JP2004260742A - Communication signal repeating method, its repeating apparatus and home facility equipment system - Google Patents

Communication signal repeating method, its repeating apparatus and home facility equipment system Download PDF

Info

Publication number
JP2004260742A
JP2004260742A JP2003051681A JP2003051681A JP2004260742A JP 2004260742 A JP2004260742 A JP 2004260742A JP 2003051681 A JP2003051681 A JP 2003051681A JP 2003051681 A JP2003051681 A JP 2003051681A JP 2004260742 A JP2004260742 A JP 2004260742A
Authority
JP
Japan
Prior art keywords
power supply
signal
communication
superimposed
supply line
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
JP2003051681A
Other languages
Japanese (ja)
Inventor
Hironobu Yasufuku
洋伸 安福
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Noritz Corp
Original Assignee
Noritz Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Noritz Corp filed Critical Noritz Corp
Priority to JP2003051681A priority Critical patent/JP2004260742A/en
Publication of JP2004260742A publication Critical patent/JP2004260742A/en
Withdrawn legal-status Critical Current

Links

Images

Landscapes

  • Dc Digital Transmission (AREA)
  • Cable Transmission Systems, Equalization Of Radio And Reduction Of Echo (AREA)
  • Heat-Pump Type And Storage Water Heaters (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a method and an apparatus by which a power line can easily and inexpensively be extended in a power supply superimposed communication system. <P>SOLUTION: A signal cutoff means 3 having an induced element is interposed on a route of a power line L to cut off a power supply for a signal superimposed on the power line L. On the upstream side of the signal cutoff means 3 in the communication direction, the power supply superimposed signal is then extracted from the power line L via a capacitor 43 (or 44), and the extracted signal is converted into a digital signal by a communication device 41 (or 42), then converted into the power supply superimposed signal again in the other communication device 42 (or 41) and superimposed on the power line L on the downstream side of the signal cutoff means 3 in the communication direction. A driving power source for the communication devices 41, 42 and a control means 5 is generated from power supplied from the power line L. <P>COPYRIGHT: (C)2004,JPO&NCIPI

Description

【0001】
【発明の属する技術分野】
この発明は、通信信号中継方法およびその中継装置ならびに住宅設備機器システムに関し、より詳細には、いわゆる電源重畳通信方式において、電源重畳信号を伝送する電源線のラインインピーダンスの影響を受けずに電源線を延長可能にする技術に関する。
【0002】
【従来の技術】
【特許文献1】特開2001−4215号公報
従来、給湯装置においては、リモコンやソーラー温水器接続ユニット、即出湯ユニット等の各種付属装置との間で送受信する制御信号やデータ信号などの各種信号を、給湯装置からこれらの付属装置に電力を供給するために設けた電源供給線(電源線)に重畳して伝送する方式が広く採用されている(電源重畳通信方式)。
【0003】
このような電源重畳通信方式では、電源供給元となる給湯装置と電源供給を受ける付属装置との距離が離れると、両者の間に配設される上記電源線の敷設距離が長くなり、その結果、電源線のラインインピーダンスによって電源重畳信号の信号波形の振幅が減衰して、給湯装置と付属装置との間で制御信号等を正しく伝送することができなくなる場合がある。
【0004】
そのため、従来の給湯装置においては、電源線の敷設距離が長くなる場合には、上記特許文献1に示すような中継装置を用いることが提案されている。
【0005】
この中継装置は、図4に示すように、図中の破線の部分で給湯装置a側と付属機器b側とを電気的に絶縁し、これらの間をフォトダイオードとフォトカプラとからなる送受信装置(インターフェース)cで通信するように構成して、ラインインピーダンスによる信号波形の振幅減衰を防止している。
【0006】
ところで、このような構成の中継装置においては、給湯装置aから供給される電源(図示例では15V(1))は、図示のように、給湯装置a側における通信回路(電源線から分離された電源重畳信号をデジタル信号に変換して送受信装置cに送出するとともに、送受信装置cから入力されたデジタル信号を電源重畳信号に変換する回路)dの駆動電源Vcc(1)の生成に用いられ、付属装置bに供給する電源(図示例では15V(2))や付属装置b側の通信回路eなどの駆動電源Vcc(2)は、中継装置に備えられた安定化電源装置(たとえばスイッチング電源装置)fを用いて商用電源から生成するようにされている。
【0007】
【発明が解決しようとする課題】
しかしながら、このような中継方式では以下のような問題がありその改善が望まれていた。
【0008】
すなわち、上述した従来の中継装置では、付属装置に供給される電源は中継装置に備えられた安定化電源装置で生成されるので、かかる中継装置を用いて信号線(電源線)を延長しようとすると、当該安定化電源装置に電力を供給する電源(図4のAC100V(2)に示すような商用電源)が別途必要となり、かかる商用電源がなければ中継装置が使用できず、信号線の延長が行なえないという問題があった。
【0009】
また、従来の中継装置は、該装置に内蔵された安定化電源装置で生成した直流電源(図示例では15V(2))を付属装置に供給するので、電流容量の確保が容易であるという利点はあるものの、給湯装置側の電源で十分な電流容量を確保できる場合にも、安定化電源装置が必須の構成となるので、中継装置の製造コストが高くつくというデメリットもあった。
【0010】
本発明はかかる従来の問題点に鑑みてなされたものであって、その目的とするところは、電源重畳通信方式において、簡易かつ安価に電源線を延長できる方法および装置を提供することを主たる目的とする。
【0011】
【課題を解決するための手段】
上記目的を達成するため、本発明に係る通信信号中継方法は、通信信号を電源重畳信号に変換して電源線に重畳し伝送する電源重畳通信方式において、前記電源線の経路上に誘導性素子を介在させて前記電源重畳信号を遮断する一方、前記誘導性素子の通信方向上流側にて第1の容量性素子を介して前記電源重畳信号を電源線から取り出して、この取り出した信号を、前記電源線から電源供給を受ける回路を用いて一旦デジタル信号に変換した後再び電源重畳信号に変換して、この変換後の信号を第2の容量性素子を介して前記誘導性素子の通信方向下流側の電源線に重畳して伝送することを特徴とする。
【0012】
また、本発明の通信信号中継装置は、電源重畳通信方式によって通信線と兼用された電源線の中継装置であって、前記電源線の経路上に介在して電源重畳信号を遮断する信号遮断手段と、前記信号遮断手段を迂回する信号伝送経路を形成させる一対の通信手段と、前記一対の通信手段の間に介在して信号の送受信を制御する制御手段と、前記電源線に供給される電源から前記通信手段および制御手段の駆動電源を生成する内部電源手段とを備えてなり、前記通信手段は、電源線から分離された電源重畳信号をデジタル信号に変換して前記制御手段に出力する一方、前記制御手段から入力されたデジタル信号を電源重畳信号に変換して電源線に重畳することを特徴とする。
【0013】
そして、その好適な実施態様として、前記信号遮断手段は、誘導性素子を備えたフィルタ回路で構成され、このフィルタ回路により前記電源線に重畳された電源重畳信号の伝送を遮断することを特徴とする。
【0014】
また、本発明の住宅設備機器システムは、住宅設備機器と、この住宅設備機器から電源重畳通信方式により電源供給を受けるとともに、前記電源重畳信号として制御信号等のやりとりを行なう付属装置とからなる住宅設備機器システムにおいて、前記住宅設備機器と付属装置との間の電源線に上記通信信号中継装置が介装されてなることを特徴とする。
【0015】
【発明の実施の形態】
以下、本発明の一実施形態を図面に基づいて詳細に説明する。
【0016】
図1は本発明に係る通信信号中継装置(以下、中継装置)1の概略構成を示すブロック図であり、図2は上記中継装置1の回路構成の一例を示している。
【0017】
この中継装置1は、直流電力を供給するための電源線に通信信号を重畳させて伝送する電源重畳通信方式を採用した通信システムにおいて、信号伝送用の電源線を延長するために用いられる信号中継用のユニットを構成するものであって、当該ユニットのケーシング2内に、信号遮断手段3と、通信手段4と、制御手段5と、内部電源手段6とを主要部として備えて構成される。
【0018】
そして、図1は、給湯装置(住宅設備機器)100と、そのリモコン(付属装置)101との間で電源重畳通信方式を用いて制御信号やデータ信号などの通信信号の送受信を行なうように構成した給湯器システム(住宅設備機器システム)において、これらの間に配設される信号伝送用の電源線Lの延長に本発明の中継装置1を用いた場合を示している。
【0019】
ここで、この図1に示す給湯器システムでは、上記リモコン101は、上記電源線Lを介して給湯装置100から電源供給を受けるように構成されている。つまり、図示の給湯装置100は、リモコン101に供給する電力を商用電源から生成する電源回路(図示せず)を備えており、この電源回路によって生成した電力(本実施形態では直流15V)を上記電源線Lを介してリモコン101に供給するように構成されている。
【0020】
また、電源重畳通信方式で通信信号を送受信することにともなって、上記給湯装置100およびリモコン101には、それぞれ電源重畳通信方式で上記通信信号の送受信を行うための通信装置8が備えられている。
【0021】
この通信装置8は、給湯装置100やリモコン101の制御装置(マイクロコンピュータ)9から出力されるデジタル形式の通信信号を所定の電源重畳信号に変換して、この電源重畳信号を上記電源線Lに重畳し送信する一方、上記電源線Lを介して伝送される電源重畳信号を電源から分離して制御装置9で処理可能なデジタル形式の信号に変換するものであって、デジタル信号の「0(Low)」,「1(High)」に対応させて所定の信号(本実施形態では、「0」のときにのみ250キロヘルツの正弦波信号)を出力するように構成されている。なお、この通信装置8は、電源重畳通信方式において既に公知の技術であるので、ここではその詳細な説明は省略するが、本実施形態ではこの通信装置8として集積化された通信ICが用いられている。
【0022】
信号遮断手段3は、上記電源線Lの経路上に介在し、電源線Lに重畳して伝送される電源重畳信号の伝送を遮断するものであって、誘導性素子を備えたフィルタ回路で構成される。具体的には、たとえば図2に示すように、上記誘導性素子としてのコイル31,32と、コンデンサ33とからなるLC回路で構成される。
【0023】
このフィルタ回路は、上述した電源重畳信号の周波数(本実施形態では250キロヘルツ)に対応して、当該周波数およびその周辺の周波数の信号の通過を阻止する帯域阻止フィルタで構成される。そのため、このフィルタ回路を挿入することによって、上記直流15Vの電源を供給する電源ラインは生かしたままで、通信ラインが縁切される。これにより、電源供給を阻害することなく電源重畳信号の伝送のみが遮断される。
【0024】
通信手段4は、上記信号遮断手段3を迂回する信号伝送経路を形成するとともに、上記電源重畳信号をデジタル信号に変換してこの信号伝送経路を伝送させるものであって、上記信号遮断手段3の両端に設けられる一対の通信装置41,42と、これら通信装置41,42と電源線Lとの間に介装される容量性素子43,44とを主要部として構成される。
【0025】
具体的には、図2の矢符号に示すように、上記通信装置41,42は、給湯装置100からリモコン101への信号伝送経路と、リモコン101から給湯装置100への信号伝送経路の2系統の通信経路を有してなり、これらの間に後述する制御手段5が介装される。
【0026】
上記容量性素子43,44は、電源線Lから電源重畳信号を分離し、または重畳するために設けられたコンデンサであって、本実施形態では、通信装置41,42が2系統の信号伝送経路を有することに対応して、通信装置41(42)には、信号入力用の素子(第1の容量性素子)43a(44a)と、信号出力用の素子(第2の容量性素子)43b(44b)とが設けられる。
【0027】
そのため、電源線Lを介して伝送される電源重畳信号は、信号入力用の容量性素子43a,44aを介して電源から分離されて通信装置41,42に供給されるとともに、通信装置41,42から出力される電源重畳信号が信号出力用の容量性素子43b,44bを介して電源線Lに重畳可能とされている。
【0028】
一方、上記通信装置41(または42)は、容量性素子43a(または44a)を介して電源線Lから分離された電源重畳信号をデジタル信号に変換して送受信するための通信装置である。具体的には、これら通信装置41(または42)は、上記容量性素子43a(または44a)を介して入力される信号について、上述した250キロヘルツの正弦波信号の有無を検知して、当該正弦波信号がある場合には対応するデジタル信号の「0」を後述する制御手段5に出力する一方、正弦波信号がない場合には制御手段5に対して「1」の信号を出力する。また、制御手段5からデジタル信号の「0」が入力されると信号出力用の容量性素子43b(または44b)に対して250キロヘルツの正弦波信号を出力する一方、デジタル信号の「1」が入力された場合には正弦波信号の出力を停止するように構成されている。
【0029】
つまり、これら通信装置41,42は、電源線Lから分離された電源重畳信号から上記正弦波の有無を検波する検波手段と、上記検波手段での検波結果に基づいてデジタル信号を生成するデジタル信号生成手段と、制御手段5から送信されるデジタル信号に基づいて上記正弦波信号を生成・出力する正弦波信号発生手段とを有して構成される。
【0030】
なお、本実施形態では、これら通信装置41,42としては、これらの各種手段を1チップに集積化してなる通信ICが用いられる。また、上記検波手段は、上記電源線Lに重畳される電源重畳信号の周波数(本実施形態では、250キロヘルツ)およびその周辺の周波数の信号のみを通過させる帯域通過フィルタ(バンド・パス・フィルタ)を備え、通信信号とは無関係な信号(雑音)を除去するように構成される。また、検波手段は、該フィルタを通過した信号のうち所定レベル以上の振幅をもった信号のみを検波するものとされる。
【0031】
制御手段5は、上記一対の通信装置41,42の間に介在して信号の送受信を制御する(具体的には閉ループ発振を防止する)ものであって、マイクロコンピュータで構成される。
【0032】
すなわち、本実施形態に示した上記通信装置41,42は、電源重畳信号からデジタル信号、デジタル信号から電源重畳信号にそれぞれ自動的に変換する機能は有しているが、通信信号に含まれている送信側と受信側とを識別するための識別データを解読する機能を備えていない。そのため、制御手段5を設けずに通信を行わせると、各通信装置41,42は自身が電源線Lに出力した電源重畳信号をも検出してデジタル信号に変換することになり、その結果、中継装置1内でいわゆる閉ループ発振が発生する。
【0033】
制御手段5は、このような閉ループ発振を防止するために、上述した識別データを解読して、他方の通信装置に伝送する必要が有る信号か否かを判断し、伝送不要な場合には他方の通信装置への伝送を行わないようにして、閉ループ発振を防止する。
【0034】
内部電源手段6は、給湯装置100側の電源線Lから電力(本実施例では直流15V)を取り出して中継装置1の各部(上述した通信装置41,42および制御手段5など)の駆動電源Vcc(たとえば直流5V)を生成するDCコンバータで構成される。つまり、本発明の中継装置1は、従来の中継装置のように商用電源などの交流電源から直接電源を得ることなく、電源重畳通信方式における電源線Lから電力を得て各部の駆動電源Vccを生成するように構成されている。したがって、中継装置1の使用にあたって、通信信号が重畳された電源線以外(たとえば商用電源)に別途電源供給用のラインを設ける必要がないので、近傍に商用電源のコンセント等がなくとも電源線Lの延長を行なうことができる。
【0035】
なお、図中符号7で示すのは電源線Lを中継装置1に接続するための接続用端子であり、図示のように一対の端子71,72で構成される。これら端子71,72は、一方(図示例では71)が給湯装置側として、また他方が(図示例では72)がリモコン側としてケーシング2に設けられ、これら両端子71,72間が上記フィルタ回路3を介して接続される。
【0036】
なお、この接続用端子7に関して、本実施形態では上記電源線Lとして二芯の電源線を用いているので、端子71への電源線Lの接続にあたっては電源の極性を考慮することが必要になるが、たとえば、端子71の内側にブリッジダイオード回路を挿入して無極性化を図ることにより、施工者が極性を意識することなく電源線Lの接続を行えるようにしておくことができ、かかる構成を採用するのが好ましい。
【0037】
また、図中符号8で示すコイルは、内部電源手段6に通信信号等の雑音が入力されないようにするためのフィルタである。
【0038】
しかして、以上のように構成されてなる中継装置1の動作について、給湯装置100からリモコン101に対して制御信号を送信した場合を例にとって説明する。また、以下においては説明の便宜上、電源線Lのうち中継装置1を挟んで給湯装置側の電源線をLa、リモコン側の電源線をLbとする。
【0039】
給湯装置100からリモコン101に制御信号が送信される場合、当該制御信号は、給湯装置100の通信装置8において所定の電源重畳信号に変換され、電源線Lを介してリモコン101に向けて送信される。つまり、本実施形態では、上記制御信号は、給湯装置100からリモコン101に直流15Vの電圧を供給する電源線Laに重畳して送信される。
【0040】
電源線Laに重畳された制御信号(電源重畳信号)は、上記直流15Vの電力とともに端子71から中継装置1に取り込まれる。この時、端子71,72間にはフィルタ回路を構成するコイル31、32が介装されているので、直流電源は端子72にそのまま供給されるが、制御信号はフィルタ回路の誘導性素子によってその伝送が阻害され、フィルタ回路3の通信方向上流側にあるコンデンサ(容量性素子)43aを介して通信装置41に入力される。
【0041】
通信装置41では、このようにして電源線Laから分離された制御信号を上述した手順、つまり250キロヘルツ正弦波信号があるときはデジタル信号の「0」を、また正弦波信号がないときはデジタル信号「1」を制御手段5に出力する。制御手段5は、受信したデジタル信号から識別データを解析して相手局である通信装置42に伝送が必要な信号か否かを識別し、伝送が必要な信号であると判断すればその信号を通信装置42に対して出力する。
【0042】
通信装置42は、このようにして制御手段5から出力されたデジタル信号を受信して、これを再び上述した手順、つまりデジタル信号が「0」のときは250キロヘルツの正弦波信号を出力し、デジタル信号が「1」のときは上記正弦波の出力を停止することにより、デジタル信号を元の電源重畳信号に変換して、フィルタ回路3の通信方向下流側にあるコンデンサ44bを介して電源線Lに重畳する。
【0043】
つまり、本実施形態では、端子71から入力された制御信号は、フィルタ回路3を迂回する信号伝送経路(通信装置41、制御手段5、通信装置42)を経由して再び電源線Lに重畳され、端子72から電源線Lbを介してリモコン101に伝送される。
【0044】
なお、リモコン101から給湯装置100に向けて送信される信号は、上述したのと反対の伝送経路(つまり、電源線Lb,通信装置42、制御手段5、通信装置41、電源線La)を通り、上記同様に一旦デジタル信号に変換された後再び電源重畳信号に変換されて給湯装置100に伝送される。
【0045】
このように本発明の中継装置1を介装すれば、中継装置1を介して延長された電源線Lは、これを通信ラインとして見た場合、上記信号遮断手段3で一旦縁切りされているので、延長によるラインインピーダンスの増加が防止される。しかも、伝送される電源重畳信号は、通信手段4によって一旦デジタル信号に変換した後再び電源重畳信号に変換するので、この過程で減衰していた電源重畳信号の振幅が減衰前の状態に再生される。その結果、電源線Lを延長した場合の電源重畳信号の振幅減衰による通信障害を解消することができる。
【0046】
しかも、本発明の中継装置1は、その駆動電源を電源線Lから供給される直流電力から得ているので、従来のような安定化電源装置(スイッチング電源装置)を必要とせずに簡易な構成で電源線Lの延長をすることができる。
【0047】
なお、上述した実施形態はあくまでも本発明の好適な実施態様を示すものであって、本発明はこれらに限定されることなくその範囲内で種々の設計変更が可能である。
【0048】
たとえば、上述した実施形態では、給湯装置(住宅設備機器)100とそのリモコン(付属装置)101とが一対一の関係にある場合を示したが、住宅設備機器100とその付属機器101の接続関係はこれに限定されず適宜変更可能である。たとえば図3(a) に示すように、特定の付属機器101aとの関係でのみ中継装置1を用い、他の付属機器101b,101cは中継装置1を用いずに接続することも可能であり、また、図3(b) に示すように、住宅設備機器100と付属機器101dとの間に複数(図示例では2台)の中継装置1を直列に介在させることも可能である。さらにまた、図3(c) に示すように、各付属装置101e,101f毎に中継装置1を介在させることも可能である。
【0049】
また、上述した実施形態では、上記信号遮断手段3をコイル31,32とコンデンサ33とからなるLC回路で構成した場合を示したが、直流電源の供給を阻害せず、かつ通信信号の伝送のみを遮断する構成であれば、上記以外の他の回路構成を採用することも可能である。
【0050】
また、上述した実施形態では、本発明の中継装置1を、給湯装置100とリモコン101の間に設けられた電源線Lの延長に用いた場合を示したが、本発明の中継装置1は給湯装置100に接続可能な他の付属装置(たとえばソーラー温水器接続ユニットや即出湯ユニット、洗濯注湯ユニットなど)との間に配される電源線の延長に用いることも可能である。また、上述した実施形態では給湯装置100の付属装置としてリモコン101のみを示したが、端子72に複数の付属装置を接続することも可能である。また、本発明は、給湯装置100以外の他の住宅設備機器とその付属装置との間の電源線の延長にも適用可能である。要は、電源重畳通信方式を採用する機器間に配された電源線の延長に適用可能である。
【0051】
【発明の効果】
以上詳述したように、本発明によれば、通信信号を電源重畳信号に変換して電源線に重畳し伝送する電源重畳通信方式において、上記電源線を延長するにあたり、上記電源線の経路上に誘導性素子を介在させて電源重畳信号の伝送を遮断し、この誘導性素子の通信方向上流側にて第1の容量性素子を介して電源重畳信号を取り出して、この取り出した信号を、上記電源線から電源供給を受ける回路を用いてデジタル信号に変換するとともに再び元の電源重畳信号に変換し、この変換後の信号を第2の容量性素子を介して上記誘導性素子の通信方向下流側の電源線に重畳して伝送するので、通信信号の伝送路を見た場合、上記電源線は上記誘導性素子の所で縁切りされているので、電源線の延長によるラインインピーダンスの増加を抑制することができる。
【0052】
また、中継装置内で、電源重畳信号を一旦デジタル信号に変換することにより、この段階で元のデジタル信号が再現されるので、電源線のラインインピーダンスによる電源重畳信号の振幅の減衰は、中継装置と住宅設備機器または付属装置との間でのみ考慮すればよく、実質的な信号伝送距離を短くすることができ、ラインインピーダンスによる信号の劣化を少なくすることができる。
【0053】
また、通信手段や制御手段の駆動電源を電源重畳伝送方式で用いられる電源線から得ているので、商用電源から電力をえるための安定化電源装置が必要なく、簡易な構成で通信信号を中継することができる。そのため、電源線が屋外に配設されることが多い住宅設備機器における電源線の延長に適した中継方法および中継装置を提供することができる。
【図面の簡単な説明】
【図1】本発明に係る中継装置の概略構成を示すブロック図であり、同中継装置を給湯装置とリモコンとの間の電源線の延長に用いた場合を示している。
【図2】同中継装置の回路構成の一例を示す回路図である。
【図3】同中継装置の使用態様の一例を示しており、図3(a) は特定の付属機器との関係でのみ中継装置を用いた場合を示しており、図3(b)は複数の中継装置を直列に介在させた場合を示しており、図3(c) は各付属装置毎に中継装置を介在させた場合を示している。
【図4】従来の中継装置の概略構成を示すブロック図である。
【符号の説明】
1 中継装置
2 ケーシング
3 信号遮断手段
31 コイル(誘導性素子)
4 通信手段
41,42 通信装置
43,44 コンデンサ(容量性素子)
5 制御手段
6 内部電源手段
7 電源線接続用端子
100 給湯装置(住宅設備機器)
101 リモコン(付属装置)
L 電源線
[0001]
TECHNICAL FIELD OF THE INVENTION
The present invention relates to a communication signal relay method, a relay device thereof, and a housing equipment system, and more particularly, to a power supply line without being affected by the line impedance of a power supply line for transmitting a power supply superimposed signal in a so-called power supply communication system. Related to a technology that can be extended.
[0002]
[Prior art]
[Patent Document 1] Japanese Patent Application Laid-Open No. 2001-4215 Conventionally, in a hot water supply device, various signals such as control signals and data signals transmitted / received to / from various attached devices such as a remote controller, a solar water heater connection unit, and an instantaneous hot water unit. Is superimposed on a power supply line (power supply line) provided for supplying electric power from the hot water supply device to these accessory devices and is transmitted (power supply superimposed communication system).
[0003]
In such a power supply superimposed communication system, if the distance between the hot water supply device serving as the power supply source and the attached device receiving the power supply is large, the laying distance of the power supply line provided between the two becomes long, and as a result, In some cases, the amplitude of the signal waveform of the power supply superimposed signal is attenuated due to the line impedance of the power supply line, and the control signal or the like cannot be correctly transmitted between the hot water supply device and the accessory device.
[0004]
Therefore, in the conventional hot water supply device, when the laying distance of the power supply line becomes long, it is proposed to use a relay device as shown in Patent Document 1 described above.
[0005]
As shown in FIG. 4, this relay device electrically insulates the hot water supply device a and the accessory device b from each other by a broken line in the drawing, and a transmission / reception device including a photodiode and a photocoupler therebetween. (Interface) It is configured to communicate by c to prevent the signal waveform from attenuating in amplitude due to line impedance.
[0006]
By the way, in the relay device having such a configuration, the power supply (15 V (1) in the illustrated example) supplied from the hot water supply device a is, as illustrated, a communication circuit (a power supply line) separated from the hot water supply device a. A circuit that converts the power supply superimposed signal into a digital signal and sends it to the transmission / reception device c, and converts the digital signal input from the transmission / reception device c into a power supply superimposition signal) d, which is used to generate a driving power supply Vcc (1); A power supply (15 V (2) in the illustrated example) supplied to the auxiliary device b and a driving power supply Vcc (2) such as a communication circuit e on the auxiliary device b side are provided by a stabilized power supply device (for example, a switching power supply device) provided in the relay device. ) F from the commercial power supply.
[0007]
[Problems to be solved by the invention]
However, such a relay system has the following problems, and its improvement has been desired.
[0008]
That is, in the above-described conventional relay device, since the power supplied to the accessory device is generated by the stabilized power supply device provided in the relay device, an attempt is made to extend a signal line (power line) using the relay device. Then, a power supply (a commercial power supply such as 100 V AC (2) in FIG. 4) for supplying power to the stabilized power supply is required separately. Without such a commercial power supply, the relay device cannot be used, and the signal line must be extended. There was a problem that could not be done.
[0009]
In addition, the conventional relay device supplies DC power (15 V (2) in the illustrated example) generated by the stabilized power supply device built in the relay device to the attached device, so that the current capacity is easily secured. However, even when a sufficient current capacity can be ensured by the power supply on the hot water supply device side, a stabilizing power supply device is indispensable, and there is a disadvantage that the manufacturing cost of the relay device is high.
[0010]
The present invention has been made in view of such a conventional problem, and has as its main object to provide a method and apparatus capable of easily and inexpensively extending a power supply line in a power supply superimposed communication system. And
[0011]
[Means for Solving the Problems]
In order to achieve the above object, a communication signal relay method according to the present invention is directed to a power supply superimposed communication system in which a communication signal is converted into a power supply superimposed signal, superimposed on a power line and transmitted, and an inductive element is provided on a path of the power line. The power-supply signal is cut off from the power supply line via the first capacitive element on the upstream side in the communication direction of the inductive element while the power-supply signal is interrupted by interposing the signal. Once converted into a digital signal using a circuit that receives power supply from the power supply line, and then converted again into a power supply superimposed signal, the converted signal is transmitted via a second capacitive element in the communication direction of the inductive element. It is characterized in that it is transmitted by being superimposed on the power line on the downstream side.
[0012]
Further, the communication signal relay device of the present invention is a power line relay device which is also used as a communication line by a power supply superimposed communication method, wherein the signal interception means intervenes on the path of the power line and cuts off the power supply superposition signal. A pair of communication means for forming a signal transmission path bypassing the signal cutoff means, a control means interposed between the pair of communication means for controlling transmission and reception of signals, and a power supply supplied to the power supply line And an internal power supply unit for generating a drive power supply for the communication unit and the control unit. The communication unit converts a power supply superimposed signal separated from a power supply line into a digital signal and outputs the digital signal to the control unit. The digital signal input from the control means is converted into a power supply superimposed signal and superimposed on a power supply line.
[0013]
As a preferred embodiment thereof, the signal cutoff means is constituted by a filter circuit having an inductive element, and the transmission of the power supply superimposed signal superimposed on the power supply line is cut off by the filter circuit. I do.
[0014]
Further, the housing equipment system of the present invention includes a housing comprising housing equipment and an auxiliary device which receives power supply from the housing equipment by a power supply superimposed communication method and exchanges control signals and the like as the power supply superimposed signal. In the equipment system, the communication signal relay device is interposed in a power supply line between the housing equipment and the attached device.
[0015]
BEST MODE FOR CARRYING OUT THE INVENTION
Hereinafter, an embodiment of the present invention will be described in detail with reference to the drawings.
[0016]
FIG. 1 is a block diagram illustrating a schematic configuration of a communication signal relay device (hereinafter, a relay device) 1 according to the present invention, and FIG. 2 illustrates an example of a circuit configuration of the relay device 1.
[0017]
This relay device 1 is used in a communication system employing a power-supply superimposed communication system in which a communication signal is superimposed and transmitted on a power line for supplying DC power, and is used for extending a signal transmission line used for extending a power line for signal transmission. And a signal cutoff unit 3, a communication unit 4, a control unit 5, and an internal power supply unit 6 as main parts in a casing 2 of the unit.
[0018]
FIG. 1 shows a configuration in which a communication signal such as a control signal and a data signal is transmitted and received between a hot water supply device (house equipment) 100 and a remote controller (attached device) 101 thereof by using a power supply overlapping communication method. In the water heater system (house equipment system) described above, a case is shown in which the relay device 1 of the present invention is used to extend the power line L for signal transmission disposed between them.
[0019]
Here, in the water heater system shown in FIG. 1, the remote controller 101 is configured to receive power supply from the water heater 100 via the power line L. That is, the illustrated hot water supply apparatus 100 includes a power supply circuit (not shown) that generates electric power to be supplied to the remote controller 101 from a commercial power supply, and the electric power generated by the power supply circuit (DC 15 V in the present embodiment) is supplied to the above-described power supply circuit. It is configured to supply power to the remote controller 101 via the power line L.
[0020]
In addition, when the communication signal is transmitted and received by the power supply overlapping communication method, the water heater 100 and the remote controller 101 are each provided with a communication device 8 for transmitting and receiving the communication signal by the power supply communication method. .
[0021]
The communication device 8 converts a digital communication signal output from the hot water supply device 100 or a control device (microcomputer) 9 of the remote controller 101 into a predetermined power supply superimposed signal. While superimposing and transmitting, the power supply superimposed signal transmitted via the power supply line L is separated from the power supply and converted into a digital signal that can be processed by the control device 9, and the digital signal "0 ( A predetermined signal (in this embodiment, a 250 kHz sine wave signal only when “0”) is output in accordance with “Low” and “1 (High)”. Since the communication device 8 is a known technology in the power supply superimposed communication system, a detailed description thereof is omitted here. However, in the present embodiment, a communication IC integrated as the communication device 8 is used. ing.
[0022]
The signal cut-off means 3 is interposed on the path of the power supply line L and cuts off transmission of a power-supply superimposed signal transmitted by being superimposed on the power supply line L, and is constituted by a filter circuit having an inductive element. Is done. Specifically, for example, as shown in FIG. 2, it is configured by an LC circuit including coils 31 and 32 as inductive elements and a capacitor 33.
[0023]
This filter circuit is configured by a band rejection filter that blocks the passage of signals of the above-mentioned power supply superimposed signal (in this embodiment, 250 kHz) and signals of frequencies around the frequency. Therefore, by inserting this filter circuit, the communication line is cut off while the power supply line for supplying the DC 15 V power is kept alive. As a result, only the transmission of the power supply superimposed signal is interrupted without obstructing the power supply.
[0024]
The communication means 4 forms a signal transmission path bypassing the signal cutoff means 3 and converts the power supply superimposed signal into a digital signal to transmit this signal transmission path. A pair of communication devices 41 and 42 provided at both ends, and capacitive elements 43 and 44 interposed between the communication devices 41 and 42 and the power supply line L are mainly configured.
[0025]
Specifically, as shown by the arrow signs in FIG. 2, the communication devices 41 and 42 include two systems, a signal transmission path from the hot water supply device 100 to the remote control 101 and a signal transmission path from the remote control 101 to the hot water supply device 100. , And a control means 5 described later is interposed between them.
[0026]
The capacitive elements 43 and 44 are capacitors provided for separating or superimposing a power supply superimposed signal from the power supply line L. In the present embodiment, the communication devices 41 and 42 include two signal transmission paths. In response to the above, the communication device 41 (42) includes a signal input element (first capacitive element) 43a (44a) and a signal output element (second capacitive element) 43b. (44b) are provided.
[0027]
Therefore, the power supply superimposed signal transmitted via the power supply line L is separated from the power supply via the signal input capacitive elements 43a, 44a and supplied to the communication devices 41, 42, and the communication devices 41, 42. Is superimposed on the power supply line L via the signal output capacitive elements 43b and 44b.
[0028]
On the other hand, the communication device 41 (or 42) is a communication device for converting a power supply superimposed signal separated from the power line L via the capacitive element 43a (or 44a) into a digital signal and transmitting and receiving the digital signal. Specifically, the communication device 41 (or 42) detects the presence or absence of the above-mentioned 250 kHz sine wave signal for the signal input via the capacitive element 43a (or 44a), and When there is a wave signal, the corresponding digital signal “0” is output to the control means 5 described later, and when there is no sine wave signal, a “1” signal is output to the control means 5. When a digital signal "0" is input from the control means 5, a 250 kHz sine wave signal is output to the signal output capacitive element 43b (or 44b), while the digital signal "1" is output. It is configured to stop the output of the sine wave signal when input.
[0029]
That is, these communication devices 41 and 42 are provided with a detecting means for detecting the presence or absence of the sine wave from the power supply superimposed signal separated from the power supply line L, and a digital signal for generating a digital signal based on a detection result of the detecting means. The sine wave signal generating means generates and outputs the sine wave signal based on the digital signal transmitted from the control means 5.
[0030]
In the present embodiment, a communication IC in which these various means are integrated on one chip is used as the communication devices 41 and 42. Further, the detection means is a band-pass filter (band-pass filter) that passes only a signal of a frequency (250 kHz in the present embodiment) of a power supply superimposed signal superimposed on the power supply line L and a signal at a frequency around the frequency. And configured to remove a signal (noise) unrelated to the communication signal. The detection means detects only a signal having an amplitude equal to or higher than a predetermined level among the signals passing through the filter.
[0031]
The control means 5 intervenes between the pair of communication devices 41 and 42 to control transmission and reception of signals (specifically, to prevent closed-loop oscillation), and is constituted by a microcomputer.
[0032]
That is, the communication devices 41 and 42 shown in the present embodiment have a function of automatically converting a power supply superimposed signal to a digital signal and a digital signal to a power supply superimposed signal, respectively. It does not have a function of decoding identification data for identifying the transmitting side and the receiving side. Therefore, when communication is performed without providing the control unit 5, each of the communication devices 41 and 42 also detects the power supply superimposed signal output to the power supply line L and converts it to a digital signal. A so-called closed loop oscillation occurs in the relay device 1.
[0033]
The control means 5 decodes the identification data described above to determine whether the signal needs to be transmitted to the other communication device to prevent such closed-loop oscillation. Is not transmitted to the communication device, thereby preventing closed-loop oscillation.
[0034]
The internal power supply means 6 extracts electric power (DC 15 V in the present embodiment) from the power supply line L on the hot water supply apparatus 100 side, and drives the drive power supply Vcc for each unit of the relay apparatus 1 (such as the communication devices 41 and 42 and the control means 5 described above). (For example, 5 V DC). In other words, the relay device 1 of the present invention obtains power from the power line L in the power-supply communication system and does not directly obtain power from an AC power source such as a commercial power source as in the conventional relay device, but changes the drive power Vcc of each unit. It is configured to generate. Therefore, when using the relay apparatus 1, there is no need to provide a separate power supply line other than the power supply line on which the communication signal is superimposed (for example, commercial power supply). Can be extended.
[0035]
Reference numeral 7 in the figure denotes a connection terminal for connecting the power supply line L to the relay device 1, and is constituted by a pair of terminals 71 and 72 as shown. One of the terminals 71 and 72 is provided on the casing 2 as a hot water supply device side (71 in the illustrated example), and the other (72 in the illustrated example) as a remote control side. The filter circuit is provided between the two terminals 71 and 72. 3 are connected.
[0036]
In the present embodiment, a two-core power supply line is used as the power supply line L for the connection terminal 7, so it is necessary to consider the polarity of the power supply when connecting the power supply line L to the terminal 71. However, for example, by inserting a bridge diode circuit inside the terminal 71 to make it non-polar, it is possible for the installer to connect the power supply line L without being aware of the polarity. Preferably, a configuration is employed.
[0037]
A coil indicated by reference numeral 8 in the drawing is a filter for preventing noise such as a communication signal from being input to the internal power supply unit 6.
[0038]
The operation of relay apparatus 1 configured as described above will be described with reference to a case where a control signal is transmitted from water heater 100 to remote controller 101 as an example. In the following, for convenience of explanation, the power supply line on the hot water supply device side with the relay device 1 interposed therebetween is denoted by La and the power supply line on the remote control side is denoted by Lb.
[0039]
When a control signal is transmitted from water heater 100 to remote controller 101, the control signal is converted into a predetermined power supply superimposed signal in communication device 8 of water heater 100, and transmitted to remote controller 101 via power line L. You. That is, in the present embodiment, the control signal is transmitted from the hot-water supply device 100 to the remote controller 101 while being superimposed on the power supply line La that supplies a voltage of 15 V DC.
[0040]
The control signal (power supply superimposed signal) superimposed on the power supply line La is taken into the relay apparatus 1 from the terminal 71 together with the above-mentioned 15 V DC power. At this time, since the coils 31 and 32 constituting the filter circuit are interposed between the terminals 71 and 72, the DC power is supplied to the terminal 72 as it is, but the control signal is supplied by the inductive element of the filter circuit. Transmission is impeded, and the signal is input to the communication device 41 via a capacitor (capacitive element) 43a located upstream of the filter circuit 3 in the communication direction.
[0041]
In the communication device 41, the control signal thus separated from the power supply line La is converted into the digital signal “0” when there is a 250 kHz sine wave signal, and the digital signal when there is no sine wave signal. The signal “1” is output to the control means 5. The control means 5 analyzes the identification data from the received digital signal to identify whether or not the signal needs to be transmitted to the communication device 42 which is the partner station. If the control means 5 determines that the signal needs to be transmitted, the control means 5 converts the signal. Output to the communication device 42.
[0042]
The communication device 42 receives the digital signal output from the control means 5 in this way, and outputs the signal again as described above, that is, outputs a 250 kHz sine wave signal when the digital signal is “0”, When the digital signal is "1", the output of the sine wave is stopped to convert the digital signal into the original power supply superimposed signal, and the power supply line is connected via the capacitor 44b on the downstream side of the filter circuit 3 in the communication direction. Superimposed on L.
[0043]
That is, in the present embodiment, the control signal input from the terminal 71 is superimposed again on the power supply line L via the signal transmission path (communication device 41, control means 5, communication device 42) bypassing the filter circuit 3. , From the terminal 72 to the remote controller 101 via the power line Lb.
[0044]
A signal transmitted from remote controller 101 to hot water supply apparatus 100 passes through a transmission path opposite to that described above (that is, power supply line Lb, communication device 42, control means 5, communication device 41, power supply line La). In the same manner as described above, the signal is once converted into a digital signal, then converted again into a power supply superimposed signal, and transmitted to water heater 100.
[0045]
When the relay device 1 of the present invention is interposed as described above, the power line L extended through the relay device 1 is once cut off by the signal cutoff means 3 when viewed as a communication line. , The increase in line impedance due to extension is prevented. In addition, since the transmitted power supply superimposed signal is once converted into a digital signal by the communication means 4 and then converted back into the power supply superimposed signal, the amplitude of the power supply superimposed signal attenuated in this process is reproduced to the state before the attenuation. You. As a result, it is possible to eliminate the communication failure due to the amplitude attenuation of the power supply superimposed signal when the power supply line L is extended.
[0046]
In addition, since the relay device 1 of the present invention obtains its driving power from the DC power supplied from the power line L, it does not require a conventional stabilized power device (switching power device) and has a simple configuration. Thus, the power line L can be extended.
[0047]
It should be noted that the above-described embodiments merely show preferred embodiments of the present invention, and the present invention is not limited to these embodiments, and various design changes can be made within the scope.
[0048]
For example, in the above-described embodiment, the case where the hot water supply device (house equipment) 100 and its remote controller (attachment device) 101 have a one-to-one relationship has been described, but the connection relationship between the house equipment device 100 and the attachment device 101 has been described. Is not limited to this and can be changed as appropriate. For example, as shown in FIG. 3A, it is possible to use the relay device 1 only in relation to a specific accessory device 101a and connect the other accessory devices 101b and 101c without using the relay device 1. Further, as shown in FIG. 3 (b), a plurality of (two in the illustrated example) relay devices 1 can be interposed between the household equipment device 100 and the accessory device 101d in series. Furthermore, as shown in FIG. 3C, it is possible to interpose the relay device 1 for each of the attached devices 101e and 101f.
[0049]
Further, in the above-described embodiment, the case where the signal cutoff means 3 is configured by the LC circuit including the coils 31 and 32 and the capacitor 33 has been described, but the supply of the DC power is not hindered and only the transmission of the communication signal is performed. It is also possible to adopt a circuit configuration other than the above as long as it is a configuration that blocks the above.
[0050]
Further, in the above-described embodiment, the case where the relay device 1 of the present invention is used for extending the power line L provided between the hot water supply device 100 and the remote controller 101 has been described. It can also be used to extend a power supply line that is connected to other accessory devices that can be connected to the device 100 (for example, a solar water heater connection unit, a hot water supply unit, a laundry pouring unit, and the like). Further, in the above-described embodiment, only the remote controller 101 is shown as an accessory device of the hot water supply device 100, but a plurality of accessory devices can be connected to the terminal 72. In addition, the present invention is also applicable to the extension of a power supply line between other household equipment other than the hot water supply device 100 and its attached device. In short, the present invention is applicable to extension of a power supply line arranged between devices adopting the power supply superimposed communication method.
[0051]
【The invention's effect】
As described in detail above, according to the present invention, in a power-supply superimposed communication system in which a communication signal is converted into a power-supply superimposed signal, superimposed on a power line, and transmitted, The transmission of the power supply superimposed signal is interrupted by interposing an inductive element, and the power superimposed signal is taken out via the first capacitive element on the upstream side in the communication direction of the inductive element, and the extracted signal is It is converted into a digital signal using a circuit that receives power supply from the power supply line, and is again converted into the original power supply superimposed signal, and the converted signal is transmitted via the second capacitive element in the communication direction of the inductive element. Since transmission is performed while being superimposed on the downstream power supply line, when the transmission path of the communication signal is viewed, the power supply line is cut off at the inductive element. Restrain Can.
[0052]
In addition, since the original digital signal is reproduced at this stage by temporarily converting the power supply superimposed signal into a digital signal in the relay device, the attenuation of the amplitude of the power supply superimposed signal due to the line impedance of the power supply line is reduced. It is only necessary to take into account the difference between the equipment and the housing equipment or the auxiliary equipment, the substantial signal transmission distance can be shortened, and the deterioration of the signal due to the line impedance can be reduced.
[0053]
In addition, since the driving power of the communication means and control means is obtained from the power supply line used in the power supply superimposed transmission method, there is no need for a stabilized power supply for obtaining power from the commercial power supply, and the communication signal is relayed with a simple configuration. can do. Therefore, it is possible to provide a relay method and a relay device that are suitable for extending the power line in the household equipment where the power line is often arranged outdoors.
[Brief description of the drawings]
FIG. 1 is a block diagram showing a schematic configuration of a relay device according to the present invention, showing a case where the relay device is used to extend a power supply line between a water heater and a remote controller.
FIG. 2 is a circuit diagram showing an example of a circuit configuration of the relay device.
3A and 3B show an example of a usage mode of the relay device. FIG. 3A shows a case where the relay device is used only in relation to a specific accessory device, and FIG. FIG. 3 (c) shows a case where a relay device is interposed for each accessory device.
FIG. 4 is a block diagram illustrating a schematic configuration of a conventional relay device.
[Explanation of symbols]
Reference Signs List 1 relay device 2 casing 3 signal cutoff means 31 coil (inductive element)
4 Communication means 41, 42 Communication device 43, 44 Capacitor (capacitive element)
5 Control means 6 Internal power supply means 7 Power line connection terminal 100 Water heater (house equipment)
101 Remote control (attached device)
L power line

