JP2004269303A - Autoclaved lightweight concrete excellent in water repellency and carbonation resistance - Google Patents

Autoclaved lightweight concrete excellent in water repellency and carbonation resistance Download PDF

Info

Publication number
JP2004269303A
JP2004269303A JP2003060878A JP2003060878A JP2004269303A JP 2004269303 A JP2004269303 A JP 2004269303A JP 2003060878 A JP2003060878 A JP 2003060878A JP 2003060878 A JP2003060878 A JP 2003060878A JP 2004269303 A JP2004269303 A JP 2004269303A
Authority
JP
Japan
Prior art keywords
carbonation
water repellency
organopolysiloxane
resistance
viscosity
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2003060878A
Other languages
Japanese (ja)
Inventor
Fumiaki Matsushita
文明 松下
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sumitomo Metal Mining Siporex KK
Original Assignee
Sumitomo Metal Mining Siporex KK
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sumitomo Metal Mining Siporex KK filed Critical Sumitomo Metal Mining Siporex KK
Priority to JP2003060878A priority Critical patent/JP2004269303A/en
Publication of JP2004269303A publication Critical patent/JP2004269303A/en
Pending legal-status Critical Current

Links

Images

Abstract

<P>PROBLEM TO BE SOLVED: To provide ALC (autoclaved lightweight concrete) showing small variation in water repellency and carbonation resistance. <P>SOLUTION: The ALC contains an organopolysiloxane having viscosity of 10-90 mm<SP>2</SP>/s, preferably 15-30 mm<SP>2</SP>/s. The organopolysiloxane preferably has at least one alkyl group (-C<SB>n</SB>H<SB>2n+1</SB>) and at least one alkoxy group (-OC<SB>n</SB>H<SB>2n+1</SB>). <P>COPYRIGHT: (C)2004,JPO&NCIPI

