JP2004258492A - Wavelength-multiplexing demultiplexer - Google Patents

Wavelength-multiplexing demultiplexer Download PDF

Info

Publication number
JP2004258492A
JP2004258492A JP2003051165A JP2003051165A JP2004258492A JP 2004258492 A JP2004258492 A JP 2004258492A JP 2003051165 A JP2003051165 A JP 2003051165A JP 2003051165 A JP2003051165 A JP 2003051165A JP 2004258492 A JP2004258492 A JP 2004258492A
Authority
JP
Japan
Prior art keywords
diffraction grating
wavelength
light
signal light
division multiplexing
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2003051165A
Other languages
Japanese (ja)
Other versions
JP3933062B2 (en
Inventor
Takemasa Ushiwatari
剛真 牛渡
Mitsuki Hirano
光樹 平野
Hironori Yasuda
裕紀 安田
Tomiya Abe
富也 阿部
Yuzo Ito
雄三 伊藤
Tatsuya Sugita
辰哉 杉田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hitachi Cable Ltd
Original Assignee
Hitachi Cable Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Cable Ltd filed Critical Hitachi Cable Ltd
Priority to JP2003051165A priority Critical patent/JP3933062B2/en
Publication of JP2004258492A publication Critical patent/JP2004258492A/en
Application granted granted Critical
Publication of JP3933062B2 publication Critical patent/JP3933062B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Landscapes

  • Optical Integrated Circuits (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a wavelength-multiplexing demultiplexer which is of a simple structure and inexpensive, having a large tolerance without the need for precise alignment when assembled, and is capable of accurately demultiplexing signal light even when the wavelengths of the signal light vary. <P>SOLUTION: The wavelength-multiplexing demultiplexer comprising a light incident part 11, a diffraction grating 13 for diffracting wavelength-multiplexed signal light made incident to the light incident part 11 and demultiplexing the wavelength-multiplexed signal light into each wavelength, and an optical waveguide 14 for guiding the signal light demultiplexed from the diffraction grating 13. The diffraction grating 13 is further provided with a spread angle reducing means for reducing a spread angle of this demultiplexed signal light in the direction of engraving line 65 and orthogonal thereto, and cylindrical lenses 12 are located between the diffraction grating 13 and the light incident part as well as between the diffraction grating 13 and the optical waveguide 14. <P>COPYRIGHT: (C)2004,JPO&NCIPI

