JP2004255282A - Steam-reforming catalyst for methanol and method for producing hydrogen by steam-reforming methanol by using the catalyst - Google Patents

Steam-reforming catalyst for methanol and method for producing hydrogen by steam-reforming methanol by using the catalyst Download PDF

Info

Publication number
JP2004255282A
JP2004255282A JP2003048434A JP2003048434A JP2004255282A JP 2004255282 A JP2004255282 A JP 2004255282A JP 2003048434 A JP2003048434 A JP 2003048434A JP 2003048434 A JP2003048434 A JP 2003048434A JP 2004255282 A JP2004255282 A JP 2004255282A
Authority
JP
Japan
Prior art keywords
catalyst
oxide
methanol
steam
copper
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2003048434A
Other languages
Japanese (ja)
Other versions
JP4133432B2 (en
Inventor
Yasunosuke Hagiwara
康之輔 萩原
Michiaki Umeno
道明 梅野
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsui Chemicals Inc
Original Assignee
Mitsui Chemicals Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsui Chemicals Inc filed Critical Mitsui Chemicals Inc
Priority to JP2003048434A priority Critical patent/JP4133432B2/en
Publication of JP2004255282A publication Critical patent/JP2004255282A/en
Application granted granted Critical
Publication of JP4133432B2 publication Critical patent/JP4133432B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Landscapes

  • Hydrogen, Water And Hydrids (AREA)
  • Catalysts (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To produce a methanol steam-reforming catalyst capable of restraining carbon monoxide from being produced as a by-product without damaging its activity and durability, and to provide a method for producing hydrogen by steam-reforming methanol in the presence of the catalyst. <P>SOLUTION: The catalyst containing copper oxide, zinc oxide, palladium oxide and iron oxide as indispensable components is disclosed. The method for producing hydrogen by steam-reforming methanol in the presence of the catalyst is also disclosed. <P>COPYRIGHT: (C)2004,JPO&NCIPI

Description

【0001】
【発明の属する技術分野】
本発明は、メタノールの水蒸気改質触媒および該触媒の存在下でメタノールを水蒸気改質することを特徴とする水素の製造方法に関する。
【0002】
【従来の技術】
メタノールの水蒸気改質反応は、次の式(1)、式(2)に示した反応からなると考えられている。
【0003】
【化1】

