JP2004256964A - Method for producing carbon fiber - Google Patents

Method for producing carbon fiber Download PDF

Info

Publication number
JP2004256964A
JP2004256964A JP2003050593A JP2003050593A JP2004256964A JP 2004256964 A JP2004256964 A JP 2004256964A JP 2003050593 A JP2003050593 A JP 2003050593A JP 2003050593 A JP2003050593 A JP 2003050593A JP 2004256964 A JP2004256964 A JP 2004256964A
Authority
JP
Japan
Prior art keywords
carbon fiber
average particle
particle size
carbon
polymer
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2003050593A
Other languages
Japanese (ja)
Inventor
Masayuki Jokai
真之 畳開
Satoshi Omori
智 大森
Shunichi Matsumura
俊一 松村
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Teijin Ltd
Original Assignee
Teijin Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Teijin Ltd filed Critical Teijin Ltd
Priority to JP2003050593A priority Critical patent/JP2004256964A/en
Publication of JP2004256964A publication Critical patent/JP2004256964A/en
Pending legal-status Critical Current

Links

Abstract

<P>PROBLEM TO BE SOLVED: To provide a finely pulverized carbon fiber having good dispersibility in a polymer in the case of producing a composite material with the polymer. <P>SOLUTION: The method for the production of the carbon fiber comprises the pulverization of a carbon fiber to an average particle diameter corresponding to ≤20% of the diameter of the carbon fiber before pulverization by physical treatment with a ball mill, a bead mill or a homogenizer. The carbon fiber is preferably a carbon nanotube. <P>COPYRIGHT: (C)2004,JPO&NCIPI