Description

【0001】
【発明の属する技術分野】
本発明は、建築物の壁や屋根、床などに使用される軽量気泡コンクリートパネルに関する。
【0002】
【従来の技術】
軽量気泡コンクリートパネル(ALC)は、珪石等の珪酸質原料と、セメントや生石灰等の石灰質原料を主原料とし、これらの微粉末に水とアルミニウム粉末等の添加物を加えてスラリー状とした後、アルミニウム粉末の反応により発泡し、石灰質原料の反応により半硬化させ、所定寸法に成形した後、オートクレーブによる高温高圧水蒸気養生を行って製造される。ALCは、軽量で、耐火性、断熱性および施工性に優れているため、建築材料として広く使用されている。
【0003】
このように、ALCは、内部に気泡と細孔を含む絶乾かさ比重0.5程度の軽量なコンクリートであることが利点として使用されているが、気泡と細孔が、全体積の約8割を占め、空隙の非常に多い微細構造であるため、吸水性が高い。また、水分やガスが容易にALC内部へ侵入するために、ALCの主要構成鉱物であるトバモライトは、水分の存在下で炭酸ガスと反応し、シリカゲルと炭酸カルシウムに分解する。これを炭酸化と呼んでいる。炭酸化は、ALCの強度の低下やひび割れの発生などの劣化を引き起こす。そこで、吸水性の改善や、炭酸化を防止または遅延することが、求められている。この対策としてオルガノポリシロキサンを添加することにより、撥水性や耐炭酸化性を向上させることができ、このことは周知である。
【0004】
しかしながら、ALCの製造工程中において、オルガノポリシロキサンを原料スラリー中に十分に分散できない場合には、撥水性や耐炭酸化性のむらやばらつきが多く、性能が一定しないという問題があった。
【0005】
例えば、特開昭55−42272号公報のように、ジメチルポリシロキサンを添加したり、特公平1−58148号公報のように、アルキル基を含むオルガノポリシロキサンを添加するなどの方法が提案されている。耐炭酸化性の付与に関しては、特開2001−72476号公報や、特開2001−72459号公報のように、ジメチルポリシロキサンやオルガノポリシロキサンを添加するなどの方法が提案されている。
【0006】
これらの特許文献に従うと、平均値としては十分に撥水性や耐炭酸化性を向上させることができるものの、サンプルによって性能のばらつきが大きいという不具合があった。
【0007】
耐炭酸化性の評価方法としては、特開2000−219558号公報に記載がある。以下に、耐炭酸化性の評価方法を抜粋する。
【0008】
厚み10mm・高さ40mm・長さ80mmの大きさにサンプルを成形し、促進炭酸化試験に供する。促進炭酸化試験では、20℃、相対湿度90%、炭酸ガス濃度3体積%の一定雰囲気下で20日間放置する。その後、各サンプルの炭酸化度を算出し、炭酸化度から耐炭酸化指数を算出する。炭酸化度および耐炭酸化指数の算出式は、次の通りである。
【0009】
炭酸化度(%)={(C−Co)/(Cmax−Co)}×100
ここで、Cはサンプルの二酸化炭素結合量(質量)、Coは促進炭酸化試験未実施のサンプルの二酸化炭素結合量であり、C、Coともに600〜800℃における炭酸ガスへの分解による二酸化炭素減少量(質量)を熱分析で測定する。また、Cmaxはサンプル中のカルシウムがすべて炭酸カルシウムとなった場合の二酸化炭素結合量で、サンプル中のカルシウム含有量を分析して計算する。
【0010】
耐炭酸化指数=(基準となるサンプルの炭酸化度)/(サンプルの炭酸化度)
【0011】
【特許文献1】
特開昭55−42272号公報
【0012】
【特許文献2】
特公平1−58148号公報
【0013】
【特許文献3】
特開2001−72476号公報
【0014】
【特許文献4】
特開2001−72459号公報
【0015】
【特許文献5】
特開2000−219558号公報
【0016】
【発明が解決しようとする課題】
このような従来の事情に鑑み、本発明は、撥水性や耐炭酸化性のばらつきが小さいALCを提供することを目的とする。
【0017】
【課題を解決するための手段】
本発明の軽量気泡コンクリートは、粘度が10〜90mm/sの範囲内であるオルガノポリシロキサンを含有する。
【0018】
さらに、粘度は、15〜30mm/sの範囲内であることが望ましい。
【0019】
また、前記オルガノポリシロキサンが、アルキル基(−C2n+1)を、1つ以上有することが好ましい。さらに、アルコキシ基(−OC2n+1)を、1つ以上有することが好ましい。
【0020】
【発明の実施の形態】
前述のような従来技術の問題点を解決するため、本発明者は、原料スラリーの粘度が比較的、高いために、オルガノポリシロキサンを分散させるには、オルガノポリシロキサンに十分な分散性を確保する粘度の上限が必要であり、また、あまりにも粘度の低いオルガノポリシロキサンは、製造途中で大半が分解してしまい、撥水性が不十分となることがあると考え、研究を行った結果、本発明を完成するに至った。
【0021】
すなわち、種々の構造のオルガノポリシロキサンの物性値と性能のばらつきを評価したところ、オルガノポリシロキサンの構造には関係が無く、オルガノポリシロキサンの粘度が、ある特定の範囲内にある場合に、該オルガノポリシロキサンを添加したALCにおいて、撥水性や耐炭酸化性のばらつきが小さく、性能が良好であることが分かった。さらに、アルキル基や、アルコキシ基といった疎水性の官能基については、撥水性や耐炭酸化性の絶対値を向上させる効果があることが分かった。
【0022】
以下に、実施例および比較例を示して、本発明をより詳細に説明する。
【0023】
【実施例】
(実施例1〜1、比較例1〜4)
珪酸質原料として、珪石40質量部、石灰質原料として生石灰5質量部、セメント30質量部、石膏5質量部および繰り返し原料20質量部を混合し、これらの固体原料に、水60質量部と、少量のアルミニウム粉末と、界面活性剤と、表1に示したオルガノポリシロキサン0.2質量部とを加えて(比較例1では、比較のため、オルガノポリシロキサンを添加しなかった。)、混練することにより、スラリーを作成した。ここで、オルガノポリシロキサンの添加量を0.2質量部としたのは、これまでの研究から、この添加量で撥水性や耐炭酸化性の両者を、十分に判定できるためである。得られたスラリーが、石灰質原料の水和により硬化した後、185℃、11気圧のオートクレーブにおいて、6時間、高圧高温水蒸気養生を施した。性能評価用サンプルは、サンプル間の性能のばらつきを評価するために、サンプル数を3点として、3点の測定値の平均値と標準偏差を算出した。
【0024】
撥水性は、全面吸水率で調べた。1辺100mmの立方体に試験体を成形して、含水率2〜3%にした後、温度20±2℃の水槽に試験体を入れて、試験体の上面が水面下、約3cmになるように重錘を付け、水中に沈めてから24時間、経った時に、水槽から取り出し、質量を量った。全面吸水率は、以下の式によって算出した。
【0025】
全面吸水率(容積%)=(W2−W1)/V×100
ここで、W1=吸水前の試験体の質量(g)、W2=24時間吸水時の試験体の質量(g)、V=試験体の体積(幅×長さ×厚さ:cm)である。
【0026】
耐炭酸化性の評価方法としては、前述の特開2000−219558号公報と同様にして、炭酸化度を測定した。
【0027】
図1に、全面吸水率と、促進炭酸化における炭酸化度との関係をグラフで示す。図1から、耐炭酸化性は、撥水性と非常に強い相関があることが分かる。
【0028】
また、オルガノポリシロキサンを添加しなかった比較例1では、全面吸水率が26%、炭酸化度は22%であった。従って、耐炭酸化指数1.5となるのは、炭酸化度約15%、耐炭酸化指数2.0となるのは、炭酸化度約11%であった。図1から、炭酸化度15%に相当する全面吸水率は17容積%であり、炭酸化度11%に相当する全面吸水率は12容積%である。
【0029】
一方、撥水性を、ALC表面に水滴を滴下した時のはじき方で評価すると、水が広がらなくなるのは、全面吸水率17容積%以下、さらに、半球状となるのは、全面吸水率12%以下である。
【0030】
従って、全面吸水率17容積%以下であれば、撥水性と耐炭酸化性は、合格の範囲であり、さらに、全面吸水率12容積%以下であれば、撥水性と耐炭酸化性が共に優れることがわかる。
【0031】
以上のことから、撥水性の評価の判定については、全面吸水率の平均値において、12容積%以下を「◎」、12容積%を超えて17容積%以下を「○」、17容積%を超えると「×」とした。また、ばらつきの評価の判定については、全面吸水率の標準偏差σにおいて、0%以上で0.22%以下を「◎」、0.22%を超えて0.33%以下を「○」、0.33%を超えると「×」とした。
【0032】
総合評価の判定については、撥水性の評価が「×」のものは、撥水性自体が不十分として、ばらつきの評価にかかわらず、「E」の不合格とした。撥水性の評価が「○」のものは、撥水性および耐炭酸化性は合格であるが、優れているところまで達していないため、合格では最も評価の低い「D」とした。撥水性の評価が「◎」のものについては、ばらつきの評価が「×」のものを「C」、ばらつきの評価が「○」のものを「B」、ばらつきの評価が「◎」のものを「A」と評価した。
【0033】
【表1】