Figure 2004255282
【0004】
上記の反応により、メタノールと水蒸気とから水素を製造することができる。
【0005】
従来、メタノールの水蒸気改質触媒として、銅系触媒が活性及び選択性に優れていることが広く知られているが、銅系触媒は熱安定性に問題があるといわれている(非特許文献1)。
【0006】
このように銅系触媒は熱安定性に問題があるといわれてはいるが、高い触媒活性を有することから、銅系触媒の改良に関する報告例はその数が多い。
【0007】
例えば、銅系触媒として、銅、亜鉛および周期律表第8属の各金属元素を含有する触媒および該触媒を用いたメタノールの水蒸気改質反応に関する報告がなされている。
【0008】
特許文献1には、酸化銅、酸化亜鉛、酸化ニッケルおよび酸化アルミニウムからなる触媒をプロセスに組み込んだメタノールの水蒸気改質法が報告されている。
【0009】
特許文献2には、銅、亜鉛、クロムおよび鉄を主成分とする特定の触媒が、低温でのメタノール転化率が高く、高温時に生成ガス中の一酸化炭素濃度が低く抑えられること、さらに耐熱性が高く触媒寿命が延びることが報告されている。
【0010】
本発明者らは、特許文献3において、銅、亜鉛および貴金属であるパラジウムおよび/または白金を含む特定の触媒およびこれを用いてメタノールと水蒸気とから水素を製造する方法について報告している。
【0011】
しかしながら、これら公知の触媒は、触媒の活性および耐久性、一酸化炭素の副生率の点で充分満足すべきものとはいえない。
【0012】
【非特許文献1】
触媒学会編「触媒講座・第9巻」(1985年5月10日発行) 講談社、P132〜134
【特許文献1】
特開昭59−152205号公報
【特許文献2】
特開昭60−77104号公報
【特許文献3】
特開2002−95970号公報
【0013】
【発明が解決しようとする課題】
本発明は、前記の従来技術に鑑み、触媒の活性および耐久性を損なわずに一酸化炭素の副生を抑制することのできるメタノールの水蒸気改質触媒を提供することを課題とする。また、本発明は、該触媒の存在下でメタノールを水蒸気改質することを特徴とする水素の製造方法を提供することを課題とする。
【0014】
【課題を解決するための手段】
本発明者らは、前述の課題を解決すべく鋭意検討した結果、特定の金属元素の酸化物を触媒成分として含有する触媒が課題の解決に有効であることを見出し、本発明を完成するに至った。
【0015】
すなわち、本発明は、
▲1▼ 銅酸化物、亜鉛酸化物、パラジウム酸化物および鉄酸化物を含むメタノールの水蒸気改質触媒、
▲2▼ 前記▲1▼に記載の触媒において、銅酸化物、亜鉛酸化物、パラジウム酸化物および鉄酸化物の各酸化物の合計量に占める鉄酸化物の含有率が0.2〜30重量%である、メタノールの水蒸気改質触媒、
▲3▼ 前記▲1▼に記載の触媒において、銅酸化物、亜鉛酸化物、パラジウム酸化物および鉄酸化物の各酸化物の合計量に占める鉄酸化物の含有率が0.5〜25重量%である、メタノールの水蒸気改質触媒、
▲4▼ 前記▲1▼に記載の触媒において、銅酸化物、亜鉛酸化物、パラジウム酸化物および鉄酸化物の各酸化物の合計量に占める鉄酸化物の含有率が1.0〜22重量%である、メタノールの水蒸気改質触媒、
▲5▼ 前記▲1▼〜▲4▼のいずれか1項に記載の触媒が共沈法により調製されたものである、メタノールの水蒸気改質触媒、
▲6▼ 前記▲1▼〜▲5▼のいずれか1項に記載の触媒の存在下で、メタノールを水蒸気改質することを特徴とする水素の製造方法
である。
【0016】
【発明の実施の形態】
本発明のメタノールの水蒸気改質触媒(以下単に「触媒」という。)は、銅酸化物、亜鉛酸化物、パラジウム酸化物および鉄酸化物を必須成分として含むことを特徴とする。
【0017】
これらの各酸化物を必須成分として含む本発明の触媒は、触媒の活性および耐久性を損なわずに一酸化炭素の副生を抑制することができる。
【0018】
本発明の触媒において、銅酸化物、亜鉛酸化物、パラジウム酸化物、鉄酸化物の各酸化物の合計量に占める鉄酸化物の含有率は、好ましくは0.2〜30重量%、より好ましくは0.5〜25重量%、特に好ましくは1.0〜22重量%である。
【0019】
本発明の触媒において、銅酸化物、亜鉛酸化物、パラジウム酸化物、鉄酸化物の合計量に占める鉄酸化物の含有率が0.2重量%以上であると一酸化炭素の選択率が小さくなる点で好ましく、30重量%以下であるとメタノールの転化率が高くなる点で好ましい。
【0020】
本発明の触媒のなかでも、銅酸化物、亜鉛酸化物、パラジウム酸化物、鉄酸化物の各酸化物の合計量に占める銅酸化物、亜鉛酸化物、パラジウム酸化物、鉄酸化物のそれぞれの含有率が、銅酸化物15〜40重量%、亜鉛酸化物45〜60重量%、パラジウム酸化物0.5〜30重量%、鉄酸化物0.2〜30重量%である触媒は好ましく、銅酸化物15〜40重量%、亜鉛酸化物45〜60重量%、パラジウム酸化物0.5〜30重量%、鉄酸化物0.5〜25重量%である触媒はより好ましく、銅酸化物15〜40重量%、亜鉛酸化物45〜60重量%、パラジウム酸化物0.5〜30重量%、鉄酸化物1.0〜22重量%である触媒は特に好ましい。
【0021】
本発明の触媒には、本発明の効果を損なわない範囲であれば、金属元素および本発明の触媒において必須成分である各酸化物以外の酸化物を成分として含むことは差し支えない。金属元素としては、例えば、銅、亜鉛、パラジウム、鉄、白金、ジルコニウムが挙げられる。酸化物としては、例えば、酸化珪素、酸化アルミニウム、酸化チタン、酸化ジルコニウム、酸化マグネシウムが挙げられる。
【0022】
本発明の触媒の製造方法には特に制限はないが、例えば、湿式法を用いて調製することができる。湿式法としては、含浸法および共沈法が挙げられるが、これらのなかでも共沈法は高い活性が得られる点で好ましい。
【0023】
本発明の触媒の共沈法による製造方法を具体的に示すとすれば、例えば、銅、亜鉛、パラジウム、鉄の各金属元素の酸性塩水溶液を混合した水溶液を塩基性化合物の水溶液と接触させ、析出した析出物を洗浄・回収し、回収した析出物を乾燥した後、焼成する方法が挙げられる。
【0024】
銅、亜鉛、パラジウム、鉄の各金属元素の酸性塩としては、塩基性化合物と反応させて得られる析出物を乾燥・焼成して各金属元素の酸化物を与えるものであれば特に制限はない。このような酸性塩としては、例えば、硝酸塩、硫酸塩、塩酸塩が挙げられる。
【0025】
各金属元素の酸性塩と接触させる塩基性化合物としては、例えば、アルカリ金属またはアルカリ土類金属の炭酸塩、重炭酸塩が挙げられる。
【0026】
銅、亜鉛、パラジウム、鉄の各金属元素の酸性塩水溶液を塩基性化合物の水溶液と接触させる方法としては、接触させて得られる水溶液のpHを6〜9の範囲となるように制御できれば特に制限はなく、例えば、塩基性化合物の水溶液と各金属元素の酸性塩の水溶液を同時に混合する方法、塩基性化合物の水溶液に各金属元素の酸性塩水溶液を混合した水溶液を加える方法、各金属元素の酸性塩水溶液を混合した溶液に塩基性化合物の水溶液を加える方法が挙げられる。
【0027】
銅、亜鉛、パラジウムおよび鉄の各金属元素の酸性塩水溶液と塩基性化合物の水溶液とを接触させる温度は、約10〜約80℃の温度範囲であれば特に制限はない。
【0028】
銅、亜鉛、パラジウム、鉄の各金属元素の酸性塩と塩基性化合物とを反応させて得られる析出物は、通常、室温〜50℃の温度範囲の水で洗浄し、次いで約100〜160℃の温度範囲で空気または不活性ガス雰囲気下で乾燥させる。
【0029】
乾燥した後、焼成することにより本発明の触媒を得ることができる。焼成は約200℃〜470℃の温度範囲で行うことができる。焼成温度は450℃以下が好ましい。また、焼成温度が300℃以上であると該析出物の分解が充分行われる点で好ましい。焼成は、通常、空気または不活性ガスの存在下で行う。
【0030】
焼成後の触媒は、そのままメタノールの水蒸気改質反応に用いることができるが、焼成後の触媒を液相または気相中で水素、一酸化炭素等の還元性ガスで処理した後、メタノールの水蒸気改質反応に用いることもできる。
【0031】
本発明の触媒は、打錠成型または押し出し成型する他、ムライト、コージェライトなどのセラミック担体、シリカクロス、スポンジ状金属焼結多孔板等の上に担持せしめたハニカム状の形状にして反応に用いることもできる。
【0032】
本発明における水素の製造方法は、本発明の触媒の存在下にメタノールと水(水蒸気)とを接触させることにより行われる。
【0033】
メタノールの水蒸気改質反応の反応条件は、メタノールの転化率、生成する水素の収率などの所望値に応じ適宜決定することができる。
【0034】
通常、メタノールと水の使用割合は、メタノール1モルに対して水0.5〜30モルとなるように用いられるが、好ましくはメタノール1モルに対して水1〜10モルである。
【0035】
反応温度としては、通常、150〜600℃、 好ましくは、反応温度200〜500℃である。
【0036】
反応圧力としては、通常、50kg/cmG以下、好ましくは30kg/cmG〜常圧である。
【0037】
触媒に接触させるメタノールと水蒸気を含む混合ガスの空間速度は、50〜500,000hr−1、好ましくは100〜150,000hr−1の範囲である。
【0038】
なお、本発明における水素の製造方法においては、必要に応じて水素、一酸化炭素、二酸化炭素、窒素、及び空気等のガスを共存させることもできる。
【0039】
【実施例】
以下、本発明を実施例によりさらに具体的に説明するが、本発明はこれら実施例に限定されるものではない。
【0040】
(1)触媒の調製
[実施例1]
硝酸パラジウム[Pd(NO]水溶液 6.12g(Pd;5wt%含有)、硝酸銅・三水和物 [Cu(NO・3HO] 6.95g、硝酸亜鉛・六水和物[Zn(NO・6HO]26.10g、硝酸鉄・九水和物[Fe(NO・9HO]12.91g、硝酸アルミニウム・九水和物[Al(NO・9H2O]4.78g、を純水200mlに溶解し水溶液(A液)を調製した。一方、炭酸ナトリウム・十水和物[NaCO・10HO]64.30gを純水200mlに溶解し水溶液(B液)を調整した。水400mlを入れたフラスコを用意し、室温でフラスコ内の水を攪拌しながら、これにA液およびB液を同一速度で滴下した。生成したスラリーを150分間攪拌した後、スラリー中の析出物を減圧濾過し、蒸留水にて十分に洗浄した。その後、回収した析出物を80℃に調節した乾燥器中で12時間乾燥させた後、大気下で温度350℃に調整した電気炉内で3時間焼成して酸化物を13.0g得た。酸化物を打錠成型、粉砕した後、粉砕物1mlを採取した。これを小型反応管に充填し、H/N=1/9の混合ガGHSV=6000 [hr−1]、350℃にて還元処理を行い、触媒を得た。
【0041】
[実施例2]
A液として硝酸パラジウム[Pd(NO]水溶液 11.74g(Pd;5wt%含有)、硝酸銅・三水和物 [Cu(NO・3HO] 12.69g、硝酸亜鉛・六水和物[Zn(NO・6HO]25.45g、硝酸鉄・九水和物[Fe(NO・9HO]1.06g、硝酸アルミニウム・九水和物[Al(NO・9HO]4.66g、B液として炭酸ナトリウム・十水和物[NaCO・10HO]57.60gを含む液をそれぞれ調製し、実施例1と同様な方法を用いて触媒を得た。
【0042】
[実施例3]
A液として硝酸パラジウム[Pd(NO]水溶液 52.37g(Pd;5wt%含有)、硝酸銅・三水和物 [Cu(NO・3HO] 6.01g、硝酸亜鉛・六水和物[Zn(NO・6HO]21.25g、硝酸鉄・九水和物[Fe(NO・9HO]5.79g、硝酸アルミニウム・九水和物[Al(NO・9HO]4.59g、B液として炭酸ナトリウム・十水和物[NaCO・10HO]57.67gを含む液をそれぞれ調製し、実施例1と同様な方法を用いて触媒を得た。
【0043】
[実施例4]
A液として硝酸パラジウム[Pd(NO]水溶液 11.86g(Pd;5wt%含有)、硝酸銅・三水和物 [Cu(NO・3HO] 13.86g、硝酸亜鉛・六水和物[Zn(NO・6HO]21.02g、硝酸鉄・九水和物[Fe(NO・9HO]5.79g、硝酸アルミニウム・九水和物[Al(NO・9HO]4.70g、B液として炭酸ナトリウム・十水和物[NaCO・10HO]60.29gを含む液をそれぞれ調製し、実施例1と同様な方法を用いて触媒を得た。
【0044】
[実施例5]
A液として硝酸パラジウム[Pd(NO]水溶液 11.99g(Pd;5wt%含有)、硝酸銅・三水和物 [Cu(NO・3HO] 10.51g、硝酸亜鉛・六水和物[Zn(NO・6HO]21.27g、硝酸鉄・九水和物[Fe(NO・9HO]11.71g、硝酸アルミニウム・九水和物[Al(NO・9HO]4.76g、B液として炭酸ナトリウム・十水和物[NaCO・10HO]63.45gを含む液をそれぞれ調製し、実施例1と同様な方法を用いて触媒を得た。
