JP2004256922A - Hard film - Google Patents

Hard film Download PDF

Info

Publication number
JP2004256922A
JP2004256922A JP2004148638A JP2004148638A JP2004256922A JP 2004256922 A JP2004256922 A JP 2004256922A JP 2004148638 A JP2004148638 A JP 2004148638A JP 2004148638 A JP2004148638 A JP 2004148638A JP 2004256922 A JP2004256922 A JP 2004256922A
Authority
JP
Japan
Prior art keywords
hard film
film
hard
present
hardness
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
JP2004148638A
Other languages
Japanese (ja)
Inventor
Takashi Ishikawa
剛史 石川
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Moldino Tool Engineering Ltd
Original Assignee
Hitachi Tool Engineering Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Tool Engineering Ltd filed Critical Hitachi Tool Engineering Ltd
Priority to JP2004148638A priority Critical patent/JP2004256922A/en
Publication of JP2004256922A publication Critical patent/JP2004256922A/en
Withdrawn legal-status Critical Current

Links

Images

Landscapes

  • Physical Vapour Deposition (AREA)
  • Other Surface Treatments For Metallic Materials (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a hard film which has excellent adhesion, high temperature oxidation resistance and wear resistance. <P>SOLUTION: The hard film is applied by an arc discharge type ion plating method. The hard film is expressed by (Al<SB>x</SB>Cr<SB>1-x</SB>)(N<SB>1-α-β-γ</SB>B<SB>α</SB>C<SB>β</SB>O<SB>γ</SB>); wherein x, α, β, γ respectively denote atomic ratios, and 0.45<X<0.75, 0≤α<0.12, 0≤β<0.20, 0.01≤γ≤0.25 are satisfied. In the method for producing the hard film, gas pressure is controlled to 1.5 to 5.0 Pa, the temperature of a coated substrate is controlled to 450 to 700°C, bias voltage is controlled to the low one of -15 to -300 V, and the bonding energy at least of Cr and/or Al and oxygen lies in the range from 525 to 535 eV in X-ray photoelectron spectroscopy analysis. <P>COPYRIGHT: (C)2004,JPO&NCIPI

Description

本願発明は、超硬合金、高速度鋼、ダイス鋼等に被覆する耐摩耗性、密着性及び耐高温酸化特性に優れた硬質皮膜に関する。   The present invention relates to a hard coating excellent in abrasion resistance, adhesion, and high-temperature oxidation resistance, which is coated on a cemented carbide, a high-speed steel, a die steel, and the like.

AlCr系皮膜は、耐高温酸化特性に優れた硬質皮膜材として、特許文献1、特許文献2及び特許文献3に開示されている。特許文献1は金属成分としてAlCrとC、N、Oの1種より選択されるAlCr系硬質膜において、高硬度を有する非晶質膜に関する事例が開示されている。しかしこの非晶質膜の硬度は最大でもヌープ硬さ21GPa程度であり、耐摩耗効果は期待できず、密着性に関しても十分ではない。特許文献2及び特許文献3に開示されている硬質皮膜はAlCrの窒化物であり、約1000℃の耐高温酸化特性を有しているが、1000℃以上の耐酸化特性の検討は行われていない。硬度はHV21GPa程度で硬度の改善が不十分であり耐摩耗性に乏しい。   AlCr-based coatings are disclosed in Patent Documents 1, 2, and 3 as hard coating materials having excellent high-temperature oxidation resistance. Patent Literature 1 discloses an AlCr-based hard film selected from AlCr and one of C, N, and O as a metal component, and an example relating to an amorphous film having high hardness. However, the hardness of this amorphous film is at most about 21 GPa, the Knoop hardness, and abrasion resistance cannot be expected, and adhesion is not sufficient. The hard coatings disclosed in Patent Literature 2 and Patent Literature 3 are nitrides of AlCr and have a high-temperature oxidation resistance of about 1000 ° C, but the oxidation resistance at a temperature of 1000 ° C or higher has been studied. Absent. The hardness is about HV21 GPa, the hardness is not sufficiently improved, and the wear resistance is poor.

