JP2004260131A - Connection method between terminals, and packaging method of semiconductor device - Google Patents

Connection method between terminals, and packaging method of semiconductor device Download PDF

Info

Publication number
JP2004260131A
JP2004260131A JP2003359611A JP2003359611A JP2004260131A JP 2004260131 A JP2004260131 A JP 2004260131A JP 2003359611 A JP2003359611 A JP 2003359611A JP 2003359611 A JP2003359611 A JP 2003359611A JP 2004260131 A JP2004260131 A JP 2004260131A
Authority
JP
Japan
Prior art keywords
resin
conductive particles
conductive
terminals
curing
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2003359611A
Other languages
Japanese (ja)
Other versions
JP3769688B2 (en
Inventor
Kozo Fujimoto
公三 藤本
Kiyokazu Yasuda
清和 安田
Shiyoumin Kin
鍾▲みん▼ 金
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Japan Science and Technology Agency
Original Assignee
Japan Science and Technology Agency
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Japan Science and Technology Agency filed Critical Japan Science and Technology Agency
Priority to JP2003359611A priority Critical patent/JP3769688B2/en
Publication of JP2004260131A publication Critical patent/JP2004260131A/en
Application granted granted Critical
Publication of JP3769688B2 publication Critical patent/JP3769688B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/10Bump connectors; Manufacturing methods related thereto
    • H01L2224/15Structure, shape, material or disposition of the bump connectors after the connecting process
    • H01L2224/16Structure, shape, material or disposition of the bump connectors after the connecting process of an individual bump connector
    • H01L2224/161Disposition
    • H01L2224/16151Disposition the bump connector connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive
    • H01L2224/16221Disposition the bump connector connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive the body and the item being stacked
    • H01L2224/16225Disposition the bump connector connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive the body and the item being stacked the item being non-metallic, e.g. insulating substrate with or without metallisation
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/80Methods for connecting semiconductor or other solid state bodies using means for bonding being attached to, or being formed on, the surface to be connected
    • H01L2224/81Methods for connecting semiconductor or other solid state bodies using means for bonding being attached to, or being formed on, the surface to be connected using a bump connector
    • H01L2224/818Bonding techniques
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/80Methods for connecting semiconductor or other solid state bodies using means for bonding being attached to, or being formed on, the surface to be connected
    • H01L2224/83Methods for connecting semiconductor or other solid state bodies using means for bonding being attached to, or being formed on, the surface to be connected using a layer connector
    • H01L2224/838Bonding techniques
    • H01L2224/83886Involving a self-assembly process, e.g. self-agglomeration of a material dispersed in a fluid

Abstract

<P>PROBLEM TO BE SOLVED: To provide a method of jointing between terminals for obtaining excellent electrical connection between the terminals of confronting electrodes or the like, and a packaging method of a semiconductor device using the method of jointing. <P>SOLUTION: An electrode pad 21 of a semiconductor chip 20 and a land 11 on a wafer 10 which is provided to correspond to the electrode pad 21, are disposed to face each other via conductive adhesives. Afterwards, the conductive adhesives are heated to a temperature which is higher than the melting point of conductive particles contained in the conductive adhesives and in which curing of resins is not completed, and conductive particles are mutually coupled. Further, resins in the conductive adhesives are completely cured, thereby fixing the semiconductor chip 20 and the wafer 10. <P>COPYRIGHT: (C)2004,JPO&NCIPI

Description

本発明は、半導体チップやディスクリート部品等の電子部品に設けられた電極等の端子を外部端子に接続するための端子間の接合方法、及び、該接合方法を用いた半導体装置の実装方法に関するものである。   The present invention relates to a method for bonding terminals for connecting terminals such as electrodes provided on electronic components such as semiconductor chips and discrete components to external terminals, and a method for mounting a semiconductor device using the bonding method. It is.

エレクトロニクスの分野では、電子機器の高速化や大容量化、小型化や軽量化の要求に伴い、半導体チップやディスクリート部品等の電子部品の高集積化や高密度化を実現するための実装技術の開発が進められている。このような半導体装置の実装技術の一つとして、ベアチップを用いたフリップチップ実装法が提案されている。   In the electronics field, with the demand for higher speed, larger capacity, smaller size and lighter weight of electronic devices, mounting technologies for realizing higher integration and higher density of electronic components such as semiconductor chips and discrete components have been developed. Development is underway. As one of the mounting techniques of such a semiconductor device, a flip chip mounting method using a bare chip has been proposed.

フリップチップ実装法では、まず、ベアチップ上に複数の電極パッドを形成し、該電極パット上に半田や金等を用いてバンプを形成する。次いで、このベアチップのバンプと、基板の回路電極(以下、ランドと記載する)とを接合するために、ベアチップの電極パッドが形成された面と、基板のランドが形成された面とを対向させて、上記電極パッドを対応する上記ランドに電気的に接続する。さらに、ベアチップと基板との電気的接続強度と機械的接着強度とを確保するために、上記のようにパッドとランドとを接合した後、樹脂を流してベアチップと基板とを固定化するアンダーフィル法を行う場合もある。   In the flip chip mounting method, first, a plurality of electrode pads are formed on a bare chip, and bumps are formed on the electrode pads using solder, gold, or the like. Then, in order to join the bumps of the bare chip and the circuit electrodes (hereinafter, referred to as lands) of the substrate, the surface of the bare chip on which the electrode pads are formed and the surface of the substrate on which the lands are formed face each other. Then, the electrode pads are electrically connected to the corresponding lands. Further, in order to secure the electrical connection strength and the mechanical bonding strength between the bare chip and the substrate, the underfill for fixing the bare chip and the substrate by flowing resin after bonding the pad and the land as described above. In some cases the law is performed.

ところで、耐熱温度が低い光デバイス等の電子部品等の実装を行う場合には、該電子部品の熱劣化を防止するために、電極パッド(バンプ)とランドとを低温にて接合することが要求されている。このような低温接合を可能とする技術として、フィルム状の異方性導電フィルム(Anisotropic Conductive Film;ACF)や、ペースト状の異方性導電ペースト(Anisotropic Conductive Paste;ACP)等の導電性接着剤を用いたフリップチップ実装法が提案されている(例えば、特許文献1・2等を参照)。   When mounting electronic components such as optical devices having a low heat-resistant temperature, it is necessary to bond electrode pads (bumps) and lands at a low temperature in order to prevent thermal degradation of the electronic components. Have been. Techniques that enable such low-temperature bonding include conductive adhesives such as a film-like anisotropic conductive film (ACF) and a paste-like anisotropic conductive paste (ACP). (For example, see Patent Documents 1 and 2).

上記導電性接着剤は、金属等の導電性粒子を樹脂中に分散させることにより、電極パッド(バンプ)とランドとの間(以下、対向電極間と記載する)では導電性を得ることができ、隣接する電極パッド間や隣接するランド間(以下、両者を隣接電極間と総称する)では絶縁性を得ることができる電極接合材料である。すなわち、この導電性接着剤に含まれる導電性粒子によって、対向電極間の導通を可能にする一方、上記導電性接着剤に含まれる樹脂によって、隣接電極間の絶縁性を確保するとともに、対向電極間を接着させてベアチップと基板とを固定している。   The conductive adhesive can obtain conductivity between an electrode pad (bump) and a land (hereinafter, referred to as between opposing electrodes) by dispersing conductive particles such as a metal in a resin. An electrode bonding material capable of obtaining insulation between adjacent electrode pads and between adjacent lands (hereinafter, both are referred to as between adjacent electrodes). That is, the conductive particles contained in the conductive adhesive enable conduction between the opposing electrodes, while the resin contained in the conductive adhesive ensures insulation between adjacent electrodes, and The bare chip and the substrate are fixed by bonding between them.

上記導電性接着剤では、通常、樹脂中に導電性粒子が均一に分散されている。そして、この分散された導電性粒子が、上記電極パッド(バンプ)及びランドに物理的に接触することによって、対向電極間の電気的な接続を可能にしている。   In the above-mentioned conductive adhesive, usually, conductive particles are uniformly dispersed in a resin. The dispersed conductive particles physically contact the electrode pads (bumps) and the lands, thereby enabling electrical connection between the opposed electrodes.

しかしながら、上記のように、樹脂中に導電性粒子が均一に分散された導電性接着剤を用いた場合、導電性接着剤に含まれる導電性粒子を、対向電極間の導通のために有効に利用することができない可能性がある。つまり、樹脂中には導電性粒子が均一に分散しているため、対向電極間の導通に寄与している導電性粒子は、上記導電性接着剤に含まれる一部の導電性粒子であると考えられる(非特許文献1参照)。それゆえ、上記導電性接着剤では、対向電極間の電気的接続に十分な信頼性が得られない可能性があり、また、対向電極間の導通に寄与しない導電性粒子は、隣接電極間の絶縁性を阻害する原因となる。さらに、導電性接着剤に含まれる導電性粒子を有効に利用することができないので、低コスト化を実現することも困難となる。   However, as described above, when a conductive adhesive in which conductive particles are uniformly dispersed in a resin is used, the conductive particles contained in the conductive adhesive are effectively used for conduction between the counter electrodes. May not be available. In other words, since the conductive particles are uniformly dispersed in the resin, the conductive particles contributing to the conduction between the counter electrodes are part of the conductive particles contained in the conductive adhesive. It is possible (see Non-Patent Document 1). Therefore, in the conductive adhesive, there is a possibility that sufficient reliability may not be obtained for the electrical connection between the opposing electrodes, and the conductive particles that do not contribute to the conduction between the opposing electrodes may be between the adjacent electrodes. It causes insulation to be impaired. Furthermore, since the conductive particles contained in the conductive adhesive cannot be effectively used, it is difficult to reduce the cost.

そこで、特許文献3では、導電性粒子として、電界を印加することによって電場方向に配列する電界配列効果を有する粒子を用いている。すなわち、特許文献3では、ベアチップと基板との間に導電性接着剤を供給するとともに、この導電性接着剤に電界を印加して導電性粒子を配列させることによって、対向電極間を電気的に接続している。
国際公開第00/57469号パンフレット(2000年9月28日公開) 特開平10−4126号公報(平成10(1998)年1月6日公開) 特開平8−315883号公報(平成8(1996)年11月29日公開) 「エレクトロニクス実装技術の最近のニーズ」,ポリファイル(Polyfile),vol.35,No.3,p.14-18,1998年 太田祐介他,「樹脂接続における接合部特性の評価に関する研究」,メイト(Mate)2002プロシーディングス(第8回エレクトロニクスにおけるマイクロ接合・実装技術シンポジウム(8th Symposium on‘Microjoining and Assembly Technology in Electronics’)論文集),p.169-174,2002年
Therefore, in Patent Document 3, as the conductive particles, particles having an electric field arrangement effect of being arranged in an electric field direction by applying an electric field are used. That is, in Patent Document 3, a conductive adhesive is supplied between a bare chip and a substrate, and an electric field is applied to the conductive adhesive to arrange conductive particles, thereby electrically connecting the opposing electrodes. Connected.
International Publication No. 00/57469 pamphlet (released on September 28, 2000) JP-A-10-4126 (published on January 6, 1998) JP-A-8-315883 (published November 29, 1996) "Recent Needs for Electronics Packaging Technology", Polyfile, vol.35, No.3, p.14-18, 1998 Yusuke Ota et al., "Study on Evaluation of Joint Characteristics in Resin Connection", Mate 2002 Proceedings (8th Symposium on 'Microjoining and Assembly Technology in Electronics') Vol.), P.169-174, 2002

しかしながら、上記従来の導電性接着剤では、該導電性接着剤に含まれる導電性粒子が樹脂に覆われているため、たとえ、導電性粒子同士が配列することによって物理的に接触しても、導電性粒子を覆う樹脂が導通不良を引き起こすという問題がある。   However, in the above-described conventional conductive adhesive, the conductive particles contained in the conductive adhesive are covered with the resin, even if the conductive particles are physically contacted by being arranged, There is a problem that the resin covering the conductive particles causes conduction failure.

すなわち、上記特許文献3に記載の技術では、樹脂中に分散している導電性粒子が電界の印加によって誘電分極し、この誘電分極に起因する静電引力によって対向電極間に導電性粒子が配列する。そのため、導電性粒子が互いに直接接触して配列するのではなく、上記樹脂を介在して接触している可能性がある。このような場合、導電性粒子間での導電性の低下が引き起こされるので、対向電極間の電気的接続に十分な信頼性を得ることが困難となり、半導体装置の歩留まりの低下を引き起こす。   That is, in the technique described in Patent Document 3, the conductive particles dispersed in the resin are dielectrically polarized by application of an electric field, and the conductive particles are arranged between the opposing electrodes by electrostatic attraction caused by the dielectric polarization. I do. Therefore, the conductive particles may not be arranged in direct contact with each other, but may be in contact with each other via the resin. In such a case, the conductivity between the conductive particles is reduced, so that it is difficult to obtain sufficient reliability for the electrical connection between the counter electrodes, and the yield of the semiconductor device is reduced.

また、上記特許文献3に記載の導電性粒子は、誘電性を有し、電気抵抗率が108Ω・cm〜10-3Ω・cmが好ましいとされている(段落〔0027〕等)。それゆえ、金属と同程度の導電性を期待することができない。さらに、静電気に極めて弱い電子デバイスに対して、外部から電界を印加して導電性粒子を配列させることは、上記電子デバイスの信頼性にも問題を与える。 Further, the conductive particles described in Patent Document 3 have dielectric properties, and have an electric resistivity of preferably 10 8 Ω · cm to 10 −3 Ω · cm (paragraph [0027] and the like). Therefore, the same level of conductivity as metal cannot be expected. Furthermore, applying an electric field to an electronic device that is extremely sensitive to static electricity and arranging the conductive particles also poses a problem in the reliability of the electronic device.

本発明は、上記従来の問題点を解決するためになされたものであって、その目的は、互いに対向する電極等の端子間の十分な電気的接続を確保するとともに、端子間にて金属接合と同程度の電気抵抗を得ることができる、端子間の接合方法、及び、該接合方法を用いた半導体装置の実装方法を提供する。   The present invention has been made in order to solve the above-mentioned conventional problems, and an object of the present invention is to secure a sufficient electrical connection between terminals such as electrodes facing each other and to perform metal bonding between the terminals. Provided are a method for bonding between terminals, which can obtain the same electrical resistance as that of the terminal, and a method for mounting a semiconductor device using the bonding method.

本発明の端子間の接続方法は、上記課題を解決するために、少なくとも導電性粒子と該導電性粒子の融点で硬化が完了しない樹脂成分とを含む異方性導電樹脂を介して、端子同士を互いに対向させて配置する端子配置ステップと、上記導電性粒子の融点よりも高く、かつ上記樹脂成分の硬化が完了しない温度に、上記異方性導電樹脂を加熱する樹脂加熱ステップと、上記樹脂成分を硬化させる樹脂成分硬化ステップとを含むことを特徴としている。   In order to solve the above-mentioned problem, the method for connecting terminals according to the present invention includes connecting terminals through an anisotropic conductive resin containing at least conductive particles and a resin component whose curing is not completed at the melting point of the conductive particles. A terminal heating step of heating the anisotropic conductive resin to a temperature higher than the melting point of the conductive particles, and at which the curing of the resin component is not completed, And a resin component curing step of curing the components.

上記の方法によれば、導電性粒子の融点よりも高い温度に、該異方性導電樹脂が加熱され、この温度にて硬化が完了しない樹脂成分内で導電性粒子が溶融する。導電性粒子は樹脂成分内を自由に移動することができるので、端子と異方性導電樹脂との界面である端子表面に、溶融した導電性粒子が広がって、「ぬれ」た状態となる。また、溶融した導電性粒子同士が、樹脂成分内にて凝集して化学的に結合する。その結果、これらの溶融した導電性粒子が、対向する端子同士を電気的に接続するように配置される。その後、樹脂成分を硬化すれば、端子間を導通した状態で、異方性導電樹脂を介して対向する端子同士を固着することができる。   According to the above method, the anisotropic conductive resin is heated to a temperature higher than the melting point of the conductive particles, and the conductive particles are melted in a resin component that is not completely cured at this temperature. Since the conductive particles can move freely in the resin component, the molten conductive particles spread on the terminal surface, which is the interface between the terminal and the anisotropic conductive resin, and become “wet”. In addition, the fused conductive particles aggregate and chemically bond in the resin component. As a result, these fused conductive particles are arranged so as to electrically connect the opposing terminals. Thereafter, if the resin component is cured, the opposing terminals can be fixed via the anisotropic conductive resin while the terminals are electrically connected.

