JP2004258417A - Liquid crystal display - Google Patents

Liquid crystal display Download PDF

Info

Publication number
JP2004258417A
JP2004258417A JP2003050027A JP2003050027A JP2004258417A JP 2004258417 A JP2004258417 A JP 2004258417A JP 2003050027 A JP2003050027 A JP 2003050027A JP 2003050027 A JP2003050027 A JP 2003050027A JP 2004258417 A JP2004258417 A JP 2004258417A
Authority
JP
Japan
Prior art keywords
liquid crystal
crystal display
wiring
transparent electrode
connection terminal
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2003050027A
Other languages
Japanese (ja)
Inventor
Shinji Asakura
信次 朝倉
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Kyocera Corp
Original Assignee
Kyocera Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kyocera Corp filed Critical Kyocera Corp
Priority to JP2003050027A priority Critical patent/JP2004258417A/en
Publication of JP2004258417A publication Critical patent/JP2004258417A/en
Pending legal-status Critical Current

Links

Images

Landscapes

  • Liquid Crystal (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To maintain electric resistance at low value between an input part of a semiconductor element mounted on a transparent substrate and a connection terminal of the other wiring board. <P>SOLUTION: In a liquid crystal display wherein a wiring is formed and a semiconductor element for driving a liquid crystal is further mounted on a non-liquid crystal display region on a substrate provided with a liquid crystal display region, the wiring is made of a layered body wherein a linear transparent electrode and a linear metal film are layered and the width of the metal film is made narrower than the width of the transparent electrode, and the wiring board is mounted on the layered body via an anisotropic conductive layer. By this wiring structure, electric resistance between the input part of the semiconductor element and the connection terminal of the FPC board is suppressed and deterioration of display quality e.g. malfunction of the liquid crystal display, density unevenness, crosstalk, etc. is prevented. <P>COPYRIGHT: (C)2004,JPO&NCIPI

Description

【0001】
【発明の属する技術分野】
本発明は、液晶表示の制御を行う半導体素子接続用の接続端子を有する液晶表示装置に関するものである。
【0002】
【従来の技術】
現在、携帯電話用小型カラー液晶表示装置は、見やすい画面に対する市場の要求があるが、他方、文字情報から画像情報への市場の要求から大画面化も進んできている。しかしながら、画面が大きくなると、その反面、携帯電話の外形が大きくなり、携帯電話のコンパクト性から外れ、商品価値が低下していた。したがって、携帯電話の外形サイズをそのままコンパクトにしても、表示画面を大きくするためには、表示部まわりの額縁を小さくしなければならない。
【0003】
また、携帯電話の製造コストをいかにして下げるかということが、製造メーカーの課題となっており、製造コストを下げる手段の一つとして、従来、二つの半導体素子(以下、半導体素子を単にICと略す)のドライバー用ICを1チップに集約することが考えられ、すでに1チップICを実装する携帯電話用液晶パネルに関する技術が提案されている(特許文献1参照)。
【0004】
また、1チップICを実装する方法として主に二つの方法がある。一つは、ICを透明基板上に異方性導電膜を介して実装し、ICへの入力は透明基板上の接続端子にフレキシブルプリント基板(以下、FPCと略す)を異方性導電膜を介して接続する。二つ目は、透明基板上の表示電極につながる出力接続端子にICが実装されたFPCを異方性導電膜を介して接続する。
【0005】
また、ロボットや製造装置のプログラマブルターミナルなどの産業用途やLモード電話機などの民生機器用の液晶パネルにおいても、ICを透明基板上に異方性導電膜を介して実装し、ICへの入力は透明基板上の接続端子にFPC上の接続端子を異方性導電膜を介して接続する実装構造が増加してきた。
【0006】
このように、携帯電話、産業機器、民生機器の液晶パネルの多くに使われるICの入出力部とFPCの接続端子を異方性導電膜を介して接続する従来例を図7に示す。
【0007】
透明電極からなる信号電極7が形成された透明基板1と透明電極からなる走査電極8が形成された透明基板2がシール材4を介して信号電極7と走査電極8が対向する向きに接着されており、シール材4の一部には液晶材料9を注入するための注入口5があり、ここから液晶材料9が注入され封止樹脂6にて封止される。
【0008】
IC3の近傍の拡大図を図8に示す。信号電極7と透明基板1の端側に実装された液晶を駆動するためのIC3との間は出力配線10が透明電極で形成されており、透明基板1端に透明電極で形成された接続端子12とIC3の間は透明電極で形成された入力配線14で引き回されている。IC3と出力配線10、入力配線14の間は、異方性導電膜を介し熱圧着され接続されている。
【0009】
また、図7においては、透明基板2上の走査電極8と透明基板1の端側に実装された液晶を駆動するためのIC16との間には出力配線11が透明電極で形成されており、出力配線11と走査電極8とは電極転移部17においてシール材7に含まれる金属粒子を介し基板間導通がはかられる。透明基板1端に透明電極で形成された接続端子13とIC16の間は透明電極で形成された入力配線15で引き回されている。IC16と出力配線11、入力配線15の間は、異方性導電膜を介し熱圧着され接続されている。
【0010】
ICの駆動能力にも左右されるが、入出力配線抵抗が比較的に高いと表示の誤動作、濃度ムラ、クロストークなどの表示品位が劣化する。入出力配線抵抗をより低くする場合として、入出力配線部に金属膜を積層させた従来例を図9に示す。出力配線10、入力配線14、出力配線11、入力配線15には、透明電極の上に更にアルミニウム(Al)等の低抵抗金属膜を形成している。IC3近傍の拡大図を図10に示す。
【0011】
図10のc−c断面を図11に示す。透明電極の出力配線21の上に金属膜22が形成され、入力配線には金属膜20が形成されている。IC3はIC3に形成されているバンプ23と入出力配線の透明電極露出部で異方性導電膜24に含まれる導電性粒子25を介し接続されている。さらにIC3の入力側においては、FPC26上の配線27と接続端子19間で異方性導電膜28により、導電粒子29を介して接続されている。図11の状態はもっとも適正なFPC接続位置を示している。
【0012】
【特許文献1】
特開2000−387850号公報
【0013】
【発明が解決しようとする課題】
しかしながら、製造ばらつきなどによりFPC26の接続位置がずれてくると図12に示すような状態になり、すなわち、入力配線の金属膜形成部20とFPC26間に透明電極配線部19の露出部41が現れたり、あるいは異方性導電膜28を介してFPC26の裏面の接続端子27と電気的に導通ができでいない透明電極配線部19の部分が出現したりする。ITO(インジウム錫酸化物)等の透明電極のシート抵抗は5〜10Ω/□程度であるため、FPC26の接続ずれによる入力配線抵抗が増加し、この抵抗増加により、液晶表示の誤動作、濃度ムラ、クローストークなどの表示品位の劣化が発生する。その抵抗増加の状態は表1に示す。
【0014】
【表1】

