする。
【0025】
【化25】
Figure 2004269435
【0026】
第1工程(1)は、前記式[2]で表される化合物と、式[3]で表されるアミンとを反応させて、前記式[4]で表される化合物を得る工程である。
【0027】
上記反応式において、Xはハロゲン原子を表す。ハロゲン原子としては、フッ素、塩素、臭素、ヨウ素が挙げられる。
は、水素原子又はC−Cアルキル基を表す。C−Cアルキル基としては、メチル基、エチル基、n−プロピル基、イソプロピル基、n−ブチル基、sec−ブチル基、イソブチル基、t−ブチル基、n−ペンチル基、n−ヘキシル基等が挙げられる。
、R及びRは、それぞれ独立してC−Cアルキル基又は置換基を有していてもよいアリール基を表す。C−Cアルキル基としては、前記RのC−Cアルキル基と同様のものが挙げられる。
また、置換基を有していてもよいアリール基としては、フェニル基、p−メトキシフェニル基等が挙げられる。
【0028】
式[3]で表されるアミンの使用量は、式[2]で表される化合物に対して2倍モル以上であれば特に制限されないが、好ましくは2〜40倍モル、更に好ましくは3〜20倍モルである。
【0029】
この反応は、適当な溶媒中で行うことができる。用いる溶媒としては、基質に対し不活性であれば特に制限されない。例えば、水;メチルアルコール、エチルアルコール、イソプロピルアルコール等のアルコール系溶媒;塩化メチレン、クロロホルム、ジクロロエタン、クロロベンゼン等のハロゲン系溶媒;ベンゼン、トルエン、キシレン、ヘキサン、シクロヘキサン等の炭化水素系溶媒;酢酸メチル、酢酸エチル、酢酸イソプロピル、酢酸ブチル等のエステル系溶媒;メチルイソブチルケトン等のケトン系溶媒;ジエチルエーテル等のエーテル系溶媒;ベンゾニトリル等のニトリル系溶媒;ニトロベンゼン等のニトロ系溶媒;N,N−ジメチルホルムアミド(DMF)、ジメチルスルホキシド(DMSO)等の極性溶媒;等を例示することができる。また、これらの混合溶媒を用いることもできる。これらの中でも、収率よく目的物が得られる観点から、アルコール系溶媒、水及びそれらの混合溶媒の使用が好ましい。
【0030】
溶媒の使用量は、式[2]の化合物1重量部に対し、通常0.5〜1000重量部、好ましくは1〜100重量部である。2種以上の溶媒を混合して用いる場合の混合比は任意である。反応は、室温から還流温度の範囲で行われるが、30〜70℃の範囲が好ましい。
【0031】
【化26】
Figure 2004269435
【0032】
第2工程(2)は、前記式[4]で表される化合物と、式[5]又は式[6]で表される化合物とを反応させて、式[7]で表される化合物を製造する工程である。
上記反応式中、R〜Rは前記と同様である。
は、メチル基、エチル基、n−プロピル基、イソプロピル基、n−ブチル基、sec−ブチル基、イソブチル基、t−ブチル基、n−ペンチル基、n−ヘキシル基等のC−Cアルキル基;メトキシ基、エトキシ基、n−プロポキシ基、イソプロポキシ基、n−ブトキシ基、sec−ブトキシ基、イソブトキシ基、t−ブトキシ基等のC−Cアルコキシ基;又は、フェニル基、p−メトキシフェニル基等の置換基を有していてもよいアリール基;を表す。
Yは、塩素、臭素等のハロゲン原子;又はメトキシ基、エトキシ基、n−プロポキシ基、イソプロポキシ基等のC−Cアルコキシ基を表す。
【0033】
この反応は、適当な溶媒中で行なうことができる。用いる溶媒としては、反応に不活性な溶媒であれば特に制限されない。例えば、塩化メチレン、クロロホルム、ジクロロエタン、クロロベンゼン等のハロゲン系溶媒;ベンゼン、トルエン、キシレン、ヘキサン、シクロヘキサン等の炭化水素系溶媒;酢酸メチル、酢酸エチル、酢酸イソプロピル、酢酸ブチル等のエステル系溶媒;メチルエチルケトン、メチルイソブチルケトン等のケトン系溶媒;ジエチルエーテル、1,2−ジメトキシエタン、ジオキサン等のエーテル系溶媒;アセトニトリル、ベンゾニトリル等のニトリル系溶媒;ニトロベンゼン等のニトロ系溶媒;DMF、DMSO等の極性溶媒;等が挙げられる。これらの溶媒は1種単独で、あるいは2種以上を組み合わせて用いることができる。また、水との2相系で用いることもできる。
【0034】
さらに、反応系中に発生するハロゲン化水素、カルボン酸を除去するため、有機塩基及び/又は無機塩基を反応系に添加してもよい。
有機塩基としては、トリメチルアミン、トリエチルアミン、トリ−n−ブチルアミン、N,N−ジメチルシクロヘキシルアミン、N、N―ジイソプロピルエチルアミン、N,N−ジエチルアニリン等の3級のアミン;アニリン類;ピリジン、キノリン等の含窒素複素環化合物;1,8−ジアザビシクロ[5.4.0]ウンデカ−7−エン、1,5−ジアザビシクロ[4.3.0]ノン−5−エン、6−ジブチルアミノ−1,8−ジアザビシクロ[5.4.0]ウンデカ−7−エン、トリエチレンジアミン、N,N−ジメチルアミノピリジン、ピリジン、α−ピコリン、β―ピコリン、γ−ピコリン、ルチジン類、コリジン類等を例示することができる。
【0035】
無機塩基としては、水酸化ナトリウム、水酸化カリウム、水酸化マグネシウム、水酸化カルシウム等の水酸化物;炭酸ナトリウム、炭酸カリウム、炭酸マグネシウム、炭酸カルシウム等の炭酸塩;炭酸水素ナトリウム、炭酸水素カリウム等の重炭酸塩;等を例示することができる。また、これらの塩基を混合して使用することもできる。
【0036】
更には4級アンモニウム塩、4級ホスホニウム塩類等のオニウム塩類、クラウン化合物、有機塩基等を触媒として用いることもできる。具体的には4級アンモニウム塩として、水酸化テトラメチルアンモニウム、水酸化テトラエチルアンモニウム、水酸化テトラブチルアンモニウム、水酸化トリメチルベンジルアンモニウム、臭化テトラメチルアンモニウム、臭化テトラエチルアンモニウム、臭化テトラブチルアンモニウム、臭化トリエチルベンジルアンモニウム、臭化トリメチルフェニルアンモニウム、塩化テトラメチルアンモニウム、塩化テトラエチルアンモニウム、塩化テトラブチルアンモニウム、塩化トリエチルベンジルアンモニウム、塩化トリメチルフェニルアンモニウム、塩化トリオクチルメチルアンモニウム、塩化トリブチルベンジルアンモニウム、塩化トリメチルベンジルアンモニウム、塩化N−ラウリルピリジニウム、塩化N−ベンジルピコリニウム、塩化トリカプリルメチルアンモニウム、沃化テトラメチルアンモニウム、沃化テトラブチルアンモニウム、テトラブチルアンモニウムサルフェート、等が使用できる。
【0037】
4級ホスホニウム塩として、塩化テトラエチルホスホニウム、臭化テトラエチルホスホニウム、沃化テトラエチルホスホニウム、臭化テトラブチルホスホニウム、臭化テトラフェニルホスホニウム、臭化トリフェニルベンジルホスホニウム等が使用できる。また、クラウン化合物として、15−クラウン−5,18−クラウン−6等のクラウンエーテル類、クリプタンド類等が使用できる。
反応は−20℃から用いる溶媒の沸点までの温度で円滑に進行する。
【0038】
【化27】
Figure 2004269435
【0039】
第3工程は、前記式[7]で表される化合物を脱アルキル及び加水分解することにより、式[1]で表される化合物を製造する工程である。
この反応においては、酸の存在下に行うのが好ましい。使用する酸としては酢酸、トリフルオロ酢酸、メタンスルホン酸、トルエンスルホン酸等の有機酸、塩酸、硫酸、臭化水素酸等の無機酸が挙げられる。なかでも、塩酸、硫酸等の無機酸の使用が好ましい。
【0040】
この反応は、適当な溶媒中で行われる。使用する溶媒としては、反応に不活性であれば特に制限されないが、効率よく目的物を得ることができること、及び目的物の単離操作が容易であること等の理由から、水の使用が好ましい。
【0041】
反応は、反応系に適した温度を適時選択できるが、室温から溶媒の沸点で行われ、好ましくは溶媒の沸点か100℃程度である。また、室温から段階的に温度を上げながら反応することもできる。反応時間は通常1時間から24時間の範囲である。
【0042】
反応終了後は、通常の有機合成的手法に従って単離、精製を行うことにより目的物を得ることができる。目的物の構造は、NMR、IR、MASS等の各種スペクトルの測定を行うことにより決定することができる。
【0043】
前記式[4]で表される化合物及び式[7]で表される化合物は新規化合物である。これらの化合物の具体例を第1表及び第2表に示すが、これらに限定されるものではない。
【0044】
【表1】
Figure 2004269435
【0045】
【表2】
Figure 2004269435
【0046】
【表3】
Figure 2004269435
【0047】
【実施例】
次に実施例で本発明を詳しく説明するが、本発明は下記の実施例のみに限定されるものではない。
実施例1 2,5−ビス(t−ブチルアミノメチル)−1,4−ジチアン(以下TBMDと略記する)の製造
【0048】
【化28】
Figure 2004269435
【0049】
粗2,5−ビス(クロロメチル)−1,4−ジチアン(以下DCMDと略記する)91.4g(純分54.3g)、メタノール62.5ml及び水125mlの混合物にt−ブチルアミン146.3gを加え、40〜45℃にて14時間反応を行った。反応終了後、メタノール及び過剰のt−ブチルアミンを減圧留去した後、濃塩酸49.9gを加え、クロロホルム125mlで洗浄した。クロロホルム層を希塩酸(濃塩酸2g+水13ml)で抽出し、先の水溶液と合わせた。この水溶液に28%NaOH水溶液117.1gを加え、クロロホルムで抽出した。クロロホルム層を水洗後、クロロホルムを留去して得られた淡黄色オイルを、高速液体クロマトグラフィー(HPLC)で分析したところ、目的物を62.4g(収率86%)含有していた。また、得られた淡黄色オイルをクロマトグラフィーにより単離し、NMRスペクトルを測定することにより、目的物であることを確認した。
【0050】
H−NMRデータ(CDCl,δppm):1.11(s,18H),2.8(m,4H),2.9(m,2H),3.0(m,4H)
13C−NMR(CDCl,δppm):29.1,31.1,41.0,45.4,50.4
(注)主なピークのみを記載している。
【0051】