Description

【0001】
【発明の属する技術分野】
本発明は炭素繊維に物理的処理を加えることにより微細化した炭素繊維の製造方法、および微細化された炭素繊維に関する。
【0002】
【従来の技術】
炭素繊維を微細化しようとという報告例として例えば硝酸、硫酸等の存在下加熱あるいは超音波を印加する事により単層カーボンナノチューブを切断し微細化するという報告例がある。(非特許文献1参照)
また上述の方法にて切断された単層カーボンナノチューブをサイズ排除クロマトグラフィーにて単離生成するという方法がある。(非特許文献2参照)
しかし酸処理等によりカーボンナノチューブを切断したとしてもカーボンナノチューブをろ過等により分離処理を行った際凝集してしまい、ポリマーとのコンポジットとして使用するにはさらに分散処理を施す必要があった。
【0003】
【非特許文献1】
Science 280, 1253 (1998)
【0004】
【非特許文献2】
J.Am.Chem.soc.2001,123,11673−11677
【0005】
【発明が解決しようとする課題】
本発明はポリマーとの複合材料を製造する際にポリマー中で良好な分散性を示す微細化した炭素繊維を提供するものである。
【0006】
【課題を解決するための手段】
上述の課題は、ボールミル、ビーズミル、ホモジナイザーからなる群から選ばれる物理的処理により処理前に比較して平均粒径を20%以下に微細化させる炭素繊維の製造方法、さらには上記方法により平均粒径が0.01〜5μmである炭素繊維の製造方法を提供することにより達成される。
【0007】
すなわち本発明は、
1.ボールミル、ビーズミル、およびホモジナイザーからなる群から選ばれる物理的処理により処理前に比較して平均粒径を20%以下に微細化させる炭素繊維の製造方法。
【0008】
2.該炭素繊維がカーボンナノチューブである上記記載の炭素繊維の製造方法。
【0009】
3.平均粒径が0.01〜5μmである上記に記載の方法で得られる炭素繊維。
【0010】
【発明の実施の形態】
以下、本発明の具体的内容すなわち炭素繊維およびその製造方法について詳述する。
【0011】
<炭素繊維について>
本発明において用いられる炭素繊維としては、直径が300nm以下、好ましくは0.3〜250nm、さらに好ましくは0.4〜100nmである。直径が0.3nm以下のものは実質的に製造が困難であり、300nm以上のものは溶媒中での分散の改善効果が少ないため好ましくない。
【0012】
またアスペクト比の好ましい値として上限の制限はないが下限としては5.0以上さらには10.0以上、さらに好ましくは50.0以上である事が好ましい。
【0013】
炭素繊維がカーボンナノチューブであることが好ましい。炭素繊維の形状としてはグラフェンシートが円筒状に巻かれたもので、この円筒が単層のものでも複数の層からなるものでも構わない。またグラフェンシートがカップ状に積み重なったものでも構わない。すなわち本発明は、単層カーボンナノチューブ、多層カーボンナノチューブ、カップスタック型カーボンナノチューブを用いた繊維組成物をも含有する。
【0014】
これら炭素繊維は従来公知の方法で製造され、気相流動法、触媒担持型気相流動法、レーザーアブレーション法、高圧一酸化炭素法、アーク放電法等が挙げられるがこれに限定されるものではない。
【0015】
<物理処理について>
本発明では炭素繊維にボールミル、ビーズミル、およびホモジナイザーからなる群から選ばれる物理処理をほどこす事により炭素繊維の平均粒径の微細化された炭素繊維、炭素繊維を製造することを特徴としている。処理は溶媒を用いない乾式、有機溶媒、酸等を用いる湿式いずれでも構わない。さらに超音波処理を併用することも好ましい。また、溶媒として、硫酸硝酸の混合液、硫酸過酸化水素の混合液等の化学的酸化力の強い溶媒を併用することも好ましい。
【0016】
<平均粒径>
なお平均粒径は従来既知の粒度分布計、粒径測定装置により求めることができる。測定方法としては、光散乱法、レーザードップラー法等が挙げられるがこれに限定されるものではない。処理後の好ましい平均粒径としては0.01〜5μmさらに好ましくは0.5〜3μm、さらには0.1〜1.0μmが好ましい。
【0017】
<ラマン測定について>
ラマン分光法により炭素繊維を測定したところ、1350cm−1付近のカーボンのディスオーダー由来のピーク(D−band)と1600cm−1付近のナノチューブのグラファイト表面由来のピーク(G−band)が現れる。物理処理等により、この面積比D/Gが増大すれば炭素繊維のグラファイト構造が破壊、あるいは炭素繊維が切断され炭素繊維の微細化が進行したことを示唆するものである。ボールミル、ビーズミル、ホモジナイザー等の物理的処理によりD/Gを50%以上増加させることができる。
【0018】
【発明の効果】
本発明により得られる微細化した炭素繊維は、ポリマーとの複合材料を製造する際に良好な分散性、延伸方向の配向性を示す。本発明の方法により、直接ポリマーとの複合材料を製造処理に使用することが出来、微細化、分散性を保持した炭素繊維の分散液を使用することが出来る。
【0019】
【実施例】
以下、実施例を挙げて本発明を詳述するが、本発明はこれらの実施例によって何ら限定されるものではない。
【0020】
1.平均粒径の測定
分散溶媒中の炭素繊維の平均粒径は日機装社製マイクロトラックMT3000を用い、光散乱法にて測定した。なお未処理品の平均粒径は測定前にNMP中で1分間超音波処理を行い測定した。
【0021】
2.D/Gの測定
ラマン分光法によりD/Gを求めた。Nicolet社製 FTラマン分光装置 Raman 950を用い1350cm−1付近のカーボンのディスオーダー由来のピーク(D−band)と1600cm−1付近のナノチューブのグラファイト表面由来のピーク(G−band)との面積比D/Gにより求めた。
【0022】
3.X線回折測定
X線発生装置(理学電機社製RU―B型)はターゲットCuKα線、電圧45kV、電流70mAの条件にて測定した入射X線はオスミック社製多層膜ミラーにより集光及び単色化し試料の断面を垂直透過法で測定した。回折X線の検出は大きさ200mm×250mmのイメージングプレート(富士写真フィルム製)を用い、カメラ長250mmの条件で測定した。
【0023】
4.炭素繊維の配向係数F
【0024】
【数1】

Figure 2004256964
[式中φはX線回折測定における方位角、Iは002回折強度である。]
により求めた値でありポリマーマトリックス中での炭素繊維の配向性の指標とした。
【0025】
機械特性:オリエンテック株式会社製テンシロン万能試験機1225Aにより引っ張り試験を行い弾性率を求めた。
【0026】
[実施例1](ミリングによる処理)
NMP(N−メチル−2−ピロリドン)300重量部に昭和電工製炭素繊維VGCF(平均粒径13.03μm、D/G0.13)4.680重量部を加えNETZSCH社製ビーズミル、MINI ZETA(エアー)を用いジルコニウム製の0.8mm径のビーズを使用し周速8.5m/sにて1時間処理した。得られたNMP分散液中の炭素繊維の平均粒径は1.529μm、D/G=0.35となった。
【0027】
[実施例2](ミリングによる処理)
NMP10重量部に昭和電工製炭素繊維VGCF(平均粒径13.03μm、D/G0.13)0.003重量部を加えNETZSCH社製ビーズミル、LMZを用いジルコニウム製の0.3mm径のビーズを使用し周速13m/sにて処理した。処理時間10分後のNMP中の炭素繊維の平均粒径は0.433μm、処理時間30分後の平均粒径は0.253μm、またD/G=0.49となった。
【0028】
[実施例3](ミリングによる処理)
昭和電工製炭素繊維VGCF(平均粒径13.03μm、D/G0.13)0.0254重量部を使用したほかは実施例2と同様の操作を行った。処理時間10分後のNMP中の炭素繊維の平均粒径は0.631μm、処理時間30分後の平均粒径は0.388μm、またD/G=0.43となった。
【0029】
[実施例4](ホモジナイザーによる処理)
NMP99重量部に昭和電工製炭素繊維VGCF(平均粒径13.03μm、D/G0.13)1.0重量部を加え特殊機化工業社製のフィルミックス(ホモジナイザー)を使用し攪拌翼周速=50m/sにて1時間処理した。得られたNMP分散液中の炭素繊維の平均粒径は2.925μmとなった。またD/G=0.21となった。
【0030】
[ポリマードープの作成例]
十分に乾燥した攪拌装置付きの三口フラスコにN−メチルピロリドン1717.38重量部p−フェニレンジアミン18.82重量部及び3、4’−ジアミノフェニルエーテル34.84重量部を常温下で添加し窒素中で溶解した後、攪拌しながらテレフタル酸ジクロリド70.08重量部を添加した。最終的に80℃、60分反応させたところに水酸化カルシウム12.85重量部を添加し中和反応を行った。得られたポリマードープを水にて再沈殿することにより析出させたポリマーの特有粘度は3.5(dl/g)であった。
【0031】
[実施例5]
上記のように得たポリマーのNMPドープ150重量部に、実施例1で得られた炭素繊維のNMP分散液30重量部を加え90℃で1時間攪拌し均一なポリマードープにした。このようにして得られたポリマードープを孔径0.3mm、孔数5個のキャップを用いドープ温度を80℃に保ち、NMP30重量%の水溶液である56℃の凝固浴中に押し出した。キャップ面と凝固浴面との距離は10mmとした。紡糸した繊維は50℃で水洗、120℃で乾燥しフィラメントを得た。
【0032】
[実施例6]
実施例5で得られたフィラメントを500℃の熱板上で延伸倍率10倍で延伸し延伸フィラメントを得た。
【0033】
[比較例1]
NMP(N−メチル−2−ピロリドン)30重量部に昭和電工製炭素繊維VGCF(平均粒径13.03μm、D/G0.13)4.680重量部を加え超音波処理を施しつつ30分攪拌した。(この平均粒径は10.23μmであった。)このNMP溶液を上記のように得たポリマーのNMPドープ150重量部にくわえ90℃で1時間攪拌しポリマードープを得た。このようにして得られたポリマードープを実施例5と同様の操作を行い紡糸したが走査型電子顕微鏡による観察の結果、糸表面に炭素繊維の凝集が多数観察され繊維の形状も不均一なものとなった。
【0034】
【表1】
Figure 2004256964
[0001]
TECHNICAL FIELD OF THE INVENTION
The present invention relates to a method for producing fine carbon fibers by subjecting carbon fibers to a physical treatment, and a fine carbon fiber.
[0002]
[Prior art]
As an example of a report that attempts to reduce the size of a carbon fiber, there is a report that a single-walled carbon nanotube is cut and refined by heating or applying ultrasonic waves in the presence of, for example, nitric acid or sulfuric acid. (See Non-Patent Document 1)
There is also a method in which single-walled carbon nanotubes cut by the above method are isolated and produced by size exclusion chromatography. (See Non-Patent Document 2)
However, even if the carbon nanotubes are cut by an acid treatment or the like, the carbon nanotubes are aggregated when subjected to a separation treatment by filtration or the like, and further use of a composite with a polymer requires a further dispersion treatment.
[0003]
[Non-patent document 1]
Science 280, 1253 (1998)
[0004]
[Non-patent document 2]
J. Am. Chem. soc. 2001, 123, 11673-11677
[0005]
[Problems to be solved by the invention]
The present invention provides a finely divided carbon fiber exhibiting good dispersibility in a polymer when producing a composite material with the polymer.
[0006]
[Means for Solving the Problems]
The above-mentioned problem is solved by a method for producing a carbon fiber in which the average particle size is reduced to 20% or less by a physical treatment selected from the group consisting of a ball mill, a bead mill, and a homogenizer as compared with before the treatment. This is achieved by providing a method for producing carbon fibers having a diameter of 0.01 to 5 μm.
[0007]
That is, the present invention
1. A method for producing carbon fibers in which a physical treatment selected from the group consisting of a ball mill, a bead mill, and a homogenizer reduces the average particle size to 20% or less as compared with before the treatment.
[0008]
2. The method for producing a carbon fiber as described above, wherein the carbon fiber is a carbon nanotube.
[0009]
3. A carbon fiber obtained by the above method having an average particle size of 0.01 to 5 µm.
[0010]
BEST MODE FOR CARRYING OUT THE INVENTION
Hereinafter, the specific contents of the present invention, that is, the carbon fiber and the method for producing the same will be described in detail.
[0011]
<About carbon fiber>
The carbon fiber used in the present invention has a diameter of 300 nm or less, preferably 0.3 to 250 nm, and more preferably 0.4 to 100 nm. Those having a diameter of 0.3 nm or less are substantially difficult to produce, and those having a diameter of 300 nm or more are not preferred because the effect of improving dispersion in a solvent is small.
[0012]
There is no upper limit to the preferable value of the aspect ratio, but the lower limit is preferably 5.0 or more, more preferably 10.0 or more, and further preferably 50.0 or more.
[0013]
Preferably, the carbon fibers are carbon nanotubes. As the shape of the carbon fiber, a graphene sheet is wound into a cylindrical shape, and the cylindrical shape may be a single layer or a plurality of layers. Further, a graphene sheet may be stacked in a cup shape. That is, the present invention also includes a fiber composition using single-walled carbon nanotubes, multi-walled carbon nanotubes, and cup-stacked carbon nanotubes.
[0014]
These carbon fibers are produced by a conventionally known method, and include, but are not limited to, a gas-phase flow method, a catalyst-supported gas-phase flow method, a laser ablation method, a high-pressure carbon monoxide method, an arc discharge method, and the like. Absent.
[0015]
<About physical processing>
The present invention is characterized in that a carbon fiber having a fine average particle diameter of carbon fiber and carbon fiber are produced by subjecting the carbon fiber to a physical treatment selected from the group consisting of a ball mill, a bead mill, and a homogenizer. The treatment may be a dry method using no solvent, or a wet method using an organic solvent, an acid or the like. It is also preferable to use ultrasonic treatment in combination. It is also preferable to use a solvent having a strong chemical oxidizing power such as a mixture of sulfuric acid and nitric acid and a mixture of sulfuric acid and hydrogen peroxide as the solvent.
[0016]
<Average particle size>
The average particle size can be determined by a conventionally known particle size distribution meter or particle size measuring device. Examples of the measuring method include a light scattering method and a laser Doppler method, but are not limited thereto. The average particle size after the treatment is preferably 0.01 to 5 μm, more preferably 0.5 to 3 μm, and further preferably 0.1 to 1.0 μm.
[0017]
<About Raman measurement>
It was measured carbon fiber by Raman spectroscopy, 1350 cm -1 vicinity carbon disordered derived peak (D-band) and 1600 cm -1 vicinity of the nanotubes of the graphite surface from the peak (G-band) appears. If the area ratio D / G is increased by physical treatment or the like, it indicates that the graphite structure of the carbon fiber is broken or that the carbon fiber is cut and the fineness of the carbon fiber is advanced. D / G can be increased by 50% or more by a physical treatment such as a ball mill, a bead mill, and a homogenizer.
[0018]
【The invention's effect】
The finely divided carbon fiber obtained by the present invention exhibits good dispersibility and orientation in the stretching direction when producing a composite material with a polymer. According to the method of the present invention, a composite material with a polymer can be directly used in a production process, and a dispersion liquid of carbon fibers having fineness and dispersibility can be used.
[0019]
【Example】
Hereinafter, the present invention will be described in detail with reference to examples, but the present invention is not limited to these examples.
[0020]
1. Measurement of Average Particle Size The average particle size of the carbon fibers in the dispersion solvent was measured by a light scattering method using Microtrack MT3000 manufactured by Nikkiso Co., Ltd. The average particle size of the untreated product was measured by ultrasonic treatment in NMP for 1 minute before measurement.
[0021]
2. Measurement of D / G D / G was determined by Raman spectroscopy. Using an FT Raman spectrometer (Raman 950, manufactured by Nicolet), the area ratio between a peak (D-band) around 1350 cm −1 due to carbon disorder and a peak (G-band) around 1600 cm −1 due to the graphite surface of nanotubes. It was determined by D / G.
[0022]
3. X-ray diffraction measurement X-ray generator (RU-B type manufactured by Rigaku Denki Co., Ltd.) is used to collect and monochromatic incident X-rays measured under the conditions of target CuKα ray, voltage 45 kV, and current 70 mA by Osmic multilayer mirror. The cross section of the sample was measured by the vertical transmission method. The diffraction X-ray was detected using an imaging plate (manufactured by Fuji Photo Film) having a size of 200 mm × 250 mm under the condition of a camera length of 250 mm.
[0023]
4. Carbon fiber orientation coefficient F
[0024]
(Equation 1)
Figure 2004256964
[Where φ is the azimuth in X-ray diffraction measurement, and I is the 002 diffraction intensity. ]
And was used as an index of the orientation of the carbon fibers in the polymer matrix.
[0025]
Mechanical properties: A tensile test was performed using a Tensilon universal testing machine 1225A manufactured by Orientec Co., Ltd. to determine the elastic modulus.
[0026]
[Example 1] (Processing by milling)
To 300 parts by weight of NMP (N-methyl-2-pyrrolidone) was added 4.680 parts by weight of carbon fiber VGCF (average particle size: 13.03 μm, D / G 0.13) manufactured by Showa Denko, and a bead mill manufactured by NETZSCH, MINI ZETA (air) ) Using 0.8 mm zirconium beads for 1 hour at a peripheral speed of 8.5 m / s. The average particle size of the carbon fibers in the obtained NMP dispersion was 1.529 μm, and D / G = 0.35.
[0027]
[Example 2] (Processing by milling)
0.003 parts by weight of Showa Denko carbon fiber VGCF (average particle diameter 13.03 μm, D / G 0.13) is added to 10 parts by weight of NMP, and 0.3 mm diameter zirconium beads are used using a NETZSCH bead mill and LMZ. The processing was performed at a peripheral speed of 13 m / s. The average particle size of the carbon fibers in the NMP after a treatment time of 10 minutes was 0.433 μm, the average particle size after a treatment time of 30 minutes was 0.253 μm, and D / G = 0.49.
[0028]
[Example 3] (Processing by milling)
The same operation as in Example 2 was performed except that 0.0254 parts by weight of carbon fiber VGCF (average particle size: 13.03 μm, D / G 0.13) manufactured by Showa Denko was used. The average particle size of the carbon fibers in the NMP after a treatment time of 10 minutes was 0.631 μm, the average particle size after a treatment time of 30 minutes was 0.388 μm, and D / G = 0.43.
[0029]
[Example 4] (Treatment by homogenizer)
To 99 parts by weight of NMP, 1.0 part by weight of carbon fiber VGCF (average particle size: 13.03 μm, D / G 0.13) manufactured by Showa Denko was added, and a stirring blade peripheral speed was used using a FILMIX (homogenizer) manufactured by Tokushu Kika Kogyo Co., Ltd. = 50 m / s for 1 hour. The average particle size of the carbon fibers in the obtained NMP dispersion was 2.925 μm. D / G = 0.21.
[0030]
[Example of making polymer dope]
To a sufficiently dried three-necked flask equipped with a stirrer, 1717.38 parts by weight of N-methylpyrrolidone, 18.82 parts by weight of p-phenylenediamine and 34.84 parts by weight of 3,4′-diaminophenyl ether were added at room temperature. After dissolving in the mixture, 70.08 parts by weight of terephthalic acid dichloride was added with stirring. Finally, when the reaction was carried out at 80 ° C. for 60 minutes, 12.85 parts by weight of calcium hydroxide was added to carry out a neutralization reaction. The specific viscosity of the polymer precipitated by reprecipitating the obtained polymer dope with water was 3.5 (dl / g).
[0031]
[Example 5]
To 150 parts by weight of the NMP dope of the polymer obtained as described above, 30 parts by weight of the NMP dispersion liquid of the carbon fiber obtained in Example 1 was added, followed by stirring at 90 ° C. for 1 hour to obtain a uniform polymer dope. The polymer dope thus obtained was extruded into a coagulation bath at 56 ° C., which is a 30% by weight aqueous solution of NMP, using a cap having a pore size of 0.3 mm and 5 holes, keeping the dope temperature at 80 ° C. The distance between the cap surface and the coagulation bath surface was 10 mm. The spun fiber was washed with water at 50 ° C. and dried at 120 ° C. to obtain a filament.
[0032]
[Example 6]
The filament obtained in Example 5 was drawn on a hot plate at 500 ° C. at a draw ratio of 10 to obtain a drawn filament.
[0033]
[Comparative Example 1]
To 30 parts by weight of NMP (N-methyl-2-pyrrolidone) was added 4.680 parts by weight of carbon fiber VGCF (average particle size: 13.03 μm, D / G 0.13) manufactured by Showa Denko, and the mixture was stirred for 30 minutes while being subjected to ultrasonic treatment. did. (The average particle size was 10.23 μm.) The NMP solution was added to 150 parts by weight of the NMP dope of the polymer obtained as described above, and stirred at 90 ° C. for 1 hour to obtain a polymer dope. The polymer dope thus obtained was spun by performing the same operation as in Example 5, but as a result of observation with a scanning electron microscope, a large number of carbon fibers aggregated on the yarn surface and the fiber shape was uneven. It became.
[0034]
[Table 1]
Figure 2004256964

Claims (3)

ボールミル、ビーズミル、およびホモジナイザーからなる群から選ばれる物理的処理により処理前に比較して平均粒径を20%以下に微細化させる炭素繊維の製造方法。A method for producing carbon fibers in which a physical treatment selected from the group consisting of a ball mill, a bead mill, and a homogenizer reduces the average particle size to 20% or less as compared with before the treatment. 該炭素繊維がカーボンナノチューブである請求項1記載の炭素繊維の製造方法。The method for producing a carbon fiber according to claim 1, wherein the carbon fiber is a carbon nanotube. 平均粒径が0.01〜5μmである請求項1〜2に記載の方法で得られる炭素繊維。The carbon fiber obtained by the method according to claim 1 or 2, having an average particle size of 0.01 to 5 µm.
JP2003050593A 2003-02-27 2003-02-27 Method for producing carbon fiber Pending JP2004256964A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2003050593A JP2004256964A (en) 2003-02-27 2003-02-27 Method for producing carbon fiber

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2003050593A JP2004256964A (en) 2003-02-27 2003-02-27 Method for producing carbon fiber

Publications (1)

Publication Number Publication Date
JP2004256964A true JP2004256964A (en) 2004-09-16

Family

ID=33115962

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2003050593A Pending JP2004256964A (en) 2003-02-27 2003-02-27 Method for producing carbon fiber

Country Status (1)

Country Link
JP (1) JP2004256964A (en)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2006117924A1 (en) * 2005-04-28 2006-11-09 Bussan Nanotech Research Institute Inc. Transparent electrically conductive film, and coating composition for transparent electrically conductive film
WO2008139963A1 (en) 2007-05-07 2008-11-20 Hokkaido University Fine carbon fiber aggregate mass for redispersion and process for production thereof
JP2009142779A (en) * 2007-12-17 2009-07-02 National Institute For Materials Science Dispersion and flocculation control method of nanoparticle slurry
WO2010090343A1 (en) * 2009-02-05 2010-08-12 帝人株式会社 Fluid dispersion of graphitized carbon fragments and method of manufacturing the same
JP2011047081A (en) * 2009-08-27 2011-03-10 Ube Industries Ltd Fine carbon fiber having high bulk density and method for producing the same

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2006117924A1 (en) * 2005-04-28 2006-11-09 Bussan Nanotech Research Institute Inc. Transparent electrically conductive film, and coating composition for transparent electrically conductive film
WO2008139963A1 (en) 2007-05-07 2008-11-20 Hokkaido University Fine carbon fiber aggregate mass for redispersion and process for production thereof
US8486362B2 (en) 2007-05-07 2013-07-16 National University Corporation Hokkaido University Redispersible agglomerate of fine carbon fibers and method for producing thereof
JP2009142779A (en) * 2007-12-17 2009-07-02 National Institute For Materials Science Dispersion and flocculation control method of nanoparticle slurry
WO2010090343A1 (en) * 2009-02-05 2010-08-12 帝人株式会社 Fluid dispersion of graphitized carbon fragments and method of manufacturing the same
JP2011047081A (en) * 2009-08-27 2011-03-10 Ube Industries Ltd Fine carbon fiber having high bulk density and method for producing the same

Similar Documents

Publication Publication Date Title
TWI597237B (en) Dispersion of composition containing carbon nanotube, conductive molding and method for manufacturing thereof
Paiva et al. Mechanical and morphological characterization of polymer–carbon nanocomposites from functionalized carbon nanotubes
TWI276649B (en) Composite fiber comprising wholly aromatic polyamide and carbon nanotube
Minus et al. Single wall carbon nanotube templated oriented crystallization of poly (vinyl alcohol)
JP2022191376A (en) graphene reinforced polyethylene terephthalate
US8313724B2 (en) Short, functionalized, soluble carbon nanotubes, methods of making same, and polymer composites made therefrom
Cai et al. A strategy for improving mechanical properties of composite nanofibers through surface functionalization of fillers with hyperbranched polyglycerol
Kannan et al. Deformation of isolated single-wall carbon nanotubes in electrospun polymer nanofibres
Li et al. Poly (lactide)-functionalized and Fe 3 O 4 nanoparticle-decorated multiwalled carbon nanotubes for preparation of electrically-conductive and magnetic poly (lactide) films and electrospun nanofibers
Ha et al. Rapidly self-heating shape memory polyurethane nanocomposite with boron-doped single-walled carbon nanotubes using near-infrared laser
Wang et al. Dispersion of high-quality boron nitride nanosheets in polyethylene for nanocomposites of superior thermal transport properties
JP2004256964A (en) Method for producing carbon fiber
Paiva et al. Physical and mechanical characterization of nanocomposites with carbon nanotubes functionalized with the matrix polymer
Wu et al. Dispersion of single-walled carbon nanotubes in aqueous solution with a thermo-responsive pentablock terpolymer
KR102432060B1 (en) Oxidized carbon nano-particle, method for preparing the same, organic-inorganic complex comprising the same, and method for preparing the organic-inorganic complex
Lee et al. Functionalized carbon nanotube–cellulose nanocrystal (CNT–CNC) composite buckypaper via various methods for improved hydrophilicity performance and behavior
JP7426057B2 (en) Carbon nanotube dispersion
TW202204505A (en) Nanocellulose pieces, nanocellulose piece manufacturing method, polymer composite material, and polymer composite material manufacturing method
Du et al. A coagulation method to prepare single-walled carbon nanotube/PMMA composites and their modulus, electrical conductivity, and thermal stability
JP4456965B2 (en) Composite fiber composed of wholly aromatic polyamide and single-walled carbon nanotubes
Deng Raman spectroscopic studies of carbon nanotube composite fibres
Khatibi et al. PREPARATION OF MULTIFUNCTIONAL NANO-STRUCTURED POLYMER NANOHYBRIDS CONTAINING CARBON COMPOUNDS
Li et al. Study on synthesis and dispersion characteristics of MWNTs/PBO composites prepared by in-situ polymerization
HUNER Functionalized multi-walled carbon nanotubes and micro cellulose reinforced poly (vinyl alcohol) hybrid composite films: characterization and reprocessing performance
Darsono EFFECT OF MULTI PASS HIGH ENERGY MILLING ON MORPHOLOGY AND RHEOLOGICAL PROPERTIES OF CARBON NANOTUBES

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20050728

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20070528

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20070612

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20090106