Figure 2004258417
【0015】
したがって、本発明は上記事情に鑑みて完成されたものであり、その目的は液晶表示の制御を行う半導体素子の入力部と配線基板の接続端子との間に低い抵抗値を維持できる液晶表示装置を提供することにある。
【0016】
【課題を解決するための手段】
本発明の液晶表示装置は、液晶表示領域を備える基板上の非液晶表示領域に配線を形成し、さらに液晶表示駆動すべく半導体素子を実装した液晶表示装置において、前記配線は線状の透明電極と線状の金属膜とを積層し、かつこの金属膜の幅を透明電極の幅に比べて小さくした積層体にて形成し、さらにこの積層体上に異方性導電膜を介して配線基板を実装したことを特徴とする。
【0017】
また、本発明によれば、前記金属層の幅が10μmから前記透明電極の幅の1/2までの範囲にあることを特徴とする。
【0018】
【作用】
本発明の液晶表示装置によれば、上記構成のように、半導体素子の入力部と配線基板の接続端子との間の電気経路の抵抗値は異方性導電膜を介して電気的に接続された透明基板の接続端子の透明電極部分と配線基板上の接続端子によって低い抵抗値に維持される。また、透明基板の接続端子と液晶表示を制御する半導体素子の入力部との間の電気経路の抵抗値は透明電極及びその上に積層された金属膜によって低い抵抗値に維持されるため、表示の誤動作などをなくした高品質の液晶表示を実現する。
【0019】
【発明の実施の形態】
以下、本発明に係る液晶表示装置を図面により詳述する。
【0020】
図1は本発明の液晶表示装置の上面概略図であり、図2は図1に示す液晶表示装置のa部分の拡大図であり、図3は図2に示す液晶表示装置のd−d部分の断面図を示す。図4は図2に示す液晶表示装置のe−e部分の断面図を示す。
【0021】
図1に示す本発明の液晶表示装置50において、透明電極からなる信号電極7が形成された透明基板1と透明電極からなる走査電極8が形成された透明基板2がシール材4を介して信号電極7と走査電極8が対向する向きに接着されており、外部からの電気制御信号は接続端子12、13に入力され、入力配線14、15を通った後、液晶表示の制御を行う半導体素子IC3、IC16に入力される。
【0022】
ここで、半導体素子の入力部をICの入力端子と接続する透明基板上の導電パターン部分と規定すると、外部からIC3、IC16の入力部40への電気制御信号を送る電気経路はIC3における場合とIC16における場合は同じ形となるので、ここでは、外部からIC3の入力部40への電気制御信号を送る電気経路についてのみ述べる。
【0023】
そして、本発明の液晶表示装置50によれば、透明基板1上の接続端子12は、透明基板1上に形成された透明電極(ITO等からなる)19及びその透明電極19の上に積層などの方法で透明電極19の幅より狭い金属膜(ここで金属膜はアルミニウムを使用する)によって構成される。透明基板1上の接続端子12を配線基板(たとえばFPC)26の接続端子27と接続させる時に、この接続構造は、図4に示すように透明基板1の接続端子12(透明電極19及びアルミニウム膜30)とFPC26の接続端子27を対向させ、且つその両方の接続端子位置が合うように異方性導電膜28を介して、熱圧着して一体化した接続構造を持つ。
【0024】
上記の接続構造において、アルミニウム膜30の表面部に酸化や腐食などが起こっても、外部からIC3間に電気制御信号を送るとき、FPC26上の接続端子27と透明基板1上のアルミニウム膜によって被覆されていない透明電極19の部分との間に、異方性導電膜29を介して電気的に接触し、且つ透明電極19の構成材料であるITOなどは酸化、腐食しにくいため、この間の電気経路は低い抵抗値を維持できる。また、透明基板1上の接続端子12とIC3の入力部40との間の部分において、透明電極19の上に積層されたアルミニウム膜30の電気抵抗が低いため、透明基板1上の接続端子12とIC3の入力部40との間の電気経路でも低い抵抗値を維持できる。すなわち、IC3の入力部40とFPC26上の接続端子27間は低い抵抗値に維持される。
【0025】
また、アルミニウム膜30の幅について、アルミニウム膜30の幅を10μmから透明電極19の幅の1/2までの範囲に設定すると、効果的にIC3の入力部40とFPC26の接続端子27間の電気経路の抵抗を低い値に維持できる。
【0026】
本発明者が繰り返し行なった実験によれば、接続端子12の透明電極19の幅を0.2mm、アルミニウム膜30の幅は0.01〜0.1mm(10μm=0.01mm)以内の範囲とすれば、図4に示す接続構造54のアルミニウム膜30の表面を擬似的に酸化あるいは腐食させても(本発明者らが行なった実験において、アルミニウム膜30の表面を全部酸化あるいは腐食したと仮定して、その表面を絶縁処理した)、IC3の入力部40とFPC26の接続端子27間の電気経路の抵抗値は5?以下となり、液晶表示装置50の表示誤動作がまったく見られなくなった。
【0027】
アルミニウム膜30の幅は0.1mmより大きくなると、IC3の入力部40とFPC26の接続端子27間の電気経路の抵抗値は急激に増え、液晶表示装置50の表示誤動作現象が見られるようになった。
【0028】
また、アルミニウム膜30の幅が10μm以下となると、接続端子12の形成手段であるフォトリソグラフィ技術、エッチング技術などの制約から、安定的に幅10μm以下の金属膜を形成することが難しい。
【0029】
本発明者らが行なった実験結果のデータの一部を表2及び図6に示す。
【0030】
【表2】
Figure 2004258417
【0031】
本発明において、金属膜はアルミニウム以外に、Cr:クロム、AlNd:アルミネオジ、Nd:ネオジオム、Al+Cr(Crを中間層にして、AlをCrの上下に積層する)によって形成されても、本発明者らが同様な効果を確認した。
【0032】
また、金属膜の酸化や腐食の対策として、アルミニウム等の代わりに低抵抗金属膜に酸化しにくい金(Au)や銀(Ag)を使う場合材料コストが高い。部分的にめっきするにしてもめっき工程が増加することになる。
【0033】
外部からIC16に電気制御信号を送るときの電気経路の状況については、以上に述べた外部からIC3に電気制御信号を送る電気経路の状況と全く同様である。
【0034】
以下に本発明の液晶表示装置の各構成をより詳細に述べる。
【0035】
本発明の実施例を図1に示す。透明電極からなる信号電極7が形成された透明基板1と透明電極からなる走査電極8が形成された透明基板2がシール材4を介して信号電極7と走査電極8が対向する向きに接着されており、シール材4の一部には液晶材料9を注入するための注入口5があり、ここから液晶材料9が注入され封止樹脂6にて封止される。
【0036】
IC3の近傍の拡大図を図4に示す。信号電極7と透明基板1の端側に実装された液晶を駆動するためのIC3との間には出力配線10が透明電極とアルミニウムで積層形成されており、透明基板1の接続端子12とIC3の入力部との間は透明電極とアルミニウムで積層形成された入力配線14で引き回されている。IC3と出力配線10、入力配線14の間は、異方性導電膜を介し熱圧着され接続されている。
【0037】
接続端子12のパターン形状が本発明の特徴の1つとなるが、本発明の一実施例として、0.2mm幅の透明電極層の上に0.04mm幅のアルミニウム膜30が積層されている。
【0038】
また、図1におけるb部拡大図を図5に示す、透明基板2上の走査電極8と透明基板1の端側に実装された液晶を駆動するためのIC16との間には出力配線11が透明電極とアルミニウムで積層形成されており、出力配線11と走査電極8とは電極転移部17においてシール材7に含まれる金属粒子を介し透明電極面同士で基板間導通がはかられる。透明基板1の接続端子13とIC16の間は透明電極とアルミニウムで積層形成された入力配線15で引き回されている。IC16と出力配線11、入力配線15の間は、異方性導電膜を介し熱圧着され接続されている。接続端子13のパターン形状も接続端子12と同様に0.2mm幅の透明電極層の上に0.04mm幅のアルミニウム31が積層されている。
【0039】
尚、本発明は上述の形態に限定されるものではなく、本発明の要旨を逸脱しない範囲において種々の変更、改良等が可能である。
【0040】
また、上述の形態においては、液晶表示装置を例にとって説明したが、それ以外のプリント基板とFPC間の接続構造などにも本発明は適用可能である。
【0041】
【発明の効果】
本発明による透明基板上の半導体素子の入力部と配線基板の接続端子との配線構造を用いれば、透明基板上の半導体素子の入力部と配線基板の接続端子との間の電気抵抗を低い値に維持でき、表示の誤動作などをなくした高品質の液晶表示装置を提供できる。
【図面の簡単な説明】
【図1】本発明に係る液晶表示装置の上面概略図である。
【図2】図1に示す液晶表示装置(a部分)の部分拡大図である。
【図3】本発明に係る液晶表示装置(d−d断面)の断面図である。
【図4】本発明に係る液晶表示装置(e−e断面)の断面図である。
【図5】本発明に係る液晶表示装置(b部拡大)の部分拡大図である。
【図6】ITOなどの透明電極上に積層されているアルミニウム膜の幅とIC入力部、FPCの接続端子間の抵抗値との関係を示すグラフである。
【図7】従来技術における液晶表示装置の上面概略図である。
【図8】従来における液晶表示装置(f部拡大)の部分拡大図である。
【図9】従来技術における他の液晶表示装置の上面概略図である。
【図10】従来技術における他の液晶表示装置(g部拡大)の部分拡大図である。
【図11】従来技術における他の液晶表示装置(c−c断面)の断面図である。
【図12】従来技術における液晶表示装置(c−c断面、FPCのズレ)の断面図である。
【符号の説明】
1・・・透明基板
2・・・透明基板
3・・・IC3
4・・・シール樹脂
5・・・注入口
6・・・封止樹脂
7・・・信号電極
8・・・走査電極
9・・・液晶材料
10・・・出力配線
11・・・出力配線
12・・・接続端子
13・・・接続端子
14・・・入力配線
15・・・入力配線
16・・・IC
17・・・電極転移部
19・・・接続端子(透明電極)
20・・・入力配線
21・・・出力配線(透明電極)
22・・・金属膜(アルミニウム)
23・・・バンプ
24・・・異方性導電膜
25・・・導電粒子
26・・・FPC
27・・・FPC上の接続端子
28・・・異方性導電膜
29・・・導電粒子
30・・・金属膜(Al)
31・・・金属膜(Al)
32・・・FPC
40・・・ICの入力部[0001]
TECHNICAL FIELD OF THE INVENTION
The present invention relates to a liquid crystal display device having a connection terminal for connecting a semiconductor element for controlling a liquid crystal display.
[0002]
[Prior art]
At present, there is a demand for a small color liquid crystal display device for a cellular phone in the market for an easy-to-view screen, but on the other hand, the demand for a market from character information to image information has increased the size of the screen. However, on the other hand, when the screen is enlarged, the outer shape of the mobile phone is increased, which deviates from the compactness of the mobile phone, and the commercial value is reduced. Therefore, even if the external size of the mobile phone is kept compact, the frame around the display section must be reduced in order to enlarge the display screen.
[0003]
Also, how to reduce the manufacturing cost of mobile phones has been an issue for manufacturers. One of the means for reducing the manufacturing cost is to use two semiconductor devices (hereinafter simply referred to as ICs). It is conceivable to integrate the driver IC into one chip, and a technique related to a liquid crystal panel for a mobile phone on which a one-chip IC is mounted has already been proposed (see Patent Document 1).
[0004]
There are mainly two methods for mounting a one-chip IC. One is to mount the IC on a transparent substrate via an anisotropic conductive film, and input the IC to a connection terminal on the transparent substrate using a flexible printed circuit board (hereinafter abbreviated as FPC) with an anisotropic conductive film. Connect through. Second, an FPC on which an IC is mounted is connected to an output connection terminal connected to a display electrode on a transparent substrate via an anisotropic conductive film.
[0005]
Also, in the liquid crystal panel for industrial use such as a programmable terminal of a robot or a manufacturing apparatus, or for a consumer device such as an L-mode telephone, an IC is mounted on a transparent substrate via an anisotropic conductive film, and input to the IC is performed. Mounting structures for connecting connection terminals on an FPC to connection terminals on a transparent substrate via an anisotropic conductive film have been increasing.
[0006]
FIG. 7 shows a conventional example in which an input / output unit of an IC used in many liquid crystal panels of mobile phones, industrial equipment, and consumer equipment is connected to a connection terminal of an FPC through an anisotropic conductive film.
[0007]
The transparent substrate 1 on which the signal electrode 7 composed of a transparent electrode is formed and the transparent substrate 2 on which the scanning electrode 8 composed of a transparent electrode is formed are adhered via the sealing material 4 in a direction in which the signal electrode 7 and the scanning electrode 8 face each other. A part of the sealing material 4 has an injection port 5 for injecting a liquid crystal material 9, from which the liquid crystal material 9 is injected and sealed with a sealing resin 6.
[0008]
FIG. 8 shows an enlarged view of the vicinity of IC3. An output wiring 10 is formed of a transparent electrode between the signal electrode 7 and an IC 3 for driving a liquid crystal mounted on one end of the transparent substrate 1, and a connection terminal formed of the transparent electrode on one end of the transparent substrate 1. The connection between the IC 12 and the IC 3 is routed by an input wiring 14 formed of a transparent electrode. The IC 3 and the output wiring 10 and the input wiring 14 are connected by thermocompression bonding via an anisotropic conductive film.
[0009]
In FIG. 7, the output wiring 11 is formed of a transparent electrode between the scanning electrode 8 on the transparent substrate 2 and the IC 16 for driving the liquid crystal mounted on the end side of the transparent substrate 1. Between the output wiring 11 and the scanning electrode 8, conduction between the substrates is established via the metal particles contained in the sealing material 7 at the electrode transition portion 17. A connection terminal 13 formed of a transparent electrode at an end of the transparent substrate 1 and an IC 16 are routed by an input wiring 15 formed of a transparent electrode. The IC 16 and the output wiring 11 and the input wiring 15 are connected by thermocompression bonding via an anisotropic conductive film.
[0010]
Although it depends on the driving capability of the IC, if the input / output wiring resistance is relatively high, display quality such as display malfunction, density unevenness, and crosstalk is degraded. FIG. 9 shows a conventional example in which a metal film is laminated on an input / output wiring portion as a case where the input / output wiring resistance is further reduced. In the output wiring 10, the input wiring 14, the output wiring 11, and the input wiring 15, a low-resistance metal film such as aluminum (Al) is further formed on the transparent electrode. FIG. 10 shows an enlarged view of the vicinity of IC3.
[0011]
FIG. 11 shows a cc cross section of FIG. A metal film 22 is formed on the output wiring 21 of the transparent electrode, and a metal film 20 is formed on the input wiring. The IC 3 is connected to bumps 23 formed on the IC 3 via conductive particles 25 included in the anisotropic conductive film 24 at the transparent electrode exposed portions of the input / output wiring. Further, on the input side of the IC 3, the wiring 27 on the FPC 26 and the connection terminal 19 are connected via conductive particles 29 by an anisotropic conductive film 28. The state of FIG. 11 shows the most appropriate FPC connection position.