このように、上記の方法を用いれば、導電性粒子を溶融させて、導電性粒子間及び、導電性粒子と端子との間に、金属結合等の化学的な結合を形成することができる。つまり、互いに対向する端子間は、化学的結合によって接続された状態となる。それゆえ、上記端子間の電気抵抗を金属接合と同等レベルにて得ることができるので、上記端子間の電気的接続が信頼性の高いものとなる。   As described above, by using the above method, a chemical bond such as a metal bond can be formed between the conductive particles and between the conductive particles and the terminal by melting the conductive particles. That is, the terminals facing each other are connected by a chemical bond. Therefore, the electrical resistance between the terminals can be obtained at the same level as that of the metal bonding, and the electrical connection between the terminals is highly reliable.

また、本発明の端子間の接続方法は、上記の端子間の接続方法において、上記樹脂加熱ステップにて、上記異方性導電樹脂を介して、両端子を圧接させることを特徴としている。   Further, the method for connecting terminals according to the present invention is characterized in that, in the above-described method for connecting terminals, in the resin heating step, both terminals are brought into pressure contact with each other via the anisotropic conductive resin.

上記の方法によれば、異方性導電樹脂に含まれる導電性粒子が溶融する温度にて、一方の端子が異方性導電樹脂を介して他方の端子に近づくように、両端子を圧接して、対向する端子間の距離を小さくしている。そのため、導電性粒子が端子表面に「ぬれ」やすくなり、また、導電性粒子同士が凝集しやすくなる。これにより、対向する端子間にて、より確実に、溶融した導電性粒子同士を結合させることができるので、端子間に信頼性の高い導通経路を得ることができる。   According to the above method, at a temperature at which the conductive particles contained in the anisotropic conductive resin melt, the two terminals are pressed together so that one terminal approaches the other terminal via the anisotropic conductive resin. Thus, the distance between the opposing terminals is reduced. Therefore, the conductive particles are easily "wetted" on the terminal surface, and the conductive particles are easily aggregated. Thus, the fused conductive particles can be more reliably bonded between the opposing terminals, so that a highly reliable conduction path between the terminals can be obtained.

また、本発明の端子間の接続方法は、上記の端子間の接続方法において、上記樹脂成分は、端子表面及び導電性粒子表面のうちの少なくとも一方を還元する還元性を有する樹脂であることを特徴としている。   Further, in the method for connecting terminals according to the present invention, in the method for connecting terminals, the resin component is a resin having a reducing property for reducing at least one of a terminal surface and a conductive particle surface. Features.

上記の方法によれば、上記樹脂成分は、端子表面や導電性粒子表面に対する還元性を有しているので、端子表面や導電性粒子表面を活性化することができる。それゆえ、上記還元性を有する樹脂成分を含む異方性導電樹脂を用いれば、端子表面や導電性粒子表面が還元されて表面が活性化されるので、端子表面と導電性粒子とが接合しやすくなり、また導電性粒子同士が接合しやすくなる。その結果、対向する端子間の導電性粒子による接合をより確実にすることができるので、端子間に形成される導通経路の信頼性を向上することができる。   According to the above method, since the resin component has a reducing property for the terminal surface and the conductive particle surface, the terminal surface and the conductive particle surface can be activated. Therefore, when the anisotropic conductive resin containing the resin component having the reducing property is used, the terminal surface and the conductive particle surface are reduced and the surface is activated, so that the terminal surface and the conductive particle are bonded. And the conductive particles are easily bonded to each other. As a result, the bonding between the opposing terminals by the conductive particles can be made more reliable, so that the reliability of the conduction path formed between the terminals can be improved.

また、本発明の端子間の接続方法は、上記の端子間の接続方法において、上記端子配置ステップにおける上記異方性導電樹脂が、対向する各上記端子間を含んで、各上記端子が設けられている部材同士で挟まれる対向空間全体に充填されている状態となるように、上記異方性導電樹脂を供給することを特徴としている。   Further, in the method for connecting terminals according to the present invention, in the method for connecting terminals, the anisotropic conductive resin in the terminal arranging step includes each of the terminals including the opposing terminals. The anisotropic conductive resin is supplied so as to fill the entire opposing space sandwiched between the members.

上記の方法によれば、端子が設けられている部材同士で挟まれる対向空間全体に充填された異方性導電樹脂の加熱・硬化後は、端子部分に導電性粒子が凝集し、端子以外の箇所には樹脂のみが存在する。このようにして端子間が金属接合され、隣接する端子間には樹脂材料で絶縁がとられるとともに、十分な接着強度が確保された接着接合が達成される。   According to the above method, after heating and curing of the anisotropic conductive resin filled in the entire opposing space sandwiched between the members provided with the terminals, the conductive particles are aggregated in the terminal portion, and other than the terminals, Only resin is present at the location. In this manner, the terminals are metal-joined, and the adjacent terminals are insulated with a resin material, and the adhesive bonding with sufficient adhesive strength is achieved.

これにより、異方性導電樹脂の供給工程が簡単になってプロセスが大幅に削減されるとともに、金属接合と樹脂接合とが同時に達成されることになる。また、端子間の接続工程では低温加工が可能となる。   This simplifies the supply step of the anisotropic conductive resin, greatly reduces the process, and simultaneously achieves metal bonding and resin bonding. Also, low-temperature processing is possible in the connection step between the terminals.

また、本発明の半導体装置の実装方法は、上記課題を解決するために、半導体チップの電極パッドと、該電極パッドに対応するように設けられた配線基板上の回路電極とを、少なくとも導電性粒子と樹脂成分とを含む異方性導電樹脂を介して対向するように配置する電極配置ステップと、上記導電性粒子の融点よりも高く、かつ上記樹脂成分の硬化が完了しない温度に、上記異方性導電樹脂を加熱する樹脂加熱ステップと、上記樹脂成分を硬化させる樹脂成分硬化ステップとを含むことを特徴としている。   Further, in order to solve the above-mentioned problems, the method for mounting a semiconductor device according to the present invention includes the steps of: connecting at least conductive pads on a semiconductor chip and circuit electrodes on a wiring board provided to correspond to the electrode pads; An electrode arranging step of arranging the anisotropic conductive resin including the particles and the resin component so as to face each other, and a temperature higher than the melting point of the conductive particles and a temperature at which the curing of the resin component is not completed. It is characterized by including a resin heating step of heating the isotropic conductive resin and a resin component curing step of curing the resin component.

上記の方法によれば、半導体装置にて、半導体チップの電極パッドと配線基板上の回路電極とを電気的に接合する場合に、上記の端子間の接合方法を用いることができる。これにより、近年の半導体チップ等のファインピッチ化にも対応することができる実装方法を提供することができる。その結果、半導体装置の歩留まりを向上させることができる。   According to the above method, when the electrode pads of the semiconductor chip and the circuit electrodes on the wiring board are electrically bonded in the semiconductor device, the above-described bonding method between terminals can be used. This makes it possible to provide a mounting method that can cope with recent fine pitching of semiconductor chips and the like. As a result, the yield of the semiconductor device can be improved.

また、上記の端子間接合方法は、比較的融点の低い導電性粒子を用いることによって、配線基板上に半導体チップを実装する際の加熱温度を低く設定することができる。それゆえ、本発明の半導体装置の実装方法は、耐熱性の低い光学素子等の電子部品を実装する場合等に好適に用いることができる。   In addition, in the above-described terminal-to-terminal bonding method, by using conductive particles having a relatively low melting point, the heating temperature at the time of mounting a semiconductor chip on a wiring board can be set low. Therefore, the semiconductor device mounting method of the present invention can be suitably used when electronic components such as optical elements having low heat resistance are mounted.

また、本発明の半導体装置の実装方法は、上記課題を解決するために、上記電極配置ステップにおける上記異方性導電樹脂が、対向する上記電極パッドと上記回路電極との間を含んで、上記半導体チップと上記配線基板とで挟まれる対向空間全体に充填されている状態となるように、上記異方性導電樹脂を供給することを特徴としている。   Further, in order to solve the above-mentioned problems, the method of mounting a semiconductor device according to the present invention, wherein the anisotropic conductive resin in the electrode disposing step includes a space between the opposed electrode pad and the circuit electrode. The method is characterized in that the anisotropic conductive resin is supplied so as to fill the entire opposing space sandwiched between the semiconductor chip and the wiring substrate.

上記の方法によれば、半導体チップと配線基板とで挟まれる対向空間全体に充填されている異方性導電樹脂の加熱・硬化後は、電極パッドおよび回路電極部分に導電性粒子が凝集し、それ以外の箇所には樹脂のみが存在する。このようにして電極パッドと回路電極との間が金属接合され、隣接する電極パッド−回路電極間には樹脂材料で絶縁がとられるとともに、十分な接着強度が確保された接着接合が達成される。   According to the above method, after heating and curing of the anisotropic conductive resin filled in the entire opposing space sandwiched between the semiconductor chip and the wiring board, the conductive particles aggregate on the electrode pads and circuit electrode portions, At other locations, only the resin is present. In this manner, the metal connection between the electrode pad and the circuit electrode is performed, and between the adjacent electrode pad and the circuit electrode is insulated with the resin material, and the adhesive bonding with sufficient adhesive strength is achieved. .

これにより、異方性導電樹脂の供給工程が簡単になってプロセスが大幅に削減されるとともに、金属接合と樹脂接合とが同時に達成されることになる。また、半導体装置の実装工程では低温加工が可能となる。   This simplifies the supply step of the anisotropic conductive resin, greatly reduces the process, and simultaneously achieves metal bonding and resin bonding. Further, low-temperature processing becomes possible in the mounting process of the semiconductor device.

本発明の端子間の接続方法は、以上のように、少なくとも導電性粒子と該導電性粒子の融点で硬化しない樹脂成分とを含む異方性導電樹脂を用い、上記導電性粒子の融点よりも高く、かつ上記樹脂成分の硬化が完了しない温度に、上記異方性導電樹脂を加熱する方法である。   The method for connecting terminals according to the present invention uses an anisotropic conductive resin containing at least conductive particles and a resin component that does not cure at the melting point of the conductive particles, as described above, This is a method of heating the anisotropic conductive resin to a high temperature at which the curing of the resin component is not completed.

それゆえ、導電性粒子が溶融して、該導電性粒子同士が化学的に結合し、また、端子表面に溶融した導電性粒子が広がって「ぬれ」た状態となる。その結果、端子間は、金属結合によって接合された状態となるので、端子間の電気抵抗を金属の電気抵抗と同等レベルにすることができるという効果を奏する。これにより、対向する端子間の電気的な接続の信頼性を向上することができる。   Therefore, the conductive particles are melted, the conductive particles are chemically bonded to each other, and the molten conductive particles are spread on the surface of the terminal to be in a “wet” state. As a result, the terminals are joined by metal bonding, so that the electric resistance between the terminals can be made equal to the electric resistance of the metal. Thereby, the reliability of the electrical connection between the opposing terminals can be improved.

特に、上記異方性導電樹脂の加熱工程にて、該異方性導電樹脂を介して両端子を圧接させ、両端子間の距離を小さくすれば、溶融した導電性粒子が凝集して結合しやすくなるので、端子間の電気的接続の信頼性をより一層向上することができる。   In particular, in the heating step of the anisotropic conductive resin, if the two terminals are brought into pressure contact with each other via the anisotropic conductive resin and the distance between the two terminals is reduced, the molten conductive particles are aggregated and bonded. As a result, the reliability of the electrical connection between the terminals can be further improved.

さらに、上記異方性導電樹脂に含まれる樹脂成分が、端子表面及び導電性粒子表面のうちの少なくとも一方を還元する還元性を有する表面活性化効果を有している場合にも、端子表面と導電性粒子との接合や、導電性粒子同士の接合が容易になるので、端子間に形成される導通経路の信頼性を向上することができる。   Further, even when the resin component contained in the anisotropic conductive resin has a surface activating effect having a reducing property of reducing at least one of the terminal surface and the conductive particle surface, Since the bonding with the conductive particles and the bonding between the conductive particles are facilitated, the reliability of the conductive path formed between the terminals can be improved.

さらに、上記端子配置ステップにおける上記異方性導電樹脂が、対向する各上記端子間を含んで、各上記端子が設けられている部材同士で挟まれる対向空間全体に充填されている状態となるように、上記異方性導電樹脂を供給することにより、異方性導電樹脂の供給工程が簡単になってプロセスが大幅に削減されるとともに、金属接合と樹脂接合とが同時に達成されることになる。また、端子間の接続工程では低温加工が可能となる。   Furthermore, the anisotropic conductive resin in the terminal arrangement step is filled with the entire opposing space sandwiched between the members provided with the terminals, including between the opposing terminals. In addition, by supplying the anisotropic conductive resin, the process of supplying the anisotropic conductive resin is simplified, the process is greatly reduced, and the metal bonding and the resin bonding are simultaneously achieved. . Also, low-temperature processing is possible in the connection step between the terminals.

また、本発明の半導体装置の実装方法は、上記の端子間の接続方法を利用して、半導体チップの電極パッドと、該電極パッドに対応するように設けられた配線基板上の回路電極とを接続する方法である。   Further, the method for mounting a semiconductor device of the present invention uses the above-described connection method between terminals to connect an electrode pad of a semiconductor chip and a circuit electrode on a wiring board provided corresponding to the electrode pad. How to connect.

これにより、近年の半導体チップ等のファインピッチ化にも対応することができるので、半導体装置の歩留まりを向上することができる。また、上記の半導体装置の実装方法は、比較的低温での処理が可能であるため、耐熱性の低い光学素子等の電子部品を実装する場合等に好適に用いることができる。   This makes it possible to cope with the recent trend toward finer pitch of semiconductor chips and the like, so that the yield of semiconductor devices can be improved. In addition, since the above-described method for mounting a semiconductor device can be processed at a relatively low temperature, it can be suitably used when electronic components such as optical elements having low heat resistance are mounted.

さらに、上記電極配置ステップにおける上記異方性導電樹脂が、対向する上記電極パッドと上記回路電極との間を含んで、上記半導体チップと上記配線基板とで挟まれる対向空間全体に充填されている状態となるように、上記異方性導電樹脂を供給することにより、異方性導電樹脂の供給工程が簡単になってプロセスが大幅に削減されるとともに、金属接合と樹脂接合とが同時に達成されることになる。また、半導体装置の実装工程では低温加工が可能となる。   Further, the anisotropic conductive resin in the electrode disposing step is filled in the entire opposing space sandwiched between the semiconductor chip and the wiring board, including between the opposing electrode pad and the circuit electrode. By supplying the anisotropic conductive resin so as to be in a state, the process of supplying the anisotropic conductive resin is simplified, the process is greatly reduced, and metal bonding and resin bonding are simultaneously achieved. Will be. Further, low-temperature processing becomes possible in the mounting process of the semiconductor device.

本発明の実施の一形態について図1ないし図3に基づいて説明すれば、以下の通りである。   One embodiment of the present invention will be described below with reference to FIGS.

図1に示すように、本実施の形態の半導体装置は、端子である回路電極(以下、ランドと記載する)11を有するシリコン等からなる基板(配線基板)10上に、導電性樹脂層1aを介して、半導体チップ20が実装されてなる。上記半導体装置の基板10上のランド11は、半導体チップ20上に設けられた電極パッド(端子)21に対応するようにパターニングされ、ランド11と電極パッド21とが対向している。なお、半導体チップ20表面に設けられた電極パッド21は、該半導体チップ20上に形成された図示しない集積回路を外部に接続するために設けられている。上記電極パッド21上には、半田や金等を用いてバンプを形成しておいてもよい。   As shown in FIG. 1, a semiconductor device according to the present embodiment includes a conductive resin layer 1a on a substrate (wiring substrate) 10 made of silicon or the like having a circuit electrode (hereinafter, referred to as a land) 11 as a terminal. , The semiconductor chip 20 is mounted. The lands 11 on the substrate 10 of the semiconductor device are patterned so as to correspond to the electrode pads (terminals) 21 provided on the semiconductor chip 20, and the lands 11 and the electrode pads 21 face each other. The electrode pads 21 provided on the surface of the semiconductor chip 20 are provided for connecting an integrated circuit (not shown) formed on the semiconductor chip 20 to the outside. A bump may be formed on the electrode pad 21 using solder, gold, or the like.

上記半導体装置では、図1に示すように、基板10上のランド11と半導体チップ20表面の電極パッド21とが、導電性樹脂層1aを介して、互いに電気的に接続されている。この導電性樹脂層1aは、絶縁性の硬化樹脂2aに導電物質3aが含まれてなり、導電性樹脂層1aに含まれる導電物質3aが、上記電極パッド21とランド11とを電気的に接続している。この導電物質3aは、詳細は後述するが、複数の導電性粒子3bが溶融して化学的に結合したものである。   In the semiconductor device, as shown in FIG. 1, the lands 11 on the substrate 10 and the electrode pads 21 on the surface of the semiconductor chip 20 are electrically connected to each other via the conductive resin layer 1a. The conductive resin layer 1a includes an insulating cured resin 2a containing a conductive material 3a. The conductive material 3a included in the conductive resin layer 1a electrically connects the electrode pad 21 and the land 11 to each other. are doing. As will be described in detail later, the conductive material 3a is formed by melting and chemically bonding a plurality of conductive particles 3b.

次に、上記半導体装置にて、基板10上のランド11と半導体チップ20上の電極パッド21とを接合する接合方法について、図2及び図3に基づいて、説明する。   Next, a bonding method for bonding the lands 11 on the substrate 10 and the electrode pads 21 on the semiconductor chip 20 in the semiconductor device will be described with reference to FIGS.

まず、電極パッド21が形成された半導体チップ20と、半導体チップ20表面の電極パッド21に対応するようにランド11がパターニングされた基板10とを用意する。上記電極パッド21表面や、ランド11表面は、後述する「ぬれ」た導電性粒子との接触を良好にするために、洗浄、研磨、メッキ、表面活性化等の処理を施しておいてもよい。そして、図2(a)に示すように、基板10又は基板10のランド11上に、樹脂(樹脂成分)2b中に導電性粒子3bが分散してなる導電性接着剤(異方性導電樹脂)1bを供給する。ここで、詳細は後述するが、上記導電性接着剤1bに含まれる樹脂2bは、導電性粒子3bの溶融温度(融点)で、硬化が完了せず、かつ導電性粒子の一部が流動可能な程度の粘度を有していることが好ましい。   First, a semiconductor chip 20 having electrode pads 21 formed thereon and a substrate 10 having lands 11 patterned to correspond to the electrode pads 21 on the surface of the semiconductor chip 20 are prepared. The surface of the electrode pad 21 and the surface of the land 11 may be subjected to processing such as cleaning, polishing, plating, and surface activation in order to improve the contact with the “wet” conductive particles described later. . Then, as shown in FIG. 2A, a conductive adhesive (anisotropic conductive resin) formed by dispersing conductive particles 3b in a resin (resin component) 2b on the substrate 10 or the lands 11 of the substrate 10 ) 1b. Here, although the details will be described later, the resin 2b contained in the conductive adhesive 1b is not completely cured at the melting temperature (melting point) of the conductive particles 3b, and a part of the conductive particles can flow. It is preferable to have a certain degree of viscosity.

ここで、上記導電性接着剤1bは、フィルム状、ペースト状、粉末状等、その形状は特に限定されない。そのため、上記導電性接着剤1bは、その形状に適した供給方法にて、基板10又はランド11上に供給されればよい。すなわち、フィルム状の導電性接着剤1bであれば、基板10やランド11上に直接配置、あるいは転写すればよい。また、ペースト状の導電性接着剤1bであれば、基板10やランド11上に直接滴下してもよく、スクリーン印刷法、オフセット印刷法、回転塗布法等で供給してもよい。なお、図2(a)(b)には、ペースト状の導電性接着剤1bを塗布した場合を示している。   Here, the shape of the conductive adhesive 1b is not particularly limited, such as a film, a paste, and a powder. Therefore, the conductive adhesive 1b may be supplied onto the substrate 10 or the land 11 by a supply method suitable for the shape. That is, the film-shaped conductive adhesive 1b may be directly arranged or transferred onto the substrate 10 or the land 11. In addition, as long as the paste-type conductive adhesive 1b is used, it may be directly dropped on the substrate 10 or the land 11, or may be supplied by a screen printing method, an offset printing method, a spin coating method, or the like. 2 (a) and 2 (b) show a case where a paste-like conductive adhesive 1b is applied.

続いて、基板10上のランド11と、半導体チップ20上の電極パッド21との位置合わせを行って、図2(b)に示すように、基板10上に供給された導電性接着剤1b上に半導体チップ20を配置する。このとき、基板10のランド11と半導体チップ20の電極パッド21との間(以下、対向電極間と記載する)の距離が所定以上となるように、基板10上に図示しないスペーサーを配置し、このスペーサーを挟み込むように半導体チップ20を配置してもよい。   Subsequently, the lands 11 on the substrate 10 are aligned with the electrode pads 21 on the semiconductor chip 20, and the conductive adhesive 1b supplied on the substrate 10 is The semiconductor chip 20 is arranged at the bottom. At this time, a spacer (not shown) is arranged on the substrate 10 so that the distance between the land 11 of the substrate 10 and the electrode pad 21 of the semiconductor chip 20 (hereinafter, referred to as between opposing electrodes) is equal to or longer than a predetermined value. The semiconductor chip 20 may be arranged so as to sandwich the spacer.

基板10上に半導体チップ20を配置した上記の時点での対向電極間の距離は、基板10又はランド11上の導電性接着剤1bと、半導体チップ20の電極パッド21とが接触していればよい。言い換えれば、基板10やランド11上に供給される導電性接着剤1bは、対向電極間に所定以上の距離が得られるように供給すればよい。   The distance between the opposing electrodes at the time when the semiconductor chip 20 is disposed on the substrate 10 is as long as the conductive adhesive 1b on the substrate 10 or the land 11 is in contact with the electrode pad 21 of the semiconductor chip 20. Good. In other words, the conductive adhesive 1b supplied on the substrate 10 or the land 11 may be supplied so that a predetermined distance or more is obtained between the opposing electrodes.

上記のように基板10と半導体チップ20とが、導電性接着剤1bを介して対向した状態では、図3(a)に示すように、ランド11と電極パッド21との間(対向電極間)の導電性接着剤1b内に、導電性粒子3bが一様に分散している。   As described above, when the substrate 10 and the semiconductor chip 20 face each other with the conductive adhesive 1b interposed therebetween, as shown in FIG. 3A, between the land 11 and the electrode pad 21 (between the opposing electrodes). The conductive particles 3b are uniformly dispersed in the conductive adhesive 1b.

図3(a)に示すように、ランド11と電極パッド21とが導電性接着剤1bを挟み込んで配置した後、上記基板10及び半導体チップ20(図2(b))を、導電性粒子3bの融点以上の温度まで徐々に加熱する。この加熱によって、導電性接着剤1bに含まれる樹脂2bは、硬化が完了した状態にはならず、好ましくは樹脂2b内を導電性粒子3bが動きやすくなる粘度を有しているとよい。さらに、加熱を続けて温度が上記導電性粒子3bの融点に達すると、図3(b)に示すように、導電性粒子3bが溶融するとともに、互いに近傍に位置する導電性粒子3bが樹脂2b内を移動して凝集し始める。   As shown in FIG. 3A, after the land 11 and the electrode pad 21 are arranged with the conductive adhesive 1b interposed therebetween, the substrate 10 and the semiconductor chip 20 (FIG. 2B) are separated from the conductive particles 3b. Is gradually heated to a temperature not lower than the melting point. By this heating, the resin 2b contained in the conductive adhesive 1b does not enter a state where curing is completed, and preferably has a viscosity that allows the conductive particles 3b to easily move in the resin 2b. Further, when the heating is continued and the temperature reaches the melting point of the conductive particles 3b, as shown in FIG. 3 (b), the conductive particles 3b are melted and the conductive particles 3b located close to each other are removed from the resin 2b. Move inside and begin to aggregate.

このとき、ランド11表面及び電極パッド21表面(以下、両者を電極表面と総称する)に、溶融した導電性粒子3bが広がった「ぬれ」の状態が得られる。そして、この電極表面に「ぬれ」た導電性粒子3bに、導電性接着剤1b中に含まれる他の導電性粒子3bが集まり、図3(c)に示すように、これらの導電性粒子3bが溶融して化学的に結合する。これにより、対向電極間が複数の導電性粒子が結合してなる導電物質3aによって接合された状態となり、対向電極間に導通経路が形成される。このように、対向電極間に化学的に結合した導電物質3aが形成されることにより、信頼性が高く、金属接合と同等レベルの接続抵抗を得ることができる。   At this time, a “wet” state in which the molten conductive particles 3b are spread on the surface of the land 11 and the surface of the electrode pad 21 (both are collectively referred to as an electrode surface) is obtained. Then, the other conductive particles 3b contained in the conductive adhesive 1b gather on the conductive particles 3b "wetted" on the electrode surface, and as shown in FIG. 3 (c), these conductive particles 3b Melt and chemically bond. As a result, the opposing electrodes are joined by the conductive material 3a formed by combining a plurality of conductive particles, and a conduction path is formed between the opposing electrodes. As described above, by forming the conductive material 3a chemically bonded between the opposing electrodes, it is possible to obtain a highly reliable connection resistance at the same level as that of the metal junction.

なお、導電性粒子3bの融点に温度が達した時点で、半導体チップ20が基板10に近づくように加圧して、対向電極間の距離を小さくしてもよい。すなわち、導電性接着剤1bを介して、半導体チップ20と基板10とを圧接して、対向電極間の距離を小さくしてもよい。これにより、電極表面に「ぬれ」た導電性粒子3bに、他の導電性粒子が凝集しやすくなり、対向電極間に信頼性の高い電気的な接合を形成することが可能になる。半導体チップ20を基板10に近づけたときの対向電極間の距離は、特に限定されないが、導電性粒子3bの粒径の数倍〜数10倍となるように設定することが好ましく、具体的には、1μm以上500μm以下に設定することが好ましい。   Note that when the temperature reaches the melting point of the conductive particles 3b, the semiconductor chip 20 may be pressed so as to approach the substrate 10 to reduce the distance between the opposing electrodes. That is, the semiconductor chip 20 and the substrate 10 may be pressed into contact with each other via the conductive adhesive 1b to reduce the distance between the opposing electrodes. This makes it easier for the other conductive particles to agglomerate on the conductive particles 3b "wetted" on the electrode surface, thereby making it possible to form a reliable electrical junction between the opposing electrodes. The distance between the opposing electrodes when the semiconductor chip 20 is brought close to the substrate 10 is not particularly limited, but is preferably set to be several times to several tens times the particle diameter of the conductive particles 3b. Is preferably set to 1 μm or more and 500 μm or less.

また、上記のように導電性粒子3bの融点まで加熱するようにしてもよいが、導電性粒子3bを十分に溶融させて、対向電極間に信頼性の高い電気的導通を得るためには、導電性粒子3bの融点よりも高い温度まで加熱することが好ましい。具体的には、導電性粒子3bの融点よりも10℃〜30℃程度高い温度まで加熱すれば、導電性粒子が十分に溶融され、対向電極間の良好な導通を得ることができる。   As described above, the conductive particles 3b may be heated to the melting point. However, in order to sufficiently melt the conductive particles 3b and obtain highly reliable electrical conduction between the counter electrodes, It is preferable to heat to a temperature higher than the melting point of the conductive particles 3b. Specifically, when the conductive particles are heated to a temperature higher by about 10 ° C. to 30 ° C. than the melting point of the conductive particles 3b, the conductive particles are sufficiently melted and good conduction between the counter electrodes can be obtained.

上記のように、導電性粒子3bが溶融することによって図3(c)に示す導電物質3aが形成され、対向電極間の導通経路が確保されれば、基板10と半導体チップ20との間に塗布された導電性接着剤1bに含まれる樹脂2bを完全に硬化させる。これにより、図1に示すように、硬化樹脂2a内に導電物質3aが形成された導電性樹脂層1aが得られ、基板10と半導体チップ20とが固着される。なお、導電性接着剤1bに含まれる樹脂2bを硬化させる硬化条件は、用いる樹脂2bの種類や性質に応じて適宜設定すればよい。例えば、熱硬化性樹脂を用いた場合には、樹脂2bの硬化温度まで加温すればよいし、熱可塑性樹脂を用いた場合には、樹脂2bが硬化する温度まで冷却すればよい。また、光硬化性樹脂を用いた場合には、光照射を行って重合反応を開始させればよい。   As described above, by melting the conductive particles 3b, the conductive material 3a shown in FIG. 3C is formed, and if a conduction path between the opposing electrodes is secured, a gap between the substrate 10 and the semiconductor chip 20 is formed. The resin 2b contained in the applied conductive adhesive 1b is completely cured. As a result, as shown in FIG. 1, a conductive resin layer 1a in which the conductive material 3a is formed in the cured resin 2a is obtained, and the substrate 10 and the semiconductor chip 20 are fixed. The curing conditions for curing the resin 2b included in the conductive adhesive 1b may be set as appropriate according to the type and properties of the resin 2b used. For example, when a thermosetting resin is used, the resin may be heated to the curing temperature of the resin 2b, and when a thermoplastic resin is used, the resin may be cooled to a temperature at which the resin 2b is cured. When a photocurable resin is used, the polymerization reaction may be started by irradiating light.

このように、基板10と半導体チップ20との間に供給された導電性接着剤1bの樹脂2bが硬化することにより、対向電極間の導通状態を確保することができる。また、樹脂2bが硬化することによって、基板10と半導体チップ20とを十分な機械的強度で固着することができる。   In this way, the resin 2b of the conductive adhesive 1b supplied between the substrate 10 and the semiconductor chip 20 is cured, so that a conductive state between the opposing electrodes can be secured. Further, by curing the resin 2b, the substrate 10 and the semiconductor chip 20 can be fixed with sufficient mechanical strength.

次に、上記の接合方法にて、基板10上に半導体チップ20を実装するために用いる導電性接着剤1b(図3(a))について説明する。上記導電性接着剤1bは、少なくとも導電性粒子3bと樹脂2bとを含んでいればよく、必要に応じて導電性粒子3b及び樹脂2b以外の物質を含んでいてもよい。   Next, the conductive adhesive 1b (FIG. 3A) used for mounting the semiconductor chip 20 on the substrate 10 by the above-described bonding method will be described. The conductive adhesive 1b only needs to include at least the conductive particles 3b and the resin 2b, and may include a substance other than the conductive particles 3b and the resin 2b as needed.

上記導電性接着剤1bに含まれる導電性粒子3bは、特に限定されないが、半導体装置では、基板10に搭載する半導体チップや電子部品等の熱劣化を防止するために、加熱処理は250℃以下で行われることが好ましい。それゆえ、250℃以下での加熱処理を行い得るように、250℃以下の融点を有する導電性粒子3bを用いることが好ましい。   The conductive particles 3b contained in the conductive adhesive 1b are not particularly limited, but in a semiconductor device, heat treatment is performed at 250 ° C. or lower in order to prevent thermal deterioration of a semiconductor chip, an electronic component, or the like mounted on the substrate 10. It is preferable to be performed. Therefore, it is preferable to use the conductive particles 3b having a melting point of 250 ° C. or less so that the heat treatment at 250 ° C. or less can be performed.