【0045】
[実施例6]
A液として硝酸パラジウム[Pd(NO]水溶液 11.80g(Pd;5wt%含有)、硝酸銅・三水和物 [Cu(NO・3HO] 13.02g、硝酸亜鉛・六水和物[Zn(NO・6HO]25.48g、硝酸鉄・九水和物[Fe(NO・9HO]0.36g、硝酸アルミニウム・九水和物[Al(NO・9H2O]4.73g、B液として炭酸ナトリウム・十水和物[NaCO・10H2O]57.30gを含む液をそれぞれ調製し、実施例1と同様な方法を用いて触媒を得た。
【0046】
[実施例7]
A液として硝酸パラジウム[Pd(NO]水溶液 2.34g(Pd;5wt%含有)、硝酸銅・三水和物 [Cu(NO・3HO] 7.68g、硝酸亜鉛・六水和物[Zn(NO・6HO]25.02g、硝酸鉄・九水和物[Fe(NO・9HO]14.54g、硝酸アルミニウム・九水和物[Al(NO・9H2O]4.78g、B液として炭酸ナトリウム・十水和物[NaCO・10H2O]65.39gを含む液をそれぞれ調製し、実施例1と同様な方法を用いて触媒を得た。
【0047】
[比較例1]
A液として硝酸パラジウム[Pd(NO]水溶液 11.72g(Pd;5wt%含有)、硝酸銅・三水和物 [Cu(NO・3HO] 13.30g、硝酸亜鉛・六水和物[Zn(NO・6HO]25.39g、硝酸アルミニウム・九水和物[Al(NO・9H2O]4.65g、B液として炭酸ナトリウム・十水和物[NaCO・10HO]57.04gを含む液をそれぞれ調製し、実施例1と同様な方法を用いて触媒を得た。
【0048】
[比較例2]
A液として硝酸パラジウム[Pd(NO]水溶液 52.37g(Pd;5wt%含有)、硝酸銅・三水和物 [Cu(NO・3HO] 5.94g、硝酸亜鉛・六水和物[Zn(NO・6HO]24.97g、硝酸アルミニウム・九水和物[Al(NO・9H2O]4.57g、B液として炭酸ナトリウム・十水和物[NaCO・10H2O]54.48gを含む液をそれぞれ調製し、実施例1と同様な方法を用いて触媒を得た。
【0049】
[比較例3]
A液として硝酸銅・三水和物 [Cu(NO・3HO] 15.42g、硝酸亜鉛・六水和物[Zn(NO・6HO]25.51g、硝酸アルミニウム・九水和物[Al(NO・9H2O]4.67g、B液として炭酸ナトリウム・十水和物[NaCO・10H2O]57.78gを含む液をそれぞれ調製し、実施例1と同様な方法を用いて触媒を得た。
【0050】
[比較例4]
A液として硝酸銅・三水和物 [Cu(NO・3HO] 11.70g、硝酸亜鉛・六水和物[Zn(NO・6HO]25.84g、硝酸鉄・九水和物[Fe(NO・9HO]6.53g、硝酸アルミニウム・九水和物[Al(NO・9H2O]4.73g、B液として炭酸ナトリウム・十水和物[NaCO・10H2O]61.27gを含む液をそれぞれ調製し、実施例1と同様な方法を用いて触媒を得た。
【0051】
[比較例5]
A液として硝酸銅・三水和物 [Cu(NO・3HO] 4.14g、硝酸亜鉛・六水和物[Zn(NO・6HO]26.5g、硝酸鉄・九水和物[Fe(NO・9HO]19.79g、硝酸アルミニウム・九水和物[Al(NO・9H2O]4.85g、B液として炭酸ナトリウム・十水和物[NaCO・10H2O]68.37gを含む液をそれぞれ調製し、実施例1と同様な方法を用いて触媒を得た。
【0052】
2)活性試験
上記の方法で調製した触媒について、メタノールの水蒸気改質反応の活性を測定した。原料として59.7重量%のメタノール水溶液HO/CHOH=1.2(モル/モル)を用い、O/CHOH=0.1(モル/モル)となるように空気を導入した。反応条件として反応温度250℃、常圧下にて、前記原料であるメタノール水溶液の供給速度を単位触媒量あたり60(L−solv./L−cat・h)にて行った。反応により生成したガスはガスクロマトグラフィーにて成分を測定した。加速劣化試験として反応開始後48時間のメタノール転化率を求め、生成ガス中の一酸化炭素及び二酸化炭素の成分濃度より一酸化炭素の選択率を算出した。
【0053】
【化2】
Figure 2004255282
【0054】
調製した触媒の組成および活性試験の結果を表1に示す。
【0055】
【表1】
表1
Figure 2004255282
【0056】
【発明の効果】
本発明によれば、高い触媒活性および耐久性を有し、かつ、一酸化炭素の選択率が低いメタノールの水蒸気改質触媒を提供することができる。また、本発明の水素の製造方法によれば、長期にわたり効率よく水素を製造することが可能である。[0001]
TECHNICAL FIELD OF THE INVENTION
The present invention relates to a steam reforming catalyst for methanol and a method for producing hydrogen, which comprises steam reforming methanol in the presence of the catalyst.
[0002]
[Prior art]
It is considered that the steam reforming reaction of methanol consists of the reactions shown in the following equations (1) and (2).
[0003]
Embedded image
Figure 2004255282
[0004]
By the above reaction, hydrogen can be produced from methanol and steam.
[0005]
Conventionally, as a steam reforming catalyst for methanol, it is widely known that a copper-based catalyst has excellent activity and selectivity, but it is said that the copper-based catalyst has a problem in thermal stability (Non-patent Document 1).
[0006]
Although it is said that the copper-based catalyst has a problem in thermal stability as described above, there are many reports on improvement of the copper-based catalyst because of its high catalytic activity.
[0007]
For example, there have been reports on catalysts containing copper, zinc, and each metal element belonging to Group 8 of the Periodic Table as a copper-based catalyst, and on steam reforming of methanol using the catalyst.
[0008]
Patent Document 1 reports a steam reforming method for methanol in which a catalyst comprising copper oxide, zinc oxide, nickel oxide, and aluminum oxide is incorporated in a process.
[0009]
Patent Document 2 discloses that a specific catalyst containing copper, zinc, chromium, and iron as its main components has a high conversion rate of methanol at a low temperature and a low carbon monoxide concentration in a generated gas at a high temperature. It is reported that the catalyst life is high and the catalyst life is prolonged.
[0010]
The present inventors report in Patent Document 3 a specific catalyst containing copper, zinc and the noble metals palladium and / or platinum, and a method for producing hydrogen from methanol and steam using the same.
[0011]
However, these known catalysts are not sufficiently satisfactory in terms of the activity and durability of the catalyst and the by-product rate of carbon monoxide.
[0012]
[Non-patent document 1]
The Japan Society of Catalysis, “Catalyst Course, Volume 9” (issued May 10, 1985) Kodansha, P132-134
[Patent Document 1]
JP-A-59-152205 [Patent Document 2]
JP-A-60-77104 [Patent Document 3]
JP-A-2002-95970
[Problems to be solved by the invention]
An object of the present invention is to provide a steam reforming catalyst for methanol that can suppress the by-product of carbon monoxide without impairing the activity and durability of the catalyst in view of the above-mentioned conventional technology. Another object of the present invention is to provide a method for producing hydrogen, which comprises subjecting methanol to steam reforming in the presence of the catalyst.
[0014]
[Means for Solving the Problems]
The present inventors have conducted intensive studies to solve the aforementioned problems, and as a result, have found that a catalyst containing an oxide of a specific metal element as a catalyst component is effective in solving the problems. Reached.
[0015]
That is, the present invention
(1) A steam reforming catalyst for methanol containing copper oxide, zinc oxide, palladium oxide and iron oxide,
(2) In the catalyst according to (1), the content of iron oxide in the total amount of each oxide of copper oxide, zinc oxide, palladium oxide and iron oxide is 0.2 to 30% by weight. %, A steam reforming catalyst for methanol,
(3) In the catalyst according to (1), the content of iron oxide in the total amount of each of copper oxide, zinc oxide, palladium oxide, and iron oxide is 0.5 to 25% by weight. %, A steam reforming catalyst for methanol,
(4) The catalyst according to (1), wherein the content of iron oxide in the total amount of each of the oxides of copper oxide, zinc oxide, palladium oxide and iron oxide is 1.0 to 22% by weight. %, A steam reforming catalyst for methanol,
(5) a methanol steam reforming catalyst, wherein the catalyst according to any one of (1) to (4) is prepared by a coprecipitation method;
(6) A method for producing hydrogen, comprising subjecting methanol to steam reforming in the presence of the catalyst according to any one of (1) to (5).
[0016]
BEST MODE FOR CARRYING OUT THE INVENTION
The methanol steam reforming catalyst of the present invention (hereinafter, simply referred to as “catalyst”) is characterized by containing copper oxide, zinc oxide, palladium oxide and iron oxide as essential components.
[0017]
The catalyst of the present invention containing these oxides as essential components can suppress the by-product of carbon monoxide without impairing the activity and durability of the catalyst.
[0018]
In the catalyst of the present invention, the content of iron oxide in the total amount of each oxide of copper oxide, zinc oxide, palladium oxide and iron oxide is preferably 0.2 to 30% by weight, more preferably Is 0.5 to 25% by weight, particularly preferably 1.0 to 22% by weight.
[0019]
In the catalyst of the present invention, when the content of iron oxide in the total amount of copper oxide, zinc oxide, palladium oxide and iron oxide is 0.2% by weight or more, the selectivity of carbon monoxide is small. When the content is 30% by weight or less, the conversion of methanol is high, which is preferable.
[0020]
Among the catalysts of the present invention, copper oxides, zinc oxides, palladium oxides, copper oxides, zinc oxides, palladium oxides, and iron oxides account for the total amount of each oxide. A catalyst having a content of 15 to 40% by weight of copper oxide, 45 to 60% by weight of zinc oxide, 0.5 to 30% by weight of palladium oxide, and 0.2 to 30% by weight of iron oxide is preferable. A catalyst containing 15 to 40% by weight of an oxide, 45 to 60% by weight of a zinc oxide, 0.5 to 30% by weight of a palladium oxide, and 0.5 to 25% by weight of an iron oxide is more preferable. Catalysts which are 40% by weight, 45-60% by weight of zinc oxide, 0.5-30% by weight of palladium oxide and 1.0-22% by weight of iron oxide are particularly preferred.
[0021]
The catalyst of the present invention may contain metal elements and oxides other than the respective oxides which are essential components in the catalyst of the present invention as long as the effects of the present invention are not impaired. Examples of the metal element include copper, zinc, palladium, iron, platinum, and zirconium. Examples of the oxide include silicon oxide, aluminum oxide, titanium oxide, zirconium oxide, and magnesium oxide.
[0022]
Although the method for producing the catalyst of the present invention is not particularly limited, it can be prepared by, for example, a wet method. Examples of the wet method include an impregnation method and a coprecipitation method. Among them, the coprecipitation method is preferable in that a high activity is obtained.
[0023]
If the production method of the catalyst of the present invention by the coprecipitation method is specifically shown, for example, an aqueous solution obtained by mixing an aqueous solution of an acidic salt of each metal element of copper, zinc, palladium, and iron is brought into contact with an aqueous solution of a basic compound. And a method of washing and recovering the deposited precipitate, drying the recovered precipitate, and firing the dried precipitate.
[0024]
The acidic salt of each metal element of copper, zinc, palladium, and iron is not particularly limited as long as the precipitate obtained by reacting with a basic compound is dried and fired to give an oxide of each metal element. . Examples of such acidic salts include nitrates, sulfates, and hydrochlorides.
[0025]
Examples of the basic compound to be brought into contact with the acid salt of each metal element include carbonates and bicarbonates of alkali metals or alkaline earth metals.
[0026]
The method of contacting an aqueous solution of an acidic salt of each metal element of copper, zinc, palladium, and iron with an aqueous solution of a basic compound is particularly limited as long as the pH of the aqueous solution obtained by the contact can be controlled to be in the range of 6 to 9. For example, a method of simultaneously mixing an aqueous solution of a basic compound and an aqueous solution of an acidic salt of each metal element, a method of adding an aqueous solution obtained by mixing an aqueous solution of an acidic salt of each metal element with an aqueous solution of a basic compound, There is a method in which an aqueous solution of a basic compound is added to a solution obtained by mixing an aqueous solution of an acidic salt.
[0027]
The temperature at which the aqueous solution of the acidic salt of each metal element of copper, zinc, palladium and iron is brought into contact with the aqueous solution of the basic compound is not particularly limited as long as it is in the temperature range of about 10 to about 80 ° C.
[0028]
A precipitate obtained by reacting an acidic salt of each metal element of copper, zinc, palladium and iron with a basic compound is usually washed with water in a temperature range of room temperature to 50 ° C, and then washed at about 100 to 160 ° C. And dried under an air or inert gas atmosphere in the temperature range described above.
[0029]
After drying, the catalyst of the present invention can be obtained by calcining. Firing can be performed in a temperature range of about 200C to 470C. The firing temperature is preferably 450 ° C. or lower. Further, it is preferable that the calcination temperature is 300 ° C. or higher in that the decomposition of the precipitate is sufficiently performed. The calcination is usually performed in the presence of air or an inert gas.
[0030]
The calcined catalyst can be used for the steam reforming reaction of methanol as it is, but after treating the calcined catalyst in a liquid or gaseous phase with a reducing gas such as hydrogen or carbon monoxide, the steam of methanol is removed. It can also be used for a reforming reaction.
[0031]
The catalyst of the present invention is used for the reaction in a honeycomb shape which is supported on a ceramic carrier such as mullite or cordierite, silica cloth, a sponge-like metal sintered porous plate or the like, in addition to tablet molding or extrusion molding. You can also.
[0032]
The method for producing hydrogen in the present invention is performed by bringing methanol into contact with water (steam) in the presence of the catalyst of the present invention.
[0033]
The reaction conditions for the steam reforming reaction of methanol can be appropriately determined according to desired values such as the conversion of methanol and the yield of generated hydrogen.
[0034]
Usually, methanol and water are used at a ratio of 0.5 to 30 mol of water to 1 mol of methanol, but preferably 1 to 10 mol of water to 1 mol of methanol.
[0035]
The reaction temperature is usually from 150 to 600C, preferably from 200 to 500C.
[0036]
The reaction pressure is usually 50 kg / cm 2 G or less, preferably 30 kg / cm 2 G to normal pressure.
[0037]
The space velocity of the mixed gas containing methanol and water vapor brought into contact with the catalyst is in the range of 50 to 500,000 hr -1 , preferably 100 to 150,000 hr -1 .
[0038]
In the method for producing hydrogen according to the present invention, gases such as hydrogen, carbon monoxide, carbon dioxide, nitrogen, and air may be used, if necessary.
[0039]
【Example】
Hereinafter, the present invention will be described more specifically with reference to examples, but the present invention is not limited to these examples.
[0040]
(1) Preparation of catalyst [Example 1]
6.12 g of aqueous solution of palladium nitrate [Pd (NO 3 ) 2 ] (containing 5 wt% of Pd), 6.95 g of copper nitrate trihydrate [Cu (NO 3 ) 2 .3H 2 O], zinc nitrate 6 water dihydrate [Zn (NO 3) 2 · 6H 2 O] 26.10g, iron nitrate nonahydrate [Fe (NO 3) 3 · 9H 2 O] 12.91g, aluminum nitrate nonahydrate [Al (NO 3) 3 · 9H2O] 4.78g, was prepared was dissolved in pure water 200ml aqueous (a solution). On the other hand, an aqueous solution (solution B) was prepared by dissolving 64.30 g of sodium carbonate decahydrate [Na 2 CO 3 .10H 2 O] in 200 ml of pure water. A flask containing 400 ml of water was prepared, and while stirring the water in the flask at room temperature, the solution A and the solution B were dropped at the same rate. After the generated slurry was stirred for 150 minutes, the precipitate in the slurry was filtered under reduced pressure and washed sufficiently with distilled water. Thereafter, the collected precipitate was dried in a dryer adjusted to 80 ° C. for 12 hours, and then calcined in an electric furnace adjusted to a temperature of 350 ° C. in the atmosphere for 3 hours to obtain 13.0 g of an oxide. After the oxide was tableted and pulverized, 1 ml of the pulverized material was collected. This was filled in a small reaction tube and subjected to a reduction treatment at 350 ° C. at a mixed gas GHSV of 6000 [hr −1 ] of H 2 / N 2 = 1/9 to obtain a catalyst.
[0041]
[Example 2]
Palladium nitrate as A solution [Pd (NO 3) 2] solution 11.74g (Pd; 5wt% containing), copper nitrate trihydrate [Cu (NO 3) 2 · 3H 2 O] 12.69g, zinc nitrate 25.45 g of hexahydrate [Zn (NO 3 ) 2 .6H 2 O], 1.06 g of iron nitrate 9-hydrate [Fe (NO 3 ) 3 9H 2 O], aluminum nitrate 9-hydrate things [Al (NO 3) 3 · 9H 2 O] 4.66g, sodium carbonate decahydrate [Na 2 CO 3 · 10H 2 O] 57.60g liquid containing the respectively prepared as solution B, example A catalyst was obtained using the same method as in Example 1.
[0042]
[Example 3]
Palladium nitrate as A solution [Pd (NO 3) 2] solution 52.37g (Pd; 5wt% containing), copper nitrate trihydrate [Cu (NO 3) 2 · 3H 2 O] 6.01g, zinc nitrate Hexahydrate [Zn (NO 3 ) 2 .6H 2 O] 21.25 g, iron nitrate 9-hydrate [Fe (NO 3 ) 3 9H 2 O] 5.79 g, aluminum nitrate 9-hydrate things [Al (NO 3) 3 · 9H 2 O] 4.59g, sodium carbonate decahydrate [Na 2 CO 3 · 10H 2 O] 57.67g liquid containing the respectively prepared as solution B, example A catalyst was obtained using the same method as in Example 1.
[0043]
[Example 4]
Palladium nitrate as A solution [Pd (NO 3) 2] solution 11.86g (Pd; 5wt% containing), copper nitrate trihydrate [Cu (NO 3) 2 · 3H 2 O] 13.86g, zinc nitrate 21.02 g of hexahydrate [Zn (NO 3 ) 2 .6H 2 O], 5.79 g of iron nitrate 9-hydrate [Fe (NO 3 ) 3 .9H 2 O], aluminum nitrate 9-hydrate A liquid containing 4.70 g of the product [Al (NO 3 ) 3 .9H 2 O] and 60.29 g of sodium carbonate decahydrate [Na 2 CO 3 .10H 2 O] as the liquid B was prepared, respectively. A catalyst was obtained using the same method as in Example 1.
[0044]
[Example 5]
Palladium nitrate as A solution [Pd (NO 3) 2] solution 11.99g (Pd; 5wt% containing), copper nitrate trihydrate [Cu (NO 3) 2 · 3H 2 O] 10.51g, zinc nitrate 21.27 g of hexahydrate [Zn (NO 3 ) 2 .6H 2 O], 11.71 g of iron nitrate 9-hydrate [Fe (NO 3 ) 3 .9H 2 O], aluminum nitrate 9-hydrate A liquid containing 4.76 g of the product [Al (NO 3 ) 3 .9H 2 O] and 63.45 g of sodium carbonate decahydrate [Na 2 CO 3 .10H 2 O] as the liquid B was prepared, respectively. A catalyst was obtained using the same method as in Example 1.
[0045]
[Example 6]
Palladium nitrate as A solution [Pd (NO 3) 2] solution 11.80g (Pd; 5wt% containing), copper nitrate trihydrate [Cu (NO 3) 2 · 3H 2 O] 13.02g, zinc nitrate 25.48 g of hexahydrate [Zn (NO 3 ) 2 .6H 2 O], 0.36 g of iron nitrate 9-hydrate [Fe (NO 3 ) 3 9H 2 O], aluminum nitrate 9-hydrate A liquid containing 4.73 g of the product [Al (NO 3 ) 3 .9H 2 O] and 57.30 g of sodium carbonate decahydrate [Na 2 CO 3 .10H 2 O] as the liquid B was prepared, respectively. A catalyst was obtained using the method.
[0046]
[Example 7]
Palladium nitrate as A solution [Pd (NO 3) 2] aqueous solution 2.34g (Pd; 5wt% containing), copper nitrate trihydrate [Cu (NO 3) 2 · 3H 2 O] 7.68g, zinc nitrate 25.02 g of hexahydrate [Zn (NO 3 ) 2 .6H 2 O], 14.54 g of iron nitrate 9-hydrate [Fe (NO 3 ) 3 .9H 2 O], aluminum nitrate 9-hydrate A solution containing 4.78 g of the product [Al (NO 3 ) 3 .9H 2 O] and 65.39 g of sodium carbonate decahydrate [Na 2 CO 3 .10H 2 O] as the B solution was prepared. A catalyst was obtained using the method.
[0047]
[Comparative Example 1]
Palladium nitrate as A solution [Pd (NO 3) 2] solution 11.72g (Pd; 5wt% containing), copper nitrate trihydrate [Cu (NO 3) 2 · 3H 2 O] 13.30g, zinc nitrate 25.39 g of hexahydrate [Zn (NO 3 ) 2 .6H 2 O], 4.65 g of aluminum nitrate nonahydrate [Al (NO 3 ) 3 .9H 2 O], sodium carbonate and dehydrated water as B solution Liquids each containing 57.04 g of the hydrate [Na 2 CO 3 .10H 2 O] were prepared, and a catalyst was obtained in the same manner as in Example 1.
[0048]
[Comparative Example 2]
Palladium nitrate as A solution [Pd (NO 3) 2] solution 52.37g (Pd; 5wt% containing), copper nitrate trihydrate [Cu (NO 3) 2 · 3H 2 O] 5.94g, zinc nitrate 24.97 g of hexahydrate [Zn (NO 3 ) 2 .6H 2 O], 4.57 g of aluminum nitrate 9-hydrate [Al (NO 3 ) 3 .9H 2 O], sodium carbonate as a B liquid Liquids each containing 54.48 g of the hydrate [Na 2 CO 3 .10H 2 O] were prepared, and a catalyst was obtained in the same manner as in Example 1.
[0049]
[Comparative Example 3]
15.42 g of copper nitrate trihydrate [Cu (NO 3 ) 2 .3H 2 O] as a liquid A, 25.51 g of zinc nitrate hexahydrate [Zn (NO 3 ) 2 .6H 2 O], nitric acid aluminum nonahydrate [Al (NO 3) 3 · 9H2O] 4.67g, B solution as sodium carbonate decahydrate [Na 2 CO 3 · 10H2O] 57.78g liquid containing the prepared respectively, performed A catalyst was obtained in the same manner as in Example 1.
[0050]
[Comparative Example 4]
11.70 g of copper nitrate trihydrate [Cu (NO 3 ) 2 .3H 2 O] as a liquid A, 25.84 g of zinc nitrate hexahydrate [Zn (NO 3 ) 2 .6H 2 O], nitric acid iron nonahydrate [Fe (NO 3) 3 · 9H 2 O] 6.53g, aluminum nitrate nonahydrate [Al (NO 3) 3 · 9H2O] 4.73g, sodium carbonate, ten as B solution Liquids containing 61.27 g of hydrate [Na 2 CO 3 .10H 2 O] were respectively prepared, and a catalyst was obtained in the same manner as in Example 1.
[0051]
[Comparative Example 5]
4.14 g of copper nitrate trihydrate [Cu (NO 3 ) 2 .3H 2 O] as a liquid A, 26.5 g of zinc nitrate hexahydrate [Zn (NO 3 ) 2 .6H 2 O], nitric acid iron nonahydrate [Fe (NO 3) 3 · 9H 2 O] 19.79g, aluminum nitrate nonahydrate [Al (NO 3) 3 · 9H2O] 4.85g, sodium carbonate, ten as B solution Liquids each containing 68.37 g of hydrate [Na 2 CO 3 .10H 2 O] were prepared, and a catalyst was obtained in the same manner as in Example 1.
[0052]
2) Activity test The activity of the catalyst prepared by the above method in the steam reforming reaction of methanol was measured. A 59.7% by weight aqueous methanol solution H 2 O / CH 3 OH = 1.2 (mol / mol) was used as a raw material, and air was blown so that O 2 / CH 3 OH = 0.1 (mol / mol). Introduced. The reaction was carried out at a reaction temperature of 250 ° C. and normal pressure at a supply rate of the aqueous methanol solution as the raw material of 60 (L-solv./L-cat·h) per unit catalyst amount. The components of the gas generated by the reaction were measured by gas chromatography. As an accelerated deterioration test, the methanol conversion rate for 48 hours after the start of the reaction was determined, and the selectivity of carbon monoxide was calculated from the component concentrations of carbon monoxide and carbon dioxide in the produced gas.
[0053]
Embedded image
Figure 2004255282
[0054]
Table 1 shows the composition of the prepared catalyst and the results of the activity test.
[0055]
[Table 1]
Table 1
Figure 2004255282
[0056]
【The invention's effect】
ADVANTAGE OF THE INVENTION According to this invention, it has a high catalytic activity and durability, and can provide the steam reforming catalyst of methanol with low selectivity of carbon monoxide. Further, according to the method for producing hydrogen of the present invention, hydrogen can be produced efficiently over a long period of time.

Claims (6)

銅酸化物、亜鉛酸化物、パラジウム酸化物および鉄酸化物を含むメタノールの水蒸気改質触媒Methanol steam reforming catalyst containing copper oxide, zinc oxide, palladium oxide and iron oxide 請求項1に記載の触媒において、銅酸化物、亜鉛酸化物、パラジウム酸化物および鉄酸化物の各酸化物の合計量に占める鉄酸化物の含有率が0.2〜30重量%である、メタノールの水蒸気改質触媒The catalyst according to claim 1, wherein the content of the iron oxide in the total amount of each of the copper oxide, the zinc oxide, the palladium oxide, and the iron oxide is 0.2 to 30% by weight. Methanol steam reforming catalyst 請求項1に記載の触媒において、銅酸化物、亜鉛酸化物、パラジウム酸化物および鉄酸化物の各酸化物の合計量に占める鉄酸化物の含有率が0.5〜25重量%である、メタノールの水蒸気改質触媒The catalyst according to claim 1, wherein the content of the iron oxide in the total amount of each of the oxides of copper oxide, zinc oxide, palladium oxide, and iron oxide is 0.5 to 25% by weight. Methanol steam reforming catalyst 請求項1に記載の触媒において、銅酸化物、亜鉛酸化物、パラジウム酸化物および鉄酸化物の各酸化物の合計量に占める鉄酸化物の含有率が1.0〜22重量%である、メタノールの水蒸気改質触媒The catalyst according to claim 1, wherein the content of the iron oxide in the total amount of each of the copper oxide, the zinc oxide, the palladium oxide, and the iron oxide is 1.0 to 22% by weight. Methanol steam reforming catalyst 請求項1〜4のいずれか1項に記載の触媒が共沈法により調製されたものである、メタノールの水蒸気改質触媒A catalyst for steam reforming of methanol, wherein the catalyst according to any one of claims 1 to 4 is prepared by a coprecipitation method. 請求項1〜4のいずれか1項に記載の触媒の存在下で、メタノールを水蒸気改質することを特徴とする水素の製造方法A method for producing hydrogen, wherein methanol is subjected to steam reforming in the presence of the catalyst according to any one of claims 1 to 4.
JP2003048434A 2003-02-26 2003-02-26 Methanol steam reforming catalyst and method for producing hydrogen by steam reforming of methanol using the catalyst Expired - Fee Related JP4133432B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2003048434A JP4133432B2 (en) 2003-02-26 2003-02-26 Methanol steam reforming catalyst and method for producing hydrogen by steam reforming of methanol using the catalyst