特許第3027502号公報Japanese Patent No. 3027502 特許第3039381号公報Japanese Patent No. 3039381 特開2002−160129号公報JP-A-2002-160129

本願発明はこうした事情に着目してなされ、密着性、耐高温酸化特性及び耐摩耗性に優れた硬質皮膜を提供することを目的とする。   The present invention has been made in view of such circumstances, and an object of the present invention is to provide a hard coating excellent in adhesion, high-temperature oxidation resistance, and abrasion resistance.

本願発明は、アーク放電式イオンプレーティング法により被覆される硬質皮膜であって、該硬質皮膜は(AlCr1−x)(N1−α−β−γαβγ)、但し、x、α、β、γは夫々原子比率を示し、0.45<X<0.75、0≦α<0.12、0≦β<0.20、0.01≦γ≦0.25からなり、ガス圧を1.5〜5.0Pa、被覆基体温度を450〜700℃、バイアス電圧を−15〜−300Vの低バイアス電圧で、X線光電子分光分析における525eVから535eVの範囲に少なくともCr及び/又はAlと酸素との結合エネルギーを有することを特徴とする硬質皮膜の製造方法である。ナノインデンテーションによる硬度測定法により接触深さと最大荷重時の最大変位量が求められる(W.C.Oliver and、G. M. Pharr: J. Mater. Res., Vol. 7, No.6, June 1992、1564−1583)。この数値を用いて、
E=100−{(接触深さ)/(最大荷重時の最大変位量)}
の数式で、弾性回復率Eを定義し、30%≦E<40%とすることにより、耐摩耗性と密着性のバランスが最適となり好ましい。
The present invention relates to a hard film to be coated by arc discharge type ion plating method, the rigid coating (Al x Cr 1-x) (N 1-α-β-γ B α C β O γ), Here, x, α, β, and γ each represent an atomic ratio, and 0.45 <X <0.75, 0 ≦ α <0.12, 0 ≦ β <0.20, 0.01 ≦ γ ≦ 0. 25, a gas pressure of 1.5 to 5.0 Pa, a coating substrate temperature of 450 to 700 ° C., a bias voltage of -15 to −300 V, a low bias voltage of 525 eV to 535 eV in X-ray photoelectron spectroscopy. A method for producing a hard coating, characterized by having at least binding energy between Cr and / or Al and oxygen. The contact depth and the maximum displacement amount at the time of the maximum load are determined by a hardness measurement method by nanoindentation (WC Oliver and G. M. Phar: J. Mater. Res., Vol. 7, No. 6, No. 6). June 1992, 1564-1583). Using this number,
E = 100-{(contact depth) / (maximum displacement at maximum load)}
By defining the elastic recovery rate E by the following formula, and satisfying 30% ≦ E <40%, the balance between the wear resistance and the adhesion is optimized, which is preferable.

本願発明を適用することにより、皮膜の硬さを向上させることが出来、エンドミル、ドリル等の切削工具や耐摩耗工具に用いても充分な耐摩耗性を有し、密着性、耐高温酸化特性に優れた硬質皮膜を得ることが出来た。   By applying the present invention, the hardness of the coating can be improved, and it has sufficient abrasion resistance even when used for cutting tools such as end mills and drills and abrasion resistance tools, adhesion, and high-temperature oxidation resistance. It was possible to obtain an excellent hard film.