実施例2 TBMDの製造
粗DCMD 18.3g(純分10.9g)と水25mlの混合物にt−ブチルアミン29.3gを加え、60〜65℃にて4.5時間反応を行った。反応終了後、過剰のt−ブチルアミンを減圧留去した後、濃塩酸22.8gを加え、クロロホルム25mlで洗浄した。クロロホルム層を水13mlで抽出し、先の水溶液と合わせた。この水溶液に28%NaOH水溶液36.4gを加え、クロロホルムで抽出した。クロロホルム層を水洗後、クロロホルムを留去して得られた淡黄色オイルをHPLCで分析したところ、目的物を13.5g含有していた。
【0052】
実施例3 TBMDの製造
粗DCMD 146.2g(純分86.8g)と水200mlの混合物にt−ブチルアミン175.5gを加え、65〜70℃にて7時間反応を行った。反応終了後、過剰のt−ブチルアミンを減圧留去した後、濃塩酸65.3gを加え、クロロホルム80mlで洗浄した。クロロホルム層を水20mlで抽出し、先の水溶液と合わせた。この水溶液に28%NaOH水溶液166.2gを加え、クロロホルムで抽出した。クロロホルム層を水洗後、クロロホルムを留去して得られた淡黄色オイルをHPLCで分析したところ、目的物を101.1g含有していた。
【0053】
実施例4 2,5−ビス(N−アセチル−N−t−ブチルアミノメチル)−1,4−ジチアン(以下ABMDと略記する)の製造
【0054】
【化29】
Figure 2004269435
【0055】
実施例2で得たTBMD(純分14.5g)及びトリエチルアミン12.7gをクロロホルムに溶解し、15℃にて塩化アセチル9.8gを滴下した。滴下終了後、さらに同温度で1時間撹拌した。反応終了後、反応液に水を加えて生成したトリエチルアミン塩を溶解分液した。有機層を水洗し、その1/10量を測りとり、クロロホルムを留去したところ、粗ABMD2.05gを得た。HPLCで分析したところ、目的物(主として2種類の異性体の混合物)を1.75g(収率93%)含有していた。
各異性体は再結晶及びシリカゲルクロマトグラフィーにより単離、精製し、NMRスペクトルを測定することにより構造を確認した。
【0056】
A)主異性体
H−NMRデータ(CDCl,δppm):1.46(s,18H),2.21(s,6H),2.78−2.85(m,2H),3.03−3.10(m,2H),2.98(d,2H),3.6−3.7(m,4H)
13C−NMRデータ(CDCl,δppm):25.7,29.4,30.9,41.1,49.5,57.3,171.8
【0057】
B)副異性体
H−NMRデータ(CDCl,δppm):1.47(s,18H),2.18(s,6H),2.59−2.68(m,2H),2.8(m,2H),3.2−3.5(m,2H,m,4H)
13C−NMRデータ(CDCl,δppm):25.7,29.2,32.4,46.7,50.1,57.3,171.7
【0058】
実施例5 ABMDの製造
【0059】
【化30】
Figure 2004269435
【0060】
TBMD(純分222g)をモノクロルベンゼン750mlに溶解し、ここに無水酢酸234gを添加した。この混合物を100〜110℃に加熱し、5時間反応を行った。反応終了後、反応液を50℃まで冷却し、n−ヘキサン375mlを滴下し、全容を5℃まで冷却して、析出した結晶を濾過し、乾燥して211gを得た。HPLCによる分析及びNMRの測定結果から、目的物であることを確認した。異性体比は91:9(NMR)であった。
母液をHPLCで測定したところ、目的物が49.5g含まれていた。(収率91%)
【0061】
実施例6 2,5−ビス(アミノメチル)−1,4−ジチアン(以下BAMDと略記する)の製造
【0062】
【化31】
Figure 2004269435
【0063】
実施例5で得たABMD37.5gを塩酸水溶液(HCl分:18.2g)72.9gに室温で添加した。添加した後、加熱しながら、生成したt−ブチルクロリド及びt−ブチルアルコールを内温が100℃に達するまで留出させた後、そのまま100℃にて6時間反応を行った。反応終了後、反応液を10℃まで冷却し、28%NaOH水溶液72.9gを加えて、クロロホルムで抽出した。クロロホルムを留去し、単黄色オイル(後に固化)17.7gを得た。HPLC及びNMRからこのオイルが目的物であることを確認した(収率97%)。
【0064】
実施例7 BAMDの製造
実施例4で得たABMDのクロロホルム溶液(ABMD:15.7g含有)のクロロホルムを常圧で留去し、結晶が析出したところで濃塩酸23.4gを加え更に留去を続けた。途中、水17.5gを加えて内温が90〜95℃となったところで留出を止め、その温度で7時間反応を行った。反応液を冷却後、28%NaOH水溶液35.1gを加え、クロロホルムで抽出した。クロロホルムを留去して得られた残留物をHPLCで分析したところ、BAMD7.2gを含有していた(収率96%)。
【0065】
実施例8 BAMDの製造
ABMD1.0gを30%硫酸水溶液に加え、5時間加熱還流した。反応液を冷却後、28%NaOH水溶液12gを加え、クロロホルムで抽出した。クロロホルム層を硫酸マグネシウムで乾燥し、クロロホルムを留去して目的物0.44gを得た(収率91%)。
【0066】
【発明の効果】
以上説明したように、本発明の製造方法は、光学材料等の製造原料として有用なビスアミノメチル−1,4−ジチアン化合物を温和な反応条件で、効率よく製造することができるので、工業的に有利な製造方法である。[0001]
TECHNICAL FIELD OF THE INVENTION
The present invention relates to a method for producing a novel bisaminomethyl-1,4-dithiane compound and an intermediate thereof. The bisaminomethyl-1,4-dithiane compound according to the present invention is useful as a raw material for producing optical materials, adhesives, paints, and the like.
[0002]
[Prior art]
Conventionally, as a method for producing a bisaminomethyl-1,4-dithiane compound, a method is known in which a compound represented by the formula [2] is produced by reacting ammonia under pressure and cuprous chloride as a catalyst. (Patent Document 1). However, this method is not industrially advantageous because a large amount of ammonia is used under pressure.
[0003]
[Patent Document 1]
Japanese Patent Application Laid-Open No. 10-130264 [Problems to be Solved by the Invention]
The present invention relates to a method for industrially advantageously producing a bisaminomethyl-1,4-dithiane compound useful as a useful production raw material for optical materials, adhesives, paints, and the like, and a novel compound used in this production method. It is an object to provide a manufacturing method thereof.
[0004]
[Means for Solving the Problems]
In order to solve the above-mentioned problem, the present invention firstly provides a formula [1]
[0005]
Embedded image
Figure 2004269435
[0006]
(Wherein, R 1 represents a hydrogen atom or a C 1 -C 6 alkyl group).
(1) Equation [2]
[0007]
Embedded image
Figure 2004269435
[0008]
(Wherein X represents a halogen atom, R 1 has the same meaning as described above), and a compound represented by the formula [3]
[0009]
Embedded image
Figure 2004269435
[0010]
(Wherein R 2 , R 3 and R 4 each independently represent a C 1 -C 6 alkyl group or an aryl group which may have a substituent). , Equation [4]
[0011]
Embedded image
Figure 2004269435
[0012]
(Wherein R 1 , R 2 , R 3 and R 4 represent the same meaning as described above),
[0013]
(2) A compound represented by the formula [4] and a compound represented by the formula [5] or [6]
[0014]
Embedded image
Figure 2004269435
[0015]
(Wherein, R 5 represents a C 1 -C 6 alkyl group, a C 1 -C 6 alkoxy group, or an aryl group which may have a substituent, and Y represents a halogen atom or a C 1 -C 6 alkoxy group. Is represented by the formula: [7]
[0016]
Embedded image
Figure 2004269435
[0017]
(Wherein, R 1 , R 2 , R 3 , R 4 and R 5 represent the same meaning as described above), and
(3) a step of dealkylating and hydrolyzing the compound represented by the formula [7],
The manufacturing method characterized by having.
[0018]
The present invention secondly provides a formula [4]
[0019]
Embedded image
Figure 2004269435
[0020]
(Wherein R 1 , R 2 , R 3 and R 4 represent the same meaning as described above) and a method for producing the same.
[0021]
Thirdly, the present invention provides a formula [7]
[0022]
Embedded image
Figure 2004269435
[0023]
(Wherein R 1 , R 2 , R 3 , R 4 and R 5 represent the same meaning as described above) and a method for producing the same.
[0024]
BEST MODE FOR CARRYING OUT THE INVENTION
Hereinafter, the present invention will be described in detail.
The production method of the present invention is a method for producing the compound represented by the formula [1], and comprises the following first step (1) to third step (3).
[0025]
Embedded image
Figure 2004269435
[0026]
The first step (1) is a step of reacting a compound represented by the formula [2] with an amine represented by the formula [3] to obtain a compound represented by the formula [4]. .
[0027]
In the above reaction formula, X represents a halogen atom. Examples of the halogen atom include fluorine, chlorine, bromine, and iodine.
R 1 represents a hydrogen atom or a C 1 -C 6 alkyl group. Examples of the C 1 -C 6 alkyl group include a methyl group, an ethyl group, an n-propyl group, an isopropyl group, an n-butyl group, a sec-butyl group, an isobutyl group, a t-butyl group, an n-pentyl group, and an n-hexyl. And the like.
R 2 , R 3 and R 4 each independently represent a C 1 -C 6 alkyl group or an aryl group which may have a substituent. The C 1 -C 6 alkyl group include the same C 1 -C 6 alkyl group of the R 1 can be mentioned.
Examples of the aryl group which may have a substituent include a phenyl group and a p-methoxyphenyl group.
[0028]
The amount of the amine represented by the formula [3] is not particularly limited as long as it is at least 2 times the mol of the compound represented by the formula [2], but is preferably 2 to 40 times, more preferably 3 times the mol. 2020-fold mol.
[0029]
This reaction can be performed in a suitable solvent. The solvent used is not particularly limited as long as it is inert to the substrate. For example, water; alcohol solvents such as methyl alcohol, ethyl alcohol, and isopropyl alcohol; halogen solvents such as methylene chloride, chloroform, dichloroethane, and chlorobenzene; hydrocarbon solvents such as benzene, toluene, xylene, hexane, and cyclohexane; methyl acetate Ester solvents such as ethyl acetate, isopropyl acetate and butyl acetate; ketone solvents such as methyl isobutyl ketone; ether solvents such as diethyl ether; nitrile solvents such as benzonitrile; nitro solvents such as nitrobenzene; Polar solvents such as dimethylformamide (DMF) and dimethylsulfoxide (DMSO); Further, these mixed solvents can be used. Among these, the use of an alcohol solvent, water and a mixed solvent thereof is preferred from the viewpoint of obtaining the desired product in good yield.
[0030]
The amount of the solvent to be used is generally 0.5 to 1000 parts by weight, preferably 1 to 100 parts by weight, per 1 part by weight of the compound of the formula [2]. The mixing ratio when two or more solvents are mixed and used is arbitrary. The reaction is carried out at room temperature to reflux temperature, preferably in the range of 30 to 70 ° C.
[0031]
Embedded image
Figure 2004269435
[0032]
In the second step (2), a compound represented by the formula [4] is reacted with a compound represented by the formula [5] or the formula [6] to form a compound represented by the formula [7]. This is the manufacturing process.
In the above reaction formula, R 1 to R 4 are the same as described above.
R 5 is a C 1- such as a methyl group, an ethyl group, an n-propyl group, an isopropyl group, an n-butyl group, a sec-butyl group, an isobutyl group, a t-butyl group, an n-pentyl group, or an n-hexyl group. C 6 alkyl group; C 1 -C 6 alkoxy group such as methoxy group, ethoxy group, n-propoxy group, isopropoxy group, n-butoxy group, sec-butoxy group, isobutoxy group, t-butoxy group; or phenyl Or an aryl group which may have a substituent such as a p-methoxyphenyl group.
Y represents a halogen atom such as chlorine or bromine; or a C 1 -C 6 alkoxy group such as a methoxy group, an ethoxy group, an n-propoxy group, or an isopropoxy group.
[0033]
This reaction can be performed in a suitable solvent. The solvent used is not particularly limited as long as it is a solvent inert to the reaction. For example, halogen solvents such as methylene chloride, chloroform, dichloroethane, and chlorobenzene; hydrocarbon solvents such as benzene, toluene, xylene, hexane, and cyclohexane; ester solvents such as methyl acetate, ethyl acetate, isopropyl acetate, and butyl acetate; methyl ethyl ketone Solvents such as diethyl ether, 1,2-dimethoxyethane and dioxane; nitrile solvents such as acetonitrile and benzonitrile; nitro solvents such as nitrobenzene; polarities such as DMF and DMSO Solvent; and the like. These solvents can be used alone or in combination of two or more. It can also be used in a two-phase system with water.
[0034]
Further, an organic base and / or an inorganic base may be added to the reaction system in order to remove hydrogen halide and carboxylic acid generated in the reaction system.
Examples of the organic base include tertiary amines such as trimethylamine, triethylamine, tri-n-butylamine, N, N-dimethylcyclohexylamine, N, N-diisopropylethylamine and N, N-diethylaniline; anilines; pyridine, quinoline and the like. 1,8-diazabicyclo [5.4.0] undec-7-ene, 1,5-diazabicyclo [4.3.0] non-5-ene, 6-dibutylamino-1, Examples include 8-diazabicyclo [5.4.0] undec-7-ene, triethylenediamine, N, N-dimethylaminopyridine, pyridine, α-picoline, β-picoline, γ-picoline, lutidines, collidines and the like. be able to.
[0035]
Examples of the inorganic base include hydroxides such as sodium hydroxide, potassium hydroxide, magnesium hydroxide, and calcium hydroxide; carbonates such as sodium carbonate, potassium carbonate, magnesium carbonate, and calcium carbonate; sodium hydrogen carbonate, potassium hydrogen carbonate, and the like. Bicarbonate; and the like. In addition, these bases can be used as a mixture.
[0036]
Further, onium salts such as quaternary ammonium salts and quaternary phosphonium salts, crown compounds, organic bases and the like can also be used as catalysts. Specifically, as quaternary ammonium salts, tetramethylammonium hydroxide, tetraethylammonium hydroxide, tetrabutylammonium hydroxide, trimethylbenzylammonium hydroxide, tetramethylammonium bromide, tetraethylammonium bromide, tetrabutylammonium bromide, Triethylbenzylammonium bromide, trimethylphenylammonium bromide, tetramethylammonium chloride, tetraethylammonium chloride, tetrabutylammonium chloride, triethylbenzylammonium chloride, trimethylphenylammonium chloride, trioctylmethylammonium chloride, tributylbenzylammonium chloride, trimethylbenzyl chloride Ammonium, N-laurylpyridinium chloride, N-benzylpicolinium chloride, chloride Rica prills methylammonium iodide tetramethylammonium iodide tetrabutyl ammonium, tetrabutyl ammonium sulfate, and the like can be used.
[0037]
As quaternary phosphonium salts, tetraethylphosphonium chloride, tetraethylphosphonium bromide, tetraethylphosphonium iodide, tetrabutylphosphonium bromide, tetraphenylphosphonium bromide, triphenylbenzylphosphonium bromide and the like can be used. As the crown compound, crown ethers such as 15-crown-5,18-crown-6, cryptands and the like can be used.
The reaction proceeds smoothly from -20 ° C to the boiling point of the solvent used.
[0038]
Embedded image
Figure 2004269435
[0039]
The third step is a step of producing a compound represented by the formula [1] by dealkylating and hydrolyzing the compound represented by the formula [7].
This reaction is preferably performed in the presence of an acid. Examples of the acid used include organic acids such as acetic acid, trifluoroacetic acid, methanesulfonic acid, and toluenesulfonic acid; and inorganic acids such as hydrochloric acid, sulfuric acid, and hydrobromic acid. Among them, use of an inorganic acid such as hydrochloric acid and sulfuric acid is preferred.
[0040]
This reaction is performed in a suitable solvent. The solvent to be used is not particularly limited as long as it is inert to the reaction, but the use of water is preferred because the desired product can be obtained efficiently and the operation of isolating the desired product is easy. .
[0041]
The reaction can be carried out at a temperature suitable for the reaction system at any time, but the reaction is carried out from room temperature to the boiling point of the solvent, preferably the boiling point of the solvent or about 100 ° C. Further, the reaction can be performed while increasing the temperature stepwise from room temperature. Reaction times are usually in the range from 1 hour to 24 hours.
[0042]
After completion of the reaction, the desired product can be obtained by performing isolation and purification in accordance with ordinary organic synthetic techniques. The structure of the target substance can be determined by measuring various spectra such as NMR, IR, and MASS.
[0043]
The compound represented by the formula [4] and the compound represented by the formula [7] are novel compounds. Specific examples of these compounds are shown in Tables 1 and 2, but are not limited thereto.
[0044]
[Table 1]
Figure 2004269435
[0045]
[Table 2]
Figure 2004269435
[0046]
[Table 3]
Figure 2004269435
[0047]
【Example】
Next, the present invention will be described in detail with reference to examples, but the present invention is not limited to the following examples.
Example 1 Production of 2,5-bis (t-butylaminomethyl) -1,4-dithiane (hereinafter abbreviated as TBMD)
Embedded image
Figure 2004269435
[0049]
141.4 g of t-butylamine was added to a mixture of 91.4 g (purity 54.3 g) of crude 2,5-bis (chloromethyl) -1,4-dithiane (hereinafter abbreviated as DCMD), 62.5 ml of methanol and 125 ml of water. Was added, and the mixture was reacted at 40 to 45 ° C. for 14 hours. After completion of the reaction, methanol and excess t-butylamine were distilled off under reduced pressure, 49.9 g of concentrated hydrochloric acid was added, and the mixture was washed with 125 ml of chloroform. The chloroform layer was extracted with dilute hydrochloric acid (concentrated hydrochloric acid 2 g + water 13 ml) and combined with the above aqueous solution. 117.1 g of a 28% aqueous NaOH solution was added to this aqueous solution, and extracted with chloroform. After washing the chloroform layer with water, chloroform was distilled off, and the pale yellow oil obtained was analyzed by high performance liquid chromatography (HPLC). As a result, it was found that the target product contained 62.4 g (yield 86%). Further, the obtained pale yellow oil was isolated by chromatography, and its NMR spectrum was measured to confirm that it was the desired product.
[0050]
1 H-NMR data (CDCl 3 , δ ppm): 1.11 (s, 18H), 2.8 (m, 4H), 2.9 (m, 2H), 3.0 (m, 4H).
13 C-NMR (CDCl 3 , δ ppm): 29.1, 31.1, 41.0, 45.4, 50.4
(Note) Only the main peaks are shown.
[0051]
Example 2 Production of TBMD 29.3 g of t-butylamine was added to a mixture of 18.3 g (purity 10.9 g) of crude DCMD and 25 ml of water, and the mixture was reacted at 60 to 65 ° C for 4.5 hours. Was. After completion of the reaction, excess t-butylamine was distilled off under reduced pressure, 22.8 g of concentrated hydrochloric acid was added, and the mixture was washed with 25 ml of chloroform. The chloroform layer was extracted with 13 ml of water and combined with the above aqueous solution. To this aqueous solution, 36.4 g of a 28% NaOH aqueous solution was added, and extracted with chloroform. After washing the chloroform layer with water, chloroform was distilled off, and the pale yellow oil obtained was analyzed by HPLC. As a result, it was found that the target product contained 13.5 g.
[0052]
Example 3 Production of TBMD 175.5 g of t-butylamine was added to a mixture of 146.2 g (86.8 g of pure content) of crude DCMD and 200 ml of water, and the mixture was reacted at 65 to 70 ° C for 7 hours. After completion of the reaction, excess t-butylamine was distilled off under reduced pressure, 65.3 g of concentrated hydrochloric acid was added, and the mixture was washed with 80 ml of chloroform. The chloroform layer was extracted with 20 ml of water and combined with the previous aqueous solution. To this aqueous solution, 166.2 g of a 28% NaOH aqueous solution was added, and extracted with chloroform. After the chloroform layer was washed with water, chloroform was distilled off, and the pale yellow oil obtained was analyzed by HPLC. As a result, it was found that the desired product was contained in an amount of 101.1 g.
[0053]
Example 4 Production of 2,5-bis (N-acetyl-Nt-butylaminomethyl) -1,4-dithiane (hereinafter abbreviated as ABMD)
Embedded image
Figure 2004269435
[0055]
TBMD (14.5 g of pure content) and 12.7 g of triethylamine obtained in Example 2 were dissolved in chloroform, and 9.8 g of acetyl chloride was added dropwise at 15 ° C. After completion of the dropwise addition, the mixture was further stirred at the same temperature for 1 hour. After completion of the reaction, water was added to the reaction solution to dissolve and separate the triethylamine salt formed. The organic layer was washed with water, 1/10 volume thereof was measured and chloroform was distilled off, to obtain 2.05 g of crude ABMD. As a result of analysis by HPLC, 1.75 g (yield: 93%) of the target compound (mainly a mixture of two isomers) was contained.
Each isomer was isolated and purified by recrystallization and silica gel chromatography, and its structure was confirmed by measuring its NMR spectrum.
[0056]
A) Main isomer
1 H-NMR data (CDCl 3 , δ ppm): 1.46 (s, 18H), 2.21 (s, 6H), 2.78-2.85 (m, 2H), 3.03-3.10 (M, 2H), 2.98 (d, 2H), 3.6-3.7 (m, 4H)
13 C-NMR data (CDCl 3 , δ ppm): 25.7, 29.4, 30.9, 41.1, 49.5, 57.3, 171.8.
[0057]
B) minor isomer
1 H-NMR data (CDCl 3 , δ ppm): 1.47 (s, 18H), 2.18 (s, 6H), 2.59-2.68 (m, 2H), 2.8 (m, 2H) ), 3.2-3.5 (m, 2H, m, 4H)
13 C-NMR data (CDCl 3 , δ ppm): 25.7, 29.2, 32.4, 46.7, 50.1, 57.3, 171.7.
[0058]
Example 5 Production of ABMD
Embedded image
Figure 2004269435
[0060]
TBMD (pure content: 222 g) was dissolved in 750 ml of monochlorobenzene, and 234 g of acetic anhydride was added thereto. This mixture was heated to 100 to 110 ° C. and reacted for 5 hours. After completion of the reaction, the reaction solution was cooled to 50 ° C., 375 ml of n-hexane was added dropwise, the whole volume was cooled to 5 ° C., and the precipitated crystals were filtered and dried to obtain 211 g. From the results of analysis by HPLC and measurement by NMR, it was confirmed to be the target compound. The isomer ratio was 91: 9 (NMR).
The mother liquor was measured by HPLC and found to contain 49.5 g of the desired product. (91% yield)
[0061]
Example 6 Production of 2,5-bis (aminomethyl) -1,4-dithiane (hereinafter abbreviated as BAMD)
Embedded image
Figure 2004269435
[0063]
37.5 g of ABMD obtained in Example 5 was added to 72.9 g of an aqueous hydrochloric acid solution (HCl content: 18.2 g) at room temperature. After the addition, while heating, the generated t-butyl chloride and t-butyl alcohol were distilled off until the internal temperature reached 100 ° C, and the reaction was carried out at 100 ° C for 6 hours. After the completion of the reaction, the reaction solution was cooled to 10 ° C., 72.9 g of a 28% aqueous NaOH solution was added, and the mixture was extracted with chloroform. Chloroform was distilled off to obtain 17.7 g of a single yellow oil (solidified later). HPLC and NMR confirmed that this oil was the desired product (yield 97%).
[0064]
Example 7 Production of BAMD Chloroform of the chloroform solution of ABMD obtained in Example 4 (containing ABMD: 15.7 g) was distilled off at normal pressure. When crystals precipitated, 23.4 g of concentrated hydrochloric acid was added. Further distillation was continued. On the way, 17.5 g of water was added and distillation was stopped when the internal temperature became 90 to 95 ° C., and the reaction was carried out at that temperature for 7 hours. After cooling the reaction solution, 35.1 g of a 28% aqueous NaOH solution was added, and the mixture was extracted with chloroform. The residue obtained by distilling off chloroform was analyzed by HPLC and found to contain 7.2 g of BAMD (96% yield).
[0065]
Example 8 Production of BAMD 1.0 g of ABMD was added to a 30% aqueous sulfuric acid solution, and the mixture was heated under reflux for 5 hours. After cooling the reaction solution, 12 g of a 28% aqueous NaOH solution was added, and the mixture was extracted with chloroform. The chloroform layer was dried over magnesium sulfate, and chloroform was distilled off to obtain 0.44 g of the desired product (yield: 91%).
[0066]
【The invention's effect】
As described above, the production method of the present invention can efficiently produce a bisaminomethyl-1,4-dithiane compound useful as a raw material for producing an optical material or the like under mild reaction conditions, and thus can be used industrially. This is an advantageous production method.

Claims (7)

式[1]
Figure 2004269435
(式中、Rは、水素原子又はC−Cアルキル基を表す。)で表される化合物の製造方法であって、
(1)式[2]
Figure 2004269435
(式中、Xはハロゲン原子を表し、Rは前記と同じ意味を表す。)で表される化合物と、式[3]
Figure 2004269435
(式中、R、R及びRは、それぞれ独立してC−Cアルキル基又は置換基を有していてもよいアリール基を表す。)で表されるアミン類とを反応させ、式[4]
Figure 2004269435
(式中、R、R、R及びRは前記と同じ意味を表す。)で表される化合物を製造する工程、
(2)前記式[4]で表される化合物と、式[5]又は式[6]
Figure 2004269435
(式中、Rは、C−Cアルキル基、C−Cアルコキシ基又は置換基を有していてもよいアリール基を表し、Yはハロゲン原子又はC−Cアルコキシ基を表す。)で表される化合物を反応させ、式[7]
Figure 2004269435
(式中、R、R、R、R及びRは前記と同じ意味を表す。)で表される化合物を製造する工程、並びに、
(3)前記式[7]で表される化合物を脱アルキル及び加水分解する工程、
を有することを特徴とする製造方法。
Equation [1]
Figure 2004269435
(Wherein, R 1 represents a hydrogen atom or a C 1 -C 6 alkyl group).
(1) Equation [2]
Figure 2004269435
(Wherein X represents a halogen atom, R 1 has the same meaning as described above), and a compound represented by the formula [3]
Figure 2004269435
(Wherein, R 2 , R 3 and R 4 each independently represent a C 1 -C 6 alkyl group or an aryl group which may have a substituent). And formula [4]
Figure 2004269435
(Wherein R 1 , R 2 , R 3 and R 4 represent the same meaning as described above),
(2) a compound represented by the formula [4] and a compound represented by the formula [5] or the formula [6]
Figure 2004269435
(Wherein, R 5 represents a C 1 -C 6 alkyl group, a C 1 -C 6 alkoxy group, or an aryl group which may have a substituent, and Y represents a halogen atom or a C 1 -C 6 alkoxy group. Is represented by the following formula:
Figure 2004269435
(Wherein, R 1 , R 2 , R 3 , R 4 and R 5 represent the same meaning as described above), and
(3) a step of dealkylating and hydrolyzing the compound represented by the formula [7],
The manufacturing method characterized by having.
式[4]
Figure 2004269435
(式中、R、R、R及びRは前記と同じ意味を表す。)で表される化合物。
Equation [4]
Figure 2004269435
(Wherein, R 1 , R 2 , R 3 and R 4 represent the same meaning as described above).
式[7]
Figure 2004269435
(式中、R、R、R、R及びRは前記と同じ意味を表す。)で表される化合物。
Equation [7]
Figure 2004269435
(Wherein, R 1 , R 2 , R 3 , R 4 and R 5 represent the same meaning as described above).
式[2]
Figure 2004269435
(式中、X及びRは前記と同じ意味を表す。)で表される化合物と、
式[3]
Figure 2004269435
(式中、R、R及びRは、前記と同じ意味を表す。)で表されるアミン類とを反応させることを特徴とする、式[4]
Figure 2004269435
(式中、R、R、R及びRは、前記と同じ意味を表す。)で表される化合物の製造方法。
Equation [2]
Figure 2004269435
(Wherein X and R 1 represent the same meaning as described above);
Equation [3]
Figure 2004269435
(Wherein R 2 , R 3 and R 4 represent the same meaning as described above), characterized by reacting with an amine represented by the formula [4]:
Figure 2004269435
(Wherein R 1 , R 2 , R 3 and R 4 represent the same meaning as described above).
前記反応を、水、アルコール類又は水とアルコール類との混合溶媒中で行うことを特徴とする請求項4記載の製造方法。The method according to claim 4, wherein the reaction is performed in water, alcohols, or a mixed solvent of water and alcohols. 式[4]
Figure 2004269435
(式中、R、R、R及びRは前記と同じ意味を表す。)で表される化合物と、式[5]又は式[6]
Figure 2004269435
(式中、R及びYは前記と同じ意味を表す。)で表される化合物を反応させることを特徴とする、式[7]
Figure 2004269435
(式中、R、R、R、R及びRは、前記と同じ意味を表す。)で表される化合物の製造方法。
Equation [4]
Figure 2004269435
(Wherein R 1 , R 2 , R 3 and R 4 represent the same meaning as described above), and a compound represented by the formula [5] or [6]
Figure 2004269435
(Wherein, R 5 and Y represent the same meaning as described above), wherein the compound represented by the formula [7] is reacted.
Figure 2004269435
(Wherein, R 1 , R 2 , R 3 , R 4 and R 5 represent the same meaning as described above).
式[7]
Figure 2004269435
(式中、R、R、R、R及びRは前記と同じ意味を表す。)で表される化合物を脱アルキル及び酸加水分解することを特徴とする、式[1]
Figure 2004269435
(式中、Rは前記と同じ意味を表す。)で表される化合物の製造方法。
Equation [7]
Figure 2004269435
Wherein R 1 , R 2 , R 3 , R 4 and R 5 have the same meanings as described above, wherein the compound represented by the formula [1] is subjected to dealkylation and acid hydrolysis.
Figure 2004269435
(Wherein, R 1 has the same meaning as described above.)
JP2003063391A 2003-03-10 2003-03-10 Process for producing bisaminomethyl-1,4-dithianes and intermediates thereof Expired - Fee Related JP4356917B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2003063391A JP4356917B2 (en) 2003-03-10 2003-03-10 Process for producing bisaminomethyl-1,4-dithianes and intermediates thereof

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2003063391A JP4356917B2 (en) 2003-03-10 2003-03-10 Process for producing bisaminomethyl-1,4-dithianes and intermediates thereof

Publications (2)

Publication Number Publication Date
JP2004269435A true JP2004269435A (en) 2004-09-30
JP4356917B2 JP4356917B2 (en) 2009-11-04

Family

ID=33124980

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2003063391A Expired - Fee Related JP4356917B2 (en) 2003-03-10 2003-03-10 Process for producing bisaminomethyl-1,4-dithianes and intermediates thereof

Country Status (1)

Country Link
JP (1) JP4356917B2 (en)

Also Published As

Publication number Publication date
JP4356917B2 (en) 2009-11-04

Similar Documents

Publication Publication Date Title
JPH05125051A (en) Synthesis of substituted (quinolin-2-yl- methoxy)phenyl acetic acid with uniform stereostructure
JP5700910B2 (en) Process for the preparation of substituted anisidines
JPH06329647A (en) Production of 2-(4-alkoxy-3-cyanophenyl)thiazole derivative and new production intermediate therefor
JP4356917B2 (en) Process for producing bisaminomethyl-1,4-dithianes and intermediates thereof
HU204247B (en) Process for optical resolving raceme compositions of alpha-naphtyl-propionic acid derivatives
JP6787331B2 (en) Method for producing acid halide solution, mixed solution, and method for producing monoester compound
JP2003335735A (en) Method for producing perfluoroisopropylanilines
KR101308227B1 (en) Method for producing nicotinic acid derivative or salt thereof
JP2009518380A (en) Preparation of 2-chloroethoxy-acetic acid-N, N-dimethylamide
US20040199002A1 (en) Process for producing(2-nitrophenyl)acetonitrile derivative and intermediate therefor
EP2980079A1 (en) Method of manufacturing pyridazinone compound
JP4187777B2 (en) Phenylglyoxylic acid esters
JP4929717B2 (en) Process for producing N, N&#39;-dialkoxy-N, N&#39;-dialkyloxamide
CA2045585C (en) .alpha., .beta.-unsaturated ketones and ketoxime derivatives
JPH0692913A (en) Production of aniline derivative
US5508446A (en) Method for producing alkyl 3-phthalidylideneacetate
MXPA02004873A (en) Method for production of benzofuranone oximes.
JP2801647B2 (en) Method for producing 6-fluorochromone-2-carboxylic acid derivative
WO2006083010A1 (en) Process for production of 4-acetylpyrimidines and crystals thereof
JP2752260B2 (en) Phenylcarbamate derivative and method for producing the same
JP4104697B2 (en) Process for producing phenylglyoxylic acid esters, process for producing methoxyiminoacetamide derivatives using the same, and intermediates thereof
JP4398636B2 (en) Process for producing N- [3- (acylamino) -4-oxo-6-phenoxy-4H-chromen-7-yl] alkylsulfonamide derivatives or salts thereof and intermediates thereof
JPS62120350A (en) Manufacture of glycol amides
JP4013772B2 (en) 2-Hydroxyimino-3-oxopropionitrile and process for producing the same
JP5731403B2 (en) Process for producing alkyl 5-methyl-5-hexenoate

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20060119

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20090728

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20090729

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20090731

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120814

Year of fee payment: 3

R150 Certificate of patent or registration of utility model

Ref document number: 4356917

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120814

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130814

Year of fee payment: 4

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees