JP2004256621A - Nonhalogen flame-retardant resin composition - Google Patents

Nonhalogen flame-retardant resin composition Download PDF

Info

Publication number
JP2004256621A
JP2004256621A JP2003047138A JP2003047138A JP2004256621A JP 2004256621 A JP2004256621 A JP 2004256621A JP 2003047138 A JP2003047138 A JP 2003047138A JP 2003047138 A JP2003047138 A JP 2003047138A JP 2004256621 A JP2004256621 A JP 2004256621A
Authority
JP
Japan
Prior art keywords
resin composition
weight
parts
retardant resin
ethylene
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
JP2003047138A
Other languages
Japanese (ja)
Inventor
Katsuyoshi Ishida
克義 石田
Atsushi Suzuki
淳 鈴木
Hirotaka Sawada
広隆 沢田
Hiroshi Saegusa
博 三枝
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Fujikura Ltd
Original Assignee
Fujikura Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Fujikura Ltd filed Critical Fujikura Ltd
Priority to JP2003047138A priority Critical patent/JP2004256621A/en
Publication of JP2004256621A publication Critical patent/JP2004256621A/en
Withdrawn legal-status Critical Current

Links

Abstract

<P>PROBLEM TO BE SOLVED: To provide a nonhalogen flame-retardant resin composition which has high flame retardance, good mechanical properties and processability, and does not reduce the electrical insulation properties on flooding when made into the insulator of an insulated wire or the like. <P>SOLUTION: The nonhalogen flame-retardant resin composition comprises 100 pts.wt. base polymer comprising an olefin resin such as an ethylene-vinyl acetate resin, an acid modified olefin polymer, and ethylene thermoplastic elastomer and an ethylene acrylic rubber, 150-250 pts.wt. metal hydroxide such as magnesium hydroxide, and 1-20 pts.wt. surface-treated zinc hydroxystannate surface-treated with a silane coupling agent such as a vinylsilane, an acrylic silane, and an aminosilane or a fatty acid such as stearic acid. <P>COPYRIGHT: (C)2004,JPO&NCIPI

Description

【0001】
【発明の属する技術分野】
この発明は、難燃性、機械特性、電気絶縁性に優れ、電子機器用電線等の被覆材などとして好適なノンハロゲン系難燃性樹脂組成物に関するものである。
【0002】
【従来の技術】
ノンハロゲン系難燃性樹脂組成物としては、エチレン−酢酸ビニル共重合体やエチレン−エチルアクリレート共重合体などのオレフィン系樹脂に、水酸化マグネシウム、水酸化アルミニウムなどの難燃剤、メラミンシアヌレート、ヒドロキシスズ酸亜鉛などの難燃助剤を配合したものが知られている。
また、シランカップリング剤やステアリン酸などで表面処理した水酸化マグネシウムなどを用いて、樹脂組成物の機械特性を高めることも知られている。
【0003】
このようなノンハロゲン系難燃性樹脂組成物にあっては、焼却処分の際に有害なハロゲン化合物を発生することがなく、この樹脂組成物からなる被覆層を有する絶縁電線が、UL1581規格に規定されるVW−1燃焼試験に合格する高難燃性を発揮し、良好な機械特性、加工性を有しており、例えば電子機器用絶縁電線の絶縁体、シースなどに用いられている。
【0004】
しかしながら、このようなノンハロゲン系難燃性樹脂組成物からなる絶縁体、シースを有する絶縁電線では、これを浸水状態においた際に、浸水時の電気絶縁性、具体的には絶縁抵抗、絶縁破壊電圧が低下するという不都合があった。
【0005】
【特許文献1】
特開2000−195336号公報
【特許文献2】
特開2000−294036号公報
【0006】
【発明が解決しようとする課題】
よって、本発明における課題は、高難燃性で、良好な機械特性、加工性を有するとともに、絶縁電線の絶縁体などとしたときに浸水時の電気絶縁性が低下しないノンハロゲン系難燃性樹脂組成物を得ることにある。
【0007】
【課題を解決するための手段】
かかる課題を解決するため、
請求項1にかかる発明は、オレフィン系樹脂とエチレンアクリルゴムを含むベースポリマー100重量部と、金属水酸化物150〜250重量部と、表面処理ヒドロキシスズ酸亜鉛1〜20重量部を含むノンハロゲン系難燃性樹脂組成物である。
【0008】
請求項2にかかる発明は、ベースポリマー100重量部が、エチレンアクリルゴム15〜50重量部、エチレン−酢酸ビニル共重合体30〜65重量部、酸変性オレフィン系ポリマー0〜30重量部、エチレン系熱可塑性エラストマー0〜30重量部を含む請求項1記載のノンハロゲン系難燃性樹脂組成物である。
【0009】
請求項3にかかる発明は、金属水酸化物が表面処理されている請求項1または2記載のノンハロゲン系難燃性樹脂組成物である。
請求項4にかかる発明は、架橋されている請求項1ないし3のいずれかに記載のノンハロゲン系難燃性樹脂組成物である。
【0010】
請求項5にかかる発明は、ゲル分率が45〜90%である請求項4記載のノンハロゲン系難燃性樹脂組成物である。
請求項6にかかる発明は、請求項1ないし5のいずれかに記載のノンハロゲン系難燃性樹脂組成物を被覆材として用い、ULに規定されるVW−1燃焼試験に合格する絶縁電線である。
【0011】
【発明の実施の形態】
以下、本発明を詳しく説明する。
本発明のノンハロゲン系難燃性樹脂組成物を構成するベースポリマーは、オレフィン系樹脂とエチレンアクリルゴムを含むものである。
【0012】
ここでのオレフィン系樹脂としては、特に限定されることはないが、好ましくは分子内に酸素を含み、極性の高いものが用いられる。このようなものとして、本発明では、エチレン−酢酸ビニル共重合体、酸変性オレフィン系ポリマー、エチレン系熱可塑性エラストマーが挙げられ、エチレン−酢酸ビニル共重合体およびエチレン−酢酸ビニル−アクリル酸エステル共重合体が特に望ましい。
【0013】
上記エチレン−酢酸ビニル共重合体としては、酢酸ビニル含有量が15〜50wt%、好ましくは20〜40wt%であり、メルトフローレイトが0.1〜30(g/10分)、好ましくは0.5〜10(g/10分)の範囲のものが用いられる。
【0014】
酸変性オレフィン系ポリマーには、低密度ポリエチレン、直鎖状低密度ポリエチレン、高密度ポリエチレン、エチレン−酢酸ビニル共重合体、エチレン−エチルアクリレート共重合体、ポリオレフィン系熱可塑性エラストマーなどのオレフィン系ポリマーの重合時または重合後に、無水マレイン酸、フマル酸、イタコン酸、アクリル酸、メタクリル酸などの不飽和カルボン酸あるいはこれの誘導体を反応させて、変性した酸変性ポリマーが用いられる。これの酸変性度合いは、不飽和カルボン酸の結合量が0.5〜3wt%の範囲のものが好ましい。
【0015】
エチレン系熱可塑性エラストマーには、分子鎖末端にスチレン系樹脂をグラフト重合または共重合し、主鎖にエチレン成分を有する熱可塑性エラストマーが用いられ、具体的にはポリスチレン−ポリ(エチレン−プロピレン)−ポリスチレンブロック共重合体(SEPS)、ポリスチレン−ポリ(エチレン−ブチレン)−ポリスチレンブロック共重合体(SEBS)などが用いられる。
【0016】
ベースポリマーをなすエチレンアクリルゴムには、エチレンとメチルアクリレート、メチルメタクリレート、エチルアクリレート、エチルメタクリレートなどのアクリル酸エステルの一種以上とのブロック共重合体であって、エチレン含有量が30〜50wt%、ムーニー粘度が20〜45(ML1+4、100℃)の範囲のゴム弾性に富むエラストマーが用いられる。
【0017】
そして、このベースポリマーをなす上記各ポリマーの配合割合は、ベースポリマー100重量部のうち、エチレンアクリルゴムが15〜50重量部、エチレン−酢酸ビニル共重合体が30〜65重量部、酸変性オレフィン系ポリマーが0〜30重量部、エチレン系熱可塑性エラストマーが0〜30重量部とされる。
【0018】
エチレンアクリルゴムが15重量部未満では難燃性が不充分となり、50重量部を越えると得られるノンハロゲン系難燃性樹脂組成物の剛性などの機械特性が不足する。また、エチレン−酢酸ビニル共重合体が30重量部未満では難燃性が不足し、65重量部を越えると柔軟性が不足する。
【0019】
さらに、酸変性オレフィン系ポリマーは必ずしも配合する必要はないが、配合量が30重量部を越えると伸びが低下し、電線の被覆材としたときに、導体への密着性が強くなりすぎて、口出し性が悪くなる。エチレン系熱可塑性エラストマーも必ずしも配合する必要はないが、配合量が30重量部を越えると柔軟性が過剰となる。
【0020】
本発明における難燃剤には、水酸化マグネシウム、水酸化アルミニウム、水酸化カルシウムなどの金属水酸化物の1種以上が用いられる。この金属水酸化物は、その平均粒子径が0.7〜1.5μmのものが好ましく、さらには表面処理されたものがベースポリマーに対する親和性が高められ、分散性が向上して好ましい。
【0021】
この表面処理には、ビニルシラン、アミノシラン、メタクリルシラン、エポキシシランなどのシランカップリング剤、チタネートカップリング剤、ステアリン酸、オレイン酸などの高級脂肪酸などを用いる処理が採用され、その粒子表面がこれら表面処理剤からなる薄膜で覆われた状態のものが望ましい。表面処理剤の存在量は0.1〜2wt%程度で十分である。
【0022】
この金属水酸化物の配合量は、要求される難燃性によって左右されるが、ベースポリマー100重量部に対して、150〜250重量部、好ましくは150〜200重量部の範囲とされ、150重量部未満ではノンハロゲン系難燃性樹脂組成物の難燃性が不足し、250重量部を越えると、過剰になり、引っ張り強度、伸びなどの機械特性が大幅に低下する。
【0023】
本発明における難燃助剤には、難燃性付与効果が大きな表面処理ヒドロキシスズ酸亜鉛が用いられる。ここでの表面処理は、先の金属水酸化物における表面処理と同様であって、ビニルシラン、アミノシラン、メタクリルシラン、エポキシシランなどのシランカップリング剤、チタネートカップリング剤、ステアリン酸、オレイン酸などの高級脂肪酸などを用いた処理が行われる。
【0024】
ヒドロキシスズ酸亜鉛は、分子内に水酸基などの極性基を有しており、表面エネルギーが高い。一方、ベースポリマーはオレフィン系樹脂であるので、表面エネルギーが低い。このため、両者を混合した際の親和性が不十分となり、樹脂中に分散しているヒドロキシスズ酸亜鉛の界面から水分が経時的に侵入し、電気特性が低下する。この現象を防止するため、表面エネルギーの低い上述の表面処理剤で被覆することが重要となり、これによって浸水時の電気特性の低下が抑えられる。
【0025】
この表面処理ヒドロキシスズ酸亜鉛の配合量は、ベースポリマー100重量部に対して、1〜20重量部、好ましくは5〜10重量部とされ、1重量部未満では十分な難燃効果を付与することができず、20重量部を越えて配合しても難燃効果のさらなる向上は期待できない。
【0026】
本発明のノンハロゲン系難燃性樹脂組成物では、これ以外に酸化防止剤、紫外線吸収剤、銅害防止剤、帯電防止剤、滑剤、加工助剤、着色剤、無機充填剤などの添加剤を適宜配合することができる。
【0027】
本発明のノンハロゲン系難燃性樹脂組成物では、これが架橋されていてもよい。架橋を施すことにより得られる樹脂組成物の耐熱性、耐摩耗性が向上する。架橋方法には、成形後に電子線を照射する電子線架橋法もしくは予め樹脂組成物に架橋剤を配合しておき、成形後加熱して架橋させる化学架橋が採用される。
【0028】
本発明のノンハロゲン系難燃性樹脂組成物からなる成形品が、例えば電子機器用絶縁電線等の絶縁体やシースなどの薄肉のものでは照射線量1〜30Mradの電子線架橋が好ましく、厚肉の成形品の場合には化学架橋が好ましい。
化学架橋に用いられる架橋剤には、ジクミルパーオキサイド、ジ−tert−ブチルパーオキサイドなどの有機過酸化物が用いられ、架橋助剤には、アクリル酸亜鉛、トリアリルイソシアヌレートなどの不飽和化合物が用いられる。
【0029】
このような架橋における架橋度は、ゲル分率で45〜90%とされ、これによる樹脂成形物に良好な機械特性、耐熱性が与えられる。ここでのゲル分率は、ASTM D 2765によって求められるものである。このゲル分率が45%未満では十分な機械特性、耐熱性の向上が得られず、90%を越えると成形物の伸びが低下する。
【0030】
本発明の絶縁電線は、上述のノンハロゲン系難燃性樹脂組成物からなる絶縁体あるいは絶縁体とシースを有するもので、導体上もしくは絶縁体上に周知の押出被覆法により上記樹脂組成物を被覆して絶縁体あるいは絶縁体とシースを形成したもの、あるいは被覆後に電子線を照射して、あるいは加熱して絶縁体あるいは絶縁体とシースを架橋したものである。この絶縁電線の絶縁体の厚さは、0.1〜1mmとされ、シースの厚さは0.1〜0.9mmとされる。
また、本発明の絶縁電線では、UL1581に規定されるVW−1燃焼試験に合格する難燃性を有するものである。
【0031】
このようなノンハロゲン系難燃性樹脂組成物にあっては、塩素などのハロゲン元素が含まれないので、これからなる成形物を焼却処分する際に、有害なハロゲン含有ガスが発生することがない。また、高い難燃性を示し、この組成物を被覆層とした絶縁電線は、UL1581に規定されるVW−1燃焼試験に合格する。さらに、機械特性が良好であり、引っ張り強度が10MPa以上、伸びが150%以上の値を有する。
【0032】
また、架橋を施したものでは、耐熱性、耐摩耗性、硬度等の特性が向上する。さらに、このノンハロゲン系難燃性樹脂組成物を被覆した絶縁電線では、これを長期間水中に漬けておいても、難燃助剤のヒドロキシスズ酸亜鉛がシランカップリング剤などで表面処理されているため、水分の侵入が抑えられ、これによりその絶縁抵抗が低下したり、絶縁破壊電圧が低下したりすることがない。
【0033】
以下具体例を示す。
表1ないし表3に示す配合組成(単位:重量部)の樹脂組成物を配合し、混練機で混練り後、押出機にて、AWG(7/0.127TA)の導体上に押出被覆を行い、厚さ0.4mmの絶縁体を形成した。ついで、これに照射線量5Mradの電子線を照射し、絶縁体を電子線架橋した。ゲル分率は約80%とした。
得られた絶縁電線について、以下の評価を行った。
【0034】
評価項目 (合否判断基準)
破断強度 (10MPa以上)
破断伸び (150%以上)
浸水絶縁破壊電圧(1日浸水後の絶縁電線に2.2kV1分の印加で破壊しないこと)
難燃性 (UL1581規格VW−1燃焼試験に合格)
結果を表1ないし表3に示す。
【0035】
表1ないし表3において、
エチレン・酢酸ビニル共重合体:酢酸ビニル含量35wt%、MFR0.5、引張破断強度25MPa、破断伸び750%
エチレン・エチルアクリレート共重合体:エチルアクリレート含量25wt%MFR2.5
【0036】
エチレン・メチルアクリレート共重合体:メチルアクリレート含量29wt%MFR3.0
エチレンアクリルゴム:メチルアクリレート含量60wt%、ムーニー粘度ML1+420
マレイン酸変性直鎖状低密度ポリエチレン:マレイン酸変性量0.2wt%、MFR0.7
スチレン系エラストマー:スチレン・エチレン・エチレンプロピレン・スチレンブロック共重合体、スチレン含量30wt%
【0037】
シランカップリング剤処理水酸化マグネシウム:キスマ5L(商品名、協和化学製)
ビニルシランカップリング剤処理ヒドロキシスズ酸亜鉛:ビニルトリメトキシシランで表面処理したもの
アミノシランカップリング剤処理ヒドロキシスズ酸亜鉛:γ−アミノプロピルトリメトキシシランで表面処理
【0038】
メタクリルシランカップリング剤処理ヒドロキシスズ酸亜鉛:γ−メタクリロキシプロピルトリメトキシシランで表面処理
酸化防止剤:フェノール系酸化防止剤
【0039】
【表1】

Figure 2004256621
【0040】
【表2】
Figure 2004256621
【0041】
【表3】
Figure 2004256621
【0042】
【発明の効果】
以上説明したように、本発明のノンハロゲン難燃性樹脂組成物にあっては、良好な機械特性、難燃性、加工性を有し、特に絶縁電線の絶縁体としたときの浸水時の絶縁破壊抵抗が優れたものとなる。また、焼却処分時に有害なハロゲン化合物を発生することがない。[0001]
TECHNICAL FIELD OF THE INVENTION
The present invention relates to a non-halogen flame-retardant resin composition having excellent flame retardancy, mechanical properties, and electrical insulation properties, and suitable as a coating material for electric equipment wires and the like.
[0002]
[Prior art]
Non-halogen flame-retardant resin compositions include olefin resins such as ethylene-vinyl acetate copolymers and ethylene-ethyl acrylate copolymers, flame retardants such as magnesium hydroxide and aluminum hydroxide, melamine cyanurate, and hydroxy. What blended a flame retardant auxiliary agent such as zinc stannate is known.
It is also known to use a silane coupling agent or magnesium hydroxide surface-treated with stearic acid or the like to enhance the mechanical properties of the resin composition.
[0003]
In such a non-halogen flame-retardant resin composition, no harmful halogen compound is generated during incineration, and an insulated wire having a coating layer made of this resin composition is specified in UL1581 standard. It exhibits high flame retardancy that passes the VW-1 combustion test and has good mechanical properties and workability, and is used, for example, as an insulator and a sheath of insulated wires for electronic devices.
[0004]
However, in an insulated wire having an insulator and a sheath made of such a halogen-free flame-retardant resin composition, when the insulated wire is in a water-immersed state, the electric insulation at the time of water immersion, specifically, insulation resistance, insulation breakdown, There is a disadvantage that the voltage drops.
[0005]
[Patent Document 1]
JP 2000-195336 A [Patent Document 2]
JP 2000-294036 A
[Problems to be solved by the invention]
Therefore, an object of the present invention is to provide a non-halogen flame-retardant resin that has high flame retardancy, has good mechanical properties and workability, and does not decrease in electrical insulation when inundated when used as an insulator of an insulated wire. It is to obtain a composition.
[0007]
[Means for Solving the Problems]
To solve this problem,
The invention according to claim 1 is a non-halogen-based resin containing 100 parts by weight of a base polymer containing an olefin resin and ethylene acrylic rubber, 150 to 250 parts by weight of a metal hydroxide, and 1 to 20 parts by weight of surface-treated zinc hydroxystannate. It is a flame-retardant resin composition.
[0008]
The invention according to claim 2 is characterized in that 100 parts by weight of the base polymer is 15 to 50 parts by weight of an ethylene acrylic rubber, 30 to 65 parts by weight of an ethylene-vinyl acetate copolymer, 0 to 30 parts by weight of an acid-modified olefin-based polymer, The non-halogen flame-retardant resin composition according to claim 1, comprising 0 to 30 parts by weight of a thermoplastic elastomer.
[0009]
The invention according to claim 3 is the non-halogen flame-retardant resin composition according to claim 1 or 2, wherein the metal hydroxide is surface-treated.
The invention according to claim 4 is the non-halogen flame-retardant resin composition according to any one of claims 1 to 3, which is crosslinked.
[0010]
The invention according to claim 5 is the non-halogen flame-retardant resin composition according to claim 4, wherein the gel fraction is 45 to 90%.
The invention according to claim 6 is an insulated wire that uses the non-halogen flame-retardant resin composition according to any one of claims 1 to 5 as a covering material and passes a VW-1 combustion test specified in UL. .
[0011]
BEST MODE FOR CARRYING OUT THE INVENTION
Hereinafter, the present invention will be described in detail.
The base polymer constituting the non-halogen flame-retardant resin composition of the present invention contains an olefin resin and ethylene acrylic rubber.
[0012]
The olefin resin here is not particularly limited, but preferably has high molecular polarity and contains oxygen in the molecule. As such, in the present invention, an ethylene-vinyl acetate copolymer, an acid-modified olefin-based polymer, and an ethylene-based thermoplastic elastomer can be mentioned, and an ethylene-vinyl acetate copolymer and an ethylene-vinyl acetate-acrylate copolymer can be used. Polymers are particularly desirable.
[0013]
The ethylene-vinyl acetate copolymer has a vinyl acetate content of 15 to 50% by weight, preferably 20 to 40% by weight, and a melt flow rate of 0.1 to 30 (g / 10 minutes), preferably 0.1 to 0.3%. Those having a range of 5 to 10 (g / 10 minutes) are used.
[0014]
Acid-modified olefin polymers include olefin polymers such as low-density polyethylene, linear low-density polyethylene, high-density polyethylene, ethylene-vinyl acetate copolymer, ethylene-ethyl acrylate copolymer, and polyolefin-based thermoplastic elastomer. During or after the polymerization, an acid-modified polymer is used which is modified by reacting an unsaturated carboxylic acid such as maleic anhydride, fumaric acid, itaconic acid, acrylic acid, methacrylic acid or a derivative thereof, or a derivative thereof. The degree of acid modification is preferably such that the amount of unsaturated carboxylic acid is in the range of 0.5 to 3% by weight.
[0015]
As the ethylene-based thermoplastic elastomer, a thermoplastic elastomer obtained by graft-polymerizing or copolymerizing a styrene-based resin at a molecular chain terminal and having an ethylene component in a main chain is used. Specifically, polystyrene-poly (ethylene-propylene)- Polystyrene block copolymer (SEPS), polystyrene-poly (ethylene-butylene) -polystyrene block copolymer (SEBS) and the like are used.
[0016]
Ethylene acrylic rubber as a base polymer is a block copolymer of ethylene and one or more acrylates such as methyl acrylate, methyl methacrylate, ethyl acrylate and ethyl methacrylate, and has an ethylene content of 30 to 50% by weight, An elastomer having a rubber elasticity having a Mooney viscosity of 20 to 45 (ML1 + 4, 100 ° C.) is used.
[0017]
The blending ratio of each of the above polymers constituting the base polymer is as follows: out of 100 parts by weight of the base polymer, 15 to 50 parts by weight of ethylene acrylic rubber, 30 to 65 parts by weight of ethylene-vinyl acetate copolymer, and acid-modified olefin. The amount of the polymer is from 0 to 30 parts by weight, and the amount of the ethylene-based thermoplastic elastomer is from 0 to 30 parts by weight.
[0018]
If the amount of the ethylene acrylic rubber is less than 15 parts by weight, the flame retardancy becomes insufficient, and if it exceeds 50 parts by weight, the resulting non-halogen flame-retardant resin composition has insufficient mechanical properties such as rigidity. If the amount of the ethylene-vinyl acetate copolymer is less than 30 parts by weight, the flame retardancy is insufficient, and if it exceeds 65 parts by weight, the flexibility is insufficient.
[0019]
Furthermore, the acid-modified olefin-based polymer does not necessarily need to be blended, but if the blending amount exceeds 30 parts by weight, the elongation is reduced, and when used as a covering material for electric wires, the adhesion to the conductor becomes too strong. Poor mouth feel is worse. It is not always necessary to blend the ethylene-based thermoplastic elastomer, but if the blending amount exceeds 30 parts by weight, the flexibility becomes excessive.
[0020]
As the flame retardant in the present invention, one or more metal hydroxides such as magnesium hydroxide, aluminum hydroxide and calcium hydroxide are used. The metal hydroxide preferably has an average particle size of 0.7 to 1.5 μm, and more preferably a surface-treated one because the affinity for the base polymer is increased and the dispersibility is improved.
[0021]
For this surface treatment, a treatment using a silane coupling agent such as vinyl silane, amino silane, methacryl silane, or epoxy silane, a titanate coupling agent, or a higher fatty acid such as stearic acid or oleic acid is employed. It is desirable that the film be covered with a thin film made of a processing agent. About 0.1 to 2 wt% of the surface treatment agent is sufficient.
[0022]
The amount of the metal hydroxide depends on the required flame retardancy, but is in the range of 150 to 250 parts by weight, preferably 150 to 200 parts by weight, based on 100 parts by weight of the base polymer. If the amount is less than parts by weight, the flame retardancy of the non-halogen flame-retardant resin composition will be insufficient, and if it exceeds 250 parts by weight, it will be excessive and mechanical properties such as tensile strength and elongation will be significantly reduced.
[0023]
As the flame-retardant aid in the present invention, surface-treated zinc hydroxystannate having a large flame-retardant effect is used. The surface treatment here is the same as the surface treatment in the above metal hydroxide, and includes silane coupling agents such as vinyl silane, amino silane, methacryl silane, and epoxy silane, titanate coupling agents, stearic acid, and oleic acid. A treatment using a higher fatty acid or the like is performed.
[0024]
Zinc hydroxystannate has a polar group such as a hydroxyl group in the molecule and has a high surface energy. On the other hand, since the base polymer is an olefin resin, the surface energy is low. For this reason, the affinity at the time of mixing the two becomes insufficient, and moisture penetrates from the interface of the zinc hydroxystannate dispersed in the resin with time, and the electrical characteristics deteriorate. In order to prevent this phenomenon, it is important to coat with the above-mentioned surface treatment agent having a low surface energy, thereby suppressing a decrease in electric characteristics during immersion.
[0025]
The amount of the surface-treated zinc hydroxystannate is 1 to 20 parts by weight, preferably 5 to 10 parts by weight, based on 100 parts by weight of the base polymer. When the amount is less than 1 part by weight, a sufficient flame retardant effect is imparted. No further improvement in the flame-retardant effect can be expected even if the amount exceeds 20 parts by weight.
[0026]
In the non-halogen flame-retardant resin composition of the present invention, other additives such as an antioxidant, an ultraviolet absorber, a copper damage inhibitor, an antistatic agent, a lubricant, a processing aid, a coloring agent, and an inorganic filler. It can be appropriately blended.
[0027]
In the non-halogen flame-retardant resin composition of the present invention, this may be crosslinked. The heat resistance and abrasion resistance of the resin composition obtained by crosslinking are improved. As a crosslinking method, an electron beam crosslinking method of irradiating an electron beam after molding or a chemical crosslinking in which a crosslinking agent is blended in advance with a resin composition and then heated and crosslinked after molding is adopted.
[0028]
The molded article made of the non-halogen flame-retardant resin composition of the present invention is preferably a thin-walled one such as an insulator or a sheath such as an insulated wire for an electronic device, in which irradiation with an electron beam having an irradiation dose of 1 to 30 Mrad is preferable. In the case of molded articles, chemical crosslinking is preferred.
Organic peroxides such as dicumyl peroxide and di-tert-butyl peroxide are used as a crosslinking agent for chemical crosslinking, and unsaturated auxiliaries such as zinc acrylate and triallyl isocyanurate are used as crosslinking aids. Compounds are used.
[0029]
The degree of cross-linking in such cross-linking is set to 45 to 90% in terms of a gel fraction, whereby a resin molded product is given good mechanical properties and heat resistance. The gel fraction here is determined by ASTM D 2765. If the gel fraction is less than 45%, sufficient improvement in mechanical properties and heat resistance cannot be obtained, and if it exceeds 90%, the elongation of the molded product decreases.
[0030]
The insulated wire of the present invention has an insulator or an insulator and a sheath made of the non-halogen flame-retardant resin composition described above, and is coated with the resin composition on a conductor or an insulator by a known extrusion coating method. In this case, the insulator or the insulator and the sheath are formed, or the insulator or the insulator and the sheath are cross-linked by irradiating or heating with an electron beam after coating. The thickness of the insulator of this insulated wire is 0.1 to 1 mm, and the thickness of the sheath is 0.1 to 0.9 mm.
Further, the insulated wire of the present invention has flame retardancy that passes the VW-1 combustion test defined in UL1581.
[0031]
Since such a non-halogen flame-retardant resin composition does not contain a halogen element such as chlorine, no harmful halogen-containing gas is generated when a molded article made of the non-halogen flame-retardant resin composition is incinerated. An insulated wire having high flame retardancy and having this composition as a coating layer passes the VW-1 combustion test specified in UL1581. Furthermore, it has good mechanical properties, a tensile strength of 10 MPa or more, and an elongation of 150% or more.
[0032]
In addition, when cross-linked, properties such as heat resistance, wear resistance, and hardness are improved. Furthermore, in an insulated wire coated with the non-halogen flame-retardant resin composition, even if the insulated wire is immersed in water for a long time, the flame retardant auxiliary agent zinc hydroxystannate is surface-treated with a silane coupling agent or the like. Therefore, intrusion of moisture is suppressed, so that the insulation resistance does not decrease and the dielectric breakdown voltage does not decrease.
[0033]
Specific examples are shown below.
A resin composition having a composition shown in Tables 1 to 3 (unit: parts by weight) was blended, kneaded with a kneader, and extruded on an AWG (7 / 0.127TA) conductor with an extruder. Then, an insulator having a thickness of 0.4 mm was formed. Next, this was irradiated with an electron beam having an irradiation dose of 5 Mrad, and the insulator was cross-linked with an electron beam. The gel fraction was about 80%.
The following evaluation was performed about the obtained insulated wire.
[0034]
Evaluation items (pass / fail criteria)
Breaking strength (10MPa or more)
Elongation at break (150% or more)
Water immersion breakdown voltage (Do not break the insulated wire after one day of water immersion by applying 2.2 kV for 1 minute)
Flame retardant (passes UL1581 VW-1 combustion test)
The results are shown in Tables 1 to 3.
[0035]
In Tables 1 to 3,
Ethylene / vinyl acetate copolymer: vinyl acetate content 35 wt%, MFR 0.5, tensile strength at break 25 MPa, elongation at break 750%
Ethylene / ethyl acrylate copolymer: ethyl acrylate content 25 wt% MFR 2.5
[0036]
Ethylene / methyl acrylate copolymer: methyl acrylate content 29 wt% MFR 3.0
Ethylene acrylic rubber: methyl acrylate content 60 wt%, Mooney viscosity ML 1 + 4 20
Maleic acid-modified linear low-density polyethylene: maleic acid-modified amount 0.2 wt%, MFR 0.7
Styrene-based elastomer: Styrene-ethylene-ethylene-propylene-styrene block copolymer, styrene content 30 wt%
[0037]
Magnesium hydroxide treated with silane coupling agent: Kisuma 5L (trade name, manufactured by Kyowa Chemical)
Zinc hydroxystannate treated with a vinylsilane coupling agent: surface-treated with vinyltrimethoxysilane Aminosilane coupling agent-treated zinc hydroxystannate: surface-treated with γ-aminopropyltrimethoxysilane
Methacryl silane coupling agent treated zinc hydroxy stannate: surface treatment with γ-methacryloxypropyl trimethoxysilane Antioxidant: phenolic antioxidant
[Table 1]
Figure 2004256621
[0040]
[Table 2]
Figure 2004256621
[0041]
[Table 3]
Figure 2004256621
[0042]
【The invention's effect】
As described above, the non-halogen flame-retardant resin composition of the present invention has good mechanical properties, flame retardancy, and workability, and is particularly effective when used as an insulator for an insulated wire. The breaking resistance is excellent. In addition, no harmful halogen compounds are generated during incineration.

Claims (6)

オレフィン系樹脂とエチレンアクリルゴムを含むベースポリマー100重量部と、金属水酸化物150〜250重量部と、表面処理ヒドロキシスズ酸亜鉛1〜20重量部を含むノンハロゲン系難燃性樹脂組成物。A non-halogen flame-retardant resin composition comprising 100 parts by weight of a base polymer containing an olefin resin and ethylene acrylic rubber, 150 to 250 parts by weight of a metal hydroxide, and 1 to 20 parts by weight of surface-treated zinc hydroxystannate. ベースポリマー100重量部が、エチレンアクリルゴム15〜50重量部、エチレン−酢酸ビニル共重合体30〜65重量部、酸変性オレフィン系ポリマー0〜30重量部、熱可塑性エラストマー0〜30重量部を含む請求項1記載のノンハロゲン系難燃性樹脂組成物。100 parts by weight of the base polymer contains 15 to 50 parts by weight of an ethylene acrylic rubber, 30 to 65 parts by weight of an ethylene-vinyl acetate copolymer, 0 to 30 parts by weight of an acid-modified olefin polymer, and 0 to 30 parts by weight of a thermoplastic elastomer. The non-halogen flame-retardant resin composition according to claim 1. 金属水酸化物が表面処理されている請求項1または2記載のノンハロゲン系難燃性樹脂組成物。The non-halogen flame-retardant resin composition according to claim 1 or 2, wherein the metal hydroxide is surface-treated. 架橋されている請求項1ないし3のいずれかに記載のノンハロゲン系難燃性樹脂組成物。The non-halogen flame-retardant resin composition according to any one of claims 1 to 3, which is crosslinked. ゲル分率が45〜90%である請求項4記載のノンハロゲン系難燃性樹脂組成物。The non-halogen flame-retardant resin composition according to claim 4, wherein the gel fraction is 45 to 90%. 請求項1ないし5のいずれかに記載のノンハロゲン系難燃性樹脂組成物を被覆材として用い、UL1581に規定されるVW−1燃焼試験に合格する絶縁電線。An insulated wire that uses the non-halogen flame-retardant resin composition according to any one of claims 1 to 5 as a coating material and passes a VW-1 combustion test defined in UL1581.
JP2003047138A 2003-02-25 2003-02-25 Nonhalogen flame-retardant resin composition Withdrawn JP2004256621A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2003047138A JP2004256621A (en) 2003-02-25 2003-02-25 Nonhalogen flame-retardant resin composition

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2003047138A JP2004256621A (en) 2003-02-25 2003-02-25 Nonhalogen flame-retardant resin composition

Publications (1)

Publication Number Publication Date
JP2004256621A true JP2004256621A (en) 2004-09-16

Family

ID=33113463

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2003047138A Withdrawn JP2004256621A (en) 2003-02-25 2003-02-25 Nonhalogen flame-retardant resin composition

Country Status (1)

Country Link
JP (1) JP2004256621A (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US10563054B2 (en) 2016-03-03 2020-02-18 Kraiburg Tpe Gmbh & Co. Kg Thermoplastic elastomer composition of an elastomer and a non-elastomeric polyolefin which is functionalized with an anhydride of an organic carboxylic acid
US10647836B2 (en) 2016-03-03 2020-05-12 Kraiburg Tpe Gmbh & Co. Kg Thermoplastic elastomer composition of an elastomer, a non-elastomeric polyolefin, and a thermoplastic elastomer based on polyolefin block copolymers
US20200369860A1 (en) * 2017-12-12 2020-11-26 Borealis Ag Flame retardant and fire resistant polyolefin composition
WO2022030264A1 (en) * 2020-08-04 2022-02-10 住友電気工業株式会社 Insulation wire

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US10563054B2 (en) 2016-03-03 2020-02-18 Kraiburg Tpe Gmbh & Co. Kg Thermoplastic elastomer composition of an elastomer and a non-elastomeric polyolefin which is functionalized with an anhydride of an organic carboxylic acid
US10647836B2 (en) 2016-03-03 2020-05-12 Kraiburg Tpe Gmbh & Co. Kg Thermoplastic elastomer composition of an elastomer, a non-elastomeric polyolefin, and a thermoplastic elastomer based on polyolefin block copolymers
US20200369860A1 (en) * 2017-12-12 2020-11-26 Borealis Ag Flame retardant and fire resistant polyolefin composition
WO2022030264A1 (en) * 2020-08-04 2022-02-10 住友電気工業株式会社 Insulation wire

Similar Documents

Publication Publication Date Title
JP5144013B2 (en) Flame retardant resin composition and molded body using the same
JP5260852B2 (en) Wire covering resin composition, insulated wire and method for producing the same
JP5275647B2 (en) Insulated wires with excellent heat resistance
EP1319686B1 (en) Wear resistant, flame-retardant composition and electric cable covered with said composition
JP3439166B2 (en) Insulating resin composition and insulated wire
JP5436994B2 (en) Flame retardant resin composition and molded article using the same
JP3966632B2 (en) Wire covering resin composition and insulated wire
JP3977152B2 (en) Optical fiber core, optical fiber cord, and optical fiber cable
WO2013140692A1 (en) Non-halogen flame retardant resin composition, and electric wire and cable using same
JP5306764B2 (en) Resin composition and resin molded body
JP2008150532A (en) Insulating resin composition and insulated wire
JP5449245B2 (en) Flame retardant resin composition and molded article using the same
JP2008037927A (en) Flame-retardant resin composition and insulated wire
JP2004256621A (en) Nonhalogen flame-retardant resin composition
JP4690653B2 (en) Flame retardant resin composition and molded article using the same
JP2004339317A (en) Non-halogen flame retardant resin composition
JP2014227447A (en) Flame-retardant resin composition and flame-retardant object including flame-retardant resin molding obtained by molding the same
JP2003221479A (en) Insulating resin composition and insulated electric wire
JP2004352763A (en) Cabtire cord
JP2011111567A (en) Flame-retardant resin composition, molding and electric insulated wire
JP4057410B2 (en) Insulating resin composition and insulated wire using the same
JP4955851B2 (en) Insulating resin composition and insulated wire
JP4057414B2 (en) Insulating composition and insulated wire
JP4495130B2 (en) Wire covering resin composition and insulated wire
JP2003160702A (en) Flame-retardant resin composition and insulated electric wire using the same

Legal Events

Date Code Title Description
A300 Withdrawal of application because of no request for examination

Free format text: JAPANESE INTERMEDIATE CODE: A300

Effective date: 20060509