本発明者は、基体との密着性、耐高温酸化特性に優れ高硬度を有した硬質皮膜を得ることを目的として研究した結果、硬質皮膜の組成並びに成膜条件であるバイアス電圧、反応ガス圧やその分圧比、成膜時の基体温度の検討によって目的を達成する本発明の硬質皮膜を完成した。本発明の硬質皮膜を構成する金属元素の組成は、(AlCr1−x)のXが0.45<X<0.75を満足する必要がある。X値が0.45以下では、皮膜硬度並びに耐高温酸化特性の改善効果が十分ではなく、0.75以上では、残留圧縮応力が過大になり、被覆直後に自己破壊を誘発する。また強度が急激に低下する。非金属元素のαは、0.12以上では皮膜が脆化し、好ましいαの上限値は0.08である。硼素の添加は被加工物との耐溶着性と高温環境下での摩擦係数を低減する効果があり好ましい。βは、0.20を以上で皮膜は脆化する。好ましいβの上限値は0.16である。炭素の添加は硬質皮膜の硬度を高め、室温での摩擦係数の低減に効果的である。γは、0.01以上0.25以下にすることが必要であり、γが0.01未満では添加の効果を得ることが出来ず、0.25を超えて大きくなると皮膜硬度は著しく低下し、耐摩耗性に乏しくなる。好ましくは、γは、0.02以上0.20以下である。金属元素のAl、Crに対する非金属元素のN、B、C、Oの比は、化学量論的に(N、B、C、O)/(Al、Cr)>1.1がより好ましい。 The present inventor has conducted research with the aim of obtaining a hard film having excellent adhesion to a substrate and excellent high-temperature oxidation resistance and high hardness. As a result, the composition of the hard film and the film forming conditions such as bias voltage and reaction gas pressure were investigated. The hard coating of the present invention, which achieves the object, was completed by examining the pressure ratio and the substrate temperature during film formation. In the composition of the metal element constituting the hard coating of the present invention, X of (Al x Cr 1-x ) needs to satisfy 0.45 <X <0.75. If the X value is 0.45 or less, the effect of improving the film hardness and the high-temperature oxidation resistance is not sufficient. If the X value is 0.75 or more, the residual compressive stress becomes excessive and self-destruction is induced immediately after coating. In addition, the strength decreases rapidly. When α of the nonmetallic element is 0.12 or more, the film becomes brittle, and the preferable upper limit of α is 0.08. The addition of boron is preferable because it has the effect of reducing the adhesion to the workpiece and the coefficient of friction in a high-temperature environment. When β is 0.20 or more, the film becomes brittle. The preferred upper limit of β is 0.16. The addition of carbon increases the hardness of the hard coating and is effective in reducing the coefficient of friction at room temperature. γ needs to be 0.01 or more and 0.25 or less, and if γ is less than 0.01, the effect of addition cannot be obtained. , Poor wear resistance. Preferably, γ is 0.02 or more and 0.20 or less. The ratio of N, B, C, and O of the nonmetal element to Al and Cr of the metal element is more preferably stoichiometrically (N, B, C, O) / (Al, Cr)> 1.1.

X線回折での最強回折強度が(200)面もしくは(111)面に有する結晶質とすることが必要であり、硬質皮膜に靭性を持たせ、密着性の改善に効果的である。X線光電子分光分析にて、525eVから535eVにCr、Alと酸素との結合エネルギーを有することが必要であり、皮膜が緻密化し、酸化雰囲気において酸素の拡散経路となる結晶粒界が不明瞭となり、内向拡散し難くする機能を有する。CrとAlが窒化物、酸化物もしくは酸窒化物の状態で存在しているため、硬質皮膜が緻密化し高硬度を有する。Eは30%≦E<40%であることが好ましく、皮膜の成膜条件であるバイアス電圧、反応ガス圧やその分圧比、成膜時の基体温度を最適に制御することにより達成できる。Eが40%以上の場合、硬質皮膜内に残留する圧縮応力が高くなり過ぎて靭性に乏しくなり密着性を劣化させる。30%未満の場合は強度不足による異常摩耗等により耐摩耗性が十分でない。好ましいEの値は32%〜38%である。本発明の硬質皮膜の特徴である、Cr及び/又はAlと酸素との結合状態を形成するには、一定以上の酸素を含有させることが必要である。基体にバイアス電圧を印加すると、密着性を一段と高めることができる。成膜条件は、ガス圧を1.5〜5.0Pa、被覆基体温度を450〜700℃、バイアス電圧を−15〜−300Vの低バイアス電圧が好ましく、この範囲に於いて密着性、耐高温酸化特性並びに耐摩耗性の優れた緻密な硬質皮膜が得られる。   It is necessary to have a crystalline structure having the strongest diffraction intensity in the (200) plane or the (111) plane in X-ray diffraction. This is effective for imparting toughness to the hard coating and improving the adhesion. In X-ray photoelectron spectroscopy analysis, it is necessary to have a binding energy of Cr, Al and oxygen from 525 eV to 535 eV, and the film becomes dense, and the crystal grain boundaries serving as a diffusion path of oxygen in an oxidizing atmosphere become unclear. Has the function of making inward diffusion difficult. Since Cr and Al are present in the state of nitride, oxide or oxynitride, the hard film is dense and has high hardness. E preferably satisfies 30% ≦ E <40%, and can be achieved by optimally controlling the bias voltage, the reaction gas pressure, the partial pressure ratio thereof, and the substrate temperature during film formation, which are the film formation conditions. If E is 40% or more, the compressive stress remaining in the hard coating becomes too high, resulting in poor toughness and poor adhesion. If it is less than 30%, the wear resistance is insufficient due to abnormal wear due to insufficient strength. Preferred values of E are between 32% and 38%. In order to form a bonded state between Cr and / or Al and oxygen, which is a feature of the hard coating of the present invention, it is necessary to contain a certain amount or more of oxygen. When a bias voltage is applied to the substrate, the adhesion can be further improved. The film forming conditions are preferably a gas pressure of 1.5 to 5.0 Pa, a coating substrate temperature of 450 to 700 ° C., and a bias voltage of a low bias voltage of −15 to −300 V. A dense hard film having excellent oxidation characteristics and abrasion resistance can be obtained.

(実施例1)
成膜には酸素含有の合金ターゲットを用い、反応ガスを真空装置内に導入し全圧を3.0Pa、バイアス電圧を−100V、被覆温度を450℃とし、膜厚を約5μmとし、(Al0.6Cr0.4)(N0.800.080.100.02)を成膜し、本発明例1とした。皮膜組成は、電子プローブX線マイクロアナリシス及びオージェ電子分光法により決定した。X線光電子分光分析は、PHI社製1600S型X線光電子分光分析装置を用いて分析した。本発明例1のX線光電子分光分析結果を図1に示す。図1は結合エネルギーが530eV近傍のナロースペクトル示し、Cr−O及びAl−Oの結合の存在を示す。図2はCr−N及びCr−Oの結合の存在を示す。図3はAl−N及びAl−Oの結合の存在を示す。図4のX線回折結果は、皮膜が(200)面に最も強く配向していることを示す。
(Example 1)
An oxygen-containing alloy target was used for film formation, a reaction gas was introduced into a vacuum apparatus, the total pressure was 3.0 Pa, the bias voltage was -100 V, the coating temperature was 450 ° C., the film thickness was about 5 μm, and (Al 0.6 Cr 0.4 ) (N 0.80 C 0.08 O 0.10 B 0.02 ) was formed as Inventive Example 1. The coating composition was determined by electron probe X-ray microanalysis and Auger electron spectroscopy. The X-ray photoelectron spectroscopy was analyzed using a PHI 1600S X-ray photoelectron spectrometer. FIG. 1 shows the results of X-ray photoelectron spectroscopy analysis of Example 1 of the present invention. FIG. 1 shows a narrow spectrum in which the binding energy is around 530 eV, and shows the presence of Cr—O and Al—O bonds. FIG. 2 shows the presence of Cr-N and Cr-O bonds. FIG. 3 shows the presence of Al—N and Al—O bonds. The X-ray diffraction results in FIG. 4 indicate that the film is most strongly oriented on the (200) plane.

(実施例2)
実施例1と同様に、(AlCr1−x)(N0.950.05)を成膜し、比較例2、x=0.20、比較例3、x=0.30、本発明例4、x=0.50、本発明例5、x=0.60、本発明例6、x=0.70、比較例7、x=0.80、及び(AlxCr1−x)N系の従来例9、x=0.20、従来例10、x=0.50、従来例11、x=0.70、を製作し、押込硬さを測定した。試験機は微小押込み硬さ試験機を用い、圧子はダイヤモンド製の対稜角115度の三角錐圧子を用い、最大荷重を49mN、荷重負荷ステップ4.9mN/sec、最大荷重時の保持時間は1秒とした。測定値は10点測定の平均値を示した。図5より、本発明例4〜6、Al添加量、45〜75原子%の範囲で、酸素を含有しない系より高硬度を示した。本発明の硬質皮膜は、酸素を含有することにより高硬度となり、40GPa以上を得ることが出来る。より好ましい硬度は45から52GPaである。これによって密着性並びに耐摩耗性に優れた硬質皮膜が得られる。
(Example 2)
As in Example 1, (Al x Cr 1-x ) (N 0.95 O 0.05 ) was formed, and Comparative Example 2, x = 0.20, Comparative Example 3, x = 0.30, Invention Example 4, x = 0.50, Invention Example 5, x = 0.60, Invention Example 6, x = 0.70, Comparative Example 7, x = 0.80, and (AlxCr1-x) N Conventional Example 9, x = 0.20, Conventional Example 10, x = 0.50, Conventional Example 11, x = 0.70 of the system were manufactured, and the indentation hardness was measured. The tester used was a micro indentation hardness tester. The indenter used was a triangular pyramid indenter made of diamond with a diagonal angle of 115 degrees, the maximum load was 49 mN, the load step was 4.9 mN / sec, and the holding time at the maximum load was 1 Seconds. The measured value was an average of 10 measurements. From FIG. 5, in Examples 4 to 6 of the present invention and in the range of the added amount of Al of 45 to 75 atomic%, the hardness was higher than that of the system containing no oxygen. The hard coating of the present invention becomes high hardness by containing oxygen, and can obtain 40 GPa or more. More preferred hardness is 45 to 52 GPa. As a result, a hard coating excellent in adhesion and abrasion resistance can be obtained.

(実施例3)
実施例1と同様に、超硬合金、粉末高速度鋼及びダイス鋼を基体に用い、表1に示す皮膜組成の、本発明例12〜16、比較例17〜19及び従来例10を製作した。表1に皮膜組成等を示す。
(Example 3)
In the same manner as in Example 1, cemented carbide, powdered high-speed steel, and die steel were used for the substrate, and Examples 12 to 16, Comparative Examples 17 to 19, and Conventional Example 10 having the coating compositions shown in Table 1 were produced. . Table 1 shows the film composition and the like.

Figure 2004256922
Figure 2004256922

表1の試料を用いて、大気中1100℃の酸化条件で処理した皮膜の酸化層、実施例2同様に微小押込み硬さ、薄板の変形量より算出した残留圧縮応力、弾性回復率を測定した。先ず、酸化層厚さは、本発明例12〜16は、殆ど酸化進行が無く、耐高温酸化特性に優れていることが確認された。従来例10は酸化進行が著しく硬質皮膜は殆ど酸化物となり、酸素の内向拡散が基体まで達していた。次に、押込み硬さもC、Bを含有させることにより、更に高硬度となる。残留応力は、本発明例12〜16は低く、更に、図6に示す、本発明例12及び従来例10の荷重変位曲線より、本発明例12は、最大荷重時における最大変位量が大きく、塑性変形量が小さく、同一応力が硬質皮膜に作用した際、弾性回復する割合が大きく塑性変形し難いことを示す。この荷重変位曲線よりEを求めた。Eが大きい程弾性回復特性に優れる。表1より、本発明例12〜16は弾性回復特性に優れ、硬質皮膜の剥離やクラックの低減が可能となり、密着性に優れた硬質皮膜を得ることができる。これは、皮膜硬度差よりも大きな効果がある。   Using the samples shown in Table 1, the oxide layer of the film treated under the oxidizing conditions of 1100 ° C. in the atmosphere, the microindentation hardness, the residual compressive stress calculated from the deformation of the thin plate, and the elastic recovery were measured in the same manner as in Example 2. . First, with respect to the thickness of the oxide layer, it was confirmed that Examples 12 to 16 of the present invention hardly proceeded with oxidation and were excellent in high-temperature oxidation resistance. In Conventional Example 10, the progress of oxidation was remarkable, and the hard coating almost became oxide, and inward diffusion of oxygen reached the substrate. Next, the indentation hardness is further increased by including C and B. Residual stress is low in Examples 12 to 16 of the present invention. Further, from the load displacement curves of Example 12 of the present invention and Conventional Example 10 shown in FIG. 6, Example 12 of the present invention has a large maximum displacement at the time of maximum load, This indicates that the plastic deformation amount is small, and when the same stress acts on the hard film, the elastic recovery rate is large and the plastic deformation is difficult. E was determined from this load displacement curve. The larger the E, the better the elastic recovery characteristics. From Table 1, it can be seen that Examples 12 to 16 of the present invention are excellent in elastic recovery properties, enable peeling of the hard film and reduce cracks, and can obtain hard films excellent in adhesion. This has a greater effect than the film hardness difference.

次に、表1の試料を用いて圧痕試験による皮膜剥離状況を併記する。測定はロックウェル硬度計により150N荷重で圧痕を形成し、光学顕微鏡により観察した。本発明例12〜16は剥離が無く、優れた密着性を示した。これは本発明例が適正なE値の範囲内にあるためである。比較例17〜19、従来例10は被覆基体の塑性変形に追従することができず、圧痕周辺部に膜剥離が発生した。   Next, the state of film peeling by the indentation test using the samples shown in Table 1 will be described. In the measurement, an indentation was formed with a load of 150 N using a Rockwell hardness tester and observed with an optical microscope. Inventive Examples 12 to 16 showed no peeling and exhibited excellent adhesion. This is because the example of the present invention is within the range of an appropriate E value. Comparative Examples 17 to 19 and Conventional Example 10 could not follow the plastic deformation of the coated substrate, and film peeling occurred around the indentation.

図1は、本発明例のCr−O及びAl−Oの結合エネルギーを示す。FIG. 1 shows the binding energies of Cr—O and Al—O according to the present invention. 図2は、本発明例のCr−N及びCr−Oの結合エネルギーを示す。FIG. 2 shows the binding energies of Cr-N and Cr-O of the present invention. 図3は、本発明例のAl−N及びAl−Oの結合エネルギーを示す。FIG. 3 shows the binding energies of Al-N and Al-O of the present invention. 図4は、本発明例のX線回折結果を示す。FIG. 4 shows an X-ray diffraction result of the example of the present invention. 図5は、本発明例と従来例のAl添加量と皮膜硬度の関係を示す。FIG. 5 shows the relationship between the amount of Al added and the film hardness of the present invention example and the conventional example. 図6は、本発明例12及び従来例10の荷重変位曲線を示す。FIG. 6 shows the load displacement curves of the present invention example 12 and the conventional example 10.

Claims (2)

アーク放電式イオンプレーティング法により被覆される硬質皮膜であって、該硬質皮膜は(AlCr1−x)(N1−α−β−γαβγ)、但し、x、α、β、γは夫々原子比率を示し、0.45<X<0.75、0≦α<0.12、0≦β<0.20、0.01≦γ≦0.25からなり、ガス圧を1.5〜5.0Pa、被覆基体温度を450〜700℃、バイアス電圧を−15〜−300Vの低バイアス電圧で、X線光電子分光分析における525eVから535eVの範囲に少なくともCr及び/又はAlと酸素との結合エネルギーを有することを特徴とする硬質皮膜の製造方法。 A hard film to be coated by arc discharge type ion plating method, the rigid coating (Al x Cr 1-x) (N 1-α-β-γ B α C β O γ), where, x, α, β, and γ each represent an atomic ratio, and include 0.45 <X <0.75, 0 ≦ α <0.12, 0 ≦ β <0.20, and 0.01 ≦ γ ≦ 0.25; The gas pressure is 1.5 to 5.0 Pa, the temperature of the coated substrate is 450 to 700 ° C., the bias voltage is a low bias voltage of −15 to −300 V, and at least Cr and / or 525 eV to 535 eV in the X-ray photoelectron spectroscopy analysis. Or a method for producing a hard coating, having a binding energy between Al and oxygen. 請求項1記載の硬質皮膜の製造方法において、該硬質皮膜中の酸素量は、酸素含有の合金ターゲットを用いることを特徴とする硬質皮膜の製造方法。
The method for producing a hard coating according to claim 1, wherein the amount of oxygen in the hard coating uses an alloy target containing oxygen.
JP2004148638A 2004-05-19 2004-05-19 Hard film Withdrawn JP2004256922A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2004148638A JP2004256922A (en) 2004-05-19 2004-05-19 Hard film

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2004148638A JP2004256922A (en) 2004-05-19 2004-05-19 Hard film

Related Parent Applications (1)

Application Number Title Priority Date Filing Date
JP2002334434A Division JP3669700B2 (en) 2002-11-19 2002-11-19 Hard coating

Publications (1)

Publication Number Publication Date
JP2004256922A true JP2004256922A (en) 2004-09-16

Family

ID=33128645

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2004148638A Withdrawn JP2004256922A (en) 2004-05-19 2004-05-19 Hard film

Country Status (1)

Country Link
JP (1) JP2004256922A (en)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2004268250A (en) * 2003-02-17 2004-09-30 Hitachi Tool Engineering Ltd Coating end mill and target for coating
US7763366B2 (en) 2006-02-03 2010-07-27 Kobe Steel, Ltd. Hard coating film and method for forming the same
US20150056431A1 (en) * 2012-04-16 2015-02-26 Oerlikon Trading Ag, Trubbach High performance tools exhibiting reduced crater wear in particular by dry machining operations
US20160040283A1 (en) * 2013-03-22 2016-02-11 Mitsubishi Materials Corporation Surface-coated cutting tool
US20160138153A1 (en) * 2013-03-29 2016-05-19 Oerlikon Surface Solutions Ag, Trübbach Hard material layers with selected thermal conductivity

Cited By (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2004268250A (en) * 2003-02-17 2004-09-30 Hitachi Tool Engineering Ltd Coating end mill and target for coating
US7763366B2 (en) 2006-02-03 2010-07-27 Kobe Steel, Ltd. Hard coating film and method for forming the same
USRE44414E1 (en) 2006-02-03 2013-08-06 Kobe Steel, Ltd. Hard coating film and method for forming the same
US20150056431A1 (en) * 2012-04-16 2015-02-26 Oerlikon Trading Ag, Trubbach High performance tools exhibiting reduced crater wear in particular by dry machining operations
US9464347B2 (en) * 2012-04-16 2016-10-11 Oerlikon Surface Solutions Ag, Pfaffikon High performance tools exhibiting reduced crater wear in particular by dry machining operations
US20160040283A1 (en) * 2013-03-22 2016-02-11 Mitsubishi Materials Corporation Surface-coated cutting tool
US9903014B2 (en) * 2013-03-22 2018-02-27 Mitsubishi Materials Corporation Surface-coated cutting tool
US20160138153A1 (en) * 2013-03-29 2016-05-19 Oerlikon Surface Solutions Ag, Trübbach Hard material layers with selected thermal conductivity
US9869015B2 (en) * 2013-03-29 2018-01-16 Oerlikon Surface Solutions Ag, Pfäffikon Hard material layers with selected thermal conductivity

Similar Documents

Publication Publication Date Title
JP5111600B2 (en) Surface covering member and cutting tool
US20130108850A1 (en) COATED cBN SINTERED BODY TOOL
KR101701186B1 (en) Cutting tool
Braic et al. Structure and properties of Zr/ZrCN coatings deposited by cathodic arc method
JP4330859B2 (en) Coated cemented carbide and method for producing the same
JP2009120912A (en) Wear resistant member with hard film
JP2008013852A (en) Hard film, and hard film-coated tool
JP3669700B2 (en) Hard coating
JP3640310B2 (en) Hard coating
JP2004256922A (en) Hard film
JP2004314182A (en) Coated drill
JP2004255482A (en) Coated end mill
JP5170828B2 (en) A surface-coated cutting tool that exhibits excellent chipping resistance with a hard coating layer in high-speed intermittent cutting
JP5400692B2 (en) Wear-resistant member provided with hard coating and method for producing the same
JP4253184B2 (en) Hard coating with excellent adhesion and method for producing the same
JP2004249394A (en) Coated drill
JP3269305B2 (en) Surface coated tungsten carbide based cemented carbide cutting tool with excellent interlayer adhesion with hard coating layer
JP2004306228A (en) Hard coating
JP2008284637A (en) Coated cutting tool
JP2004298972A (en) Coated insert
JP2004249433A (en) Coated broach
JP2004337988A (en) Coated rough-machining end mill
JP2004255553A (en) Coated broach
JP2004306216A (en) Coated cemented carbide end mill
JP4936742B2 (en) Surface coating tools and cutting tools

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20050302

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20080423

A761 Written withdrawal of application

Effective date: 20080526

Free format text: JAPANESE INTERMEDIATE CODE: A761