JP2004257638A - Thermal storage element with self-heating control function - Google Patents

Thermal storage element with self-heating control function Download PDF

Info

Publication number
JP2004257638A
JP2004257638A JP2003048299A JP2003048299A JP2004257638A JP 2004257638 A JP2004257638 A JP 2004257638A JP 2003048299 A JP2003048299 A JP 2003048299A JP 2003048299 A JP2003048299 A JP 2003048299A JP 2004257638 A JP2004257638 A JP 2004257638A
Authority
JP
Japan
Prior art keywords
heat storage
self
storage element
control function
heat
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
JP2003048299A
Other languages
Japanese (ja)
Inventor
Futoshi Maeda
太 前田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Panasonic Electric Works Co Ltd
Original Assignee
Matsushita Electric Works Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Matsushita Electric Works Ltd filed Critical Matsushita Electric Works Ltd
Priority to JP2003048299A priority Critical patent/JP2004257638A/en
Publication of JP2004257638A publication Critical patent/JP2004257638A/en
Withdrawn legal-status Critical Current

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/14Thermal energy storage

Landscapes

  • Resistance Heating (AREA)
  • Central Heating Systems (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a thermal storage element with self-heating control function capable of securely providing expected thermal storage amount by applying voltage for self-heating and self-controlling heating amount to maintain the thermal storage element in a specified temperature zone, capable of eliminating the need of separately mounting a fixed resistance heater, a temperature sensor, a control device, and a PTC heater, and manufacturable at less cost. <P>SOLUTION: A pair of electrodes 3 and 3 are installed in the thermal storage element 2 in which carbon is dispersed disposed. <P>COPYRIGHT: (C)2004,JPO&NCIPI