Figure 2004269303
【0034】
側鎖が全てメチル基であるポリジメチルシロキサンを使用し、粘度が10mm/s未満の比較例2、および90mm/sを超える比較例3では、撥水性能が不十分であり、側鎖が全てメチル基であるポリジメチルシロキサンを使用し、粘度が10〜90mm/sの範囲内の実施例2、3、10、11では、撥水性能が良好であった。ただし、粘度が10〜90mm/sの範囲内であっても、分散性が特に良好であった実施例10、11では、粘度が15〜30mm/sの範囲内にあった。粘度が30〜90mm/sの範囲内にある実施例2では、分散性が若干劣ると考えられる。粘度が12mm/sと低い実施例3で、ばらつきが大きかった原因としては、分散性ではなく、オートクレーブ高温高圧水蒸気養生によるポリジメチルシロキサンの分解が原因と考えられる。
【0035】
アルキル変成オルガノポリシロキサンを使用した場合には、ポリジメチルシロキサンと同様に分散性が特に良好な粘度の範囲は、実施例12、13のような15〜30mm/sであり、アルキル変成オルガノポリシロキサンを使用し、粘度が30mm/sを超える実施例1、8では、性能は中程度であった。
【0036】
アルキルアルコキシ変成オルガノポリシロキサンを使用した実施例4〜7、9、14、比較例4のうち、粘度が90mm/sを超えた比較例4では、撥水性が不十分であった。粘度が15〜30mm/sの範囲内の中央である実施例14のみが、分散性も特に良好であり、粘度が40mm/sである実施例9では、分散性が中程度であり、粘度が40mm/sを超える実施例4〜6では、分散性が不足していた。
【0037】
これらの結果から、ポリジメチルシロキサン、アルキル変成オルガノポリシロキサン、アルキルアルコキシ変成オルガノポリシロキサンといった種類に関わらず、撥水性および耐炭酸化性が良好な粘度の範囲は、10〜90mm/sであり、特に、15〜30mm/sの範囲内では、性能が特に良好であった。
【0038】
【発明の効果】
以上、詳細に説明したように、本発明によれば、ALCの劣化要因である吸水や炭酸化現象に関して有効な撥水性に優れるALCを得ることができる。従って、ALC建築物の耐用年数の延長、補修および改修の費用の低減を可能にし、ひいては産業廃棄物の低減という社会的な要請にも応えることができる。
【図面の簡単な説明】
【図1】全面吸水率と、促進炭酸化における炭酸化度との関係を示すグラフである。[0001]
TECHNICAL FIELD OF THE INVENTION
The present invention relates to lightweight cellular concrete panels used for walls, roofs, floors and the like of buildings.
[0002]
[Prior art]
Light-weight aerated concrete panels (ALC) are mainly made of siliceous raw materials such as silica stone and calcareous raw materials such as cement and quicklime, and after adding additives such as water and aluminum powder to these fine powders to form a slurry. It is manufactured by foaming by the reaction of aluminum powder, semi-hardening by the reaction of calcareous raw material, and molding to a predetermined size, followed by high-temperature and high-pressure steam curing by an autoclave. ALC is widely used as a building material because it is lightweight and has excellent fire resistance, heat insulation properties, and workability.
[0003]
As described above, ALC is used as an advantage in that it is lightweight concrete having an absolutely dry specific gravity of about 0.5, which contains air bubbles and pores therein. , And has a high water absorption because of a microstructure having a large number of voids. Further, since water and gas easily enter the interior of the ALC, tobermorite, which is a main constituent mineral of the ALC, reacts with carbon dioxide in the presence of moisture and is decomposed into silica gel and calcium carbonate. This is called carbonation. Carbonation causes deterioration such as reduction in ALC strength and generation of cracks. Therefore, it is required to improve water absorption and prevent or delay carbonation. By adding an organopolysiloxane as a countermeasure, water repellency and carbonation resistance can be improved, and this is well known.
[0004]
However, when the organopolysiloxane cannot be sufficiently dispersed in the raw material slurry during the ALC manufacturing process, there are many irregularities and variations in water repellency and carbonation resistance, and there is a problem that performance is not constant.
[0005]
For example, a method has been proposed in which dimethylpolysiloxane is added as in JP-A-55-42272 or an organopolysiloxane containing an alkyl group is added as in JP-B-1-58148. I have. With respect to imparting carbonation resistance, methods such as addition of dimethylpolysiloxane and organopolysiloxane have been proposed as disclosed in JP-A-2001-72476 and JP-A-2001-72459.
[0006]
According to these patent documents, although the average value can sufficiently improve the water repellency and the resistance to carbonation, there is a problem that the performance varies greatly depending on the sample.
[0007]
A method for evaluating carbonation resistance is described in JP-A-2000-219558. The following is an excerpt from the evaluation method for carbonation resistance.
[0008]
A sample is formed into a size having a thickness of 10 mm, a height of 40 mm and a length of 80 mm, and is subjected to an accelerated carbonation test. In the accelerated carbonation test, the mixture is left for 20 days under a constant atmosphere of 20 ° C., a relative humidity of 90%, and a carbon dioxide gas concentration of 3% by volume. Thereafter, the degree of carbonation of each sample is calculated, and a carbonation resistance index is calculated from the degree of carbonation. The formulas for calculating the degree of carbonation and the index of resistance to carbonation are as follows.
[0009]
Carbonation degree (%) = {(C-Co) / (Cmax-Co)} × 100
Here, C is the amount of carbon dioxide bound (mass) in the sample, Co is the amount of carbon dioxide bound in the sample not subjected to the accelerated carbonation test, and both C and Co are carbon dioxide by decomposition into carbon dioxide at 600 to 800 ° C. The amount of reduction (mass) is measured by thermal analysis. Cmax is the amount of carbon dioxide bound when all of the calcium in the sample becomes calcium carbonate, and is calculated by analyzing the calcium content in the sample.
[0010]
Carbonation resistance index = (carbonation degree of reference sample) / (carbonation degree of sample)
[0011]
[Patent Document 1]
JP-A-55-42272
[Patent Document 2]
Japanese Patent Publication No. 1-58148
[Patent Document 3]
JP 2001-72476 A
[Patent Document 4]
JP 2001-72459 A
[Patent Document 5]
JP 2000-219558 A
[Problems to be solved by the invention]
In view of such a conventional situation, an object of the present invention is to provide an ALC having a small variation in water repellency and carbonation resistance.
[0017]
[Means for Solving the Problems]
The lightweight cellular concrete of the present invention contains an organopolysiloxane having a viscosity in the range of 10 to 90 mm 2 / s.
[0018]
Further, the viscosity is desirably in the range of 15 to 30 mm 2 / s.
[0019]
Further, the organopolysiloxane, an alkyl group (-C n H 2n + 1) , it preferably has 1 or more. Furthermore, an alkoxy group (-OC n H 2n + 1) , it preferably has 1 or more.
[0020]
BEST MODE FOR CARRYING OUT THE INVENTION
In order to solve the problems of the prior art as described above, the present inventor has ensured sufficient dispersibility of organopolysiloxane to disperse organopolysiloxane because the viscosity of the raw material slurry is relatively high. It is necessary to have an upper limit of the viscosity, and too low viscosity organopolysiloxane is considered to be mostly decomposed during the production, and the water repellency may be insufficient, and as a result of research, The present invention has been completed.
[0021]
That is, when the physical property values and performance variations of the organopolysiloxanes of various structures were evaluated, there was no relation to the structure of the organopolysiloxane, and when the viscosity of the organopolysiloxane was within a certain specific range, In the ALC to which the organopolysiloxane was added, it was found that the dispersion of the water repellency and the resistance to carbonation was small and the performance was good. Furthermore, it was found that hydrophobic functional groups such as alkyl groups and alkoxy groups have the effect of improving the absolute values of water repellency and carbonation resistance.
[0022]
Hereinafter, the present invention will be described in more detail with reference to Examples and Comparative Examples.
[0023]
【Example】
(Examples 1 to 1, Comparative Examples 1 to 4)
As a siliceous raw material, 40 parts by mass of silica stone, 5 parts by mass of quick lime, 30 parts by mass of cement, 5 parts by mass of gypsum and 20 parts by mass of a repeating material as a calcareous raw material are mixed. Of aluminum powder, a surfactant, and 0.2 parts by mass of the organopolysiloxane shown in Table 1 (in Comparative Example 1, the organopolysiloxane was not added for comparison) and kneaded. Thus, a slurry was prepared. Here, the addition amount of the organopolysiloxane is set to 0.2 parts by mass because both the water repellency and the resistance to carbonation can be sufficiently determined from the above-mentioned studies. After the obtained slurry was hardened by hydration of the calcareous raw material, it was subjected to high-pressure and high-temperature steam curing for 6 hours in an autoclave at 185 ° C. and 11 atm. For the performance evaluation samples, the average value and the standard deviation of the measured values of the three points were calculated with the number of the samples being three in order to evaluate the dispersion of the performance between the samples.
[0024]
The water repellency was checked by the total water absorption. After forming a test piece into a cube having a side of 100 mm and a water content of 2 to 3%, put the test piece in a water tank at a temperature of 20 ± 2 ° C. so that the upper surface of the test piece is about 3 cm below the water surface. After being immersed in water for 24 hours, it was taken out of the water tank and weighed. The total water absorption was calculated by the following equation.
[0025]
Total water absorption (volume%) = (W2−W1) / V × 100
Here, W1 = mass (g) of the specimen before water absorption, W2 = mass (g) of the specimen after absorbing water for 24 hours, and V = volume (width × length × thickness: cm 3 ) of the specimen. is there.
[0026]
As a method for evaluating carbonation resistance, the degree of carbonation was measured in the same manner as in JP-A-2000-219558 described above.
[0027]
FIG. 1 is a graph showing the relationship between the overall water absorption and the degree of carbonation in accelerated carbonation. FIG. 1 shows that the carbonation resistance has a very strong correlation with the water repellency.
[0028]
In Comparative Example 1 in which no organopolysiloxane was added, the overall water absorption was 26% and the degree of carbonation was 22%. Therefore, the carbonation resistance index of 1.5 was about 15%, and the carbonation resistance index of 2.0 was about 11%. From FIG. 1, the total water absorption corresponding to a carbonation degree of 15% is 17% by volume, and the total water absorption corresponding to a carbonation degree of 11% is 12% by volume.
[0029]
On the other hand, when the water repellency is evaluated by the repelling method when a water drop is dropped on the ALC surface, the water does not spread when the entire surface has a water absorption of 17% by volume or less. It is as follows.
[0030]
Therefore, if the total water absorption is 17% by volume or less, the water repellency and the resistance to carbonation are within the acceptable range. If the total water absorption is 12% by volume or less, both the water repellency and the resistance to carbonation are satisfactory. It turns out that it is excellent.
[0031]
From the above, regarding the determination of the water repellency evaluation, in the average value of the entire surface water absorption, “」 ”indicates that 12% by volume or less,“ 」” indicates 17% by volume or more exceeding 12% by volume, and 17% by volume When exceeding, it was set as "x". Regarding the judgment of the evaluation of the variation, in the standard deviation σ of the total water absorption, “◎” indicates a value of 0% or more and 0.22% or less, and “○” indicates a value exceeding 0.22% and 0.33% or less. When it exceeded 0.33%, it was evaluated as "x".
[0032]
Regarding the evaluation of the overall evaluation, those having a water repellency evaluation of "x" were judged to be unsatisfactory in water repellency themselves and were rejected as "E" regardless of the evaluation of variation. When the evaluation of water repellency was "O", the water repellency and the resistance to carbonation were acceptable, but did not reach an excellent level. Regarding those having an evaluation of water repellency of "◎", those having an evaluation of variation of "X" were "C", those having an evaluation of variation of "B" were those of "B", and those having an evaluation of variation of "◎". Was evaluated as "A".
[0033]
[Table 1]
Figure 2004269303
[0034]
Side chain are all using the polydimethylsiloxane is methyl, in Comparative Example 3 viscosity exceeds 10 mm 2 / Comparative Example 2 less than s, and 90 mm 2 / s, is insufficient water repellency, the side chain there using polydimethylsiloxane are all methyl groups, in examples 2,3,10,11 ranging viscosity of 10~90mm 2 / s, water repellency was good. However, even within the range viscosity of 10~90mm 2 / s, in Examples 10 and 11 dispersibility was particularly good, the viscosity was in the range of 15 to 30 mm 2 / s. In Example 2 in which the viscosity is in the range of 30 to 90 mm 2 / s, it is considered that the dispersibility is slightly inferior. In Example 3 in which the viscosity was as low as 12 mm 2 / s, it is considered that the cause of the large variation was not the dispersibility but the decomposition of polydimethylsiloxane due to autoclave high-temperature and high-pressure steam curing.
[0035]
When the alkyl-modified organopolysiloxane is used, the range of the viscosity in which the dispersibility is particularly good is 15 to 30 mm 2 / s as in Examples 12 and 13, like the polydimethylsiloxane. In Examples 1 and 8 using siloxane and having a viscosity exceeding 30 mm 2 / s, the performance was moderate.
[0036]
Among Examples 4 to 7, 9, 14, and Comparative Example 4 using the alkylalkoxy-modified organopolysiloxane, Comparative Example 4, in which the viscosity exceeded 90 mm 2 / s, had insufficient water repellency. Only Example 14 viscosity of the center of the range of 15 to 30 mm 2 / s is, dispersibility is particularly good in Examples 9 viscosity of 40 mm 2 / s, a moderate dispersibility, In Examples 4 to 6 in which the viscosity exceeded 40 mm 2 / s, the dispersibility was insufficient.
[0037]
From these results, regardless of the type of polydimethylsiloxane, alkyl-modified organopolysiloxane, and alkylalkoxy-modified organopolysiloxane, the range of viscosity with good water repellency and carbonation resistance is 10 to 90 mm 2 / s. In particular, the performance was particularly good in the range of 15 to 30 mm 2 / s.
[0038]
【The invention's effect】
As described above in detail, according to the present invention, it is possible to obtain an ALC having excellent water repellency, which is effective with respect to water absorption and carbonation, which are the causes of ALC deterioration. Therefore, it is possible to extend the service life of the ALC building, reduce the cost of repair and renovation, and meet social demands for reduction of industrial waste.
[Brief description of the drawings]
FIG. 1 is a graph showing the relationship between the overall water absorption and the degree of carbonation in accelerated carbonation.

Claims (4)

粘度が10〜90mm/sの範囲内であるオルガノポリシロキサンを含有することを特徴とする軽量気泡コンクリート。Lightweight cellular concrete viscosity, characterized in that it contains the organopolysiloxane is in the range of 10~90mm 2 / s. 粘度が15〜30mm/sの範囲内であるオルガノポリシロキサンを含有することを特徴とする軽量気泡コンクリート。Lightweight cellular concrete viscosity, characterized in that it contains the organopolysiloxane is in the range of 15 to 30 mm 2 / s. 前記オルガノポリシロキサンが、アルキル基(−C2n+1)を、1つ以上有する請求項1または2に記載の軽量気泡コンクリート。3. The lightweight cellular concrete according to claim 1, wherein the organopolysiloxane has one or more alkyl groups (—C n H 2n + 1 ). 4. 前記オルガノポリシロキサンが、アルコキシ基(−OC2n+1)を、1つ以上有する請求項3に記載の軽量気泡コンクリート。The organopolysiloxane, lightweight cellular concrete according to claim 3 having an alkoxy group (-OC n H 2n + 1) , 1 or more.
JP2003060878A 2003-03-07 2003-03-07 Autoclaved lightweight concrete excellent in water repellency and carbonation resistance Pending JP2004269303A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2003060878A JP2004269303A (en) 2003-03-07 2003-03-07 Autoclaved lightweight concrete excellent in water repellency and carbonation resistance

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2003060878A JP2004269303A (en) 2003-03-07 2003-03-07 Autoclaved lightweight concrete excellent in water repellency and carbonation resistance

Publications (1)

Publication Number Publication Date
JP2004269303A true JP2004269303A (en) 2004-09-30

Family

ID=33123246

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2003060878A Pending JP2004269303A (en) 2003-03-07 2003-03-07 Autoclaved lightweight concrete excellent in water repellency and carbonation resistance

Country Status (1)

Country Link
JP (1) JP2004269303A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2013107404A (en) * 2007-02-12 2013-06-06 Usg Corp Method for preparing water resistance cementitious article

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2013107404A (en) * 2007-02-12 2013-06-06 Usg Corp Method for preparing water resistance cementitious article

Similar Documents

Publication Publication Date Title
US6572697B2 (en) Fiber cement building materials with low density additives
Raheem et al. Effect of curing methods on density and compressive strength of concrete
JP2009057226A (en) Method for manufacturing autoclaved lightweight concrete
Khan et al. Sorptivity and durability assessment of dolomite impregnated ternary concrete
JP2004269303A (en) Autoclaved lightweight concrete excellent in water repellency and carbonation resistance
JP2001163683A (en) Lightweight cellular concrete excellent in carbonation resistance
AU2010246457C1 (en) Fiber cement building materials with low density additives
Singh et al. Effect of density and porosity on the durability of flyash blended concrete
Baghban Water Sorption of Hardened Cement Pastes
JP2005104791A (en) Method of manufacturing lightweight cellular concrete
JP4827345B2 (en) Lightweight cellular concrete with excellent carbonation resistance and method for producing the same
JP2001172072A (en) Lightweight cellular concrete excellent in carbonization resistance
KR101376297B1 (en) ALC composition for carbonation resistance enhancement
JP2005231938A (en) Autoclaved lightweight concrete excellent in carbonation resistance
AU2014200508B2 (en) Fiber cement building materials with low density additives
JP4481556B2 (en) Lightweight cellular concrete with excellent carbonation resistance
RU2702179C2 (en) Cement-particle slab
JP2000219558A (en) Lightweight aerated concrete excellent in carbonation resistance
JP2006056725A (en) Autoclaved light-weight concrete superior in crack resistance
JP2001072476A (en) Light-weight cellular concrete having excellent resistance to carbonation
JP2000219579A (en) Lightweight aerated concrete excellent in carbonation resistance
Mitikie et al. Effect of enzyme stabilization on hardening of clay-rock brick
CN116986866A (en) Concrete suitable for chlorine salt dry and wet environment and preparation method thereof
WO2000035827A1 (en) Light-weight cellular concrete with excellent carbonatization resistance
JP2000178056A (en) Aerated lightweight concrete excellent in carbonization resistance

Legal Events

Date Code Title Description
A621 Written request for application examination

Effective date: 20050610

Free format text: JAPANESE INTERMEDIATE CODE: A621

A131 Notification of reasons for refusal

Effective date: 20080408

Free format text: JAPANESE INTERMEDIATE CODE: A131

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20080729