このような導電性粒子3bとしては、具体的には、錫(Sn),インジウム(In),ビスマス(Bi),銀(Ag),銅(Cu),亜鉛(Zn),鉛(Pb),カドミウム(Cd),ガリウム(Ga),銀(Ag),タリウム(Tl)等の金属や、これらの金属からなる合金を挙げることができる。上記合金としては、例えば、Sn/48In,Sn/57Bi/1Ag,Sn/9Zn,Sn/8Zn/3Bi,Sn/3.5Ag(いずれも組成比)や、表1に示す金属や合金等を挙げることができる。なお、表1には、各金属及び各合金の融点もあわせて示している。   As the conductive particles 3b, specifically, tin (Sn), indium (In), bismuth (Bi), silver (Ag), copper (Cu), zinc (Zn), lead (Pb), Examples include metals such as cadmium (Cd), gallium (Ga), silver (Ag), and thallium (Tl), and alloys of these metals. Examples of the alloy include Sn / 48In, Sn / 57Bi / 1Ag, Sn / 9Zn, Sn / 8Zn / 3Bi, Sn / 3.5Ag (all of which have a composition ratio), and metals and alloys shown in Table 1. be able to. Table 1 also shows the melting point of each metal and each alloy.

Figure 2004260131
Figure 2004260131

上記導電性粒子3bは、粒径の上限値が100μm以下であることが好ましく、50μm以下であることがより好ましい。また、粒径の下限値は、1μm以上であることが好ましく、3μm以上であることがより好ましい。一般に、導電性粒子3bの粒径の上限値は、電極パッドやランド等の電極の寸法や構造に依存し、通常、隣接電極間の絶縁性を確保するためには、(電極のピッチ)×0.5以下の粒径を有していることが好ましい。これに対し、導電性粒子3bの粒径の下限値が1μm未満であると、電極表面に「ぬれ」た導電性粒子3bに、他の導電性粒子3bが凝集しにくくなる。   The upper limit of the particle size of the conductive particles 3b is preferably 100 μm or less, more preferably 50 μm or less. The lower limit of the particle diameter is preferably 1 μm or more, more preferably 3 μm or more. In general, the upper limit of the particle size of the conductive particles 3b depends on the dimensions and structure of the electrodes such as electrode pads and lands. In general, in order to ensure insulation between adjacent electrodes, (electrode pitch) × It preferably has a particle size of 0.5 or less. On the other hand, when the lower limit of the particle size of the conductive particles 3b is less than 1 μm, the other conductive particles 3b are less likely to aggregate on the conductive particles 3b “wetted” on the electrode surface.

また、上記導電性粒子3bの形状は、特に限定されず、球形、扁平球形、板形、不定形等、種々の形状のものを用いればよい。   The shape of the conductive particles 3b is not particularly limited, and various shapes such as a sphere, a flat sphere, a plate, and an irregular shape may be used.

さらに、導電性接着剤1b中に含まれる上記導電性粒子3bの体積比は、下限値が20体積%以上であることが好ましく、30体積%以上であることがより好ましい。また、上記導電性粒子3bの体積比の上限値は、70体積%以下であることが好ましく、60体積%以下であることがより好ましい。   Furthermore, the lower limit of the volume ratio of the conductive particles 3b contained in the conductive adhesive 1b is preferably 20% by volume or more, and more preferably 30% by volume or more. The upper limit of the volume ratio of the conductive particles 3b is preferably 70% by volume or less, more preferably 60% by volume or less.

上記導電性粒子3bの導電性接着剤1b中における体積比が20体積%未満であると、重量比によって導電性粒子3bの樹脂2b内における分散が阻害されてしまう。これに対し、体積比が70体積%を超えると、導電性粒子3bが過密度に配置されるので、導電性粒子3bと樹脂2bとの混合状態が不均一になる可能性がある。   If the volume ratio of the conductive particles 3b in the conductive adhesive 1b is less than 20% by volume, the dispersion of the conductive particles 3b in the resin 2b is hindered by the weight ratio. On the other hand, if the volume ratio exceeds 70% by volume, the conductive particles 3b are arranged at an excessively high density, and the mixed state of the conductive particles 3b and the resin 2b may be uneven.

また、上記樹脂2bは、絶縁性を有し、かつ導電性接着剤1bに含まれる導電性粒子3bの融点温度で硬化が完了しないものであれば特に限定されない。さらに、上記樹脂2bは、樹脂2b内を上記導電性粒子3bが流動可能となるように、導電性粒子3bの融点温度で硬化率が100%未満であることが好ましい。   The resin 2b is not particularly limited as long as it has an insulating property and the curing is not completed at the melting point temperature of the conductive particles 3b included in the conductive adhesive 1b. Further, the resin 2b preferably has a curing rate of less than 100% at the melting point temperature of the conductive particles 3b so that the conductive particles 3b can flow in the resin 2b.

上記樹脂2bは、上記条件を満たすものであれば特に限定されないが、例えば、熱硬化性樹脂、熱可塑性樹脂、光硬化性樹脂等のうちの1種又は2種以上を用いればよい。   The resin 2b is not particularly limited as long as it satisfies the above conditions. For example, one or more of a thermosetting resin, a thermoplastic resin, and a photocurable resin may be used.

上記熱硬化性樹脂としては、例えば、エポキシ系樹脂、ウレタン系樹脂、アクリル系樹脂、シリコーン系樹脂、フェノール系樹脂、メラミン系樹脂、アルキド系樹脂、尿素樹脂、アクリル系樹脂、不飽和ポリエステル樹脂等を挙げることができる。また、上記熱可塑性樹脂としては、酢酸ビニル系樹脂、ポリビニルブチラール系樹脂、塩化ビニル系樹脂、スチレン系樹脂、ビニルメチルエーテル系樹脂、ウレタン系樹脂、グリブチル樹脂、エチレン−酢酸ビニル共重合系樹脂、スチレン−ブタジエン共重合系樹脂、ポリブタジエン樹脂、ポリビニルアルコール系樹脂等を挙げることができる。   Examples of the thermosetting resin include an epoxy resin, a urethane resin, an acrylic resin, a silicone resin, a phenol resin, a melamine resin, an alkyd resin, a urea resin, an acrylic resin, and an unsaturated polyester resin. Can be mentioned. Further, as the thermoplastic resin, vinyl acetate resin, polyvinyl butyral resin, vinyl chloride resin, styrene resin, vinyl methyl ether resin, urethane resin, glybutyl resin, ethylene-vinyl acetate copolymer resin, Styrene-butadiene copolymer resin, polybutadiene resin, polyvinyl alcohol resin and the like can be mentioned.

さらに、上記光硬化性樹脂とは、光重合性モノマーや光重合性オリゴマーと、光重合開始剤等を混合したものであり、光照射によって重合反応が開始されるものをいう。光重合性モノマーや光重合性オリゴマーとしては、例えば、アクリル酸エステル類モノマー、メタクリル酸エステル類モノマー、エーテルアクリレート、ウレタンアクリレート、エポキシアクリレート、アミノ樹脂アクリレート、不飽和ポリエステル、シリコーン系樹脂等を挙げることができる。   Furthermore, the photocurable resin is a mixture of a photopolymerizable monomer or a photopolymerizable oligomer, a photopolymerization initiator, and the like, and refers to a resin in which a polymerization reaction is started by light irradiation. Examples of the photopolymerizable monomer and the photopolymerizable oligomer include acrylate monomers, methacrylate monomers, ether acrylate, urethane acrylate, epoxy acrylate, amino resin acrylate, unsaturated polyester, and silicone resin. Can be.

また、上記樹脂2bとして、導電性粒子3bの表面や電極表面を活性化させる表面活性化効果を有する表面活性化樹脂を用いてもよい。表面活性化樹脂とは、導電性粒子3bの表面や電極表面を還元する還元性を有するものをいい、例えば、加熱によって有機酸を遊離する樹脂をいう。このような表面活性化樹脂を用いれば、導電性粒子3b表面や電極表面を活性化し、電極表面での導電性粒子3bの「ぬれ」を良好にするとともに、導電性粒子3b同士が結合しやすくなってより大きな粒径の導電性粒子を得ることができる。   In addition, as the resin 2b, a surface activation resin having a surface activation effect of activating the surface of the conductive particles 3b or the electrode surface may be used. The surface-activated resin refers to a resin having a reducing property for reducing the surface of the conductive particles 3b and the electrode surface, and for example, a resin that releases an organic acid by heating. When such a surface activation resin is used, the surface of the conductive particles 3b and the surface of the electrode are activated to improve the “wetting” of the conductive particles 3b on the electrode surface, and the conductive particles 3b are easily bonded to each other. As a result, conductive particles having a larger particle size can be obtained.

上記表面活性化樹脂としては、例えば、エポキシ系樹脂であるペンギンセメントRD−0205,RD−0128(サンスター技研社製)等を挙げることができる。   Examples of the surface activation resin include penguin cements RD-0205 and RD-0128 (manufactured by Sunstar Giken), which are epoxy resins.

なお、上記導電性接着剤1bに含まれる上記導電性粒子3bの融点、及び樹脂2bの硬化温度は、示差熱(DSC)分析によって決定している。すなわち、示差熱分析によって得られたスペクトルのピークに基づいて、導電性粒子3bの融点及び樹脂2bの硬化温度を決定し、用いる導電性粒子3b及び樹脂2bの組み合わせを決定している。   The melting point of the conductive particles 3b contained in the conductive adhesive 1b and the curing temperature of the resin 2b are determined by differential thermal (DSC) analysis. That is, the melting point of the conductive particles 3b and the curing temperature of the resin 2b are determined based on the peak of the spectrum obtained by the differential thermal analysis, and the combination of the conductive particles 3b and the resin 2b to be used is determined.

また、上記導電性接着剤1bには、導電性粒子3b及び樹脂2b以外の物質として、フラックス、表面活性剤、硬化剤等を含んでいてもよい。   Further, the conductive adhesive 1b may contain a flux, a surfactant, a curing agent, and the like as substances other than the conductive particles 3b and the resin 2b.

上記フラックスは、例えば、樹脂、無機酸、アミン、有機酸等の還元剤である。このフラックスは、溶融した導電性粒子3b表面、ランド11表面や電極パッド21表面の酸化物等の表面異物を、還元することによって可溶性かつ可融性の化合物に変えて除去する。また、表面異物が除去されて清浄になった上記導電性粒子3b表面、ランド11表面や電極パッド21表面を被覆して、再び酸化することを防止する。   The flux is a reducing agent such as a resin, an inorganic acid, an amine, and an organic acid. This flux removes surface foreign substances such as oxides on the surface of the conductive particles 3b, the surface of the land 11, and the surface of the electrode pad 21 by reducing to a soluble and fusible compound by reduction. Further, the surface of the conductive particles 3b, the surface of the land 11, and the surface of the electrode pad 21 which have been cleaned by removing the surface foreign matter are covered, thereby preventing oxidation again.

上記フラックスは、導電性粒子3bの融点よりも高く、かつ対向電極間を接合するために行う加熱処理時の最高温度よりも低い沸点を有していることが好ましい。上記導電性接着剤1b中のフラックスの含有率は、20重量%以下であることが好ましく、10重量%以下であることがより好ましい。フラックスの含有率が20重量%を超えると、ボイドが発生しやすく、接合部での接合特性が低下する原因となって好ましくない。   It is preferable that the flux has a boiling point higher than the melting point of the conductive particles 3b and lower than the maximum temperature at the time of the heat treatment performed for joining the opposing electrodes. The content of the flux in the conductive adhesive 1b is preferably 20% by weight or less, more preferably 10% by weight or less. If the content of the flux exceeds 20% by weight, voids are likely to be generated, which is unfavorable because the bonding characteristics at the bonding portion are deteriorated.

また、上記表面活性剤は、例えば、エチレングリコールやグリセリン等のグリコール;マレイン酸やアジピン酸等の有機酸;アミン、アミノ酸、アミンの有機酸塩、アミンのハロゲン塩等のアミン系化合物;無機酸や無機酸塩等であり、溶融した導電性粒子3b表面、ランド11表面や電極パッド21表面の酸化物等の表面異物を溶解して除去する。   Examples of the surfactant include glycols such as ethylene glycol and glycerin; organic acids such as maleic acid and adipic acid; amine compounds such as amines, amino acids, organic acid salts of amines and halogen salts of amines; Or inorganic acid salts, and dissolves and removes surface foreign substances such as oxides on the surfaces of the molten conductive particles 3b, lands 11, and electrode pads 21.

上記表面活性剤は、導電性粒子3bの融点よりも高い沸点を有し、かつ対向電極間を接合するために行う加熱処理時の最高温度よりも低い温度で蒸発するものであることが好ましい。上記導電性接着剤1b中の表面活性剤の含有率は、20重量%以下であることが好ましく、10重量%以下であることがより好ましい。   It is preferable that the surface active agent has a boiling point higher than the melting point of the conductive particles 3b, and evaporates at a temperature lower than the maximum temperature at the time of the heat treatment for joining the opposed electrodes. The content of the surfactant in the conductive adhesive 1b is preferably 20% by weight or less, more preferably 10% by weight or less.

さらに、上記硬化剤は、例えば、ジシアンジアミドやイミダゾール等であり、エポキシ樹脂の硬化を促進する。   Further, the curing agent is, for example, dicyandiamide or imidazole, and accelerates curing of the epoxy resin.

なお、上記にて説明した導電性接着剤を用いた対向電極間の電気的接合は、半導体チップ20上の電極パッド21と、基板10上のランド11との接合等のチップ接合用に限定されるものではない。すなわち、ランド11が形成されている側とは反対側の基板10表面における接着、光学部品等の電子部品と基板10との接合、液晶ディスプレイのTCP(Tape Carrier Package)実装等、種々の電気的接合に利用することができる。特に、融点の低い導電性粒子3bを含む導電性接着剤を用いれば、発光ダイオードや光受光素子等の耐熱性の低い電子部品にも適用することができる。さらに、光学部品の接合を上記の手法で行えば、曇りが発生することがないため透明度を確保することができる。   The electrical bonding between the opposing electrodes using the conductive adhesive described above is limited to chip bonding such as bonding between the electrode pads 21 on the semiconductor chip 20 and the lands 11 on the substrate 10. Not something. That is, various electrical connections such as bonding on the surface of the substrate 10 opposite to the side on which the lands 11 are formed, bonding of the electronic components such as optical components to the substrate 10, mounting of a liquid crystal display on a TCP (Tape Carrier Package), and the like. It can be used for joining. In particular, if a conductive adhesive containing the conductive particles 3b having a low melting point is used, the present invention can be applied to electronic parts having low heat resistance such as light emitting diodes and light receiving elements. Further, if the optical components are joined by the above-described method, the transparency can be ensured because no fogging occurs.

このように、上記にて説明した対向電極間の電気的な接続方法は、半導体チップに設けられた電極や、光学部品やディスクリート部品等の各種電子部品の電極、配線基板に設けられた電極等、種々の外部接続用の端子に用いることができる。
〔実施例〕
以下、本発明の実施例について、図4ないし図10に基づいて説明する。本実施例では、導電性接着剤に含まれる導電性粒子としてSn/48Inの組成を有する合金を用い、樹脂として熱硬化性樹脂を用いたが、本発明はこれに限定されるものではない。
As described above, the electrical connection method between the counter electrodes described above is based on the electrodes provided on the semiconductor chip, the electrodes of various electronic components such as optical components and discrete components, the electrodes provided on the wiring board, and the like. Can be used for various terminals for external connection.
〔Example〕
Hereinafter, an embodiment of the present invention will be described with reference to FIGS. In this embodiment, an alloy having a composition of Sn / 48In was used as the conductive particles contained in the conductive adhesive, and a thermosetting resin was used as the resin, but the present invention is not limited to this.

<示差熱(DSC)分析>
導電性接着剤に用いる以下の導電性粒子及び樹脂、さらに、以下の導電性接着剤のDSC分析(商品名DSC7、Perkin Elmer社製を使用)を行った。
<Differential heat (DSC) analysis>
The following conductive particles and resin used in the conductive adhesive and the following conductive adhesive were subjected to DSC analysis (trade name: DSC7, manufactured by Perkin Elmer).

(1)導電性粒子
導電性粒子として、Sn/48Inの組成を有する合金を用い、昇温速度5℃/secにてDSC分析を行った。その結果を図4に示す。図4に基づいて解析した結果、上記合金の溶融開始温度は115.93℃であり、スペクトルのピーク位置での温度は119.45℃であった。
(1) Conductive Particles As the conductive particles, an alloy having a composition of Sn / 48In was used, and a DSC analysis was performed at a heating rate of 5 ° C./sec. The result is shown in FIG. As a result of analysis based on FIG. 4, the melting start temperature of the alloy was 115.93 ° C., and the temperature at the peak position of the spectrum was 119.45 ° C.

(2)樹脂
樹脂として、還元性を有していないエポキシ系樹脂であるエピクロンSR−A(大日本インキ化学工業社製)、還元性を有しているエポキシ系樹脂であるペンギンセメントRD−0205(サンスター技研社製)について、昇温速度5℃/secにてDSC分析を行った。その結果を図5(a)(b)に示す。図5(a)(b)に基づいて解析し、上記の各樹脂の硬化開始温度及び、スペクトルのピーク位置での温度(ピーク温度)を求めた結果を表2に示す。
(2) Resin Epicron SR-A (manufactured by Dainippon Ink and Chemicals, Inc.), which is an epoxy resin having no reducing property, and Penguin Cement RD-0205, which is an epoxy resin having reducing property, as a resin. (Sunstar Giken Co., Ltd.) was subjected to DSC analysis at a heating rate of 5 ° C./sec. The results are shown in FIGS. Table 2 shows the results obtained by analyzing based on FIGS. 5A and 5B and obtaining the curing start temperature of each resin and the temperature at the peak position of the spectrum (peak temperature).

Figure 2004260131
Figure 2004260131

(3)導電性接着剤
導電性粒子の体積含有率が50%となるように、上記(1)の合金(0.843g)と、上記(2)のエピクロンSR−A(0.157g)とを混合して導電性接着剤を調製し、該導電性接着剤について、昇温速度5℃/secにてDSC分析を行った。その結果を図6に示す。図6に示すように、この導電性接着剤内での合金の溶融温度は、スペクトルのピーク位置で、119℃であり、図4に示す結果とほぼ一致した。
(3) Conductive adhesive The alloy (0.843 g) of the above (1) and the epicron SR-A (0.157 g) of the above (2) such that the volume content of the conductive particles becomes 50%. Was mixed to prepare a conductive adhesive, and the conductive adhesive was subjected to DSC analysis at a temperature rising rate of 5 ° C./sec. FIG. 6 shows the result. As shown in FIG. 6, the melting temperature of the alloy in this conductive adhesive was 119 ° C. at the peak position of the spectrum, which almost coincided with the result shown in FIG.

〔実施例1〕
10mm×10mm×1mmの銅板を、エメリー紙で研磨した後、さらにバフで研磨した。次いで、研磨した一対の銅板を、6%塩酸による脱酸、及び、アセトンを用いた超音波洗浄による脱脂によって表面処理を行った。次いで、導電性粒子の体積含有率が50%となるように、導電性粒子としてのSn/48In合金と、樹脂としてのエピクロンSR−Aとを混合して、導電性接着剤を調製し、この導電性接着剤を一方の銅板表面に塗布し、さらにこの銅板表面にステンレス球のスペーサーを配置した。続いて、銅板上に塗布された導電性接着剤上に他方の銅板を配置し、この銅板上に100gの分銅をのせて数秒放置した後、分銅をおろして、得られた試料(以下、加熱前試料)の導電性接着剤内の導電性粒子を観察した。その結果を図7に示す。
[Example 1]
A 10 mm × 10 mm × 1 mm copper plate was polished with emery paper and further polished with a buff. Next, the polished pair of copper plates was subjected to surface treatment by deoxidation with 6% hydrochloric acid and degreasing by ultrasonic cleaning using acetone. Next, Sn / 48In alloy as the conductive particles and Epicron SR-A as the resin were mixed to prepare a conductive adhesive so that the volume content of the conductive particles became 50%. A conductive adhesive was applied to one copper plate surface, and a stainless steel spacer was disposed on the copper plate surface. Subsequently, the other copper plate was placed on the conductive adhesive applied on the copper plate, a 100 g weight was placed on the copper plate, left for a few seconds, and then the weight was lowered. The conductive particles in the conductive adhesive of the (pre-sample) were observed. FIG. 7 shows the result.

さらに、上記加熱前試料をリフロー炉に入れ、図8に示す温度プロファイルに従って、開始1分間にて140℃まで加熱し、その後3分間140℃を維持し、次の1分間にて180℃までさらに加熱して、180℃の温度を1時間維持した。これにより、導電性粒子を溶融させ、その後樹脂を硬化させて、加熱後試料を得た。その結果を図9(a)(b)に示す。   Further, the sample before heating is placed in a reflow furnace, and heated to 140 ° C. in one minute according to the temperature profile shown in FIG. Heated and maintained at a temperature of 180 ° C. for 1 hour. Thereby, the conductive particles were melted, and thereafter, the resin was cured, and a sample after heating was obtained. The results are shown in FIGS.

図7に示すように、導電性接着剤が硬化する前の加熱前試料では、導電性粒子が樹脂内に一様に分散されていることがわかる。これに対し、図9(a)に示すように、導電性接着剤が硬化した加熱後試料では、銅板表面上に導電性粒子が「ぬれ」て、銅板と導電性粒子とが接続されていることがわかる。また、図9(b)に示すように、加熱によって導電性粒子が溶融したことにより、導電性粒子間に金属結合が生じていることがわかる。これにより、一対の銅板間が導電性粒子によって導通されることがわかる。   As shown in FIG. 7, in the pre-heating sample before the conductive adhesive is cured, it can be seen that the conductive particles are uniformly dispersed in the resin. On the other hand, as shown in FIG. 9A, in the heated sample in which the conductive adhesive is cured, the conductive particles are "wet" on the copper plate surface, and the copper plate and the conductive particles are connected. You can see that. Further, as shown in FIG. 9B, it can be seen that the metal particles are generated between the conductive particles due to the melting of the conductive particles by heating. Thereby, it turns out that conduction between a pair of copper plates is carried out by conductive particles.

〔実施例2〕
導電性粒子の体積含有率が30%となるように、導電性粒子としてのSn/48In合金と、樹脂としてペンギンセメントRD−0205とを混合した導電性接着剤を用いた以外は、上記実施例1と同様の手法で加熱後試料を得た。
[Example 2]
The above examples except that a conductive adhesive obtained by mixing Sn / 48In alloy as the conductive particles and penguin cement RD-0205 as the resin was used so that the volume content of the conductive particles was 30%. A sample after heating was obtained in the same manner as in Example 1.

その結果を図10(a)(b)に示す。図10(a)(b)に示されるように、一対の銅板間に、導電性粒子の溶融によって導通経路が形成されて接合されていることがわかる。   The results are shown in FIGS. As shown in FIGS. 10A and 10B, it can be seen that a conduction path is formed and joined between the pair of copper plates by melting the conductive particles.

〔実施例3〕
導電性接着剤に含まれる樹脂の表面活性化効果について調べるために、銅板間の距離を300μmに制御して、導電性粒子の溶融状態を調べた。
[Example 3]
In order to examine the surface activation effect of the resin contained in the conductive adhesive, the molten state of the conductive particles was examined while controlling the distance between the copper plates to 300 μm.

すなわち、10mm×10mm×1mmの銅板を、実施例1と同様の手法で研磨し、また表面処理を行った。次いで、導電性粒子の体積含有率が50%となるように、導電性粒子としてのSn/48In合金(0.8454g)と、樹脂としてのペンギンセメントRD−0205(0.1546g)とを混合して、導電性接着剤を調製し、この導電性接着剤を一方の銅板表面に塗布した。さらに、銅板間の距離を300μmに制御するために、この銅板表面に、球径300μmのステンレス球のスペーサーを配置した。続いて、銅板上に塗布された導電性接着剤上に他方の銅板を配置し、この銅板上に100gの分銅をのせて数秒放置した後、分銅をおろして、実施例1と同様に、リフロー炉に入れ、図8に示す温度プロファイルにて加熱を行って、加熱後試料を得た。その結果を図11に示す。   That is, a 10 mm × 10 mm × 1 mm copper plate was polished and surface-treated in the same manner as in Example 1. Next, Sn / 48In alloy (0.8454 g) as the conductive particles and penguin cement RD-0205 (0.1546 g) as the resin were mixed so that the volume content of the conductive particles became 50%. Thus, a conductive adhesive was prepared, and the conductive adhesive was applied to one copper plate surface. Furthermore, in order to control the distance between the copper plates to 300 μm, a stainless steel spacer having a ball diameter of 300 μm was arranged on the surface of the copper plate. Subsequently, the other copper plate was placed on the conductive adhesive applied on the copper plate, and a 100 g weight was placed on the copper plate and left for several seconds. Then, the weight was lowered and reflow was performed in the same manner as in Example 1. The sample was placed in a furnace and heated according to the temperature profile shown in FIG. 8 to obtain a sample after heating. The result is shown in FIG.

図11に示すように、銅板間に供給された導電性接着剤内には、粒径が相対的に大きな導電性粒子が見られ、また、銅板表面に導電性粒子による「ぬれ」の現象が見られることから、加熱処理により、導電性粒子同士が結合したと考えることができる。従って、導電性接着剤に含まれる樹脂が還元性を有する場合、銅板表面や導電性粒子表面を活性化して、導電性粒子同士の結合や、導電性粒子と銅板表面との結合を容易にすることができると考えられる。   As shown in FIG. 11, conductive particles having a relatively large particle size are found in the conductive adhesive supplied between the copper plates, and a phenomenon of “wetting” due to the conductive particles on the copper plate surface is observed. From the above, it can be considered that the conductive particles are bonded to each other by the heat treatment. Therefore, when the resin contained in the conductive adhesive has a reducing property, the surface of the copper plate or the surface of the conductive particles is activated to facilitate the bonding between the conductive particles and the bonding between the conductive particles and the surface of the copper plate. It is thought that it is possible.

〔実施例4〕
次に、図12ないし図14に基づいて実施例4を説明する。
[Example 4]
Next, a fourth embodiment will be described with reference to FIGS.

本実施例では、半導体装置において半導体チップ20を実装するのに、導電性接着剤1bの供給形態が図2の場合と異なっている。図2には導電性接着剤1bが最初にランド11上のみに塗布され、電極パッド21とランド11とを導電性接着剤1bを介して対向するように配置する電極配置ステップ(端子配置ステップ)において対向電極間のみに導電性接着剤1bが配置されている状態となっている様子が示されている。これに対して本実施例では、電極配置ステップにおいて、図12(a)に示すように、導電性接着剤1bが、対向する電極パッド21とランド11との間を含んで、基板10と半導体チップ20とで挟まれる対向空間全体に充填される状態となっているように、導電性接着剤1bを供給する。   In the present embodiment, the mounting mode of the conductive adhesive 1b for mounting the semiconductor chip 20 in the semiconductor device is different from that in the case of FIG. In FIG. 2, an electrode arranging step (terminal arranging step) in which the conductive adhesive 1b is first applied only on the land 11, and the electrode pad 21 and the land 11 are arranged so as to face each other via the conductive adhesive 1b. 2 shows a state in which the conductive adhesive 1b is arranged only between the opposing electrodes. On the other hand, in this embodiment, in the electrode disposing step, as shown in FIG. 12A, the conductive adhesive 1b includes the space between the opposing electrode pad 21 and the land 11 and the substrate 10 and the semiconductor. The conductive adhesive 1b is supplied so as to fill the entire opposing space sandwiched between the chips 20.

上述した図12(a)のように導電性接着剤1bが充填されるよう、導電性接着剤1bを最初にランド11上のみではなく、基板10上の半導体チップ20と互いに対向することになる面のほぼ全体に塗布する。これは、図2(a)を用いて基板10又は基板10のランド11上に導電性接着剤1bを供給することを説明した箇所の、基板10上への供給に相当する。導電性接着剤1bを基板10上に塗布した後、電極配置ステップで半導体チップ20を基板10に対向するよう配置して、導電性接着剤1bが基板10と半導体チップ20とで挟まれる対向空間全体に充填される状態となるようにする。   First, the conductive adhesive 1b is opposed not only to the land 11 but also to the semiconductor chip 20 on the substrate 10 so that the conductive adhesive 1b is filled as shown in FIG. Apply to almost the entire surface. This is equivalent to supplying the conductive adhesive 1b to the substrate 10 or the land 11 of the substrate 10 with reference to FIG. After the conductive adhesive 1b is applied on the substrate 10, the semiconductor chip 20 is disposed so as to face the substrate 10 in an electrode arrangement step, and the conductive adhesive 1b is sandwiched between the substrate 10 and the semiconductor chip 20. The whole is filled.

次いで、導電性接着剤1bの導電性粒子3bの融点よりも高く、かつ導電性接着剤1bの樹脂2bが硬化しない温度に加熱して、導電性粒子3bを「ぬれ」を利用して対向電極面に凝集させ、対向電極間の距離を狭めて導通をとるというようなプロセスを経る。好ましくは、より高い温度で樹脂2bを硬化させる。ここで、図12(a)で説明した導電性接着剤1bの供給形態以外、材料、加熱プロファイル、対向電極間の距離の制御(以後、高さ制御と称する)などのプロセスは前述の実施例と同一である。これにより、図12(b)の半導体装置が製造される。基板10と半導体チップ20との間には導電性樹脂層1aが形成されるが、このうち電極パッド21とランド11との間の領域を導電物質3aが占めており、電極パッド21−ランド11間領域以外の領域を硬化樹脂2aが占めている。   Then, the conductive particles 3b are heated to a temperature higher than the melting point of the conductive particles 3b of the conductive adhesive 1b and at which the resin 2b of the conductive adhesive 1b is not cured, and the conductive particles 3b are counter-electrode utilizing "wetting". The particles are aggregated on a surface, and a process is performed in which the distance between the opposing electrodes is reduced to achieve conduction. Preferably, the resin 2b is cured at a higher temperature. Here, in addition to the supply form of the conductive adhesive 1b described with reference to FIG. Is the same as Thereby, the semiconductor device of FIG. 12B is manufactured. A conductive resin layer 1a is formed between the substrate 10 and the semiconductor chip 20, and a region between the electrode pad 21 and the land 11 is occupied by the conductive material 3a. The cured resin 2a occupies a region other than the inter-region.

なお、基板10と半導体チップ20とで挟まれる対向空間全体に充填される状態となるように導電性接着剤1bを供給するのに、予め基板10と半導体チップ20とを互いに対向させておき、それによって形成された対向空間全体に導電性接着剤1bを注入する方法もある。しかし、基板10と半導体チップ20とのギャップが小さくなるように行われる実装工程においては、上記の注入よりも、前述のように予め基板10上への塗布を行うプリコートの方が、導電性接着剤1bの供給が簡単であり、かつ、確実に対向空間全体を導電性接着剤1bで充填することができる。   In order to supply the conductive adhesive 1b so as to be filled in the entire opposing space sandwiched between the substrate 10 and the semiconductor chip 20, the substrate 10 and the semiconductor chip 20 are previously opposed to each other, There is also a method of injecting the conductive adhesive 1b into the entire opposing space formed thereby. However, in the mounting process performed so that the gap between the substrate 10 and the semiconductor chip 20 is reduced, the pre-coating, which is performed on the substrate 10 in advance as described above, is more conductive adhesive than the above-described injection. The supply of the agent 1b is simple, and the entire opposing space can be reliably filled with the conductive adhesive 1b.

次に、図12の実装プロセスの確認実験を行った。基板として、配線幅318μm、配線間隔318μmの銅ストライプ配線が形成されたガラスエポキシ基板(FR4)を2枚用い、それらの間に導電性接着剤1bを塗布した。ここではガラスエポキシ基板の互いに対向する銅パッドが端子である。導電性接着剤1bは低融点金属フィラー含有樹脂であり、その導電性粒子3bとしてSn/48Inの組成を有する合金を用い、樹脂2bとしてペンギンセメントRD−0205を用いた。導電性接着剤1bの加熱には、図8の加熱プロファイルを用いた。高さ制御については、導電性粒子3bの溶融前は300μmとし、導電性粒子3bの溶融後は100μmとした。   Next, an experiment for confirming the mounting process of FIG. 12 was performed. As a substrate, two glass epoxy substrates (FR4) on which a copper stripe wiring having a wiring width of 318 μm and a wiring interval of 318 μm were formed, and a conductive adhesive 1b was applied between them. Here, the copper pads facing each other on the glass epoxy substrate are the terminals. The conductive adhesive 1b is a resin containing a low-melting-point metal filler. An alloy having a composition of Sn / 48In was used as the conductive particles 3b, and penguin cement RD-0205 was used as the resin 2b. The heating profile of FIG. 8 was used for heating the conductive adhesive 1b. The height was controlled to 300 μm before the conductive particles 3b were melted, and to 100 μm after the conductive particles 3b were melted.

図13に、図12に示す実装プロセスによって得られた試料のX線透過写真を示す。図13(a)は導電性接着剤1bの塗布前における試料を基板面に垂直な方向に見た状態、図13(b)は導電性接着剤1bの塗布後における試料を基板面に垂直な方向に見た状態、図13(c)は実装後の試料を基板面に垂直な方向に見た状態をそれぞれ示す。なお、図13(a)のaは配線幅を示し、bは配線間隔を示す。また、図14(a)に、実装後の試料の断面写真を示す。図14(b)は、図14(a)の断面を図で示したものである。   FIG. 13 shows an X-ray transmission photograph of the sample obtained by the mounting process shown in FIG. FIG. 13A shows a state in which the sample before applying the conductive adhesive 1b is viewed in a direction perpendicular to the substrate surface, and FIG. 13B shows a sample after applying the conductive adhesive 1b which is perpendicular to the substrate surface. FIG. 13C shows the mounted sample as viewed in a direction perpendicular to the substrate surface. In FIG. 13A, a indicates a wiring width, and b indicates a wiring interval. FIG. 14A shows a cross-sectional photograph of the sample after mounting. FIG. 14B is a diagram showing a cross section of FIG. 14A.

これから分かるように、基板同士で挟まれる対向空間全体に充填した導電性接着剤1b(低融点金属フィラー含有樹脂)を加熱・加圧制御することにより、導電性接着剤1bの硬化後は、銅部分に金属粒子が凝集し、銅以外の箇所には樹脂のみが存在する。このようにして銅パッド間がSn/In合金により金属接合され、隣接する銅パッド間には樹脂材料で絶縁がとられるとともに、十分な接着強度が確保された接着接合が達成される。   As can be seen, by controlling the heating and pressurization of the conductive adhesive 1b (resin containing a low-melting-point metal filler) filled in the entire opposing space sandwiched between the substrates, after the conductive adhesive 1b is cured, copper is hardened. The metal particles are aggregated in the portion, and only the resin exists in a portion other than the copper. In this way, the copper pads are metal-joined by the Sn / In alloy, and the adjacent copper pads are insulated with the resin material, and the adhesive bonding with sufficient adhesive strength is achieved.

以上のように、本実施例におけるプロセスにより、導電性接着剤1bの塗布工程が簡単になってプロセスが大幅に削減されるとともに、金属接合と樹脂接合とが同時に達成されることになる。従って、バンプ形成や、導電性ペーストの部分的塗布、電極部分への開口部形成などの微細加工が不要となる。また、異方性導電樹脂を基板全面に塗布してパッド部分のみの導通を得るにも関わらず、十分な導通が得られるとともに、導通すべきでない隣接電極間の絶縁性が十分となる。   As described above, the process in the present embodiment simplifies the step of applying the conductive adhesive 1b, greatly reduces the process, and simultaneously achieves metal bonding and resin bonding. Therefore, fine processing such as formation of bumps, partial application of a conductive paste, and formation of openings in electrode portions becomes unnecessary. In addition, even though the anisotropic conductive resin is applied to the entire surface of the substrate to obtain conduction only in the pad portion, sufficient conduction can be obtained, and insulation between adjacent electrodes that should not be conducted becomes sufficient.

また、上記プロセスにより、実装工程では低温加工が可能となる。   Further, the above process enables low-temperature processing in the mounting step.

本発明は、エレクトロニクス実装に広く用いることができ、特に携帯電話やPDAにみられるモバイル機器などにおいて液晶表示パネルの周辺部における接合などに用いることができる。   INDUSTRIAL APPLICABILITY The present invention can be widely used for electronics packaging, and particularly for bonding at the peripheral portion of a liquid crystal display panel in mobile devices such as mobile phones and PDAs.

本発明にかかる半導体装置の実装方法によって、対向電極間が接合された半導体装置の一実施の形態を示す断面図である。FIG. 3 is a cross-sectional view showing one embodiment of a semiconductor device in which opposing electrodes are joined by the semiconductor device mounting method according to the present invention. (a)(b)は、上記対向電極間の接合方法を示す断面図である。(A) (b) is sectional drawing which shows the joining method between the said opposing electrodes. (a)〜(c)は、上記対向電極間に供給された導電性接着剤による接合メカニズムを説明する断面図である。(A)-(c) is sectional drawing explaining the joining mechanism by the conductive adhesive supplied between the said opposing electrodes. Sn/48In組成を有する合金の示差熱分析スペクトルである。4 is a differential thermal analysis spectrum of an alloy having a Sn / 48In composition. (a)は、エピクロンSR−Aの示差熱分析スペクトルであり、(b)は、ペンギンセメントRD−0205の示差熱分析スペクトルである。(A) is a differential thermal analysis spectrum of Epicron SR-A, and (b) is a differential thermal analysis spectrum of penguin cement RD-0205. Sn/48In組成を有する合金と、エピクロンSR−Aとを含む導電性接着剤の示差熱分析スペクトルである。5 is a differential thermal analysis spectrum of a conductive adhesive containing an alloy having a Sn / 48In composition and Epicron SR-A. 実施例1にて得た加熱前試料の断面観察画像である。4 is a cross-sectional observation image of a sample before heating obtained in Example 1. リフロー炉で設定される温度変化を示すグラフである。It is a graph which shows the temperature change set in a reflow furnace. (a)(b)は、実施例1にて得た加熱後試料の断面観察画像であり、(a)は、導電性粒子間及び銅板と導電性粒子との間の接合を示し、(b)は導電性粒子間の接合を示す。(A) and (b) are cross-sectional observation images of the sample after heating obtained in Example 1, and (a) shows bonding between the conductive particles and between the copper plate and the conductive particles. ) Indicates bonding between conductive particles. (a)(b)は、実施例2にて得た加熱後試料の断面観察画像である。(A) and (b) are cross-sectional observation images of the sample after heating obtained in Example 2. 実施例3にて得た加熱後試料の断面観察画像である。9 is a cross-sectional observation image of a sample after heating obtained in Example 3. (a)および(b)は、実施例4にかかる半導体装置の実装方法によって対向電極間を接合する状態を示す断面図である。FIGS. 11A and 11B are cross-sectional views illustrating a state in which opposing electrodes are joined by a semiconductor device mounting method according to a fourth embodiment. (a)ないし(c)は、図12に示す実装プロセスによって得られた試料のX線透過写真である。(A) to (c) are X-ray transmission photographs of the sample obtained by the mounting process shown in FIG. (a)は、図12に示す実装プロセスによって得られた実装後の試料の断面写真であり、(b)は(a)の写真を説明する断面図である。(A) is a cross-sectional photograph of the sample after mounting obtained by the mounting process shown in FIG. 12, and (b) is a cross-sectional view explaining the photograph of (a).

符号の説明Explanation of reference numerals

1a 導電性樹脂層
1b 導電性接着剤(異方性導電樹脂)
2a 硬化樹脂
2b 樹脂(樹脂成分)
3a 導電物質
3b 導電性粒子
10 基板(配線基板)
11 回路電極(ランド、端子)
20 半導体チップ
21 電極パッド(端子)
1a conductive resin layer 1b conductive adhesive (anisotropic conductive resin)
2a Cured resin 2b Resin (resin component)
3a conductive material 3b conductive particles 10 substrate (wiring substrate)
11 Circuit electrodes (lands, terminals)
20 semiconductor chip 21 electrode pad (terminal)

Claims (6)

少なくとも導電性粒子と該導電性粒子の融点で硬化が完了しない樹脂成分とを含む異方性導電樹脂を介して、端子同士を互いに対向させて配置する端子配置ステップと、
上記導電性粒子の融点よりも高く、かつ上記樹脂成分の硬化が完了しない温度に、上記異方性導電樹脂を加熱する樹脂加熱ステップと、
上記樹脂成分を硬化させる樹脂成分硬化ステップとを含むことを特徴とする端子間の接続方法。
Via an anisotropic conductive resin containing at least conductive particles and a resin component whose curing is not completed at the melting point of the conductive particles, a terminal arrangement step of arranging the terminals to face each other,
A resin heating step of heating the anisotropic conductive resin to a temperature higher than the melting point of the conductive particles, and to a temperature at which the curing of the resin component is not completed,
And a resin component curing step of curing the resin component.
上記樹脂加熱ステップにて、上記異方性導電樹脂を介して、両端子を圧接させることを特徴とする請求項1記載の端子間の接続方法。   2. The method according to claim 1, wherein in the resin heating step, both terminals are pressed into contact with each other via the anisotropic conductive resin. 上記樹脂成分は、端子表面及び導電性粒子表面のうちの少なくとも一方を還元する還元性を有する樹脂であることを特徴とする請求項1又は2記載の端子間の接続方法。   3. The method according to claim 1, wherein the resin component is a resin having a reducing property for reducing at least one of a terminal surface and a conductive particle surface. 上記端子配置ステップにおける上記異方性導電樹脂が、対向する各上記端子間を含んで、各上記端子が設けられている部材同士で挟まれる対向空間全体に充填されている状態となるように、上記異方性導電樹脂を供給することを特徴とする請求項1ないし3のいずれかに記載の端子間の接続方法。   The anisotropic conductive resin in the terminal arrangement step, including between the opposing terminals, so as to fill the entire opposing space sandwiched between members provided with the terminals, 4. The method according to claim 1, wherein the anisotropic conductive resin is supplied. 半導体チップの電極パッドと、該電極パッドに対応するように設けられた配線基板上の回路電極とを、少なくとも導電性粒子と樹脂成分とを含む異方性導電樹脂を介して対向するように配置する電極配置ステップと、
上記導電性粒子の融点よりも高く、かつ上記樹脂成分の硬化が完了しない温度に、上記異方性導電樹脂を加熱する樹脂加熱ステップと、
上記樹脂成分を硬化させる樹脂成分硬化ステップとを含むことを特徴とする半導体装置の実装方法。
An electrode pad of a semiconductor chip and a circuit electrode on a wiring board provided corresponding to the electrode pad are arranged so as to face each other via an anisotropic conductive resin containing at least conductive particles and a resin component. Electrode placement step to be performed,
A resin heating step of heating the anisotropic conductive resin to a temperature higher than the melting point of the conductive particles, and to a temperature at which the curing of the resin component is not completed,
A resin component curing step of curing the resin component.
上記電極配置ステップにおける上記異方性導電樹脂が、対向する上記電極パッドと上記回路電極との間を含んで、上記半導体チップと上記配線基板とで挟まれる対向空間全体に充填されている状態となるように、上記異方性導電樹脂を供給することを特徴とする請求項5に記載の半導体装置の実装方法。   A state in which the anisotropic conductive resin in the electrode arrangement step is filled in the entire opposing space sandwiched between the semiconductor chip and the wiring board, including between the opposing electrode pads and the circuit electrodes; The method according to claim 5, wherein the anisotropic conductive resin is supplied.
JP2003359611A 2003-02-05 2003-10-20 Terminal connection method and semiconductor device mounting method Expired - Lifetime JP3769688B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2003359611A JP3769688B2 (en) 2003-02-05 2003-10-20 Terminal connection method and semiconductor device mounting method

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2003028647 2003-02-05
JP2003359611A JP3769688B2 (en) 2003-02-05 2003-10-20 Terminal connection method and semiconductor device mounting method

Publications (2)

Publication Number Publication Date
JP2004260131A true JP2004260131A (en) 2004-09-16
JP3769688B2 JP3769688B2 (en) 2006-04-26

Family

ID=33133691

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2003359611A Expired - Lifetime JP3769688B2 (en) 2003-02-05 2003-10-20 Terminal connection method and semiconductor device mounting method

Country Status (1)

Country Link
JP (1) JP3769688B2 (en)

Cited By (77)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006147968A (en) * 2004-11-24 2006-06-08 Matsushita Electric Ind Co Ltd Method and device for flip chip packaging
WO2006064831A1 (en) * 2004-12-17 2006-06-22 Matsushita Electric Industrial Co., Ltd. Resin composition for flip-chip packaging and resin composition for forming bump
WO2006082909A1 (en) * 2005-02-03 2006-08-10 Matsushita Electric Industrial Co., Ltd. Flip chip mounting body and method for mounting such flip chip mounting body and bump forming method
WO2006095677A1 (en) * 2005-03-09 2006-09-14 Matsushita Electric Industrial Co., Ltd. Composition having metal particles dispersed therein, and method for flip chip mounting and method for forming bump using the same
JP2006245189A (en) * 2005-03-02 2006-09-14 Matsushita Electric Ind Co Ltd Flip-chip mounting method and mounting structure of semiconductor device
WO2006098268A1 (en) * 2005-03-16 2006-09-21 Matsushita Electric Industrial Co., Ltd. Method of bump forming and method of flip chip mounting using conductive grain
WO2006098187A1 (en) * 2005-03-15 2006-09-21 Matsushita Electric Industrial Co., Ltd. Flip chip mounting method and bump forming method
WO2006098196A1 (en) * 2005-03-17 2006-09-21 Matsushita Electric Industrial Co., Ltd. Package equipped with semiconductor chip and method for producing same
WO2006101155A1 (en) * 2005-03-24 2006-09-28 Matsushita Electric Industrial Co., Ltd. Electronic component mounting method and electronic circuit device
WO2006103948A1 (en) 2005-03-29 2006-10-05 Matsushita Electric Industrial Co., Ltd. Flip chip mounting method and bump forming method
WO2006103918A1 (en) * 2005-03-28 2006-10-05 Matsushita Electric Industrial Co., Ltd. Flip chip mounting body, flip chip mounting method and flip chip mounting apparatus
WO2006103949A1 (en) 2005-03-29 2006-10-05 Matsushita Electric Industrial Co., Ltd. Flip chip mounting method and method for connecting substrates
WO2006109407A1 (en) * 2005-04-06 2006-10-19 Matsushita Electric Industrial Co., Ltd. Flip chip mounting method and bump forming method
WO2006123478A1 (en) * 2005-05-17 2006-11-23 Matsushita Electric Industrial Co., Ltd. Flip chip mounting method, flip chip mounting apparatus and flip chip mounting body
WO2006123554A1 (en) * 2005-05-17 2006-11-23 Matsushita Electric Industrial Co., Ltd. Flip-chip mounting body and flip-chip mounting method
WO2006126361A1 (en) * 2005-05-24 2006-11-30 Matsushita Electric Industrial Co., Ltd. Method of forming solder bump and method of mounting semiconductor device
WO2007029452A1 (en) * 2005-09-02 2007-03-15 Matsushita Electric Industrial Co., Ltd. Method of forming conductive pattern and wiring board
JP2007081198A (en) * 2005-09-15 2007-03-29 Matsushita Electric Ind Co Ltd Method for conductive connection between terminals
JP2007095763A (en) * 2005-09-27 2007-04-12 Matsushita Electric Ind Co Ltd Flip chip mounting method and method of connection between substrates
JP2007157373A (en) * 2005-12-01 2007-06-21 Fuji Electric Holdings Co Ltd Bonding material for mounting electronic component
JP2007214559A (en) * 2006-01-12 2007-08-23 Matsushita Electric Ind Co Ltd Inter-wiring method of connection
WO2007096946A1 (en) * 2006-02-21 2007-08-30 Matsushita Electric Industrial Co., Ltd. Package and method for producing same
JP2007277526A (en) * 2006-03-17 2007-10-25 Matsushita Electric Ind Co Ltd Conductive resin composition, connection method between electrodes using the composition and method for electrically connecting electronic component to printed circuit board
WO2007125789A1 (en) * 2006-04-27 2007-11-08 Panasonic Corporation Connection structure and method of producing the same
WO2007125650A1 (en) 2006-04-27 2007-11-08 Sumitomo Bakelite Co., Ltd. Adhesive tape, semiconductor package, and electronic device
WO2008023452A1 (en) 2006-08-25 2008-02-28 Sumitomo Bakelite Co., Ltd. Adhesive tape, joint structure, and semiconductor package
JP2008140834A (en) * 2006-11-30 2008-06-19 Matsushita Electric Ind Co Ltd Conductive bump and formation method therefor, and semiconductor device using the formation method
JP2008226946A (en) * 2007-03-09 2008-09-25 Nec Corp Semiconductor device and its manufacturing method
WO2009044695A1 (en) * 2007-10-05 2009-04-09 Nec Corporation Method and the like for mounting electronic component
US7537961B2 (en) 2006-03-17 2009-05-26 Panasonic Corporation Conductive resin composition, connection method between electrodes using the same, and electric connection method between electronic component and circuit substrate using the same
JP2010010383A (en) * 2008-06-26 2010-01-14 National Institute Of Advanced Industrial & Technology Method of bonding semiconductor chip electrode
WO2010027017A1 (en) 2008-09-05 2010-03-11 住友ベークライト株式会社 Electroconductive connecting material, method for connecting terminals to each other using the electroconductive connecting material, and method for manufacturing connecting terminal
US7759162B2 (en) 2004-09-15 2010-07-20 Panasonic Corporation Flip chip mounting process and flip chip assembly
US7799607B2 (en) 2004-09-03 2010-09-21 Panasonic Corporation Process for forming bumps and solder bump
JP2010258030A (en) * 2009-04-21 2010-11-11 Nec Corp Method of manufacturing semiconductor device
WO2011001837A1 (en) * 2009-07-02 2011-01-06 シャープ株式会社 Solar battery cell with wiring sheet, solar battery module, and method for producing solar battery cell with wiring sheet
KR101013553B1 (en) * 2008-10-08 2011-02-14 주식회사 하이닉스반도체 Semiconductor package and method of manufacturing the same
US7905011B2 (en) 2006-03-16 2011-03-15 Panasonic Corporation Bump forming method and bump forming apparatus
WO2011040442A1 (en) 2009-09-30 2011-04-07 住友ベークライト株式会社 Conductive connection material, method for connection between terminals and method for manufacturing connecting terminal
WO2011052615A1 (en) 2009-10-28 2011-05-05 住友ベークライト株式会社 Conductive connection material and terminal-to-terminal connection method using same
WO2011077679A1 (en) 2009-12-24 2011-06-30 住友ベークライト株式会社 Conductive connection material, electronic component producing method, and electronic member and electronic component with conductive connection material
WO2011093162A1 (en) 2010-01-29 2011-08-04 住友ベークライト株式会社 Conductive connection sheet, method for connecting terminals, method for forming connection terminal, semiconductor device, and electronic device
WO2011155521A1 (en) * 2010-06-10 2011-12-15 株式会社メイコー Lead-free composite
US8120188B2 (en) 2006-11-28 2012-02-21 Panasonic Corporation Electronic component mounting structure and method for manufacturing the same
WO2012049984A1 (en) * 2010-10-14 2012-04-19 日立化成工業株式会社 Solar cell module
WO2012057075A1 (en) * 2010-10-29 2012-05-03 シャープ株式会社 Back contact solar cell with wiring board, and method for manufacturing back contact solar cell with wiring board
WO2012102080A1 (en) * 2011-01-27 2012-08-02 日立化成工業株式会社 Solar cell module and method of manufacturing thereof
US8297488B2 (en) 2006-03-28 2012-10-30 Panasonic Corporation Bump forming method using self-assembling resin and a wall surface
US8575751B2 (en) 2007-03-23 2013-11-05 Panasonic Corporation Conductive bump, method for producing the same, and electronic component mounted structure
JP5368299B2 (en) * 2007-04-27 2013-12-18 パナソニック株式会社 Electronic component mounting body and method for manufacturing electronic component with solder bump
JP2014027237A (en) * 2012-07-30 2014-02-06 Osaka Univ Method for mounting electronic component, circuit board and solder joint part, and printed wiring board with connection layer and sheet-like junction member
JP2016164873A (en) * 2015-02-19 2016-09-08 積水化学工業株式会社 Method for manufacturing connection structure
JP2016178313A (en) * 2014-07-22 2016-10-06 積水化学工業株式会社 Method for producing connection structure
WO2017033930A1 (en) * 2015-08-24 2017-03-02 積水化学工業株式会社 Electroconductive material and connection structure
JP2017045541A (en) * 2015-08-24 2017-03-02 積水化学工業株式会社 Conducive material and connection structure
JP2017045607A (en) * 2015-08-26 2017-03-02 積水化学工業株式会社 Conducive material, connection structure, and manufacturing method of connection structure
WO2017082277A1 (en) * 2015-11-10 2017-05-18 積水化学工業株式会社 Method for producing connected structure, fixing jig, and fixing jig provided with cover member
KR20170058884A (en) 2014-09-18 2017-05-29 세키스이가가쿠 고교가부시키가이샤 Electrically conductive paste, joined structure, and method for manufacturing joined structure
KR20180011041A (en) 2015-05-25 2018-01-31 세키스이가가쿠 고교가부시키가이샤 Electroconductive material and connection structure
KR20180035135A (en) * 2016-09-28 2018-04-05 엘지디스플레이 주식회사 Method of installing electronic component, Junction structure of the same, Substrate device, Display device and Display system
JP2018056278A (en) * 2016-09-28 2018-04-05 エルジー ディスプレイ カンパニー リミテッド Implementation method of electronic component, joint structure of electronic component, substrate device, display device, and display system
KR20180042148A (en) 2015-08-24 2018-04-25 세키스이가가쿠 고교가부시키가이샤 Conductive material and connection structure
KR20180043193A (en) 2015-08-24 2018-04-27 세키스이가가쿠 고교가부시키가이샤 Conductive material and connection structure
KR20180105110A (en) 2016-01-25 2018-09-27 세키스이가가쿠 고교가부시키가이샤 Conductive material and connection structure
TWI653454B (en) 2016-05-11 2019-03-11 南韓商Isc股份有限公司 Test socket and conductive particle
KR20190051893A (en) 2016-09-09 2019-05-15 세키스이가가쿠 고교가부시키가이샤 Conductive material, connection structure, and manufacturing method of connection structure
KR20190065186A (en) 2016-10-06 2019-06-11 세키스이가가쿠 고교가부시키가이샤 Conductive material, connection structure, and manufacturing method of connection structure
KR20190128106A (en) 2017-03-23 2019-11-15 세키스이가가쿠 고교가부시키가이샤 Conductive Material and Connecting Structure
KR20200015445A (en) 2017-06-01 2020-02-12 세키스이가가쿠 고교가부시키가이샤 Conductive Material and Connecting Structure
JP2020510117A (en) * 2017-04-26 2020-04-02 ノピオン カンパニー リミテッド Method of manufacturing anisotropic conductive adhesive including gapper and method of mounting component using gapper
JP2020510741A (en) * 2017-02-06 2020-04-09 ノピオン カンパニー リミテッド Method for producing anisotropic conductive adhesive for fine pitch and anisotropic conductive adhesive for fine pitch produced by the method
KR20200098485A (en) 2017-12-22 2020-08-20 세키스이가가쿠 고교가부시키가이샤 Solder particles, conductive material, storage method of solder particles, storage method of conductive material, manufacturing method of conductive material, connection structure and manufacturing method of connection structure
KR20200098486A (en) 2017-12-22 2020-08-20 세키스이가가쿠 고교가부시키가이샤 Solder particles, conductive material, storage method of solder particles, storage method of conductive material, manufacturing method of conductive material, connection structure and manufacturing method of connection structure
WO2021079812A1 (en) * 2019-10-25 2021-04-29 デクセリアルズ株式会社 Method for producing connected structure, anisotropic electroconductive bonding material, and connected structure
CN114049845A (en) * 2021-11-23 2022-02-15 Tcl华星光电技术有限公司 Bonding method of display and display
WO2024070369A1 (en) * 2022-09-28 2024-04-04 デクセリアルズ株式会社 Connected structure
WO2024070317A1 (en) * 2022-09-28 2024-04-04 デクセリアルズ株式会社 Connection structure

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
TWI473245B (en) 2006-10-31 2015-02-11 Sumitomo Bakelite Co Semiconductor electronic component and semiconductor device using the same

Cited By (136)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7799607B2 (en) 2004-09-03 2010-09-21 Panasonic Corporation Process for forming bumps and solder bump
US8012801B2 (en) 2004-09-15 2011-09-06 Panasonic Corporation Flip chip mounting process and flip chip assembly
US7759162B2 (en) 2004-09-15 2010-07-20 Panasonic Corporation Flip chip mounting process and flip chip assembly
JP2006147968A (en) * 2004-11-24 2006-06-08 Matsushita Electric Ind Co Ltd Method and device for flip chip packaging
JP4543899B2 (en) * 2004-11-24 2010-09-15 パナソニック株式会社 Flip chip mounting method and flip chip mounting apparatus
WO2006064831A1 (en) * 2004-12-17 2006-06-22 Matsushita Electric Industrial Co., Ltd. Resin composition for flip-chip packaging and resin composition for forming bump
US8709293B2 (en) 2004-12-17 2014-04-29 Panasonic Corporation Flip-chip mounting resin composition and bump forming resin composition
KR101215243B1 (en) * 2004-12-17 2012-12-24 파나소닉 주식회사 Flip-chip mounting resin composition and bump forming resin composition
KR101084777B1 (en) 2005-02-03 2011-11-21 파나소닉 주식회사 Flip chip mounting body and method for mounting such flip chip mounting body and bump forming method
US7754529B2 (en) 2005-02-03 2010-07-13 Panasonic Corporation Flip chip mounting body and method for mounting such flip chip mounting body and bump forming method
WO2006082909A1 (en) * 2005-02-03 2006-08-10 Matsushita Electric Industrial Co., Ltd. Flip chip mounting body and method for mounting such flip chip mounting body and bump forming method
JP2006245189A (en) * 2005-03-02 2006-09-14 Matsushita Electric Ind Co Ltd Flip-chip mounting method and mounting structure of semiconductor device
WO2006095677A1 (en) * 2005-03-09 2006-09-14 Matsushita Electric Industrial Co., Ltd. Composition having metal particles dispersed therein, and method for flip chip mounting and method for forming bump using the same
WO2006098187A1 (en) * 2005-03-15 2006-09-21 Matsushita Electric Industrial Co., Ltd. Flip chip mounting method and bump forming method
US8691683B2 (en) 2005-03-15 2014-04-08 Panasonic Corporation Flip-chip mounting method and bump formation method
JP4495158B2 (en) * 2005-03-15 2010-06-30 パナソニック株式会社 Flip chip mounting method, bump forming method, flip chip mounting apparatus, and bump forming apparatus
US7927997B2 (en) 2005-03-15 2011-04-19 Panasonic Corporation Flip-chip mounting method and bump formation method
JPWO2006098187A1 (en) * 2005-03-15 2008-08-21 松下電器産業株式会社 Flip chip mounting method and bump forming method
WO2006098268A1 (en) * 2005-03-16 2006-09-21 Matsushita Electric Industrial Co., Ltd. Method of bump forming and method of flip chip mounting using conductive grain
US7649267B2 (en) 2005-03-17 2010-01-19 Panasonic Corporation Package equipped with semiconductor chip and method for producing same
WO2006098196A1 (en) * 2005-03-17 2006-09-21 Matsushita Electric Industrial Co., Ltd. Package equipped with semiconductor chip and method for producing same
WO2006101155A1 (en) * 2005-03-24 2006-09-28 Matsushita Electric Industrial Co., Ltd. Electronic component mounting method and electronic circuit device
US7921551B2 (en) 2005-03-24 2011-04-12 Panasonic Corporation Electronic component mounting method
WO2006103918A1 (en) * 2005-03-28 2006-10-05 Matsushita Electric Industrial Co., Ltd. Flip chip mounting body, flip chip mounting method and flip chip mounting apparatus
US7732920B2 (en) 2005-03-28 2010-06-08 Panasonic Corporation Flip chip mounting body, flip chip mounting method and flip chip mounting apparatus
US8071425B2 (en) 2005-03-28 2011-12-06 Panasonic Corporation Flip chip mounting body, flip chip mounting method and flip chip mounting apparatus
US7531387B1 (en) 2005-03-29 2009-05-12 Panasonic Corporation Flip chip mounting method and bump forming method
US7638883B2 (en) 2005-03-29 2009-12-29 Panasonic Corporation Flip chip mounting method and bump forming method
KR101109221B1 (en) 2005-03-29 2012-01-30 파나소닉 주식회사 Flip chip mounting method and bump forming method
WO2006103948A1 (en) 2005-03-29 2006-10-05 Matsushita Electric Industrial Co., Ltd. Flip chip mounting method and bump forming method
WO2006103949A1 (en) 2005-03-29 2006-10-05 Matsushita Electric Industrial Co., Ltd. Flip chip mounting method and method for connecting substrates
US7531385B1 (en) 2005-03-29 2009-05-12 Panasonic Corporation Flip chip mounting method and method for connecting substrates
US7820021B2 (en) 2005-03-29 2010-10-26 Panasonic Corporation Flip chip mounting method and method for connecting substrates
KR101181140B1 (en) * 2005-03-29 2012-09-14 파나소닉 주식회사 Flip chip mounting method and method for connecting substrates
KR101175482B1 (en) 2005-04-06 2012-08-20 파나소닉 주식회사 flip chip mounting method and bump forming method
US8283246B2 (en) 2005-04-06 2012-10-09 Panasonic Corporation Flip chip mounting method and bump forming method
WO2006109407A1 (en) * 2005-04-06 2006-10-19 Matsushita Electric Industrial Co., Ltd. Flip chip mounting method and bump forming method
US7951700B2 (en) 2005-04-06 2011-05-31 Panasonic Corporation Flip chip mounting method and bump forming method
WO2006123554A1 (en) * 2005-05-17 2006-11-23 Matsushita Electric Industrial Co., Ltd. Flip-chip mounting body and flip-chip mounting method
WO2006123478A1 (en) * 2005-05-17 2006-11-23 Matsushita Electric Industrial Co., Ltd. Flip chip mounting method, flip chip mounting apparatus and flip chip mounting body
US7875496B2 (en) 2005-05-17 2011-01-25 Panasonic Corporation Flip chip mounting method, flip chip mounting apparatus and flip chip mounting body
US7611040B2 (en) 2005-05-24 2009-11-03 Panasonic Corporation Method for forming solder bump and method for mounting semiconductor device using a solder powder resin composition
WO2006126361A1 (en) * 2005-05-24 2006-11-30 Matsushita Electric Industrial Co., Ltd. Method of forming solder bump and method of mounting semiconductor device
US7640659B2 (en) 2005-09-02 2010-01-05 Panasonic Corporation Method for forming conductive pattern and wiring board
CN101238763B (en) * 2005-09-02 2010-05-19 松下电器产业株式会社 Method of forming conductive pattern and wiring board
WO2007029452A1 (en) * 2005-09-02 2007-03-15 Matsushita Electric Industrial Co., Ltd. Method of forming conductive pattern and wiring board
JP2007081198A (en) * 2005-09-15 2007-03-29 Matsushita Electric Ind Co Ltd Method for conductive connection between terminals
JP2007095763A (en) * 2005-09-27 2007-04-12 Matsushita Electric Ind Co Ltd Flip chip mounting method and method of connection between substrates
JP4710513B2 (en) * 2005-09-27 2011-06-29 パナソニック株式会社 Flip chip mounting method and inter-board connection method
JP2007157373A (en) * 2005-12-01 2007-06-21 Fuji Electric Holdings Co Ltd Bonding material for mounting electronic component
JP2007214559A (en) * 2006-01-12 2007-08-23 Matsushita Electric Ind Co Ltd Inter-wiring method of connection
JPWO2007096946A1 (en) * 2006-02-21 2009-07-09 パナソニック株式会社 Mounted body and manufacturing method thereof
JP5085932B2 (en) * 2006-02-21 2012-11-28 パナソニック株式会社 Mounted body and manufacturing method thereof
US7713787B2 (en) 2006-02-21 2010-05-11 Panasonic Corporation Mounted body and method for manufacturing the same
WO2007096946A1 (en) * 2006-02-21 2007-08-30 Matsushita Electric Industrial Co., Ltd. Package and method for producing same
US8039307B2 (en) 2006-02-21 2011-10-18 Panasonic Corporation Mounted body and method for manufacturing the same
US7905011B2 (en) 2006-03-16 2011-03-15 Panasonic Corporation Bump forming method and bump forming apparatus
US7714444B2 (en) 2006-03-17 2010-05-11 Panasonic Corporation Conductive resin composition, connection method between electrodes using the same, and electric connection method between electronic component and circuit substrate using the same
US7537961B2 (en) 2006-03-17 2009-05-26 Panasonic Corporation Conductive resin composition, connection method between electrodes using the same, and electric connection method between electronic component and circuit substrate using the same
JP2007277526A (en) * 2006-03-17 2007-10-25 Matsushita Electric Ind Co Ltd Conductive resin composition, connection method between electrodes using the composition and method for electrically connecting electronic component to printed circuit board
US8297488B2 (en) 2006-03-28 2012-10-30 Panasonic Corporation Bump forming method using self-assembling resin and a wall surface
WO2007125650A1 (en) 2006-04-27 2007-11-08 Sumitomo Bakelite Co., Ltd. Adhesive tape, semiconductor package, and electronic device
US8097958B2 (en) 2006-04-27 2012-01-17 Panasonic Corporation Flip chip connection structure having powder-like conductive substance and method of producing the same
WO2007125789A1 (en) * 2006-04-27 2007-11-08 Panasonic Corporation Connection structure and method of producing the same
WO2008023452A1 (en) 2006-08-25 2008-02-28 Sumitomo Bakelite Co., Ltd. Adhesive tape, joint structure, and semiconductor package
US7838984B2 (en) 2006-08-25 2010-11-23 Sumitomo Bakelite Company, Ltd. Adhesive tape, connected structure and semiconductor package
US8120188B2 (en) 2006-11-28 2012-02-21 Panasonic Corporation Electronic component mounting structure and method for manufacturing the same
JP2008140834A (en) * 2006-11-30 2008-06-19 Matsushita Electric Ind Co Ltd Conductive bump and formation method therefor, and semiconductor device using the formation method
JP4702271B2 (en) * 2006-11-30 2011-06-15 パナソニック株式会社 Method for forming conductive bump
JP2008226946A (en) * 2007-03-09 2008-09-25 Nec Corp Semiconductor device and its manufacturing method
US8575751B2 (en) 2007-03-23 2013-11-05 Panasonic Corporation Conductive bump, method for producing the same, and electronic component mounted structure
JP5368299B2 (en) * 2007-04-27 2013-12-18 パナソニック株式会社 Electronic component mounting body and method for manufacturing electronic component with solder bump
US9426899B2 (en) 2007-04-27 2016-08-23 Panasonic Intellectual Property Management Co., Ltd. Electronic component assembly
JP5560713B2 (en) * 2007-10-05 2014-07-30 日本電気株式会社 Electronic component mounting method, etc.
WO2009044695A1 (en) * 2007-10-05 2009-04-09 Nec Corporation Method and the like for mounting electronic component
JP2010010383A (en) * 2008-06-26 2010-01-14 National Institute Of Advanced Industrial & Technology Method of bonding semiconductor chip electrode
WO2010027017A1 (en) 2008-09-05 2010-03-11 住友ベークライト株式会社 Electroconductive connecting material, method for connecting terminals to each other using the electroconductive connecting material, and method for manufacturing connecting terminal
KR20110063483A (en) 2008-09-05 2011-06-10 스미토모 베이클리트 컴퍼니 리미티드 Electroconductive connecting material, method for connecting terminals to each other using the electroconductive connecting material, and method for manufacturing connecting terminal
KR101013553B1 (en) * 2008-10-08 2011-02-14 주식회사 하이닉스반도체 Semiconductor package and method of manufacturing the same
JP2010258030A (en) * 2009-04-21 2010-11-11 Nec Corp Method of manufacturing semiconductor device
WO2011001837A1 (en) * 2009-07-02 2011-01-06 シャープ株式会社 Solar battery cell with wiring sheet, solar battery module, and method for producing solar battery cell with wiring sheet
JPWO2011001837A1 (en) * 2009-07-02 2012-12-13 シャープ株式会社 Solar cell with wiring sheet, solar cell module, and method for manufacturing solar cell with wiring sheet
WO2011040442A1 (en) 2009-09-30 2011-04-07 住友ベークライト株式会社 Conductive connection material, method for connection between terminals and method for manufacturing connecting terminal
WO2011052615A1 (en) 2009-10-28 2011-05-05 住友ベークライト株式会社 Conductive connection material and terminal-to-terminal connection method using same
WO2011077679A1 (en) 2009-12-24 2011-06-30 住友ベークライト株式会社 Conductive connection material, electronic component producing method, and electronic member and electronic component with conductive connection material
JP4924773B2 (en) * 2009-12-24 2012-04-25 住友ベークライト株式会社 Conductive connection material, method for manufacturing electronic component, electronic member with conductive connection material, and electronic component
WO2011093162A1 (en) 2010-01-29 2011-08-04 住友ベークライト株式会社 Conductive connection sheet, method for connecting terminals, method for forming connection terminal, semiconductor device, and electronic device
WO2011155521A1 (en) * 2010-06-10 2011-12-15 株式会社メイコー Lead-free composite
JPWO2012049984A1 (en) * 2010-10-14 2014-02-24 日立化成株式会社 Solar cell module
WO2012049984A1 (en) * 2010-10-14 2012-04-19 日立化成工業株式会社 Solar cell module
WO2012057075A1 (en) * 2010-10-29 2012-05-03 シャープ株式会社 Back contact solar cell with wiring board, and method for manufacturing back contact solar cell with wiring board
JP2012099565A (en) * 2010-10-29 2012-05-24 Sharp Corp Backside contact solar battery cell having wiring board, solar cell module, and manufacturing method of backside contact solar battery cell having wiring board
JP6060684B2 (en) * 2011-01-27 2017-01-18 日立化成株式会社 Manufacturing method of solar cell module
WO2012102080A1 (en) * 2011-01-27 2012-08-02 日立化成工業株式会社 Solar cell module and method of manufacturing thereof
US9837572B2 (en) 2011-01-27 2017-12-05 Hitachi Chemical Company, Ltd. Solar cell module and method of manufacturing thereof
JPWO2012102080A1 (en) * 2011-01-27 2014-06-30 日立化成株式会社 Solar cell module and manufacturing method thereof
JP2014027237A (en) * 2012-07-30 2014-02-06 Osaka Univ Method for mounting electronic component, circuit board and solder joint part, and printed wiring board with connection layer and sheet-like junction member
US9807889B2 (en) 2012-07-30 2017-10-31 Osaka University Method of mounting electronic component to circuit board
JP2016178313A (en) * 2014-07-22 2016-10-06 積水化学工業株式会社 Method for producing connection structure
KR20170058884A (en) 2014-09-18 2017-05-29 세키스이가가쿠 고교가부시키가이샤 Electrically conductive paste, joined structure, and method for manufacturing joined structure
JP2016164873A (en) * 2015-02-19 2016-09-08 積水化学工業株式会社 Method for manufacturing connection structure
KR20180011041A (en) 2015-05-25 2018-01-31 세키스이가가쿠 고교가부시키가이샤 Electroconductive material and connection structure
JP2017045541A (en) * 2015-08-24 2017-03-02 積水化学工業株式会社 Conducive material and connection structure
WO2017033930A1 (en) * 2015-08-24 2017-03-02 積水化学工業株式会社 Electroconductive material and connection structure
KR20180042148A (en) 2015-08-24 2018-04-25 세키스이가가쿠 고교가부시키가이샤 Conductive material and connection structure
JPWO2017033930A1 (en) * 2015-08-24 2018-06-07 積水化学工業株式会社 Conductive material and connection structure
KR20180043193A (en) 2015-08-24 2018-04-27 세키스이가가쿠 고교가부시키가이샤 Conductive material and connection structure
JP2017045607A (en) * 2015-08-26 2017-03-02 積水化学工業株式会社 Conducive material, connection structure, and manufacturing method of connection structure
JPWO2017082277A1 (en) * 2015-11-10 2018-08-30 積水化学工業株式会社 Manufacturing method of connection structure, fixing jig, and fixing jig provided with lid member
WO2017082277A1 (en) * 2015-11-10 2017-05-18 積水化学工業株式会社 Method for producing connected structure, fixing jig, and fixing jig provided with cover member
KR20180105110A (en) 2016-01-25 2018-09-27 세키스이가가쿠 고교가부시키가이샤 Conductive material and connection structure
TWI653454B (en) 2016-05-11 2019-03-11 南韓商Isc股份有限公司 Test socket and conductive particle
KR20190051893A (en) 2016-09-09 2019-05-15 세키스이가가쿠 고교가부시키가이샤 Conductive material, connection structure, and manufacturing method of connection structure
KR20220146692A (en) 2016-09-09 2022-11-01 세키스이가가쿠 고교가부시키가이샤 Conductive material, connection structure body, and connection structure body production method
KR102010852B1 (en) * 2016-09-28 2019-08-14 엘지디스플레이 주식회사 Method of installing electronic component, Junction structure of the same, Substrate device, Display device and Display system
US10281780B2 (en) 2016-09-28 2019-05-07 Lg Display Co., Ltd. Method of installing electronic component, display device and display system
US10901277B2 (en) 2016-09-28 2021-01-26 Lg Display Co., Ltd. Display device, display system, and method of installing electronic component
US10451934B2 (en) 2016-09-28 2019-10-22 Lg Display Co., Ltd. Method of installing electronic component, display device and display system
KR20180035135A (en) * 2016-09-28 2018-04-05 엘지디스플레이 주식회사 Method of installing electronic component, Junction structure of the same, Substrate device, Display device and Display system
JP2018056278A (en) * 2016-09-28 2018-04-05 エルジー ディスプレイ カンパニー リミテッド Implementation method of electronic component, joint structure of electronic component, substrate device, display device, and display system
US11112658B2 (en) 2016-09-28 2021-09-07 Lg Display Co., Ltd. Method of installing electronic component, display device and display system
KR20190065186A (en) 2016-10-06 2019-06-11 세키스이가가쿠 고교가부시키가이샤 Conductive material, connection structure, and manufacturing method of connection structure
US11101052B2 (en) 2016-10-06 2021-08-24 Sekisui Chemical Co., Ltd. Conductive material, connection structure and method for producing connection structure
JP2020510741A (en) * 2017-02-06 2020-04-09 ノピオン カンパニー リミテッド Method for producing anisotropic conductive adhesive for fine pitch and anisotropic conductive adhesive for fine pitch produced by the method
KR20190128106A (en) 2017-03-23 2019-11-15 세키스이가가쿠 고교가부시키가이샤 Conductive Material and Connecting Structure
JP2020510117A (en) * 2017-04-26 2020-04-02 ノピオン カンパニー リミテッド Method of manufacturing anisotropic conductive adhesive including gapper and method of mounting component using gapper
KR20200015445A (en) 2017-06-01 2020-02-12 세키스이가가쿠 고교가부시키가이샤 Conductive Material and Connecting Structure
KR20200098486A (en) 2017-12-22 2020-08-20 세키스이가가쿠 고교가부시키가이샤 Solder particles, conductive material, storage method of solder particles, storage method of conductive material, manufacturing method of conductive material, connection structure and manufacturing method of connection structure
KR20200098485A (en) 2017-12-22 2020-08-20 세키스이가가쿠 고교가부시키가이샤 Solder particles, conductive material, storage method of solder particles, storage method of conductive material, manufacturing method of conductive material, connection structure and manufacturing method of connection structure
WO2021079812A1 (en) * 2019-10-25 2021-04-29 デクセリアルズ株式会社 Method for producing connected structure, anisotropic electroconductive bonding material, and connected structure
JP2021068842A (en) * 2019-10-25 2021-04-30 デクセリアルズ株式会社 Manufacturing method of connection body, anisotropic conductive bonding material, and connection body
JP7032367B2 (en) 2019-10-25 2022-03-08 デクセリアルズ株式会社 Manufacturing method of connecting body, anisotropic conductive bonding material, and connecting body
JP7432633B2 (en) 2019-10-25 2024-02-16 デクセリアルズ株式会社 Connection body manufacturing method, anisotropic conductive bonding material, and connection body
CN114049845A (en) * 2021-11-23 2022-02-15 Tcl华星光电技术有限公司 Bonding method of display and display
WO2024070369A1 (en) * 2022-09-28 2024-04-04 デクセリアルズ株式会社 Connected structure
WO2024070317A1 (en) * 2022-09-28 2024-04-04 デクセリアルズ株式会社 Connection structure

Also Published As

Publication number Publication date
JP3769688B2 (en) 2006-04-26

Similar Documents

Publication Publication Date Title
JP3769688B2 (en) Terminal connection method and semiconductor device mounting method
KR101057608B1 (en) How to connect between terminals and mounting method of semiconductor device
US7537961B2 (en) Conductive resin composition, connection method between electrodes using the same, and electric connection method between electronic component and circuit substrate using the same
US9190381B2 (en) Connection method, connection structure, insulating adhesive member, electronic component having adhesive member, and method for manufacturing same
US7736950B2 (en) Flip chip interconnection
JP4294722B2 (en) Connection structure and manufacturing method thereof
US20090203170A1 (en) Flip chip mounting method, flip chip mounting apparatus and flip chip mounting body
TW200816335A (en) Production method of semiconductor device and bonding film
JP2009099669A (en) Mounting structure of electronic component, and mounting method thereof
KR102006637B1 (en) Method Of Forming Bump And Semiconductor device including The Same
JP2010062504A (en) Compression bonding device, compression bonding method, package, and pressing plate
JP2004128056A (en) Semiconductor device and its manufacturing method
KR20070047443A (en) Conductive adhesive and connection method between terminals, and packaging method of semiconductor device employing it
JP2009009994A (en) Semiconductor device, and manufacturing method thereof
JP2008187122A (en) Electrode connection device and electrode connecting method
Suppiah et al. A review: Application of adhesive bonding on semiconductor interconnection joints
JP5608504B2 (en) Connection method and connection structure
KR101182714B1 (en) Method for packaging semiconductors using anisotropic conductive adhesive
JP2008244277A (en) Semiconductor device and manufacturing method therefor
JP2007214559A (en) Inter-wiring method of connection
KR20110049509A (en) Anisotropic conductive adhesive, method for packaging semiconductors and wafer level package using the same
KR100742654B1 (en) Conductive adhesive having multiple layer structure and connection method between terminals, and packaging method of semiconductor device employing it
KR101637401B1 (en) Conductive adhesive, method for packaging semiconductors and wafer level package using the same
Lu et al. Electrically conductive adhesives–a lead-free alternative
JP3454223B2 (en) Method for manufacturing semiconductor device

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20041028

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20050831

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20050906

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20051101

RD02 Notification of acceptance of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7422

Effective date: 20051101

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20051122

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20051222

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20060124

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20060125

R150 Certificate of patent or registration of utility model

Ref document number: 3769688

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313113

Free format text: JAPANESE INTERMEDIATE CODE: R313117

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100217

Year of fee payment: 4

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100217

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110217

Year of fee payment: 5

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120217

Year of fee payment: 6

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120217

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130217

Year of fee payment: 7

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130217

Year of fee payment: 7

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130217

Year of fee payment: 7

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130217

Year of fee payment: 7

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130217

Year of fee payment: 7

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313114

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130217

Year of fee payment: 7

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140217

Year of fee payment: 8

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

EXPY Cancellation because of completion of term