Description

【0001】
【発明の属する技術分野】
本発明は、自己発熱制御機能付き蓄熱体に関するものである。
【0002】
【従来の技術】
従来から、例えばニクロム線コードヒータ等の固定抵抗型のヒータから加熱されて蓄熱を行う潜熱蓄熱体が床暖房等に利用されている。このように利用される蓄熱体にあっては、ヒータの温度を検知するための温度センサの検知結果に基づいてヒータの運転を制御することで、蓄熱体への加熱温度が制御され、これにより蓄熱体の温度域を所定の温度域に維持していた。
【0003】
また、上記固定抵抗型のヒータの替わりに、温度上昇に伴って抵抗値が上昇し自己の発熱を抑える、いわゆるPTC特性を有するPTCヒータを用い、該PTCヒータにより蓄熱体の温度を制御するものも知られている(例えば特許文献1)。
【0004】
【特許文献1】
特開2001−349619号公報
【0005】
【発明が解決しようとする課題】
しかし、上記従来例の蓄熱体を利用する場合は、蓄熱体に熱を供給するためのヒータを蓄熱体とは別に設ける必要があり、加えてこのヒータの温度を制御するために、ヒータとして高価なPTCヒータを利用したり、固定抵抗型のヒータに温度センサや制御装置を備えなければならず、コストがかかる。また、上記ヒータの加熱温度は蓄熱体の温度と関係なく制御されているため、何等かの要因により蓄熱体の蓄熱が十分でなかったり、逆に蓄熱体が過加熱状態であった場合には、蓄熱体を期待した温度域に維持することができなかった。
【0006】
本発明は上記の点に鑑みてなされたものであり、その目的とするところは、電圧を印加することで自己発熱でき、尚且つ発熱量を自己制御して蓄熱体を所定の温度域に維持することができ、これによって利用する際に、確実に期待した蓄熱量を得ることができ、且つ固定抵抗型ヒータ、温度センサ、制御装置や、PTCヒータ等を別に設ける必要がなくコストのかからない自己発熱制御機能付き蓄熱体を提供することを課題とするものである。
【0007】
【課題を解決するための手段】
上記課題を解決するために本発明に係る自己発熱制御機能付き蓄熱体は、内部にカーボンを分散配置した蓄熱体2に一対の電極3、3を設けて成ることを特徴とするものである。
【0008】
このように内部にカーボンを分散配置した蓄熱体2に一対の電極を設けることで、両電極3、3間に電圧を印加した場合、両電極3、3間に配置された蓄熱体2を抵抗として自己発熱制御機能付き蓄熱体1は自己発熱でき、しかもこの場合、自己発熱により蓄熱が進行すると、蓄熱体2が熱膨張し、蓄熱体2中に分散配合されたカーボンブラック間の距離が離れて電気抵抗が上昇し、結果、自己発熱制御機能付き蓄熱体1の発熱量が低下し、次いで発熱量が低下すると、蓄熱体2が熱収縮し、カーボンブラック間の距離が近づいて電気抵抗が下降し、結果、自己発熱制御機能付き蓄熱体1の発熱量が上昇し、以後、この発熱量上昇→熱膨張→抵抗値上昇→発熱量低下→熱収縮→抵抗値下降という一連の動作を繰り返し行い、これによって自己発熱制御機能付き蓄熱体1は自身の温度を所定の温度域に維持することができる。
【0009】
また請求項2記載の自己発熱制御機能付き蓄熱体は請求項1記載の自己発熱制御機能付き蓄熱体において、上記蓄熱体2は、蓄熱体2の主体を構成する蓄熱体材料と、粉末状のカーボンブラックとを混練してカーボンブラックを蓄熱体材料中に分散配合した後、所定形状に成形して得られるものであることを特徴とするものである。
【0010】
【発明の実施の形態】
以下、本発明を添付図面に示す実施形態に基づいて説明する。図1は自己発熱制御機能付き蓄熱体1の全体斜視図であり、この自己発熱制御機能付き蓄熱体1は、内部に導電性を有するカーボンを分散配置した蓄熱体2に一対の電極3、3を設けてなるものである。
【0011】
上記蓄熱体2は、蓄熱体2の主体を構成する蓄熱体材料と、粉末状のカーボンブラックとを混練してカーボンブラックを蓄熱体材料中に分散配合した後、所定形状に成形して得られるものである。
【0012】
詳述すると、蓄熱体2の主体を構成する物質である蓄熱体材料としては、ポリエチレン(PE)と、パラフィン(Pa)と、増粘材とからなるものを用い、該蓄熱体材料はポリエチレン20〜30wt%、パラフィン60〜80wt%、増粘材5〜10wt%を配合してなるものである。
【0013】
ここでポリエチレンは蓄熱体2の骨格材をなすものである。パラフィンは蓄熱体2における蓄熱材の役割を果たすものであって、パラフィンの融点によって蓄熱体2の蓄熱温度が、配合量によって蓄熱体2の蓄熱量が決まるものである。また増粘材は、蓄熱状態でパラフィンが溶融している時にもパラフィンを高粘度に保ち、ポリエチレンの骨格構造から離脱するのを防ぐと共に、カーボンブラックの分散状態を安定させるものであって、この増粘材としてはパラフィンと相溶するものが好ましく、本実施形態においては増粘材としてエチレンプロピレン共重合体を用いている。
【0014】
そして上記蓄熱体2の主体を構成する蓄熱体材料と粉末状のカーボンブラック(CB)とをミキサーなどで混練してカーボンブラックを蓄熱体材料中に分散させた後、この成形材料を押出成形することで、ボード状に成形された蓄熱体2を形成する。ここでカーボンブラック(CB)の配合比としては、蓄熱体材料全量に対して、30〜40wt%としている。なお、蓄熱体2の形状はボード状に限られるものではない。
【0015】
上記のように形成された蓄熱体2は、蓄熱体2中に分散配置されたカーボンと、マトリクスとしての蓄熱体とにより導電性を備えたものとなる。
【0016】
そしてこの蓄熱体2に一対の電極3、3を接触するように設け、この一対の電極3、3を配設した蓄熱体2全体をゴムシート(フィルムでも良い)で絶縁シールすることで自己発熱制御機能付き蓄熱体1が形成される。具体的には両電極3、3間距離を離して配置することが好ましく、上記各電極3、3は図1に示すように蓄熱体2の幅方向の両端部にそれぞれ内蔵されており、各電極3、3は長手方向に亘っている。なお、この一対の電極3、3の配置としては上記に限定されるものではなく、例えば図2に示すように両電極3、3を蓄熱体2の幅方向の側面に長手方向に亘って接するように設けたり、図3に示すように蓄熱体2の表面(上面)の幅方向両端部に長手方向に亘って接するように設けても良いものとし、また、図示は省略するが図2における両電極3、3を蓄熱体2の表面よりも蓄熱体2側に位置すると共に蓄熱体2の表面に露出するように配設し、蓄熱体2の表面をフラットにしたり、また図3における両電極3、3を蓄熱体2の両側面よりも蓄熱体2側に位置すると共に蓄熱体2の両側面に露出するように配設し、蓄熱体2の両側面をフラットにしても良く、すなわち両電極3、3は後述する電源に電気的に接続可能であれば蓄熱体2から露出してあっても埋め込んであっても良いものとする。
【0017】
上記のように形成された自己発熱制御機能付き蓄熱体1は、両電極3、3間に電圧を印加して蓄熱体2に通電することで、自己発熱制御機能付き蓄熱体1自身が発熱する自己発熱機能と、自己発熱制御機能付き蓄熱体1自身を所定の温度域に維持する蓄熱量自己制御機能を有するものである。
【0018】
すなわち自己発熱制御機能付き蓄熱体1に電源から電圧が印加されると、両電極間3に配置された蓄熱体2が抵抗となり、自己発熱制御機能付き蓄熱体1が自己発熱する。そして、自己の発熱により蓄熱が進行すると、蓄熱体材料、特にパラフィンが熱膨張し、これにより蓄熱体2中に分散配合されたカーボンブラック間の距離が離れて電気抵抗が上昇し、結果、自己発熱制御機能付き蓄熱体1の発熱量が低下する。自己発熱制御機能付き蓄熱体1の発熱量が低下すると、蓄熱体材料が熱収縮し、カーボンブラック間の距離が近づいて電気抵抗が下降し、結果、自己発熱制御機能付き蓄熱体1の発熱量が上昇する。以後、この発熱量上昇→熱膨張→抵抗値上昇→発熱量低下→熱収縮→抵抗値下降という一連の動作を繰り返し行い、これによって自己発熱制御機能付き蓄熱体1は、自身に貯えられる蓄熱量をコントロールして自身を所定の温度域に維持する。
【0019】
そしてこのように自己発熱機能と蓄熱量自己制御機能を有する自己発熱制御機能付き蓄熱体1は、例えば床暖房等に利用することができる。なお、上記した自己発熱制御機能付き蓄熱体1の発熱量は蓄熱体2の抵抗値及び両電極間3、3距離によって決定されるため、蓄熱体2の抵抗値及び両電極3、3間距離は設計者によって適宜変更しても良いものとする。
【0020】
上記のように内部にカーボンを分散配置した蓄熱体2に一対の電極を設けることで、蓄熱体2に電圧を印加した場合、両電極3、3間に配置された蓄熱体2を抵抗として自己発熱制御機能付き蓄熱体1自身が自己発熱でき、尚且つこの場合、自己発熱制御機能付き蓄熱体1は、上記した発熱量上昇→熱膨張→抵抗値上昇→発熱量低下→熱収縮→抵抗値下降といった一連の動作により自己の温度を所定の温度域に維持することができ、これにより確実に期待した蓄熱量が得られ、且つ利用する際に、固定抵抗型ヒータ、温度センサ、制御装置や、PTCヒータ等を別に設ける必要がなくコストを削減できる。
【0021】
【実施例】
以下本発明の実施例を具体的に説明する。
【0022】
(実施例)
蓄熱体材料全量に対して、高密度ポリエチレン20wt%、融点54℃のパラフィン70wt%、エチレンプロピレン共重合体10wt%、の配合比で配合してなる蓄熱体材料に、粉末状のカーボンブラックを蓄熱体材料全量に対して、37.5wt%配合し、この蓄熱体材料にカーボンブラックを配合した成形材料をミキサーで混練して蓄熱体材料中に分散させた後、押出成形して幅250mm、厚さ25mm、長さ900mmのボード状の蓄熱体2を形成し、図1に示すように該蓄熱体2の幅方向両端部に夫々電極3として銅線のより線を内蔵し、この一対の電極3、3を設けた蓄熱体2全体をゴムシートで絶縁シールすることで自己発熱制御機能付き蓄熱体1を得た。
【0023】
そしてこの自己発熱制御機能付き蓄熱体1の一対の電極に電源からAC100Vを印加し、自己発熱制御機能付き自己発熱制御機能付き蓄熱体1の表面温度と、電力を測定した。測定結果を図4に示す。
【0024】
図4に示す測定結果からもわかるように、両電極間に電圧を印加することで、自己発熱でき、尚且つ蓄熱量が多い場合には発熱量を抑え、蓄熱量が少ない場合には発熱量を増加させ、これにより蓄熱量を自己制御できる自己発熱制御機能付き蓄熱体1を得ることができた。
【0025】
【発明の効果】
上記のように本発明の請求項1記載の発明にあっては、内部にカーボンを分散配置した蓄熱体に一対の電極を設けることで、蓄熱体に電圧を印加した場合、両電極間に配置された蓄熱体を抵抗として自己発熱制御機能付き蓄熱体自身が自己発熱でき、尚且つこの場合、自己発熱制御機能付き蓄熱体は、発熱量上昇→熱膨張→抵抗値上昇→発熱量低下→熱収縮→抵抗値下降といった一連の動作により自己の温度を所定の温度域に維持することができ、これにより確実に期待した蓄熱量が得られ、且つ利用する際に、固定抵抗型ヒータ、温度センサ、制御装置や、PTCヒータ等を別に設ける必要がなくコストを削減できる。
【図面の簡単な説明】
【図1】本発明の実施形態の一例を示す自己発熱制御機能付き蓄熱体の全体斜視図である。
【図2】他例の自己発熱制御機能付き蓄熱体を示す全体斜視図である。
【図3】更に他例の自己発熱制御機能付き蓄熱体を示す全体斜視図である。
【図4】自己発熱制御機能付き蓄熱体にAC100Vの電圧を印加した場合における電力と自己発熱制御機能付き蓄熱体の表面温度との関係を示すグラフである。
【符号の説明】
1 自己発熱制御機能付き蓄熱体
2 蓄熱体
3 電極
[0001]
TECHNICAL FIELD OF THE INVENTION
The present invention relates to a heat storage unit having a self-heating control function.
[0002]
[Prior art]
Hitherto, for example, a latent heat storage element that is heated by a fixed resistance type heater such as a nichrome wire cord heater and stores heat has been used for floor heating and the like. In the heat storage element used in this manner, the heating temperature of the heat storage element is controlled by controlling the operation of the heater based on the detection result of the temperature sensor for detecting the temperature of the heater. The temperature range of the heat storage body was maintained at a predetermined temperature range.
[0003]
Further, instead of the fixed resistance type heater, a PTC heater having a so-called PTC characteristic, in which the resistance value rises with a rise in temperature and suppresses its own heat generation, is used, and the temperature of the heat storage body is controlled by the PTC heater. Is also known (for example, Patent Document 1).
[0004]
[Patent Document 1]
Japanese Patent Application Laid-Open No. 2001-349619
[Problems to be solved by the invention]
However, when using the above-described conventional heat storage element, a heater for supplying heat to the heat storage element needs to be provided separately from the heat storage element. In addition, since the temperature of this heater is controlled, the heater is expensive. It is necessary to use a simple PTC heater or to provide a fixed resistance type heater with a temperature sensor and a control device, which increases costs. In addition, since the heating temperature of the heater is controlled irrespective of the temperature of the heat storage element, if the heat storage of the heat storage element is not sufficient due to some factors, or if the heat storage element is in an overheated state, However, the heat storage could not be maintained in the expected temperature range.
[0006]
The present invention has been made in view of the above points, and an object of the present invention is to generate heat by applying a voltage, and to control the amount of heat generated to maintain the heat storage body in a predetermined temperature range. This makes it possible to reliably obtain the expected amount of heat storage when used, and it is not necessary to separately provide a fixed resistance type heater, a temperature sensor, a control device, a PTC heater, etc. It is an object to provide a heat storage element with a heat generation control function.
[0007]
[Means for Solving the Problems]
In order to solve the above-mentioned problem, a heat storage device with a self-heating control function according to the present invention is characterized in that a pair of electrodes 3, 3 are provided on a heat storage material 2 in which carbon is dispersed and arranged.
[0008]
By providing a pair of electrodes on the heat storage element 2 in which carbon is dispersed and disposed inside, when a voltage is applied between the electrodes 3, the heat storage element 2 disposed between the electrodes 3 As a result, the heat storage element 1 having the self-heating control function can generate heat, and in this case, when the heat storage proceeds due to the self-heating, the heat storage element 2 expands thermally, and the distance between the carbon blacks dispersed and mixed in the heat storage element 2 increases. As a result, the calorific value of the heat storage unit 1 with the self-heating control function decreases, and then, when the calorific value decreases, the heat storage unit 2 thermally contracts, and the distance between the carbon blacks decreases, and the electric resistance decreases. As a result, the calorific value of the heat storage unit 1 with the self-heating control function increases, and thereafter, a series of operations of increasing calorific value → thermal expansion → increasing resistance value → decreasing calorific value → thermal contraction → decreasing resistance value is repeated. Do this and self Thermal control function regenerator 1 can maintain the temperature of itself in a predetermined temperature range.
[0009]
A heat storage element having a self-heating control function according to claim 2 is the heat storage element having a self-heating control function according to claim 1, wherein the heat storage element 2 comprises a heat storage material constituting a main body of the heat storage element 2 and a powdery storage medium. It is characterized by being obtained by kneading with carbon black, dispersing and blending carbon black in the heat storage material, and then molding into a predetermined shape.
[0010]
BEST MODE FOR CARRYING OUT THE INVENTION
Hereinafter, the present invention will be described based on embodiments shown in the accompanying drawings. FIG. 1 is an overall perspective view of a heat storage element 1 having a self-heating control function. The heat storage element 1 having a self-heating control function has a pair of electrodes 3 and 3 on a heat storage element 2 having conductive carbon dispersed therein. Is provided.
[0011]
The heat accumulator 2 is obtained by kneading a heat accumulator material constituting a main body of the heat accumulator 2 and powdered carbon black, dispersing and blending carbon black in the heat accumulator material, and then molding into a predetermined shape. Things.
[0012]
More specifically, as the heat storage material that is a substance constituting the main body of the heat storage body 2, a material made of polyethylene (PE), paraffin (Pa), and a thickener is used. -30 wt%, paraffin 60-80 wt%, and thickener 5-10 wt%.
[0013]
Here, polyethylene forms a skeleton material of the heat storage body 2. The paraffin plays a role of a heat storage material in the heat storage element 2, and the heat storage temperature of the heat storage element 2 is determined by the melting point of the paraffin, and the heat storage amount of the heat storage element 2 is determined by the blending amount. The thickener also keeps the paraffin at a high viscosity even when the paraffin is molten in the heat storage state, and prevents separation from the skeletal structure of polyethylene and stabilizes the dispersed state of carbon black. It is preferable that the thickener is compatible with paraffin. In the present embodiment, an ethylene propylene copolymer is used as the thickener.
[0014]
After the heat storage material constituting the main body of the heat storage body 2 and the powdered carbon black (CB) are kneaded by a mixer or the like to disperse the carbon black in the heat storage material, the molding material is extruded. Thereby, the heat storage body 2 formed in a board shape is formed. Here, the compounding ratio of carbon black (CB) is 30 to 40% by weight based on the total amount of the heat storage material. In addition, the shape of the heat storage body 2 is not limited to a board shape.
[0015]
The heat storage body 2 formed as described above has conductivity by carbon dispersed in the heat storage body 2 and the heat storage body as a matrix.
[0016]