[0012]
[Patent Document 1]
Japanese Patent Application Laid-Open No. 2000-383850
[Problems to be solved by the invention]
However, if the connection position of the FPC 26 shifts due to manufacturing variation or the like, the state shown in FIG. 12 is obtained, that is, the exposed portion 41 of the transparent electrode wiring portion 19 appears between the metal film forming portion 20 of the input wiring and the FPC 26. Alternatively, a portion of the transparent electrode wiring portion 19 that cannot be electrically connected to the connection terminal 27 on the back surface of the FPC 26 via the anisotropic conductive film 28 appears. Since the sheet resistance of a transparent electrode such as ITO (indium tin oxide) is about 5 to 10 Ω / □, the input wiring resistance due to misalignment of the FPC 26 increases. Degradation of display quality such as crosstalk occurs. The state of the resistance increase is shown in Table 1.
[0014]
[Table 1]
Figure 2004258417
[0015]
Accordingly, the present invention has been completed in view of the above circumstances, and a purpose thereof is to provide a liquid crystal display device capable of maintaining a low resistance value between an input portion of a semiconductor element for controlling liquid crystal display and a connection terminal of a wiring board. Is to provide.
[0016]
[Means for Solving the Problems]
In a liquid crystal display device according to the present invention, in a liquid crystal display device in which wiring is formed in a non-liquid crystal display region on a substrate having a liquid crystal display region, and a semiconductor element is mounted for driving a liquid crystal display, the wiring is a linear transparent electrode. And a linear metal film are laminated, and the width of the metal film is made smaller than the width of the transparent electrode to form a laminate. Is implemented.
[0017]
Further, according to the invention, the width of the metal layer is in a range from 10 μm to 1 / of the width of the transparent electrode.
[0018]
[Action]
According to the liquid crystal display device of the present invention, as described above, the resistance value of the electric path between the input portion of the semiconductor element and the connection terminal of the wiring board is electrically connected via the anisotropic conductive film. The low resistance value is maintained by the transparent electrode portion of the connection terminal of the transparent substrate and the connection terminal on the wiring substrate. In addition, since the resistance value of the electric path between the connection terminal of the transparent substrate and the input portion of the semiconductor element that controls the liquid crystal display is maintained at a low resistance value by the transparent electrode and the metal film laminated thereon, A high-quality liquid crystal display that eliminates malfunctions and the like is realized.
[0019]
BEST MODE FOR CARRYING OUT THE INVENTION
Hereinafter, the liquid crystal display device according to the present invention will be described in detail with reference to the drawings.
[0020]
1 is a schematic top view of the liquid crystal display device of the present invention, FIG. 2 is an enlarged view of a portion of the liquid crystal display device shown in FIG. 1, and FIG. 3 is a dd portion of the liquid crystal display device shown in FIG. FIG. FIG. 4 is a sectional view of an ee portion of the liquid crystal display device shown in FIG.
[0021]
In the liquid crystal display device 50 of the present invention shown in FIG. 1, a transparent substrate 1 on which a signal electrode 7 made of a transparent electrode is formed, and a transparent substrate 2 on which a scanning electrode 8 made of a transparent electrode is formed, The electrode 7 and the scanning electrode 8 are adhered in opposite directions, and an external electric control signal is input to the connection terminals 12 and 13, and after passing through the input wirings 14 and 15, a semiconductor element for controlling the liquid crystal display Input to IC3 and IC16.
[0022]
Here, if the input portion of the semiconductor element is defined as a conductive pattern portion on the transparent substrate that connects to the input terminal of the IC, an electric path for transmitting an electric control signal from the outside to the input portion 40 of the IC3 or IC16 is the same as that of the IC3. Since the form is the same in the case of the IC 16, only the electric path for transmitting an electric control signal from the outside to the input unit 40 of the IC 3 will be described here.
[0023]
According to the liquid crystal display device 50 of the present invention, the connection terminals 12 on the transparent substrate 1 are formed on the transparent electrode 19 (made of ITO or the like) formed on the transparent substrate 1 and laminated on the transparent electrode 19. In this method, the transparent electrode 19 is formed of a metal film having a width smaller than that of the transparent electrode 19 (here, the metal film uses aluminum). When connecting the connection terminals 12 on the transparent substrate 1 to the connection terminals 27 of the wiring substrate (for example, FPC) 26, as shown in FIG. 30) and the connection terminal 27 of the FPC 26 are opposed to each other, and the connection structure is integrated by thermocompression bonding via an anisotropic conductive film 28 so that the positions of both connection terminals are matched.
[0024]
In the above connection structure, even if oxidation or corrosion occurs on the surface of the aluminum film 30, when an electric control signal is sent from the outside to the IC 3, the connection terminal 27 on the FPC 26 and the aluminum film on the transparent substrate 1 are covered. Since the transparent electrode 19 is electrically in contact with a portion of the transparent electrode 19 through the anisotropic conductive film 29 and ITO or the like, which is a constituent material of the transparent electrode 19, is hardly oxidized and corroded. The path can maintain a low resistance value. Further, since the electrical resistance of the aluminum film 30 laminated on the transparent electrode 19 is low between the connection terminal 12 on the transparent substrate 1 and the input portion 40 of the IC 3, the connection terminal 12 on the transparent substrate 1 is low. A low resistance value can be maintained even in the electric path between the power supply and the input section 40 of the IC 3. That is, the resistance between the input section 40 of the IC 3 and the connection terminal 27 on the FPC 26 is maintained at a low resistance value.
[0025]
When the width of the aluminum film 30 is set in a range from 10 μm to の of the width of the transparent electrode 19, the electrical connection between the input section 40 of the IC 3 and the connection terminal 27 of the FPC 26 is effectively achieved. The resistance of the path can be kept low.
[0026]
According to the experiment repeatedly performed by the inventor, the width of the transparent electrode 19 of the connection terminal 12 is 0.2 mm, and the width of the aluminum film 30 is 0.01 to 0.1 mm (10 μm = 0.01 mm). Then, even if the surface of the aluminum film 30 of the connection structure 54 shown in FIG. 4 is simulated or oxidized (assuming that the entire surface of the aluminum film 30 was oxidized or corroded in the experiment conducted by the present inventors). Then, the surface thereof is insulated.) The resistance value of the electric path between the input section 40 of the IC 3 and the connection terminal 27 of the FPC 26 is 5? In the following, no display malfunction of the liquid crystal display device 50 was observed at all.
[0027]
When the width of the aluminum film 30 is larger than 0.1 mm, the resistance value of the electric path between the input section 40 of the IC 3 and the connection terminal 27 of the FPC 26 sharply increases, and the display malfunction of the liquid crystal display device 50 can be seen. Was.
[0028]
Further, when the width of the aluminum film 30 is 10 μm or less, it is difficult to stably form a metal film having a width of 10 μm or less due to restrictions on a photolithography technique, an etching technique, and the like as means for forming the connection terminals 12.
[0029]
Table 2 and FIG. 6 show part of the data of the results of experiments performed by the present inventors.
[0030]
[Table 2]
Figure 2004258417
[0031]
In the present invention, even if the metal film is formed of Cr: chromium, AlNd: aluminum neodymium, Nd: neodymium, Al + Cr (where Cr is an intermediate layer and Al is laminated on and under Cr), the present invention is not limited to aluminum. Have confirmed similar effects.
[0032]
Further, as a countermeasure against oxidation or corrosion of the metal film, when gold (Au) or silver (Ag), which is hardly oxidized, is used for the low-resistance metal film instead of aluminum or the like, the material cost is high. Even when plating is performed partially, the number of plating steps increases.
[0033]
The state of the electric path when the electric control signal is transmitted from the outside to the IC 16 is exactly the same as the state of the electric path for transmitting the electric control signal from the outside to the IC 3 described above.
[0034]
Hereinafter, each configuration of the liquid crystal display device of the present invention will be described in more detail.
[0035]
FIG. 1 shows an embodiment of the present invention. The transparent substrate 1 on which the signal electrode 7 composed of a transparent electrode is formed and the transparent substrate 2 on which the scanning electrode 8 composed of a transparent electrode is formed are adhered via the sealing material 4 in a direction in which the signal electrode 7 and the scanning electrode 8 face each other. A part of the sealing material 4 has an injection port 5 for injecting a liquid crystal material 9, from which the liquid crystal material 9 is injected and sealed with a sealing resin 6.
[0036]
FIG. 4 is an enlarged view of the vicinity of the IC 3. An output wiring 10 is formed by laminating a transparent electrode and aluminum between the signal electrode 7 and the IC 3 for driving liquid crystal mounted on the end side of the transparent substrate 1, and the connection terminal 12 of the transparent substrate 1 and the IC 3 And an input portion 14 which is formed by laminating a transparent electrode and aluminum. The IC 3 and the output wiring 10 and the input wiring 14 are connected by thermocompression bonding via an anisotropic conductive film.
[0037]
The pattern shape of the connection terminal 12 is one of the features of the present invention. As an embodiment of the present invention, an aluminum film 30 having a width of 0.04 mm is laminated on a transparent electrode layer having a width of 0.2 mm.
[0038]
Further, FIG. 5 is an enlarged view of a portion b in FIG. 1, and an output wiring 11 is provided between the scanning electrode 8 on the transparent substrate 2 and the IC 16 for driving the liquid crystal mounted on the end side of the transparent substrate 1. Since the transparent electrode and the aluminum are laminated, the output wiring 11 and the scanning electrode 8 are connected to each other between the transparent electrode surfaces at the electrode transition portion 17 via the metal particles contained in the sealing material 7. A connection between the connection terminal 13 of the transparent substrate 1 and the IC 16 is led by an input wiring 15 formed by laminating a transparent electrode and aluminum. The IC 16 and the output wiring 11 and the input wiring 15 are connected by thermocompression bonding via an anisotropic conductive film. Similarly to the connection terminal 12, the pattern shape of the connection terminal 13 is such that an aluminum 31 having a width of 0.04 mm is laminated on a transparent electrode layer having a width of 0.2 mm.
[0039]
Note that the present invention is not limited to the above-described embodiment, and various changes, improvements, and the like can be made without departing from the gist of the present invention.
[0040]
In the above embodiment, the liquid crystal display device has been described as an example. However, the present invention can be applied to other connection structures between a printed circuit board and an FPC.
[0041]
【The invention's effect】
By using the wiring structure of the input part of the semiconductor element on the transparent substrate and the connection terminal of the wiring board according to the present invention, the electric resistance between the input part of the semiconductor element on the transparent substrate and the connection terminal of the wiring board can be reduced to a low value. , And a high-quality liquid crystal display device free of display malfunction can be provided.
[Brief description of the drawings]
FIG. 1 is a schematic top view of a liquid crystal display device according to the present invention.
FIG. 2 is a partially enlarged view of the liquid crystal display device (a portion) shown in FIG.
FIG. 3 is a sectional view of a liquid crystal display device (dd section) according to the present invention.
FIG. 4 is a cross-sectional view of the liquid crystal display device (ee cross section) according to the present invention.
FIG. 5 is a partially enlarged view of the liquid crystal display device (enlarged portion b) according to the present invention.
FIG. 6 is a graph showing a relationship between a width of an aluminum film laminated on a transparent electrode such as ITO and a resistance value between a connection terminal of an IC input portion and an FPC.
FIG. 7 is a schematic top view of a conventional liquid crystal display device.
FIG. 8 is a partially enlarged view of a conventional liquid crystal display device (enlarged portion f).
FIG. 9 is a schematic top view of another liquid crystal display device according to the related art.
FIG. 10 is a partially enlarged view of another liquid crystal display device (an enlarged portion of g) in the related art.
FIG. 11 is a cross-sectional view of another liquid crystal display device (cc cross section) according to the related art.
FIG. 12 is a cross-sectional view of a liquid crystal display device (cc cross section, deviation of FPC) according to the related art.
[Explanation of symbols]
DESCRIPTION OF SYMBOLS 1 ... Transparent substrate 2 ... Transparent substrate 3 ... IC3
REFERENCE SIGNS LIST 4 sealing resin 5 injection port 6 sealing resin 7 signal electrode 8 scanning electrode 9 liquid crystal material 10 output wiring 11 output wiring 12 ... Connection terminal 13 ... Connection terminal 14 ... Input wiring 15 ... Input wiring 16 ... IC
17 ... electrode transition part 19 ... connection terminal (transparent electrode)
20 input wiring 21 output wiring (transparent electrode)
22 ... Metal film (aluminum)
23 Bump 24 Anisotropic conductive film 25 Conductive particle 26 FPC
27: Connection terminal on FPC 28: Anisotropic conductive film 29: Conductive particles 30: Metal film (Al)
31 ... Metal film (Al)
32 ... FPC
40 ... IC input section

Claims (2)

液晶表示領域を備える基板上の非液晶表示領域に配線を形成し、さらに液晶表示駆動すべく半導体素子を実装した液晶表示装置において、前記配線は線状の透明電極と線状の金属膜とを積層し、かつこの金属膜の幅を透明電極の幅に比べて小さくした積層体にて形成し、さらにこの積層体上に異方性導電膜を介して配線基板を実装したことを特徴とする液晶表示装置。In a liquid crystal display device in which a wiring is formed in a non-liquid crystal display area on a substrate having a liquid crystal display area, and a semiconductor element is mounted for driving a liquid crystal display, the wiring includes a linear transparent electrode and a linear metal film. It is characterized in that it is formed by laminating and forming a laminated body in which the width of the metal film is smaller than the width of the transparent electrode, and further, a wiring board is mounted on the laminated body via an anisotropic conductive film. Liquid crystal display. 前記金属層の幅が10μmから前記透明電極の幅の1/2までの範囲にあることを特徴とする請求項1記載の液晶表示装置。2. The liquid crystal display device according to claim 1, wherein the width of the metal layer ranges from 10 [mu] m to half the width of the transparent electrode.
JP2003050027A 2003-02-26 2003-02-26 Liquid crystal display Pending JP2004258417A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2003050027A JP2004258417A (en) 2003-02-26 2003-02-26 Liquid crystal display