Claims (4)

通信信号を電源重畳信号に変換して電源線に重畳し伝送する電源重畳通信方式において、
前記電源線の経路上に誘導性素子を介在させて前記電源重畳信号を遮断する一方、前記誘導性素子の通信方向上流側にて第1の容量性素子を介して前記電源重畳信号を電源線から取り出して、この取り出した信号を、前記電源線から電源供給を受ける回路を用いて一旦デジタル信号に変換した後再び電源重畳信号に変換して、この変換後の信号を第2の容量性素子を介して前記誘導性素子の通信方向下流側の電源線に重畳して伝送する
ことを特徴とする通信信号中継方法。
In a power supply superimposed communication system in which a communication signal is converted into a power supply superimposed signal, superimposed on a power supply line, and transmitted.
An inductive element is interposed on the path of the power supply line to block the power supply superimposition signal, and the power supply superimposition signal is transmitted through a first capacitive element upstream of the inductive element in the communication direction. And converts the extracted signal into a digital signal once using a circuit that receives power supply from the power supply line, and then converts the signal again into a power supply superimposed signal, and converts the converted signal into a second capacitive element. A communication signal relay method, wherein the signal is superimposed on a power supply line downstream of the inductive element in the communication direction and transmitted.
電源重畳通信方式によって通信線と兼用された電源線の中継装置であって、
前記電源線の経路上に介在して電源重畳信号を遮断する信号遮断手段と、
前記信号遮断手段を迂回する信号伝送経路を形成させる一対の通信手段と、
前記一対の通信手段の間に介在して信号の送受信を制御する制御手段と、
前記電源線に供給される電源から前記通信手段および制御手段の駆動電源を生成する内部電源手段とを備えてなり、
前記通信手段は、電源線から分離された電源重畳信号をデジタル信号に変換して前記制御手段に出力する一方、前記制御手段から入力されたデジタル信号を電源重畳信号に変換して電源線に重畳する
ことを特徴とする通信信号中継装置。
A power supply line relay device also used as a communication line by a power supply superimposed communication method,
Signal cutoff means for cutting off a power supply superimposed signal by interposing on a path of the power supply line,
A pair of communication means for forming a signal transmission path bypassing the signal blocking means,
Control means for controlling transmission and reception of signals interposed between the pair of communication means,
Internal power supply means for generating a drive power supply for the communication means and the control means from a power supply supplied to the power supply line,
The communication means converts a power supply superimposed signal separated from a power supply line into a digital signal and outputs the digital signal to the control means, while converting the digital signal input from the control means into a power supply superimposition signal and superimposes the power supply signal on the power supply line A communication signal relay device.
前記信号遮断手段は、誘導性素子を備えたフィルタ回路で構成され、このフィルタ回路により前記電源線に重畳された電源重畳信号の伝送を遮断することを特徴とする請求項2に記載の通信信号中継装置。3. The communication signal according to claim 2, wherein the signal blocking unit is configured by a filter circuit including an inductive element, and the filter circuit blocks transmission of a power supply superimposed signal superimposed on the power supply line. 4. Relay device. 住宅設備機器と、この住宅設備機器から電源重畳通信方式により電源供給を受けるとともに、前記電源重畳信号として制御信号等のやりとりを行なう付属装置とからなる住宅設備機器システムにおいて、
前記住宅設備機器と付属装置との間の電源線に、請求項2または3に記載の通信信号中継装置が介装されてなる
ことを特徴とする住宅設備機器システム。
In a housing equipment system including a housing equipment and an auxiliary device that receives power supply from the housing equipment by a power supply overlapping communication method and exchanges control signals and the like as the power supply overlapping signal,
A housing equipment system, wherein the communication signal relay device according to claim 2 or 3 is interposed in a power supply line between the housing equipment and the attached device.
JP2003051681A 2003-02-27 2003-02-27 Communication signal repeating method, its repeating apparatus and home facility equipment system Withdrawn JP2004260742A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2003051681A JP2004260742A (en) 2003-02-27 2003-02-27 Communication signal repeating method, its repeating apparatus and home facility equipment system

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2003051681A JP2004260742A (en) 2003-02-27 2003-02-27 Communication signal repeating method, its repeating apparatus and home facility equipment system

Publications (1)

Publication Number Publication Date
JP2004260742A true JP2004260742A (en) 2004-09-16

Family

ID=33116769

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2003051681A Withdrawn JP2004260742A (en) 2003-02-27 2003-02-27 Communication signal repeating method, its repeating apparatus and home facility equipment system

Country Status (1)

Country Link
JP (1) JP2004260742A (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2007017934A1 (en) * 2005-08-10 2007-02-15 Mitsubishi Denki Kabushiki Kaisha Power line communication system
WO2019021901A1 (en) * 2017-07-24 2019-01-31 ソニー株式会社 Transmission device, control method for transmission device, and cable
WO2023136249A1 (en) * 2022-01-11 2023-07-20 ダイキン工業株式会社 Relay device, air conditioning-related system, and communication method

Cited By (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2007017934A1 (en) * 2005-08-10 2007-02-15 Mitsubishi Denki Kabushiki Kaisha Power line communication system
JPWO2007017934A1 (en) * 2005-08-10 2009-02-19 三菱電機株式会社 Power line carrier communication system
WO2019021901A1 (en) * 2017-07-24 2019-01-31 ソニー株式会社 Transmission device, control method for transmission device, and cable
CN110945458A (en) * 2017-07-24 2020-03-31 索尼公司 Transmission device, control method for transmission device, and cable
JPWO2019021901A1 (en) * 2017-07-24 2020-06-11 ソニー株式会社 Transmitter, transmitter control method, and cable
US11216213B2 (en) 2017-07-24 2022-01-04 Sony Corporation Transmission apparatus, method of controlling transmission apparatus, and cable
JP7310604B2 (en) 2017-07-24 2023-07-19 ソニーグループ株式会社 cable
CN110945458B (en) * 2017-07-24 2023-09-12 索尼公司 Transmitting device, method for controlling transmitting device, and cable
WO2023136249A1 (en) * 2022-01-11 2023-07-20 ダイキン工業株式会社 Relay device, air conditioning-related system, and communication method
JP2023102281A (en) * 2022-01-11 2023-07-24 ダイキン工業株式会社 Relay device, air conditioning-related system, and communication method

Similar Documents

Publication Publication Date Title
KR101910260B1 (en) Wireless power transmitter tuning
US11984942B2 (en) System and method of power line communication
JP2004260742A (en) Communication signal repeating method, its repeating apparatus and home facility equipment system
JP2009284159A (en) Power line communication apparatus and method thereof
RU2714858C2 (en) Electric power meter and adapter module therefor
JP2008066828A (en) Power line carrier transmission device, power line carrier reception device, and power line carrier communication device
KR100542608B1 (en) Communication system and communication method using powerline
JP2003347976A (en) Power line communication relaying apparatus
EP2869475B1 (en) Transformer for power line communication
KR100401734B1 (en) Line interface circuit for power line communication
JP2007174412A (en) Power line carrier communication system and its master set
JPH10179452A (en) Toilet stool with seat
KR200255446Y1 (en) Line interface circuit for power line communcation
JP2005080337A (en) Noise filter, electric apparatus, and air conditioner
KR200328436Y1 (en) Apparatus for monitoring rear of vehicle using power line
KR100596999B1 (en) I/O circuit unit for DC power line communication and the method thereof
JP2003134003A (en) Power line coupling circuit and power line carrier communication adapter
JP2001008455A (en) Power supply device
AU2002224658B8 (en) Device for preventing loss of high frequency signals
KR101165807B1 (en) Power line communication apparatus for reduction of standby power
JP4370897B2 (en) Signal transmission system
JP2005184466A (en) Power line communication signal superimposing apparatus and power line communication network employing the same
JPH07103493A (en) Hot-water type central heating system
US7940920B2 (en) Telecommunication capable of silent operation and the related method therof
JP4186816B2 (en) Signal transmission device

Legal Events

Date Code Title Description
A300 Withdrawal of application because of no request for examination

Free format text: JAPANESE INTERMEDIATE CODE: A300

Effective date: 20060509