A pair of electrodes 3 is provided in contact with the heat storage body 2, and the entire heat storage body 2 provided with the pair of electrodes 3 and 3 is insulated and sealed with a rubber sheet (a film may be used) to generate self-heating. The heat storage body 1 with a control function is formed. Specifically, it is preferable to dispose the electrodes 3 and 3 at a distance from each other. The electrodes 3 and 3 are built in both ends in the width direction of the heat storage body 2 as shown in FIG. The electrodes 3, 3 extend in the longitudinal direction. The arrangement of the pair of electrodes 3 is not limited to the above. For example, as shown in FIG. 2, both electrodes 3 and 3 are in contact with the widthwise side surface of the heat storage body 2 in the longitudinal direction. 3 or may be provided so as to be in contact with both ends in the width direction of the surface (upper surface) of the heat storage body 2 in the longitudinal direction as shown in FIG. 3. The two electrodes 3, 3 are disposed so as to be located closer to the regenerator 2 than the surface of the regenerator 2 and are exposed on the surface of the regenerator 2, so that the surface of the regenerator 2 can be flattened. The electrodes 3, 3 may be disposed so as to be located closer to the heat storage body 2 than to both side surfaces of the heat storage body 2 and to be exposed to both side surfaces of the heat storage body 2, so that both side surfaces of the heat storage body 2 may be flat. Both electrodes 3, 3 are heat storage bodies 2 if they can be electrically connected to a power source to be described later. There is embedded even if each other is exposed and those may be.
[0017]
The heat storage element 1 having the self-heating control function formed as described above applies heat to the heat storage element 2 by applying a voltage between the electrodes 3 and 3, thereby generating heat. It has a self-heating function and a heat storage amount self-control function for maintaining the heat storage body 1 with the self-heating control function in a predetermined temperature range.
[0018]
That is, when a voltage is applied from the power supply to the heat storage element 1 having the self-heating control function, the heat storage element 2 disposed between the two electrodes 3 becomes a resistor, and the heat storage element 1 having the self-heating control function self-heats. When heat storage progresses due to self-generated heat, the heat storage material, particularly paraffin, thermally expands, thereby increasing the distance between the carbon blacks dispersed and blended in the heat storage body 2 and increasing the electrical resistance. The amount of heat generated by the heat storage unit 1 with the heat generation control function decreases. When the calorific value of the heat storage unit 1 with the self-heating control function decreases, the heat storage material thermally shrinks, the distance between the carbon blacks decreases, and the electric resistance decreases. As a result, the heat generation amount of the heat storage unit 1 with the self-heating control function. Rises. Thereafter, a series of operations of increasing the heat generation amount → thermal expansion → increasing the resistance value → decreasing the heat generation amount → heat contraction → decreasing the resistance value is repeated, whereby the heat storage element 1 having the self-heating control function stores the heat storage amount stored therein. To maintain itself in a predetermined temperature range.
[0019]
The heat storage element 1 having the self-heating control function having the self-heating function and the heat storage amount self-control function can be used for, for example, floor heating. The heat value of the heat storage element 1 having the self-heating control function described above is determined by the resistance value of the heat storage element 2 and the distance between the two electrodes 3 and 3. Therefore, the resistance value of the heat storage element 2 and the distance between the two electrodes 3 and 3 are determined. May be changed as appropriate by the designer.
[0020]
When a voltage is applied to the heat storage element 2 by providing a pair of electrodes on the heat storage element 2 in which carbon is dispersed and arranged inside as described above, the heat storage element 2 disposed between the two electrodes 3 is used as a resistor. The heat storage body 1 with the heat generation control function itself can generate heat by itself, and in this case, the heat storage body 1 with the self heat generation control function increases the heat generation amount → thermal expansion → increases the resistance value → decreases the heat generation amount → heat contraction → resistance value The self-temperature can be maintained in a predetermined temperature range by a series of operations such as lowering, whereby the expected amount of heat storage can be reliably obtained, and when it is used, a fixed resistance heater, a temperature sensor, a control device, It is not necessary to separately provide a PTC heater or the like, and the cost can be reduced.
[0021]
【Example】
Hereinafter, examples of the present invention will be specifically described.
[0022]
(Example)
Powdered carbon black is stored in a heat storage material that is blended at a blending ratio of 20 wt% of high density polyethylene, 70 wt% of paraffin having a melting point of 54 ° C., and 10 wt% of ethylene propylene copolymer, based on the total amount of the heat storage material. 37.5 wt% was blended with respect to the total amount of the body material, and a molding material in which carbon black was blended with the heat storage material was kneaded with a mixer to be dispersed in the heat storage material. A board-shaped regenerator 2 having a length of 25 mm and a length of 900 mm is formed. As shown in FIG. 1, stranded copper wires are incorporated as electrodes 3 at both ends in the width direction of the regenerator 2. The entire heat storage element 3 provided with 3, 3 was insulated and sealed with a rubber sheet to obtain a heat storage element 1 with a self-heating control function.
[0023]
Then, AC100V was applied from a power supply to a pair of electrodes of the heat storage element 1 having the self-heating control function, and the surface temperature and the power of the heat storage element 1 having the self-heating control function having the self-heating control function were measured. FIG. 4 shows the measurement results.
[0024]
As can be seen from the measurement results shown in FIG. 4, by applying a voltage between the two electrodes, self-heating can be performed. In addition, when the amount of stored heat is large, the amount of generated heat is suppressed, and when the amount of stored heat is small, the amount of generated heat is reduced. Was increased, whereby the heat storage body 1 with a self-heating control function capable of self-controlling the heat storage amount could be obtained.
[0025]
【The invention's effect】
As described above, in the invention according to claim 1 of the present invention, when a voltage is applied to the heat storage body by providing a pair of electrodes in the heat storage body in which carbon is dispersed and arranged, the arrangement is made between the two electrodes. The heat storage element with the self-heating control function itself can generate heat by using the heat storage element as a resistance, and in this case, the heat storage element with the self-heating control function increases the heating value → thermal expansion → increases the resistance value → decreases the heating value → heat. The self-temperature can be maintained in a predetermined temperature range by a series of operations such as contraction → resistance decrease, whereby the expected amount of heat storage can be reliably obtained. Therefore, it is not necessary to separately provide a control device, a PTC heater, and the like, so that costs can be reduced.
[Brief description of the drawings]
FIG. 1 is an overall perspective view of a heat storage body with a self-heating control function, showing an example of an embodiment of the present invention.
FIG. 2 is an overall perspective view showing another example of a heat storage body with a self-heating control function.
FIG. 3 is an overall perspective view showing a heat storage body with a self-heating control function according to still another example.
FIG. 4 is a graph showing a relationship between electric power and a surface temperature of a heat storage unit with a self-heating control function when a voltage of 100 V AC is applied to the heat storage unit with a self-heating control function.
[Explanation of symbols]
1 Heat storage element with self-heating control function 2 Heat storage element 3 Electrode

Claims (2)

内部にカーボンを分散配置した蓄熱体に一対の電極を設けて成ることを特徴とする自己発熱制御機能付き蓄熱体。A heat storage element having a self-heating control function, comprising a pair of electrodes provided on a heat storage element having carbon dispersed therein. 上記蓄熱体は、蓄熱体の主体を構成する蓄熱体材料と、粉末状のカーボンブラックとを混練してカーボンブラックを蓄熱体材料中に分散配合した後、所定形状に成形して得られるものであることを特徴とする請求項1記載の自己発熱制御機能付き蓄熱体。The heat accumulator is obtained by kneading a heat accumulator material constituting a main body of the heat accumulator and powdered carbon black, dispersing and blending carbon black in the heat accumulator material, and then molding the carbon black into a predetermined shape. 2. The heat storage body with a self-heating control function according to claim 1, wherein
JP2003048299A 2003-02-25 2003-02-25 Thermal storage element with self-heating control function Withdrawn JP2004257638A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2003048299A JP2004257638A (en) 2003-02-25 2003-02-25 Thermal storage element with self-heating control function

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2003048299A JP2004257638A (en) 2003-02-25 2003-02-25 Thermal storage element with self-heating control function

Publications (1)

Publication Number Publication Date
JP2004257638A true JP2004257638A (en) 2004-09-16

Family

ID=33114287

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2003048299A Withdrawn JP2004257638A (en) 2003-02-25 2003-02-25 Thermal storage element with self-heating control function

Country Status (1)

Country Link
JP (1) JP2004257638A (en)

Similar Documents

Publication Publication Date Title
JP5657889B2 (en) Heating element
US5057674A (en) Self limiting electric heating element and method for making such an element
DE60131383D1 (en) bottom heater
JP2008198407A (en) Sheet heater
JP2010111251A (en) Heating device for vehicle
JP2007299546A (en) Planar heating element
JP2024084854A (en) Polymer Positive Temperature Coefficient Body
EP3873170A1 (en) Pptc heater and material having stable power and self-limiting behavior
BR102019013415A2 (en) heating element, and method for extending the operation of a self-regulating heating element over a larger temperature range
JP2004257638A (en) Thermal storage element with self-heating control function
CN105794312B (en) Compound, self-regulation heating element and the method for forming such compound
JP2010160954A (en) Surface heater
JP2809432B2 (en) Heating element
NO753303L (en)
JP2000040579A (en) Sheet heating element
KR100357511B1 (en) Electric papered floor using fixed temperature heating element
CN108260232A (en) High molecular positive temperature coefficient material member
KR0137043Y1 (en) Self-control type high molecular heater
CN214524034U (en) Electric heating steering wheel
JP3957580B2 (en) Self-temperature control type surface heater
JPH06178715A (en) Water bed
KR100459601B1 (en) Electric heating device and electric cushion having the same
JP2019031144A (en) Temperature control wiper
JP2008186700A (en) Planar heating element
KR200307196Y1 (en) Electric heating device and electric cushion having the same

Legal Events

Date Code Title Description
A300 Withdrawal of application because of no request for examination

Free format text: JAPANESE INTERMEDIATE CODE: A300

Effective date: 20060509