Description

【0001】
【発明の属する技術分野】
本発明は、低密度波長多重光伝送用分波器(CWDM)に係り、特に回折格子を用いた波長多重分波器に関するものである。
【0002】
【従来の技術】
近年の情報化社会の発展に伴い、大容量の通信が進み、伝送媒体も電気信号から光信号へと移り、さらに光の波長多重技術を使った通信方式が使われ始めている。特に、幹線系では高密度波長多重方式(DWDM、Dense Wave Division Multiplexing)で、テラビット級の高速ネットワークが実用化されつつある。この通信システムは、温度制御された波長可変レーザを光源とし、複数の波長を束ねるための光合波器によって1本ケーブル中に数十本の波長多重化された光を伝送する。伝送された先では、多重化された光を光分波器に通し、元の1波ずつの光に分離した後、光−電気変換することで信号を得る。しかしながら、レーザの温度による発振波長ずれを小さくするために、精密な温度コントロールが必要であり、高コストのシステムとなる。
【0003】
一方、アクセス系やLAN系などの幹線系よりも川下では波長多重密度のより小さい低密度波長多重光通信(CWDM、Coarse Wave Division Multiplexing)が検討されている。このシステムは、光源の温度変動による波長ずれに対応した光デバイスを構成要素としており、安定化のための温度調節が不要であり、低コストでネットワークを構築可能である。低密度波長多重光通信では、一般に波長間隔は約20nm、光源の波長ずれ幅は約5nmが要求され、分波器はこの波長ずれに対応する必要がある。さらに、幹線系よりも川下で使用されることから、幹線系で主流のSM(シングルモード)光ファイバ以外にMM(マルチモード)光ファイバへの対応も必要である。そのために、DWDMシステムで主に使用されている位相差を用いたAWG(Arrayed Waveguide Grating)等の分波器は使用できない。
【0004】
低密度多重光通信に対応した分波器としては、フィルタを用いる方法が提案されているが、波長数と同じ、または、波長数より1つ少ない種類の高価な多層膜フィルタが必要であり、実装コスト、製造コストとも高価になる問題がある。
【0005】
それに対して、回折格子を用いた分波器は、1つの回折格子で数波長の分波が可能であり、多層膜フィルタ方式に比べて低コストである。回折格子は、その表面に細かな溝が数千〜数万本形成されており、回折光が互いに干渉することで、ある特定の波長を特定の方向へ出射することが可能となる。また、回折格子として作製されたマスターを用いて、転写技術によりレプリカ形成も可能となるため、このシステムは大量生産に適している。
【0006】
図6に従来の分波器の構成例を示す(特許文献1)。
【0007】
図6に示す分波器は、回折格子4、レンズ3,6、導波路アレー2より構成されている。光ファイバアレイ(光入射部)1に入射された信号光は、レンズ3,6により平行光とされ回折格子4に入射される。すると、回折格子4により光信号はその波長に応じた方向に回折される。回折光は、その後、レンズ3,6に再び入射され、それぞれの波長の光路に応じて配置された受光器(図示せず)へと導かれるようになっている。
【0008】
入射部に入射され、さらに回折格子4に入射する光は、角度分散を持ち広がって回折格子4に入射するため、回折格子4上でのスポット径が大きくなり、回折光も広がり、受光器に入射する光量が減少し、分波器の挿入損失が増加する。
【0009】
この光の広がりを抑え、分波器の挿入損失を減少させるために、レンズ3,6を用い平行光にすることが必要となる。
【0010】
この従来例には、レンズ3,6の組合せとして、ルネブルグレンズ、ジオデシックレンズ、または2次元レンズの中から選ばれるひとつと断面半円形状の円筒レンズ6との組み合わせにより平行光を得ていることが開示されている。
【0011】
【特許文献1】
特開平09−043440号公報
【特許文献2】
特開2000−171660号公報
【特許文献3】
特開2000−284141号公報
【0012】
【発明が解決しようとする課題】
しかしながら、2種類の異なるレンズを組み合わせて用いることで高コストとなってしまうという問題がある。
【0013】
また、他の従来の技術として開示されているものとしては、1個の球面レンズを使用し平行光としているものがある(特許文献2、特許文献3)。
【0014】
しかし、球面レンズを使用する場合、回折格子での損失を小さくすると厚み方向のサイズが大きくなる問題があり、さらに、組立て時にレンズと回折格子、または、光ファイバ等の光学部品とのトレーランスが小さく、さらに球面状の部品と平面状の部品とを光軸を適合させて配置することは容易ではないという問題があった。
【0015】
また、これらのシステムでは、光源の温度変動による波長ずれに対応した温度補正機構が無いため、上記の低密度波長多重光通信の要求仕様を満足することが期待できず、実際にこれらを低密度多重光通信に対応させて使用することは困難である。
【0016】
そこで、本発明の目的は、上記従来技術の問題点を解消し、単純な構成を持ち安価で、組み立ての際に高精度な調芯が不要でトレーランスが大きく、信号光の波長が変化した場合でも、正確に信号光を分波することが可能な波長多重分波器を提供することにある。
【0017】
【課題を解決するための手段】
上記目的を達成するために、本発明に係わる波長多重分波器は、光入射部と、前記光入射部に入射された波長多重信号光を回折させ、波長ごとに前記波長多重信号光を分波させる回折格子と、前記回折格子により分波された信号光を導波させる導波路とを有する波長多重分波器において、前記回折格子は、この分波される信号光の広がり角を刻線方向と直交する方向について低減させる広がり角低減手段を更に備え、前記回折格子と前記光入射部との間及び前記回折格子と前記導波路との間にシリンドリカルレンズが配置されたことを特徴とする。
【0018】
また、本発明の分波器は、回折格子の刻線方向と直交する方向についての広がり角低減手段として、格子ピッチが連続的に変化するチャープ状、または形状が円弧状の回折格子を用いることができる。格子ピッチがチャープ状の回折格子、または円弧状の形状の回折格子を用いた場合、回折格子の刻線方向と直交する方向についての信号光の広がり角の低減はこれらの回折格子で行えるため、集光に球レンズを用いる必要がない。レンズには回折格子の刻線方向の絞りを行うシリンドリカルレンズだけを用いればよく、これにより分波器の厚さ方向のサイズを小さくすることが可能となる。
【0019】
また、本発明では、前記回折格子により分波された信号光の伝播方向に向かって断面積が減少するテーパ型導波路を用いていることを特徴とする。光源の温度変化等に起因する波長ずれにより、回折格子上で回折後の焦点の位置ずれが生ずる。この位置ずれを補正し、信号光を受光器に向かって絞り込むには、断面積が減少するテーパ型導波路が有効である。テーパ型導波路は平面状の光導波路であり、棒状のシリンドリカルレンズとの位置合わせが球レンズに比べて容易であることも利点である。
【0020】
【発明の実施の形態】
以下、本発明の好適な一実施形態を添付図面に基づいて詳述する。
【0021】
図2のチャープ型回折格子(広がり角低減手段)を用いた実施の形態を図1(a)、図1(b)に、図5の円弧状回折格子(広がり角低減手段)を用いた実施の形態を図4(a)、図4(b)に示す。
【0022】
これら実施の形態では、光入射部11、シリンドリカルレンズ12、テーパ型導波路14,54、受光器15より構成されている。
【0023】
光入射部11へ入射した信号光は、シリンドリカルレンズ12により1軸(刻線方向:Y方向)で平行光43にされ(図3)、回折格子13,53に入射する。回折格子13,53により信号光のそれぞれの波長に応じた方向に回折される。回折された信号光は、シリンドリカルレンズ12に入射し、テーパ型導波路14,54の、シリンドリカルレンズ12側の入射端面61に集光される。さらに、回折された信号光は、後述するようにそれぞれの波長の集光位置を考慮して配置されたテーパ型導波路14,54に入射した後に、波長ごとにそれぞれのポートへ絞り込まれ受光器15へと取り込まれる。
【0024】
広がり角低減手段として、回折格子の格子ピッチが連続的に変化するチャープ状の回折格子13(図2)、または円弧状の形状をもつ回折格子53(図5)を用いた場合、刻線方向と直交する方向(zx方向)についての集光を行うレンズを必要とせず、1軸方向に平行光とするシリンドリカルレンズ12のみを用いれば良い。この場合、レンズの種類及び数を減少させ、また球レンズを用いた場合に比べて分波器の組み立て時の光の調芯を容易にすることが可能となる。また、これらの回折格子13,53は、ともに量産方法として適した転写技術や射出成型による作製が可能であり、量産性に適している。
【0025】
回折格子13,53では、入射波長がずれれば回折される方向が変化し、出射位置が移動する。この出射位置のずれを補正し、受光器15へ信号光を絞り込むには、テーパ型導波路14,54を用いることが適している。また、テーパ型導波路14,54の入射端面を波長ずれの範囲以上に広くつくることにより、波長多重分波器の実装の際にトレーランスを大きくとることができ、容易に実装が可能となる。
【0026】
すなわち、テーパ型導波路14,54を用いると、図1(b)及び図4(b)に示すように、波長ずれがない場合の波長18,58はもとより、光源の波長がずれた場合の波長19,59であっても、クロストークを生じることなく同一の受光器15へ導くことができる。
【0027】
このテーパ導波路14,54の長さ、テーパ部の角度等の形状については、テーパ部分での損失が最小となるように最適化することができる。
【0028】
さらに、テーパ型導波路14,54は、安価であるポリマ材料を用い、例えばフォトリソグラフィーなどのような作製プロセスが安価な方法を用いて作製することができる。さらにまた、テーパ型導波路14,54は平面状であり、しかも棒状のシリンドリカルレンズ12は球面レンズ等に比べて固定する際の位置合わせ箇所が少ないため、これらの位置合わせを容易にするという利点もある。
【0029】
また、テーパ型導波路14,54は出射端面62に近づくにつれて導波路幅が狭くつくられているため、それに伴って光信号の全反射角度が小さくなる。このため、出射端面に近づくにつれ放射モードで漏れる光量が増えていき、損失が大きくなる場合がある。これを防止するためには、導波路内での光の閉じ込めを強くする必要があり、テーパ型導波路14,54にクラッド層は設けず、屈折率の小さな空気層をクラッド層の代わりとすることも可能である。さらに、テーパ型導波路14,54の端面に反射防止膜を施すなどして、反射による損失増加を防止することも可能である。
【0030】
【実施例】
以下、本発明を実施例により具体的に説明するが、本発明はこれらの実施例に限定されるものではない。
【0031】
(実施例1)
図1に本実施例の全体構成を示す。
【0032】
本実施例で使用される回折格子13の詳細を図2に示す。図2(a)は回折格子13の上面を示したものであり、(b)はその前面を示したものである。
【0033】
本実施例では、光入射部としてコア径62.5μmのMM光ファイバ11、回折格子として幅が11mm、格子ピッチ63が1.0〜4.0μmまで変化しそれに伴いブレーズ角が10〜50°変化するチャープ型回折格子13(図2)、回折格子の刻線65の方向と直交する方向についての広がり角低減手段として、焦点距離がレンズ端面0.4mmのシリンドリカルレンズ12、入射する波長ずれ補正手段として、長さ8mm、コア径60μmで、受光器に向かって細くなり、ポリマを材料とするテーパ型光導波路14、光受光部としてピッチ250μm、入射径70μmの受光器アレイ15を用いて、低密度多重光通信の要求仕様:1300nm帯で4波(中心波長1275.7nm、1300.2nm、1324.7nm、1349.2nm)、波長間隔24.5nm、波長ずれ±5.7nmに対応した波長多重分波器を作製した。
【0034】
平面チャープ型の回折格子13を用いた場合、出射光のそれぞれの集光位置は光線方向に対して垂直には並ばず、長波長集光位置16及び短波長集光位置17に示すように光線方向に対して斜めに傾く。そこで、この傾きに対応するため、図1(b)に示すような入射位置64が斜めに傾いたテーパ型導波路14を用いた。
【0035】
このテーパ導波路14の長さ、テーパ部の角度等の形状は、テーパ部分での損失が最小となるように最適化されている。
【0036】
なお、シリンドリカルレンズ12の焦点位置はテーパ型導波路への入射端面61とし、回折格子13の焦点位置とテーパ型導波路14の入射位置64とが重なるように配置した。
【0037】
波長多重分波器の作製は、ほとんどがパッシブ実装可能であり、球レンズを用いた場合に比べて低コストで作製が可能である。
【0038】
実装した波長多重分波器の特性は、1270〜1281.4nm、1294.5〜1305.9nm、1319.0〜1330.4nm、1343.5〜1354.9nmの波長範囲で損失3dB以下を達成し、透過波長帯でフラットな損失特性を達成した。
【0039】
(実施例2)
図4に本実施例の全体構成を示す。
【0040】
本実施例で使用される回折格子53の詳細を図5に示す。
【0041】
図5(a)は回折格子53の上面を示したものであり、図5(b)はその前面を示したものである。
【0042】
本実施例では、光入射部としてコア径62.5μmのMM光ファイバ11、格子ピッチ63が3.0μm、ブレーズ角が連続的に変化し円弧の曲率半径が12mmの円弧状回折格子53、回折格子の刻線65の方向と直交する方向についての広がり角低減手段として、1軸の焦点距離がレンズ端面0.4mmのシリンドリカルレンズ12、入射する波長ずれ補正方法として長さ8mm、コア径60μmで、受光器に向かって細くなるポリマテーパ型光導波路54、光受光部としてピッチ250μm、入射径70μmの受光器アレイ15を用いて、低密度多重光通信の要求仕様:1300nm帯で4波(中心波長1275.7nm、1300.2nm、1324.7nm、1349.2nm)、波長間隔24.5nm、波長ずれ±5.7nmに対応した波長多重分波器を作製した。
【0043】
曲面回折格子53を用いた場合、ローランド円の頂点付近を出射位置にすることにより、集光位置は、実施例1と異なり、長波長集光位置56と短波長集光位置57に示すように光線方向に対して垂直であり、したがって、図4に示すように、光線方向と垂直な入射端面61を有し、入射位置64が入射端面61に平行なテーパ光導波路54を用いた。
【0044】
このテーパ導波路54の長さ、テーパ部の角度等の形状は、テーパ部分での損失が最小となるように最適化されている。
【0045】
分波器の作製は、ほとんどがパッシブ実装可能であり、球レンズを用いた場合に比べて低コストで作製が可能である。
【0046】
実装した分波器の特性は、1270〜1281.4nm、1294.5〜1305.9nm、1319.0〜1330.4nm、1343.5〜1354.9nmの波長範囲で損失3dB以下を達成し、透過波長帯でフラットな損失特性を達成した。
【0047】
なお、実施例1又は2で用いる光入射部はMM光ファイバに限らず、SM光ファイバ、光導波路、その他レンズ系を介した入射部でも良い。
【0048】
また、使用する波長帯は、回折格子の格子ピッチやブレーズ角の設計、テーパ型導波路の形状設計を変更することにより、1500nm帯、850nm帯でも使用可能である。
【0049】
本発明の波長多重分波器は、例えば、10Gイーサネット規格であるLX4等、SM、MM双方に対応した分波器や光トランシーバに適用可能である。さらには、1270〜1610nm帯で2波長間隔20nmのITU−T649.2に準拠した光分波器や光トランシーバにも適用可能である。
【0050】
【発明の効果】
以上要するに本発明によれば、単純な構成を持ち安価で、組み立ての際に高精度な調芯が不要でトレーランスが大きく、信号光の波長が変化した場合でも、正確に信号光を分波することが可能な波長多重分波器を提供することができるという優れた効果を発揮するものである。
【図面の簡単な説明】
【図1】本発明の一実施の形態を示す図である。
【図2】図1におけるチャープ型回折格子の詳細を示す図である。
【図3】図1、図4におけるシリンドリカルレンズの光学系を示す図である。
【図4】本発明の他の実施の形態を示す図である。
【図5】図4における円弧状回折格子の詳細を示す図である。
【図6】従来例を示す図である。
【符号の説明】
1 ファイバアレイ
2 導波路アレイ
3 レンズ
4 回折格子
5 レンズ固定用ブロック
6 円筒レンズ
11 光ファイバ(光入射部)
12 シリンドリカルレンズ
13 回折格子
14 テーパ型導波路
15 受光器アレイ(受光器)
16 長波長集光位置
17 短波長集光位置
18 光源の波長ずれのない分波波長光
19 光源の波長ずれのある分波波長光
43 平行光
53 回折格子
54 テーパ型導波路
56 長波長集光位置
57 短波長集光位置
58 光源の波長ずれのない分波波長光
59 光源の波長ずれのある分波波長光
61 入射端面
62 出射端面
63 格子ピッチ
64 入射位置
65 刻線
[0001]
TECHNICAL FIELD OF THE INVENTION
The present invention relates to a low-density wavelength division multiplexing optical transmission duplexer (CWDM), and more particularly, to a wavelength division multiplexing duplexer using a diffraction grating.
[0002]
[Prior art]
With the development of the information society in recent years, large-capacity communication has progressed, the transmission medium has shifted from electric signals to optical signals, and communication systems using optical wavelength multiplexing technology have begun to be used. In particular, in the trunk system, a terabit-class high-speed network is being put into practical use by a dense wavelength division multiplexing (DWDM). This communication system uses a temperature-controlled wavelength-variable laser as a light source, and transmits several tens of wavelength-multiplexed light in one cable by an optical multiplexer for bundling a plurality of wavelengths. At the transmission destination, the multiplexed light is passed through an optical demultiplexer, separated into light of each original wave, and then subjected to optical-electrical conversion to obtain a signal. However, precise temperature control is required to reduce the oscillation wavelength shift due to the temperature of the laser, resulting in a high-cost system.
[0003]
On the other hand, low-density wavelength division multiplexing (CWDM, Coarse Wave Division Multiplexing), which has a lower wavelength multiplexing density than a trunk system such as an access system or a LAN system, is being studied. This system includes an optical device corresponding to a wavelength shift due to a temperature variation of a light source as a component, does not require temperature adjustment for stabilization, and can construct a network at low cost. In low-density wavelength division multiplexing optical communication, generally, the wavelength interval is required to be about 20 nm, and the wavelength shift width of the light source is required to be about 5 nm, and the demultiplexer must cope with this wavelength shift. Furthermore, since it is used more downstream than the trunk line system, it is necessary to cope with MM (multi-mode) optical fiber in addition to SM (single mode) optical fiber which is the mainstream in the trunk line system. Therefore, a duplexer such as an AWG (Arrayed Waveguide Grating) using a phase difference, which is mainly used in a DWDM system, cannot be used.
[0004]
As a demultiplexer compatible with low-density multiplexing optical communication, a method using a filter has been proposed. However, an expensive multilayer filter having the same number of wavelengths or one less than the number of wavelengths is required, There is a problem that both mounting cost and manufacturing cost are high.
[0005]
On the other hand, a duplexer using a diffraction grating can separate several wavelengths with one diffraction grating, and is lower in cost than the multilayer filter system. Thousands to tens of thousands of fine grooves are formed on the surface of the diffraction grating, and diffracted lights interfere with each other, so that a specific wavelength can be emitted in a specific direction. In addition, since a replica can be formed by a transfer technique using a master manufactured as a diffraction grating, this system is suitable for mass production.
[0006]
FIG. 6 shows a configuration example of a conventional duplexer (Patent Document 1).
[0007]
The duplexer shown in FIG. 6 includes a diffraction grating 4, lenses 3, 6, and a waveguide array 2. The signal light incident on the optical fiber array (light incident portion) 1 is converted into parallel light by the lenses 3 and 6 and is incident on the diffraction grating 4. Then, the optical signal is diffracted by the diffraction grating 4 in a direction corresponding to the wavelength. Then, the diffracted light is incident again on the lenses 3 and 6, and is guided to a light receiver (not shown) arranged according to the optical path of each wavelength.
[0008]
The light that is incident on the incident portion and further enters the diffraction grating 4 spreads with an angular dispersion and enters the diffraction grating 4, so that the spot diameter on the diffraction grating 4 increases, the diffracted light also spreads, and The amount of incident light decreases, and the insertion loss of the duplexer increases.
[0009]
In order to suppress the spread of the light and reduce the insertion loss of the duplexer, it is necessary to use the lenses 3 and 6 to make the light parallel.
[0010]
In this conventional example, as a combination of lenses 3 and 6, parallel light is obtained by a combination of one selected from a Luneburg lens, a geodesic lens, or a two-dimensional lens and a cylindrical lens 6 having a semicircular cross section. It is disclosed.
[0011]
[Patent Document 1]
Japanese Patent Application Laid-Open No. 09-043440 [Patent Document 2]
JP 2000-171660 A [Patent Document 3]
JP 2000-284141 A
[Problems to be solved by the invention]
However, there is a problem that using two kinds of different lenses in combination increases the cost.
[0013]
Further, as another conventional technique, there is one that uses one spherical lens to convert light into parallel light (Patent Documents 2 and 3).
[0014]
However, when a spherical lens is used, there is a problem that the size in the thickness direction increases when the loss in the diffraction grating is reduced, and furthermore, the tolerance between the lens and the diffraction grating or an optical component such as an optical fiber during assembly is increased. There is a problem that it is not easy to arrange a small, spherical component and a planar component with their optical axes matched.
[0015]
In addition, since these systems do not have a temperature correction mechanism corresponding to the wavelength shift due to the temperature fluctuation of the light source, it cannot be expected to satisfy the above-mentioned requirements for low-density wavelength division multiplexing optical communication. It is difficult to use in correspondence with multiplex optical communication.
[0016]
Therefore, an object of the present invention is to solve the above-mentioned problems of the prior art, to have a simple configuration, to be inexpensive, to eliminate the need for high-precision alignment during assembly, to increase the tolerance, and to change the wavelength of the signal light. Even in such a case, it is an object of the present invention to provide a wavelength division multiplexing demultiplexer capable of accurately demultiplexing a signal light.
[0017]
[Means for Solving the Problems]
In order to achieve the above object, a wavelength division multiplexing demultiplexer according to the present invention diffracts a light incidence part and a wavelength division multiplexed signal light incident on the light incidence part, and separates the wavelength division multiplexed signal light for each wavelength. In a wavelength division multiplexing demultiplexer having a diffraction grating to oscillate and a waveguide to guide the signal light split by the diffraction grating, the diffraction grating cuts a spread angle of the split signal light. A divergence angle reducing means for reducing the angle in a direction perpendicular to the direction, wherein a cylindrical lens is arranged between the diffraction grating and the light incident portion and between the diffraction grating and the waveguide. .
[0018]
In the duplexer according to the present invention, a chirped shape in which the grating pitch changes continuously or an arc-shaped diffraction grating is used as the divergence angle reducing means in a direction orthogonal to the cutting line direction of the diffraction grating. Can be. In the case of using a diffraction grating having a chirped grating pitch or a diffraction grating having an arc shape, the divergence angle of the signal light in a direction orthogonal to the cutting line direction of the diffraction grating can be reduced by these diffraction gratings. There is no need to use a spherical lens for focusing. As the lens, only a cylindrical lens that stops in the direction of the scribe line of the diffraction grating may be used, and this makes it possible to reduce the size of the duplexer in the thickness direction.
[0019]
Further, the present invention is characterized in that a tapered waveguide whose cross-sectional area decreases in the propagation direction of the signal light split by the diffraction grating is used. Due to a wavelength shift due to a change in the temperature of the light source or the like, a position shift of the focal point after diffraction occurs on the diffraction grating. In order to correct this displacement and narrow the signal light toward the light receiver, a tapered waveguide having a reduced sectional area is effective. The tapered waveguide is a planar optical waveguide, and has an advantage that the alignment with the rod-shaped cylindrical lens is easier than that of the spherical lens.
[0020]
BEST MODE FOR CARRYING OUT THE INVENTION
Hereinafter, a preferred embodiment of the present invention will be described in detail with reference to the accompanying drawings.
[0021]
FIGS. 1A and 1B show an embodiment using the chirped diffraction grating (divergence angle reducing means) shown in FIG. 2 and an embodiment using the arc-shaped diffraction grating (divergent angle reducing means) shown in FIG. 4 (a) and 4 (b).
[0022]
In these embodiments, the light receiving section 11, the cylindrical lens 12, the tapered waveguides 14 and 54, and the light receiver 15 are configured.
[0023]
The signal light that has entered the light incidence unit 11 is converted into parallel light 43 by one axis (the engraving direction: Y direction) by the cylindrical lens 12 (FIG. 3), and enters the diffraction gratings 13 and 53. The signal light is diffracted by the diffraction gratings 13 and 53 in directions corresponding to the respective wavelengths. The diffracted signal light enters the cylindrical lens 12 and is focused on the incident end face 61 of the tapered waveguides 14 and 54 on the side of the cylindrical lens 12. Further, the diffracted signal light enters the tapered waveguides 14 and 54 arranged in consideration of the condensing position of each wavelength, as described later, and is then narrowed down to each port for each wavelength, and It is taken in to 15.
[0024]
When the chirped diffraction grating 13 (FIG. 2) in which the grating pitch of the diffraction grating changes continuously or the diffraction grating 53 (FIG. 5) having an arc shape is used as the divergence angle reducing means, the cutting line direction is used. It is not necessary to provide a lens for condensing light in a direction (zx direction) orthogonal to the above, and only the cylindrical lens 12 that makes light parallel to one axis may be used. In this case, the type and number of lenses can be reduced, and the alignment of light at the time of assembling the duplexer can be facilitated as compared with the case where a spherical lens is used. Further, these diffraction gratings 13 and 53 can be manufactured by a transfer technique or injection molding suitable for a mass production method, and are suitable for mass production.
[0025]
In the diffraction gratings 13 and 53, if the incident wavelength shifts, the direction of diffraction changes, and the emission position moves. It is suitable to use the tapered waveguides 14 and 54 to correct the shift of the emission position and narrow the signal light to the light receiver 15. Further, by making the incident end faces of the tapered waveguides 14 and 54 wider than the range of the wavelength shift, the tolerance can be increased when the wavelength division multiplexing demultiplexer is mounted, and the mounting becomes easy. .
[0026]
That is, when the tapered waveguides 14 and 54 are used, as shown in FIGS. 1B and 4B, not only the wavelengths 18 and 58 when there is no wavelength shift but also when the wavelength of the light source shifts. Even at wavelengths 19 and 59, the light can be guided to the same light receiver 15 without crosstalk.
[0027]
The shape of the tapered waveguides 14, 54, such as the length and the angle of the tapered portion, can be optimized so that the loss at the tapered portion is minimized.
[0028]
Further, the tapered waveguides 14 and 54 can be manufactured by using an inexpensive polymer material and using an inexpensive manufacturing process such as photolithography. Furthermore, since the tapered waveguides 14 and 54 have a flat shape, and the rod-shaped cylindrical lens 12 has a smaller number of positioning positions when it is fixed than a spherical lens or the like, there is an advantage that these positioning can be easily performed. There is also.
[0029]
Further, since the tapered waveguides 14 and 54 are formed such that the width of the waveguide becomes narrower as approaching the emission end face 62, the total reflection angle of the optical signal becomes smaller accordingly. Therefore, the amount of light leaking in the radiation mode increases as approaching the emission end face, and the loss may increase. In order to prevent this, it is necessary to strengthen the confinement of light in the waveguide, and no cladding layer is provided in the tapered waveguides 14 and 54, and an air layer having a small refractive index is used instead of the cladding layer. It is also possible. Furthermore, it is also possible to prevent an increase in loss due to reflection by applying an anti-reflection film to the end faces of the tapered waveguides 14 and 54.
[0030]
【Example】
Hereinafter, the present invention will be described specifically with reference to Examples, but the present invention is not limited to these Examples.
[0031]
(Example 1)
FIG. 1 shows the overall configuration of the present embodiment.
[0032]
FIG. 2 shows details of the diffraction grating 13 used in this embodiment. 2A shows the upper surface of the diffraction grating 13, and FIG. 2B shows the front surface.
[0033]
In the present embodiment, the MM optical fiber 11 having a core diameter of 62.5 μm as the light incident portion, the width as the diffraction grating is 11 mm, the grating pitch 63 is changed from 1.0 to 4.0 μm, and the blaze angle is accordingly 10 to 50 °. A chirped diffraction grating 13 that changes (FIG. 2); a cylindrical lens 12 having a focal length of 0.4 mm as a divergence angle reducing means in a direction orthogonal to the direction of the inscribed line 65 of the diffraction grating; As a means, using a tapered optical waveguide 14 having a length of 8 mm, a core diameter of 60 μm, narrowing toward the light receiver, and using a polymer as a material, and a light receiver array 15 having a pitch of 250 μm and an incident diameter of 70 μm as a light receiving portion, Required specifications for low-density multiplexed optical communication: 4 waves in the 1300 nm band (center wavelengths 1275.7 nm, 1300.2 nm, 1324.7 nm, 1349.2) m), it was produced wavelength intervals 24.5 nm, the wavelength division multiplexing demultiplexer corresponding to a wavelength shift ± 5.7 nm.
[0034]
When the plane chirp type diffraction grating 13 is used, the respective light condensing positions of the outgoing light are not arranged perpendicularly to the light beam direction, and the light converging positions as shown in the long wavelength light condensing position 16 and the short wavelength light condensing position 17 are shown. Tilt at an angle to the direction. Therefore, in order to cope with this inclination, a tapered waveguide 14 whose incident position 64 is inclined obliquely as shown in FIG. 1B is used.
[0035]
The shape such as the length of the tapered waveguide 14 and the angle of the tapered portion is optimized so that the loss at the tapered portion is minimized.
[0036]
The focal position of the cylindrical lens 12 is set to the incident end face 61 to the tapered waveguide, and the focal position of the diffraction grating 13 and the incident position 64 of the tapered waveguide 14 are arranged so as to overlap.
[0037]
Most of the production of the wavelength division multiplexing duplexer can be carried out passively, and can be produced at a lower cost than the case where a spherical lens is used.
[0038]
The characteristics of the mounted wavelength division multiplexing demultiplexer achieves a loss of 3 dB or less in the wavelength range of 1270 to 1281.4 nm, 1294.5 to 1305.9 nm, 1319.0 to 1330.4 nm, 1343.5 to 1354.9 nm. And a flat loss characteristic in the transmission wavelength band.
[0039]
(Example 2)
FIG. 4 shows the overall configuration of this embodiment.
[0040]
FIG. 5 shows details of the diffraction grating 53 used in this embodiment.
[0041]
FIG. 5A shows an upper surface of the diffraction grating 53, and FIG. 5B shows a front surface thereof.
[0042]
In this embodiment, an MM optical fiber 11 having a core diameter of 62.5 μm as a light incident portion, a grating pitch 63 of 3.0 μm, a blaze angle continuously changing, and an arc-shaped diffraction grating 53 having a curvature radius of an arc of 12 mm were obtained. As a means for reducing the divergence angle in the direction orthogonal to the direction of the inscribed line 65 of the grating, a cylindrical lens 12 having a uniaxial focal length of 0.4 mm on the lens end face, and a length 8 mm and a core diameter of 60 μm as a method of correcting wavelength shift to be incident. Using a polymer tapered optical waveguide 54 tapering toward the light receiver and a light receiver array 15 having a pitch of 250 μm and an incident diameter of 70 μm as a light receiving unit, required specifications of low-density multiplexing optical communication: 4 waves in a 1300 nm band (center wavelength) 1275.7 nm, 1300.2 nm, 1324.7 nm, 1349.2 nm), wavelength interval 24.5 nm, wavelength shift ± 5.7 nm The wavelength division multiplexed demultiplexer was produced.
[0043]
In the case where the curved diffraction grating 53 is used, the light condensing position is different from that of the first embodiment by setting the vicinity of the apex of the Rowland circle as the emission position, as shown in the long wavelength light condensing position 56 and the short wavelength light condensing position 57. As shown in FIG. 4, a tapered optical waveguide 54 having an incident end face 61 perpendicular to the light ray direction and having an incident position 64 parallel to the incident end face 61 was used.
[0044]
The shape such as the length of the tapered waveguide 54 and the angle of the tapered portion are optimized so that the loss at the tapered portion is minimized.
[0045]
Most of the duplexers can be passively mounted, and can be manufactured at a lower cost than when a spherical lens is used.
[0046]
The characteristics of the mounted duplexer achieves a loss of 3 dB or less in the wavelength range of 1270 to 1281.4 nm, 1294.5 to 1305.9 nm, 1319.0 to 1330.4 nm, and 1343.5 to 1354.9 nm. Flat loss characteristics were achieved in the wavelength band.
[0047]
The light incident portion used in the first or second embodiment is not limited to the MM optical fiber, but may be an SM optical fiber, an optical waveguide, or another incident portion via a lens system.
[0048]
The wavelength band to be used can be used in the 1500 nm band and the 850 nm band by changing the design of the grating pitch and the blaze angle of the diffraction grating and the shape design of the tapered waveguide.
[0049]
The wavelength division multiplexing demultiplexer of the present invention is applicable to a demultiplexer or an optical transceiver compatible with both SM and MM, such as LX4 which is a 10G Ethernet standard. Further, the present invention can be applied to an optical demultiplexer or an optical transceiver conforming to ITU-T649.2 in a 1270 to 1610 nm band and two wavelength intervals of 20 nm.
[0050]
【The invention's effect】
In short, according to the present invention, a simple configuration is inexpensive, high precision alignment is not required at the time of assembly, the tolerance is large, and even when the wavelength of the signal light changes, the signal light is accurately separated. An excellent effect of being able to provide a wavelength division multiplexing demultiplexer capable of performing the above is achieved.
[Brief description of the drawings]
FIG. 1 is a diagram showing an embodiment of the present invention.
FIG. 2 is a diagram showing details of a chirped diffraction grating in FIG. 1;
FIG. 3 is a diagram showing an optical system of the cylindrical lens in FIGS. 1 and 4;
FIG. 4 is a diagram showing another embodiment of the present invention.
FIG. 5 is a diagram showing details of an arc diffraction grating in FIG. 4;
FIG. 6 is a diagram showing a conventional example.
[Explanation of symbols]
DESCRIPTION OF SYMBOLS 1 Fiber array 2 Waveguide array 3 Lens 4 Diffraction grating 5 Lens fixing block 6 Cylindrical lens 11 Optical fiber (light incidence part)
12 Cylindrical lens 13 Diffraction grating 14 Tapered waveguide 15 Receiver array (receiver)
16 Long wavelength focusing position 17 Short wavelength focusing position 18 Demultiplexed wavelength light without wavelength shift of light source 19 Demultiplexed wavelength light with wavelength shift of light source 43 Parallel light 53 Diffraction grating 54 Tapered waveguide 56 Long wavelength focus Position 57 Short-wavelength light condensing position 58 Demultiplexed wavelength light 59 without wavelength shift of light source 59 Demultiplexed wavelength light 61 with wavelength shift of light source 61 Input end face 62 Output end face 63 Lattice pitch 64 Input position 65 Marking line

Claims (4)

光入射部と、前記光入射部に入射された波長多重信号光を回折させ、波長ごとに前記波長多重信号光を分波させる回折格子と、前記回折格子により分波された信号光を導波させる導波路とを有する波長多重分波器において、前記回折格子は、分波される信号光の広がり角を刻線方向と直交する方向について低減させる広がり角低減手段を更に備え、
前記回折格子と前記光入射部との間及び前記回折格子と前記導波路との間にシリンドリカルレンズが配置されたことを特徴とする波長多重分波器。
A light incident portion, a diffraction grating that diffracts the wavelength multiplexed signal light incident on the light incident portion and splits the wavelength multiplexed signal light for each wavelength, and guides the signal light split by the diffraction grating. In the wavelength division multiplexing demultiplexer having a waveguide to be split, the diffraction grating further includes a divergence angle reducing unit that reduces a divergence angle of the demultiplexed signal light in a direction orthogonal to the cutting line direction,
A wavelength division multiplexing demultiplexer, wherein a cylindrical lens is disposed between the diffraction grating and the light incident part and between the diffraction grating and the waveguide.
前記導波路は、前記回折格子により分波された信号光の伝播方向に向かって断面積が減少するテーパ型導波路である請求項1記載の波長多重分波器。2. The wavelength division multiplexing duplexer according to claim 1, wherein the waveguide is a tapered waveguide whose cross-sectional area decreases in a propagation direction of the signal light split by the diffraction grating. 前記広がり角低減手段は、前記回折格子の格子ピッチを連続的に変化させたチャープ状とした構成である請求項1又は2に記載の波長多重分波器。The wavelength division multiplexing duplexer according to claim 1, wherein the divergence angle reducing unit has a chirped configuration in which a grating pitch of the diffraction grating is continuously changed. 前記広がり角低減手段は、前記回折格子の形状を円弧状とした構成である請求項1又は2に記載の波長多重分波器。The wavelength division multiplexing duplexer according to claim 1, wherein the divergence angle reducing unit has a configuration in which the shape of the diffraction grating is an arc.
JP2003051165A 2003-02-27 2003-02-27 Wavelength division duplexer Expired - Fee Related JP3933062B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2003051165A JP3933062B2 (en) 2003-02-27 2003-02-27 Wavelength division duplexer

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2003051165A JP3933062B2 (en) 2003-02-27 2003-02-27 Wavelength division duplexer

Publications (2)

Publication Number Publication Date
JP2004258492A true JP2004258492A (en) 2004-09-16
JP3933062B2 JP3933062B2 (en) 2007-06-20

Family

ID=33116376

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2003051165A Expired - Fee Related JP3933062B2 (en) 2003-02-27 2003-02-27 Wavelength division duplexer

Country Status (1)

Country Link
JP (1) JP3933062B2 (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006106406A (en) * 2004-10-06 2006-04-20 Hitachi Cable Ltd Demultiplexer, optical waveguide and multi-wavelength optical transmission module
JP2006227506A (en) * 2005-02-21 2006-08-31 Hitachi Cable Ltd Optical demultiplexer, diffraction grating and wave-multiplexed light transmission module
CN108369316A (en) * 2015-12-24 2018-08-03 英特尔公司 Two-sided orthogonal grating photo-coupler

Citations (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS56126806A (en) * 1980-03-11 1981-10-05 Nec Corp Diffraction grating type light branching filter
JPS5726720A (en) * 1980-07-25 1982-02-12 Toshiba Corp Spectral detector
JPS6290042A (en) * 1985-10-15 1987-04-24 Nippon Telegr & Teleph Corp <Ntt> Demultiplexing circuit
JPS63167228U (en) * 1988-03-17 1988-10-31
JPH01120106U (en) * 1988-04-07 1989-08-15
JPH04352108A (en) * 1991-05-30 1992-12-07 Matsushita Electric Ind Co Ltd Optical multiplexer
JPH05323139A (en) * 1992-05-20 1993-12-07 Nippon Telegr & Teleph Corp <Ntt> Optical coupling device
JPH0990153A (en) * 1995-09-20 1997-04-04 Fujitsu Ltd Manufacture of optical waveguide and device obtained by the manufacturing method
JPH09127374A (en) * 1995-10-31 1997-05-16 Omron Corp Optical fiber projection and photodetection device, optical fiber type photoelectric sensor, and connector for connecting optical fiber type photoelectric sensor and optical fiber
JP2000066064A (en) * 1998-08-24 2000-03-03 Hitachi Ltd Optical transmission element, manufacturing method thereof, and optical transmission module

Patent Citations (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS56126806A (en) * 1980-03-11 1981-10-05 Nec Corp Diffraction grating type light branching filter
JPS5726720A (en) * 1980-07-25 1982-02-12 Toshiba Corp Spectral detector
JPS6290042A (en) * 1985-10-15 1987-04-24 Nippon Telegr & Teleph Corp <Ntt> Demultiplexing circuit
JPS63167228U (en) * 1988-03-17 1988-10-31
JPH01120106U (en) * 1988-04-07 1989-08-15
JPH04352108A (en) * 1991-05-30 1992-12-07 Matsushita Electric Ind Co Ltd Optical multiplexer
JPH05323139A (en) * 1992-05-20 1993-12-07 Nippon Telegr & Teleph Corp <Ntt> Optical coupling device
JPH0990153A (en) * 1995-09-20 1997-04-04 Fujitsu Ltd Manufacture of optical waveguide and device obtained by the manufacturing method
JPH09127374A (en) * 1995-10-31 1997-05-16 Omron Corp Optical fiber projection and photodetection device, optical fiber type photoelectric sensor, and connector for connecting optical fiber type photoelectric sensor and optical fiber
JP2000066064A (en) * 1998-08-24 2000-03-03 Hitachi Ltd Optical transmission element, manufacturing method thereof, and optical transmission module

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006106406A (en) * 2004-10-06 2006-04-20 Hitachi Cable Ltd Demultiplexer, optical waveguide and multi-wavelength optical transmission module
JP4696521B2 (en) * 2004-10-06 2011-06-08 日立電線株式会社 Demultiplexer, optical waveguide, and wavelength division multiplexing optical transmission module
JP2006227506A (en) * 2005-02-21 2006-08-31 Hitachi Cable Ltd Optical demultiplexer, diffraction grating and wave-multiplexed light transmission module
CN108369316A (en) * 2015-12-24 2018-08-03 英特尔公司 Two-sided orthogonal grating photo-coupler
CN108369316B (en) * 2015-12-24 2020-10-09 英特尔公司 Double-sided orthogonal grating optical coupler

Also Published As

Publication number Publication date
JP3933062B2 (en) 2007-06-20

Similar Documents

Publication Publication Date Title
EP1445631B1 (en) Optical device with slab waveguide and channel waveguides on substrate
US7447403B2 (en) Integrated etched multilayer grating based wavelength demultiplexer
AU781433B2 (en) Dense wavelength division multiplexer/demultiplexer based on echelle grating
CN103999303B (en) Integrated sub-wave length grating system
US20040036933A1 (en) Planar holographic multiplexer/demultiplexer
JP4254776B2 (en) Optical functional device
WO2001081964A2 (en) Apparatus and method for producing a flat-topped filter response for diffraction grating (de)multiplexer
US20100290737A1 (en) Optical wavelength division multiplexed multiplexer/demultiplexer for an optical printed circuit board and a method of manufacturing the same
US6591038B1 (en) Optical interleaver and demultiplexing apparatus for wavelength division multiplexed optical communications
WO2002001268A1 (en) Optical spectrum analyzer
JPH11223745A (en) Device equipped with virtual image phase array combined with wavelength demultiplexer for demultiplexing wavelength multiplexed light
JP3933062B2 (en) Wavelength division duplexer
US7161739B2 (en) Optical system, optical device including the same, and optical device designing method
JP2003066269A (en) Multi-wavelength demultiplexing optical device and wavelength multiplexed light transmission module
JP2000131542A (en) Optical transmission and reception module
EP1209453A2 (en) Monochrometer and wavelength division multiplexer comprising said monochrometer
WO2001010069A9 (en) Polarization-independent, dense wavelength division multiplexer (dwdm)
KR20210023511A (en) Wavelength demultiplexer with arrayed waveguide grating and methods of manufacturing
US6754412B2 (en) Apparatus and method for producing a flat-topped filter response for (de)multiplexer having a diffraction grating with variable line spacing
US20240061180A1 (en) Wavelength division multiplexing/demultiplexing devices
Kobayashi et al. Micro-optic grating multiplexers for fiber-optic communications
JP2005504353A (en) Spectral separation optical component
JP2005010423A (en) Optical signal multiplexer/demultiplexer
JP2004094242A (en) Optical module
AU2450200A (en) Optical components

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20050318

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20061114

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20061128

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20070126

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20070227

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20070312

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100330

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110330

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120330

Year of fee payment: 5

LAPS Cancellation because of no payment of annual fees