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2003050027A JP2004258417A (en) 2003-02-26 2003-02-26 Liquid crystal display

Publications (1)

Publication Number Publication Date
JP2004258417A true JP2004258417A (en) 2004-09-16

Family

ID=33115580

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2003050027A Pending JP2004258417A (en) 2003-02-26 2003-02-26 Liquid crystal display

Country Status (1)

Country Link
JP (1) JP2004258417A (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2012161027A1 (en) * 2011-05-20 2012-11-29 シャープ株式会社 Display module
JP2013033558A (en) * 2009-03-31 2013-02-14 Dainippon Printing Co Ltd Touch panel sensor, laminate for creating touch panel sensor, and method for manufacturing touch panel sensor
KR101396936B1 (en) 2007-05-25 2014-05-30 엘지디스플레이 주식회사 Liquid crystal display and method for fabricating the same
US9189033B2 (en) 2010-09-29 2015-11-17 Dai Nippon Printing Co., Ltd. Touchscreen panel sensor film and manufacturing method thereof

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101396936B1 (en) 2007-05-25 2014-05-30 엘지디스플레이 주식회사 Liquid crystal display and method for fabricating the same
JP2013033558A (en) * 2009-03-31 2013-02-14 Dainippon Printing Co Ltd Touch panel sensor, laminate for creating touch panel sensor, and method for manufacturing touch panel sensor
US9189033B2 (en) 2010-09-29 2015-11-17 Dai Nippon Printing Co., Ltd. Touchscreen panel sensor film and manufacturing method thereof
WO2012161027A1 (en) * 2011-05-20 2012-11-29 シャープ株式会社 Display module

Similar Documents

Publication Publication Date Title
TWI538074B (en) Flexible circuit board, method of fabricating the same, and semiconductor package
KR101365176B1 (en) Display device and method of manufacturing the same
JP2000294896A (en) Circuit board, display device using the same and electronics
JP5458500B2 (en) Electro-optical device and electronic apparatus
WO2007039959A1 (en) Wiring board and display device provided with same
JP2001230511A (en) Connection structure, electro-optic device and electronic apparatus
JP3660175B2 (en) Mounting structure and method of manufacturing liquid crystal device
JP2003273476A (en) Mounting structure and method of manufacturing the same, electro-optical device and electronic device
JP2004133428A (en) Display device
JP2006267605A (en) Display device
US11239584B2 (en) Display device and method for manufacturing the same
JP2000294897A (en) Circuit board, display device using the same and electronics
CN103972201A (en) Package structure and display module
JP2004258417A (en) Liquid crystal display
JP2004317924A (en) Display device and method for manufacturing display device
JP2007057885A (en) Electrooptical device and electronic equipment
JP2003273486A (en) Packaging structure body and manufacturing method thereof, electro-optic device, and electronic equipment
JP2000124575A (en) Wiring board, liquid crystal device and electronic equipment
JP2003222898A (en) Liquid crystal display device
JP3674424B2 (en) Mounting structure, electro-optical device, and electronic apparatus
JP2010199500A (en) Wiring board and display device
JP3675185B2 (en) Wiring board, liquid crystal device and electronic device
JP2002323865A (en) Electro-optical device and electronic equipment
JP2004186472A (en) Mounting structure, its manufacturing method, electro-optical device, and electronic instrument
JP3633394B2 (en) Electro-optical device and electronic apparatus