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2003048434A JP4133432B2 (en) 2003-02-26 2003-02-26 Methanol steam reforming catalyst and method for producing hydrogen by steam reforming of methanol using the catalyst

Publications (2)

Publication Number Publication Date
JP2004255282A true JP2004255282A (en) 2004-09-16
JP4133432B2 JP4133432B2 (en) 2008-08-13

Family

ID=33114392

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2003048434A Expired - Fee Related JP4133432B2 (en) 2003-02-26 2003-02-26 Methanol steam reforming catalyst and method for producing hydrogen by steam reforming of methanol using the catalyst

Country Status (1)

Country Link
JP (1) JP4133432B2 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20180122233A (en) * 2017-05-02 2018-11-12 국방과학연구소 Methanol steam reforming catalysts, preparation method thereof, and methanol reforming apparatus comprising the same
JP2019193913A (en) * 2018-05-01 2019-11-07 公立大学法人首都大学東京 Hydrogen manufacturing catalyst

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH09221437A (en) * 1996-02-15 1997-08-26 Tsushosangyosho Kiso Sangyokyokucho Production of ethanol
JP2003117396A (en) * 2001-10-11 2003-04-22 Mitsubishi Heavy Ind Ltd Methanol reforming catalyst and method for producing the same
JP2003320254A (en) * 2002-05-01 2003-11-11 National Institute Of Advanced Industrial & Technology Catalyst for water gas shift reaction and steam reforming reaction of methanol

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH09221437A (en) * 1996-02-15 1997-08-26 Tsushosangyosho Kiso Sangyokyokucho Production of ethanol
JP2003117396A (en) * 2001-10-11 2003-04-22 Mitsubishi Heavy Ind Ltd Methanol reforming catalyst and method for producing the same
JP2003320254A (en) * 2002-05-01 2003-11-11 National Institute Of Advanced Industrial & Technology Catalyst for water gas shift reaction and steam reforming reaction of methanol

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20180122233A (en) * 2017-05-02 2018-11-12 국방과학연구소 Methanol steam reforming catalysts, preparation method thereof, and methanol reforming apparatus comprising the same
KR102039045B1 (en) 2017-05-02 2019-10-31 국방과학연구소 Methanol steam reforming catalysts, preparation method thereof, and methanol reforming apparatus comprising the same
JP2019193913A (en) * 2018-05-01 2019-11-07 公立大学法人首都大学東京 Hydrogen manufacturing catalyst
JP7257019B2 (en) 2018-05-01 2023-04-13 東京都公立大学法人 Hydrogen production catalyst

Also Published As

Publication number Publication date
JP4133432B2 (en) 2008-08-13

Similar Documents

Publication Publication Date Title
US7820128B2 (en) Production of Cu/Zn/A1 catalysts via the formate route
JP3345783B2 (en) Synthesis gas production method
JP3553066B2 (en) Process for the catalytic decomposition of nitrous oxide contained in pure or gaseous mixtures
JP2005520689A (en) Water gas shift reaction
JP2005170774A (en) Compound oxide, method for producing the same, and exhaust gas cleaning catalyst
KR20020008007A (en) Catalyst for steam reforming of methanol and method for producing hydrogen therewith
JP4713895B2 (en) Method for producing iodide
JP4724973B2 (en) Dimethyl ether reforming catalyst and method for producing hydrogen-containing gas using the catalyst
JPH08231204A (en) Production of hydrogen and carbon monoxide by carbon dioxide performing reaction
JPH04305541A (en) Method of manufacturing chloroform from carbon tetrachloride and catalyst composition used therefor
JP4226684B2 (en) Method for producing synthesis gas by partial oxidation method
EP1312412A2 (en) Process for producing hydrogen-containing gas
JPH11179204A (en) Catalyst for methanation of gas containing carbon monoxide and carbon dioxide and its production
JP4525909B2 (en) Water gas shift reaction catalyst, method for producing the same, and method for producing water gas
JP3837520B2 (en) Catalyst for CO shift reaction
JP2004255282A (en) Steam-reforming catalyst for methanol and method for producing hydrogen by steam-reforming methanol by using the catalyst
JP4512748B2 (en) Catalyst for water gas conversion reaction
JP7029346B2 (en) Indene manufacturing method
JP4012965B2 (en) Catalyst for high temperature CO shift reaction
JP4226685B2 (en) Method for producing hydrogen
JP4488321B2 (en) Synthesis gas production catalyst and synthesis gas production method
JP2002079102A (en) Catalyst for shift reaction and reaction method
JP2005138036A (en) Catalyst for reforming methanol with steam and method for producing hydrogen by steam reforming of methanol employing the same
JP3226556B2 (en) Catalyst for steam reforming of hydrocarbons
JP2012223769A (en) Method for producing ammonia decomposition catalyst

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20050715

RD03 Notification of appointment of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7423

Effective date: 20071024

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20080215

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20080220

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20080411

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20080507

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20080602

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110606

Year of fee payment: 3

R150 Certificate of patent or registration of utility model

Ref document number: 4133432

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120606

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120606

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130606

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130606

Year of fee payment: 5

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees