JP2004254663A - Baking mold made from heat resistant and non-sticking hard-coated steel plate - Google Patents

Baking mold made from heat resistant and non-sticking hard-coated steel plate Download PDF

Info

Publication number
JP2004254663A
JP2004254663A JP2003052206A JP2003052206A JP2004254663A JP 2004254663 A JP2004254663 A JP 2004254663A JP 2003052206 A JP2003052206 A JP 2003052206A JP 2003052206 A JP2003052206 A JP 2003052206A JP 2004254663 A JP2004254663 A JP 2004254663A
Authority
JP
Japan
Prior art keywords
heat
resistant
coating film
flakes
baking mold
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2003052206A
Other languages
Japanese (ja)
Inventor
Kenichi Okubo
謙一 大久保
Shuichi Sugita
修一 杉田
Kazumi Matsubara
和美 松原
Koji Mori
浩治 森
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Steel Nisshin Co Ltd
Original Assignee
Nisshin Steel Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nisshin Steel Co Ltd filed Critical Nisshin Steel Co Ltd
Priority to JP2003052206A priority Critical patent/JP2004254663A/en
Publication of JP2004254663A publication Critical patent/JP2004254663A/en
Pending legal-status Critical Current

Links

Images

Landscapes

  • Confectionery (AREA)
  • Laminated Bodies (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a baking mold for bread, cake, etc., without causing scorch even by using repeatedly by omitting oiling and also shortening the cooking time. <P>SOLUTION: This baking mold is provided by forming a heat resistant and non-sticking resin-coated film 2 on a surface facing to an inner space for housing materials for cooking, and a black-colored heat resistant coated film 3 on a surface facing to a heating source. In the heat-resistant and non-sticking resin-coated film 2, hot-melt type fluorine resin powder having ≤1 μm mean particle diameter and a scaly inorganic additive having 10-100 μm mean particle diameter are dispersed. As the hot melt fluorine resin, 1 kind or ≥2 kinds of a polytetrafluoroethylene resin, tetrafluoroethylene-perfluoroalkyl vinyl ether copolymer is used. As the scaly inorganic additive, 1 kind or ≥2 kinds of glass flakes, barium sulfate flakes, graphite flakes, synthetic mica flakes, silica flakes and synthetic alumina flakes are used. As the black-colored heat resistant coated film 3, the coated film having ≥0.8 heat absorbance is preferably used. <P>COPYRIGHT: (C)2004,JPO&NCIPI

Description

【0001】
【産業上の利用分野】
本発明は、パン,ケーキ等を焦げ付きなく焼くことができ、手入れが簡単で耐久性に優れた焼き型に関する。
【0002】
【従来技術及び問題点】
パン,ケーキ等の焼き型は、金属切板を所定形状にプレス成形した後、塗装して製品化されている。素材の金属切板には普通鋼板,ステンレス鋼板,アルミニウムめっき鋼板,アルミニウム板等が使用されており、ホーロー塗装,フッ素樹脂塗装等で成形品表面に塗膜を形成している。
ホーロー塗装では、焼付け温度を高く設定することから厚い素材が必要で、製品重量が嵩みがちである。しかも、パン,ケーキ等を焼く際に焦げ付きが発生しやすい。焦げ付きはタワシ,布等で除去できるが、ホーロー塗膜を傷める原因になる。調理に先立ってホーロー塗膜に油を十分塗布しておくことにより焦げ付きが抑えられるが、調理のたびの油引き作業はついつい省略されがちである。
【0003】
フッ素樹脂塗膜は、非粘着性のため焦げ付きが発生せず油引きの必要がないが、軟質なため耐磨耗性,耐疵付き性に劣る。たとえば、樹脂製の調理器具や柔らかなナイロンタワシ等の洗浄道具を使用する場合でも短時間で摩耗し、基材・金属板が露出しやすい。フッ素樹脂塗膜の耐磨耗性,耐疵付き性は、チタン酸カリウムウイスカ(特開平10−323283号公報),ウォラストナイト等の針状粉末やガラスビーズ,酸化鉄(特開平10−120980号公報)等の粒状粉末を分散させることにより改善される。針状粉末や粒状粉末の分散により局部的な塗膜硬度の指標である鉛筆硬度は向上するが、連続的な摩耗に対する塗膜硬度が不足し、依然として基材・金属板の露出に至る塗膜欠陥が生じる場合がある。
更に、ホーロー塗装,フッ素樹脂塗装の何れでも、生産性の低いポストコート方式であるため、製造コストが高くなる。
【0004】
そこで、本発明者等は、分散粒子の材質,粒径等が耐熱樹脂塗膜の耐磨耗性,耐疵付き性に及ぼす影響を種々調査・研究した結果、特定粒径の熱溶融性フッ素樹脂粉末,鱗片状無機質添加材を耐熱樹脂塗膜に分散させるとき、塗膜硬度が非常に高く、非粘着性と耐熱性を高位に両立させた塗装金属板が得られることを解明し(特願2001−307113)、プレコート金属板でも製品形状に成形加工できることが判った。塗膜に分散させた熱溶融性フッ素樹脂粉末は、塗膜表面では非粘着性の良好な薄層となり、塗膜内部では鱗片状無機質添加材と共存して耐磨耗性,耐疵付き性を改善する。
【0005】
【課題を解決するための手段】
本発明は、先願で提案した塗装金属板の特性を更に調査・研究する過程で案出されたものであり、耐磨耗性,耐疵付き性が改善された耐熱非粘着樹脂塗膜で焼き型内面を、熱吸収性の良好な黒色耐熱塗膜で焼き型外面を構成することにより、焦げ付きがなく熱効率も良好なパン,ケーキ等の焼き型を提供することを目的とする。
本発明の耐熱非粘着ハードコート鋼板製焼き型は、調理材料が収容される内部空間に臨む面に耐熱非粘着樹脂塗膜が設けられ、加熱源に臨む面に黒色耐熱塗膜が形成されている。耐熱非粘着樹脂塗膜には、平均粒径1μm以下の熱溶融性フッ素樹脂粉末及び平均粒径10〜100μmの鱗片状無機質添加材が分散している。
【0006】
耐熱樹脂塗膜は、ポリエーテルスルホン樹脂,ポリフェニルスルフィド樹脂,ポリアミドイミド樹脂の少なくとも1種を主成分としている。熱溶融性フッ素樹脂には、テトラフルオロエチレン−パーフルオロアルキルビニルエーテル共重合体(PFA),テトラフルオロエチレン−パーフルオロアルキルビニルエーテル−ヘキサフルオロプロピレン共重合体(FEP)が好ましい。鱗片状無機質添加材には、ガラスフレーク,硫酸バリウムフレーク,グラファイトフレーク,合成マイカフレーク,シリカフレーク,合成アルミナフレークの1種又は2種以上が使用される。
【0007】
更に、チタン酸カリウム繊維,ウォラスナイト繊維,炭化ケイ素繊維,アルミナ繊維,アルミナシリケート繊維,シリカ繊維,ロックウール,スラグウール,ガラス繊維,炭素繊維の1種又は2種以上の無機質繊維を耐熱非粘着樹脂塗膜に分散させても良い。
黒色耐熱塗膜としては、放射率計(model AREED, S&D社製)で測定した熱吸収率が0.8以上の塗膜が好ましい。熱吸収特性は、カーボンブラック,黒色酸化鉄,グラファイト等の添加材によって調節できる。
【0008】
【作用及び実施の形態】
たとえば、パンの焼き型は、素材・金属切板をプレス加工し、パン生地を収容するため上部が開放された矩形状に成形されている(図1)。パン生地収容空間に臨む内面に耐熱非粘着樹脂塗膜2,加熱源に臨む外面に黒色耐熱塗膜3が設けられている。耐熱非粘着樹脂塗膜2,黒色耐熱塗膜3はポスト加工方式で設けても良いが、加工性の良好な塗膜を選択すると、生産性に優れたプレコート方式で耐熱非粘着樹脂塗膜2,黒色耐熱塗膜3を設けることができる。
【0009】
以下、プレコート方式による焼き型の製造法を説明する。
素材・金属板には、冷延鋼板,亜鉛めっき鋼板,Zn−Al合金めっき鋼板,Zn−Al−Mg合金めっき鋼板,アルミニウムめっき鋼板,ステンレス鋼板,アルミニウム板,アルミニウム合金板等を使用できる。素材・金属板を常法に従って塗装前処理した後、必要に応じて下塗り塗装を施し、一面に耐熱非粘着樹脂塗膜2,他面に黒色耐熱塗膜3を形成する。
【0010】
塗装前処理した素材・金属板に直接、又は下塗り塗膜に耐熱塗料が塗布され、乾燥・焼付けによって耐熱非粘着樹脂塗膜2が形成される。耐熱塗料は、ポリエーテルスルホン樹脂,ポリフェニルスルフィド樹脂,ポリアミドイミド樹脂の少なくとも1種以上の耐熱樹脂に、平均粒径1μm以下の熱溶融性フッ素樹脂及び平均粒径10〜100μmの鱗片状無機質添加材を配合することにより調製される。熱溶融性フッ素樹脂及び鱗片状無機質添加材の配合量は、耐熱樹脂の固形分100質量部に対してそれぞれ10〜200質量部,1〜30質量部の範囲で選定される。耐熱塗料には、必要に応じて直径0.1〜10μm,長さ100μm以下の無機質繊維を耐熱樹脂の固形分100質量部に対して0.1〜40質量部の割合で配合しても良い。
【0011】
熱溶融性フッ素樹脂としては、耐熱非粘着性の観点から融点270℃以上のフッ素樹脂が好ましく、テトラフルオロエチレン,ヘキサフルオロエチレン,パーフルオロアルキルビニルエーテル,クロロトリフルオロエチレン等の単量体の少なくとも1種からなる重合体を使用できる。特に非粘着性の持続性に優れていることから、テトラフルオロエチレン−パーフルオロアルキルビニルエーテル共重合体(PFA),テトラフルオロエチレン−パーフルオロアルキルビニルエーテル−ヘキサフルオロプロピレン共重合体(FEP)が好ましく、更に耐熱性の観点からPFAが最適である。
【0012】
熱溶融性フッ素樹脂は、塗料樹脂に対する分散性や塗膜に優れた非粘着性,耐熱性を付与するため、平均粒径1μm以下の粉末が好ましい。平均粒径1μm以下の熱溶融性フッ素樹脂は、塗膜の焼成時に容易に溶融し、上塗り塗膜表面にフッ素樹脂質の薄膜を形成する。なかでも、0.5μm以下の平均粒径が薄膜形成に好適である。
熱溶融性フッ素樹脂は、10〜200質量部の配合割合で耐熱塗料に配合される。熱溶融性フッ素樹脂配合による非粘着性の持続性は10質量部以上の配合割合で顕著になるが、200質量部を超える過剰量の熱溶融性フッ素樹脂を配合すると、下塗り塗膜に対する上塗り塗膜の密着性が低下しやすい。非粘着性の持続性と密着性とをバランスさせる上では、50〜150質量部,更には80〜120質量部で熱溶融性フッ素樹脂を配合することが好ましい。
【0013】
耐熱塗料に配合される鱗片状無機質添加材は,材質に制約を受けるものではなく,ガラスフレーク,硫酸バリウムフレーク,グラファイトフレーク,合成マイカフレーク,シリカフレーク,合成アルミナフレーク等が使用される。なかでも、耐磨耗性の観点から素材自体が硬質で、液体からの冷却・凝固で製造されることにより極めて平滑な表面をもつガラスフレークが好適である。ガラスフレークとしては、市販のガラスフレークを使用でき、含アルカリガラス,無アルカリガラス又はその中間組成物等がある。
鱗片状無機質添加材は、そのままでも耐熱塗料に配合できるが、必要に応じてクロム酸系,燐酸系,アルミナ系,ジルコニア系等の無機系表面処理剤や各種シランカップリング剤,チタネートカップリング剤等を用いた表面処理を施したものが好ましい。表面処理によって、耐熱塗料に対する鱗片状無機質添加材の分散性及び隣接する樹脂層との層間密着性が向上する。
【0014】
耐熱塗料に配合される鱗片状無機質添加材は,非粘着性の低下なく塗膜硬度及び耐磨耗性を向上させるため、10〜100μmの範囲に平均粒径が調整されている。なお、鱗片状無機質添加材の平均粒径は、最も長い部分の長さで表される。塗膜硬度及び耐磨耗性に及ぼす鱗片状無機質添加材の改善効果は平均粒径10μm以上で顕著になる。10μm未満の平均粒径では、塗膜を平面視で塗膜に占める鱗片状無機質添加材の面積割合が小さく、鱗片状無機質添加材が点状に分布することになり、塗膜硬度及び耐磨耗性の改善に効果的でない。この状態で無機質繊維を配合しても、無機質繊維の線状分散によって塗膜硬度は向上するものの、磨耗に対するバリア層となる鱗片状無機質添加材の面積割合が小さいため十分な耐磨耗性が得られない。
平均粒径10μm以上の鱗片状無機質添加材を分散させることにより、面状で硬質のバリア層が塗膜内部に形成されるため塗膜硬度が向上し、耐磨耗性が飛躍的に改善される。しかし、鱗片状無機質添加材の平均粒径が100μmを超えると、塗膜から鱗片状無機質添加材の突出に起因して非粘着性が低下する虞がある。また、鱗片状無機質添加材の突出による非粘着性の低下を防止する上で、厚み5μm以下、更には1μm以下の鱗片状無機質添加材が好ましい。
【0015】
鱗片状無機質添加材は、1〜30質量部の配合割合で耐熱塗料に分散配合される。耐熱塗膜に鱗片状無機質添加材を分散させることにより、従来B〜HBであった鉛筆硬度がF〜3Hに上昇し、耐磨耗性が飛躍的に改善される。非粘着性の低下なく耐磨耗性を向上させる鱗片状無機質添加材の添加効果は、平均粒径10〜100μm,分散量1〜30質量部で顕著になる。配合量1質量部未満では鱗片状無機質添加材添加による塗膜硬度,耐磨耗性の改善効果が十分でなく、逆に30質量部を超える過剰量の鱗片状無機質添加材を配合すると、塗膜からの鱗片状無機質添加材の突出に起因して非粘着性が低下しやすく、塗膜本来の性質が損なわれ、物性等に対する悪影響の原因にもなる。
【0016】
耐熱塗料に、必要に応じて無機質繊維が配合される。無機質繊維には、チタン酸カリウム繊維,ウォラスナイト繊維,炭化ケイ素繊維,アルミナ繊維,アルミナシリケート繊維,シリカ繊維,ロックウール,スラグウール,ガラス繊維,炭素繊維等がある。
無機質繊維を塗膜に分散させることにより非粘着性,加工性の低下なく塗膜硬度が向上する。鱗片状無機質添加材が塗膜の膜面に平行な方向に沿って分散するのに対し、無機質繊維は、隣接する鱗片状無機質添加材の隙間を縫うように三次元的に塗膜内部に分散する。この分散形態の相違から、非粘着性,加工性に悪影響を及ぼすことなく塗膜硬度が改善されるものと推察される。
【0017】
塗膜硬度向上に及ぼす効果は、直径0.1μm以上,長さ10μm以上の無機質繊維で顕著になる。しかし、直径20μm,長さ100μmを超える無機質繊維では、塗膜表面から突出する無機質繊維に起因して非粘着性や加工性が低下する虞がある。このようなことから、直径0.1〜20μm,長さ10〜100μmの無機質繊維、なかでも直径0.1〜1μm,長さ0.1〜30μmのチタン酸カリウム繊維が好ましい。
【0018】
無機質繊維は、0.1質量部の割合で耐熱塗料に配合される。鱗片状無機質添加材及び無機質繊維を複合添加した塗料から形成された耐熱塗膜では、塗膜硬度の下限が1ランク向上してH〜3Hになる。非粘着性,加工性の低下なく塗膜硬度を向上させる無機質繊維の複合添加効果は、0.1〜40質量部の分散量で顕著になる。0.1質量%に満たない分散量では無機質繊維の分散による効果が十分に発現されず,逆に40質量部を超える分散量では塗膜表面から無機質繊維が突出しやすくなり、結果として非粘着性,加工性が低下し、塗膜本来の性質が損なわれる虞がある。密着性,加工性に悪影響を及ぼさない上では、無機質繊維の配合量を1〜20質量部の範囲に設定することが好ましい。
【0019】
所定組成に調合した耐熱塗料は、プレコート鋼板の製造に通常使用されているロールコート,フローコート,カーテンフロー,スプレー等の方法で塗装原板に塗布され、到達板温350〜450℃×60〜180秒で焼き付けられる。耐熱塗料の塗布量は、焼付け後に乾燥膜厚5〜40μmの耐熱塗膜が形成されるように調整される。乾燥膜厚5μm未満では非粘着性の持続性が十分に発現されず、逆に40μmを超える厚膜では塗膜表面が柚子肌状になって外観が劣化するばかりでなく、焼付け時にワキが発生しやすくなる。加工性の観点からすると、耐熱塗膜の膜厚は5〜20μmが好ましい。
【0020】
形成された耐熱塗膜の断面を顕微鏡で観察すると、図2で模式的に示すように、耐熱非粘着樹脂塗膜2の表層にフッ素樹脂薄膜4が形成され、鱗片状無機質添加材5が分散した耐熱非粘着樹脂塗膜2が下塗り塗膜6を介して基材・金属板1の表面に形成されていた。鱗片状無機質添加材5は、フレーク面が基材・金属板1の表面に直交することなく、基材・金属板1の表面とほぼ平行に又は若干の傾斜をもって耐熱非粘着樹脂塗膜2に分散しており、耐熱非粘着樹脂塗膜2から突出した鱗片状無機質添加材5は検出されなかった。耐熱非粘着樹脂塗膜2には、分散状態の粒状フッ素樹脂7も検出された。
【0021】
フッ素樹脂薄膜4は、耐熱塗料の焼成時に熱溶融性フッ素樹脂が浮上・溶融して塗膜表層で薄膜化した連続皮膜である。連続したフッ素樹脂薄膜4の形成によって耐熱非粘着樹脂塗膜2に非粘着性が付与されることは勿論、耐熱非粘着樹脂塗膜2の初期磨耗性も向上する。しかも、耐熱非粘着樹脂塗膜2に分散している鱗片状無機質添加材5によって塗膜硬度が高くなり、耐磨耗性が改善される。ここで、鱗片状無機質添加材5の粒径が規制されているので、耐熱非粘着樹脂塗膜2からの突出も防止される。
【0022】
また、耐熱非粘着樹脂塗膜2に粒状フッ素樹脂7が分散しているため、軟質である表層のフッ素樹脂薄膜4が磨耗しても非粘着性が持続され、更に耐磨耗性の観点から鱗片状無機質添加材5のバリア効果と粒状フッ素樹脂7の辷り性の相乗効果によって耐磨耗性が飛躍的に向上する。
このような塗膜構造をもつことから、耐磨耗性及び非粘着性の双方共に優れた塗膜になるものと推察される。因みに、粒径の大きな鱗片状無機質添加材5を分散させた塗膜では、耐熱非粘着樹脂塗膜2にから鱗片状無機質添加材5が突出することが避けられず、鱗片状無機質添加材5の突出部分でフッ素樹脂薄膜4の作用(非粘着性)が損なわれやすい。
【0023】
鱗片状無機質添加材5及び無機質繊維を複合分散させた耐熱非粘着樹脂塗膜2では、図3で模式的に示すように、鱗片状無機質添加材5の隙間を縫うように分散した無機質繊維8が観察される。無機質繊維8の分散状態は耐熱非粘着樹脂塗膜2の厚み方向に沿った成分をもつ三次元分布であり、耐熱非粘着樹脂塗膜2の表面から突出した無機質繊維8も観察されない。このような塗膜構造のため、非粘着性の低下なく塗膜硬度が更に向上し,耐磨耗性にも優れた塗膜になるものと推察される。
【0024】
他方、加熱源に臨む焼き型の外面には、熱吸収特性の良好な黒色耐熱塗膜3が形成されている。黒色耐熱塗膜3は、250℃程度の耐熱性をもっていればパン,ケーキ等の焼き型として十分使用に耐え、ポリエーテルサルホン,ポリアミドイミド,ポリイミド,ポリフェニルスルフィド,エポキシ,フェノール,ウレタン等をベース樹脂とする塗料組成物を使用できる。黒色耐熱塗膜3は、塗装前処理した基材・金属板1に塗料組成物を塗布し、焼付けすることにより形成され、好ましくは5〜20μmの乾燥膜厚に調整される。
【0025】
パン,ケーキ等の焼上げ用オーブンは、加熱効率が非常に高いことから赤外線の輻射熱を主たる熱源に使用している。赤外線の輻射熱は、空気等の媒体加熱がほとんどないためエネルギーロスがなく、被加熱体である水や有機物質に効率よく吸収される。吸収されたエネルギーが熱エネルギーに変換され、伝導,対流でパン,ケーキ等の内部に伝わり、パン,ケーキ等が外部,内部から同時に加熱される。
パン,ケーキ等の焼上げに赤外線の輻射熱を効率よく利用するため、本発明では、熱吸収率0.8以上の黒色耐熱塗膜3を加熱源に臨む焼き型の外面に形成している。黒色耐熱塗膜3により輻射熱吸収が促進され、黒色耐熱塗膜3のない焼き型と比較すると熱効率の向上,焼上げ時間の短縮等が可能となる。
【0026】
黒色耐熱塗膜3によって熱効率の向上,焼上げ時間の短縮が図られる理由は、次のように説明できる。
赤外線は、人間にとって不可視な波長領域にある電磁波の一種であり、物質に吸収されると赤外線エネルギーが熱エネルギーに変換される。エネルギー吸収割合は、物体の種類や表面形状によって異なるが、熱平衡が保たれた場合を仮定すると吸収エネルギー(物体内部に移動した熱エネルギー)と同量のエネルギーが物体から外部に放射される。吸収エネルギーと放射エネルギーとの関係は、物体の種類や表面形状に関係なく、吸収率,放射率が相等しくなる(キルヒホッフの法則)。
【0027】
放射率は、最大の放射能力をもつ黒体を基準とし、放射率計(model AREED,S&D社製)を用いASTM C1371に準じて各波長における放射エネルギーを測定し、黒体の放射エネルギーに対する比率として算出される。得られた放射率は、キルヒホッフの法則から、被測定物体の熱吸収率ともいえる。
このようにして求められる熱吸収率と塗膜との関係を調査したところ、より黒体に近い放射能力をもつ塗膜が熱効率の向上,焼上げ時間の短縮に有効であることが判った。具体的には、塗膜に添加する顔料単体の放射率を測定し、色調との関係を評価した表1の結果から明らかなように、金,銀,白等の光を吸収せずに反射させやすい色調は放射率が低く、光を吸収する黒色系塗膜は高い放射率を示した。すなわち、熱吸収率を高める色調としては、黒色が最も有効である。
【0028】

Figure 2004254663
【0029】
耐熱非粘着樹脂塗膜2,黒色耐熱塗膜3の形成後、基材・金属板1を所定サイズに切り出し、耐熱非粘着樹脂塗膜2が内側になるように金属切板をプレス加工する。耐熱非粘着樹脂塗膜2,黒色耐熱塗膜3として加工性に優れた塗膜を選択しているので、プレス加工で欠陥が塗膜に導入されることなく、良好な密着性で耐熱非粘着樹脂塗膜2,黒色耐熱塗膜3が基材・金属板1に積層したパン,ケーキ等の焼き型が得られる。
作製された焼き型は、加熱源からの熱(赤外線輻射)を黒色耐熱塗膜3で効率よく吸収し、基材・金属板1を介した熱伝導で調理中のパン生地やケーキ生地を加熱するため、調理時間が短縮される。焼き型の内側には非粘着性の耐熱非粘着樹脂塗膜2が設けられているので、加熱されたパン生地やケーキ生地が焼き型から容易に取り出され、油引きの必要もない。しかも、耐磨耗性,耐疵付き性に優れた耐熱非粘着樹脂塗膜2であることから、調理後の洗浄で疵つかず、長期間にわたり美麗な表面状態が維持され清潔感に富む焼き型となる。
【0030】
【実施例】
板厚0.5mm,片面当りめっき付着量60g/mのZn−55%Al合金めっき鋼板を基材・金属板1に使用し、脱脂,洗浄,クロメート処理等の塗装前処理後、一面に耐熱非粘着樹脂塗膜2,他面に黒色耐熱塗膜3を形成した。
耐熱非粘着樹脂塗膜2,黒色耐熱塗膜3の形成には、カーボンブラック及びアルミニウムフレークで黒色メタリックに着色したポリエーテルスルホン樹脂をベースとし、粒径0.3μmのPFA(テトラフルオロエチレン−パーフルオロアルキルビニルエーテル共重合体:熱溶融性フッ素樹脂粉末)を50質量%,粒径25μmのガラスフレークを20質量%配合した塗料組成物を用いた。塗料組成物を基材・金属板1に塗布し、400℃×120秒の焼付け乾燥で乾燥膜厚10μmの耐熱非粘着樹脂塗膜2,乾燥膜厚10μmの黒色耐熱塗膜3を形成した
塗膜形成後の基材・金属板1を所定サイズに切り出し、プレス加工で幅100mm,長さ200mm,深さ70mmのボックス状焼き型に成形した。成形後の塗膜を観察したところ、亀裂,剥離等の塗膜欠陥が検出されなかった。
【0031】
焼き型にパン生地を入れてオーブンに装入し、最高到達温度190℃でパン生地を焼いた後、オーブンから焼き型を取り出した。焼き型を反転したところ、焼かれたパン生地が焼き型から容易に分離し、焼き型内面に何ら焦げ付きが生じていなかった。焼上りまでに要した加熱時間は33〜35分であった。同じ焼き型を油引きすることなくパン焼きに繰返し使用したところ、100サイクル後にも焦げ付きがない美麗な表面が維持されていた。また、鱗片状無機質添加材,熱溶融性フッ素樹脂粉末で耐磨耗性,耐疵付き性が改善されているため、調理後の焼き型を洗浄しても耐熱非粘着樹脂塗膜2,黒色耐熱塗膜3は疵付きや摩耗のない表面状態に維持されていた。
【0032】
比較のため、黒色耐熱塗膜3のないことを除き同じ耐熱非粘着樹脂塗膜2が形成された焼き型を使用したところ、内面側に焦げ付きは生じていないものの、焼上りまでに45 ̄55分と長時間を要した。その分だけ耐熱非粘着樹脂塗膜2が高温雰囲気に曝される時間が長くなるため、耐熱非粘着樹脂塗膜2の劣化が懸念される。熱溶融性フッ素樹脂粉末を含まない耐熱非粘着樹脂塗膜2を設けた焼き型では、油引きせずに加熱すると1サイクルで耐熱非粘着樹脂塗膜2に焦げ付きが生じていた。鱗片状無機質添加材を含まない耐熱非粘着樹脂塗膜2を設けた焼き型では、調理後にナイロンタワシで洗浄しても耐熱非粘着樹脂塗膜2が疵付いた。
【0033】
【発明の効果】
以上に説明したように、調理材料が収容される内部空間に臨む面に耐熱非粘着樹脂塗膜,加熱源に臨む面に黒色耐熱塗膜を設けた焼き型は、油引きしなくてもパン生地,ケーキ生地等が焦げ付くことなく、パン生地,ケーキ生地等を設定温度に短時間で加熱する。しかも、耐磨耗性,耐疵付き性に優れているため、調理後の洗浄や異物との接触によっても塗膜に疵付きや摩耗が生じることなく、長期間にわたり正常な塗膜面が維持される。そのため、洗浄作業の負担が軽減され、使い勝手の良好な焼き型として使用される。
【図面の簡単な説明】
【図1】パン生地の焼き型を示す斜視図
【図2】鱗片状無機質添加材,熱溶融性フッ素樹脂粉末が分散した耐熱塗膜のモデル図
【図3】鱗片状無機質添加材,熱溶融性フッ素樹脂粉末,無機質繊維が分散した耐熱塗膜のモデル図
【符号の説明】
1:基材・金属板 2:耐熱塗膜 3:黒色耐熱塗膜 4:フッ素樹脂薄膜 5:鱗片状無機質添加材 6:下塗り塗膜 7:粒状フッ素樹脂 8:無機質繊維[0001]
[Industrial applications]
The present invention relates to a baking mold which can bake bread, cake and the like without burning, is easy to care for, and has excellent durability.
[0002]
[Prior art and problems]
Baking dies such as breads and cakes are commercialized by pressing a metal plate into a predetermined shape and then painting. As a metal cutting plate, a normal steel plate, a stainless steel plate, an aluminum-plated steel plate, an aluminum plate, or the like is used, and a coating film is formed on the surface of a molded product by enamel coating, fluororesin coating, or the like.
In enamel coating, a thick material is required because the baking temperature is set high, and the product weight tends to be bulky. In addition, when baking bread, cake, etc., scorching tends to occur. The scorch can be removed with a scourer, cloth, etc., but it may cause damage to the enameled coating. By applying a sufficient amount of oil to the enamel coating prior to cooking, scorching can be suppressed, but the oiling operation for each cooking is often omitted.
[0003]
The fluororesin coating film is non-adhesive and does not cause scorching and does not require oiling. However, since it is soft, it has poor abrasion resistance and scratch resistance. For example, even when a cleaning tool such as a resin-made cooking utensil or a soft nylon scourer is used, it is worn in a short time, and the base material and the metal plate are easily exposed. The abrasion resistance and scratch resistance of the fluororesin coating film are measured by using potassium titanate whiskers (Japanese Patent Laid-Open No. 10-323283), needle-like powders such as wollastonite, glass beads, and iron oxide (Japanese Patent Laid-Open No. 10-120980). This is improved by dispersing a granular powder such as that described in Japanese Patent Application Laid-Open No. H10-260, etc. Pencil hardness, which is an indicator of local coating hardness, is improved by the dispersion of needle-like powders and granular powders, but the coating hardness for continuous wear is insufficient, and the coating still leads to exposure of the base material / metal plate. Defects may occur.
Further, in both the enamel coating and the fluororesin coating, the production cost is high because of the low productivity of the post-coat method.
[0004]
The present inventors have conducted various investigations and studies on the effects of the material and particle size of the dispersed particles on the abrasion resistance and scratch resistance of the heat-resistant resin coating film. When resin powder and scaly inorganic additives are dispersed in a heat-resistant resin coating film, it is clarified that a coating metal plate with very high coating film hardness and high non-adhesiveness and high heat resistance can be obtained. Application 2001-307113), it was found that a precoated metal plate can be formed into a product shape. The hot-melt fluororesin powder dispersed in the coating film forms a thin layer with good non-adhesion on the coating surface, and abrasion resistance and scratch resistance in the coating film together with the scaly inorganic additive. To improve.
[0005]
[Means for Solving the Problems]
The present invention was devised in the process of further investigating and studying the characteristics of the coated metal plate proposed in the prior application, and is a heat-resistant non-adhesive resin coating film having improved abrasion resistance and scratch resistance. An object of the present invention is to provide a baking mold such as a bread and a cake which has no scorch and has good thermal efficiency by forming the baking mold inner surface with a black heat-resistant coating having good heat absorption.
The heat-resistant non-adhesive hard-coated steel plate baking mold of the present invention is provided with a heat-resistant non-adhesive resin coating on the surface facing the internal space in which the cooking material is stored, and a black heat-resistant coating formed on the surface facing the heating source. I have. A heat-fusible fluororesin powder having an average particle size of 1 μm or less and a flaky inorganic additive having an average particle size of 10 to 100 μm are dispersed in the heat-resistant non-adhesive resin coating film.
[0006]
The heat-resistant resin coating mainly contains at least one of a polyether sulfone resin, a polyphenyl sulfide resin and a polyamideimide resin. As the heat-fusible fluororesin, a tetrafluoroethylene-perfluoroalkylvinylether copolymer (PFA) and a tetrafluoroethylene-perfluoroalkylvinylether-hexafluoropropylene copolymer (FEP) are preferable. As the scaly inorganic additive, one or more of glass flake, barium sulfate flake, graphite flake, synthetic mica flake, silica flake, and synthetic alumina flake are used.
[0007]
Further, one or more inorganic fibers of potassium titanate fiber, wollastonite fiber, silicon carbide fiber, alumina fiber, alumina silicate fiber, silica fiber, rock wool, slag wool, glass fiber and carbon fiber are heat-resistant and non-adhesive. It may be dispersed in a resin coating film.
As the black heat-resistant coating film, a coating film having a heat absorption of 0.8 or more measured by an emissivity meter (model AREED, manufactured by S & D) is preferable. Heat absorption characteristics can be adjusted by additives such as carbon black, black iron oxide, and graphite.
[0008]
[Action and Embodiment]
For example, a baking mold for bread is formed by pressing a raw material / metal cut plate and forming a rectangular shape with an open top to accommodate bread dough (FIG. 1). A heat resistant non-adhesive resin coating is provided on the inner surface facing the bread dough storage space, and a black heat resistant coating 3 is provided on the outer surface facing the heating source. The heat-resistant and non-adhesive resin coating 2 and the black heat-resistant coating 3 may be provided by a post-processing method. However, if a film having good workability is selected, the heat-resistant and non-adhesive resin coating 2 is formed by a pre-coating method having excellent productivity. , A black heat-resistant coating film 3 can be provided.
[0009]
Hereinafter, a method for manufacturing a baking mold by the precoat method will be described.
As the material / metal plate, a cold-rolled steel plate, a galvanized steel plate, a Zn-Al alloy-plated steel plate, a Zn-Al-Mg alloy-plated steel plate, an aluminum-plated steel plate, a stainless steel plate, an aluminum plate, an aluminum alloy plate, or the like can be used. After pre-coating the material / metal plate according to a conventional method, an undercoat is applied as required, and a heat-resistant non-adhesive resin coating film 2 is formed on one surface and a black heat-resistant coating film 3 is formed on the other surface.
[0010]
A heat-resistant paint is applied directly to the pretreated material or metal plate or to the undercoat, and the heat-resistant non-adhesive resin coating 2 is formed by drying and baking. The heat-resistant paint is obtained by adding a heat-meltable fluororesin having an average particle size of 1 μm or less and a flaky inorganic material having an average particle size of 10 to 100 μm to at least one or more heat-resistant resins of polyether sulfone resin, polyphenyl sulfide resin, and polyamide imide resin. It is prepared by blending materials. The blending amounts of the heat-fusible fluororesin and the scaly inorganic additive are selected in the ranges of 10 to 200 parts by mass and 1 to 30 parts by mass, respectively, based on 100 parts by mass of the solid content of the heat-resistant resin. In the heat-resistant paint, if necessary, an inorganic fiber having a diameter of 0.1 to 10 μm and a length of 100 μm or less may be blended at a ratio of 0.1 to 40 parts by mass with respect to 100 parts by mass of the solid content of the heat-resistant resin. .
[0011]
As the heat-meltable fluororesin, a fluororesin having a melting point of 270 ° C. or more is preferable from the viewpoint of heat resistance and non-adhesion, and at least one of monomers such as tetrafluoroethylene, hexafluoroethylene, perfluoroalkylvinylether, and chlorotrifluoroethylene. Seed polymers can be used. In particular, tetrafluoroethylene-perfluoroalkylvinylether copolymer (PFA) and tetrafluoroethylene-perfluoroalkylvinylether-hexafluoropropylene copolymer (FEP) are preferable because they have excellent non-sticking properties. Further, PFA is optimal from the viewpoint of heat resistance.
[0012]
The heat-meltable fluororesin is preferably a powder having an average particle size of 1 μm or less in order to impart dispersibility to the coating resin and excellent non-adhesiveness and heat resistance to the coating film. The heat-fusible fluororesin having an average particle size of 1 μm or less easily melts when the coating film is fired, and forms a fluororesin thin film on the surface of the overcoat film. Above all, an average particle size of 0.5 μm or less is suitable for forming a thin film.
The heat-fusible fluororesin is blended in the heat-resistant paint in a blending ratio of 10 to 200 parts by mass. The persistence of non-adhesiveness due to the blending of the hot-melt fluororesin becomes remarkable at a blending ratio of 10 parts by mass or more. The adhesion of the film tends to decrease. In order to balance the persistence of non-adhesiveness and the adhesion, it is preferable to mix the heat-meltable fluororesin in an amount of 50 to 150 parts by mass, more preferably 80 to 120 parts by mass.
[0013]
The flake-like inorganic additive added to the heat-resistant paint is not limited in its material, and glass flake, barium sulfate flake, graphite flake, synthetic mica flake, silica flake, synthetic alumina flake, and the like are used. Among them, glass flakes, which are hard from the viewpoint of abrasion resistance and have an extremely smooth surface when produced by cooling and solidifying from a liquid, are suitable. As the glass flake, commercially available glass flakes can be used, and examples thereof include alkali-containing glass, alkali-free glass, and intermediate compositions thereof.
The scaly inorganic additive can be added to the heat-resistant paint as it is, but if necessary, an inorganic surface treating agent such as chromic acid type, phosphoric acid type, alumina type, zirconia type, various silane coupling agents, titanate coupling agent Those subjected to a surface treatment using such as are preferred. By the surface treatment, the dispersibility of the scaly inorganic additive in the heat-resistant paint and the interlayer adhesion with the adjacent resin layer are improved.
[0014]
The average particle size of the scaly inorganic additive added to the heat-resistant paint is adjusted in the range of 10 to 100 μm in order to improve the hardness and abrasion resistance of the coating film without lowering the non-adhesiveness. The average particle size of the flaky inorganic additive is represented by the length of the longest part. The effect of the scaly inorganic additive on the coating film hardness and abrasion resistance becomes remarkable when the average particle size is 10 μm or more. When the average particle diameter is less than 10 μm, the area ratio of the flaky inorganic additive in the paint film in a plan view is small, and the flaky inorganic additive is distributed in a dot-like manner. Not effective in improving wear. Even if the inorganic fibers are blended in this state, although the coating film hardness is improved by the linear dispersion of the inorganic fibers, sufficient abrasion resistance is obtained because the area ratio of the scaly inorganic additive material serving as a barrier layer to abrasion is small. I can't get it.
By dispersing the flaky inorganic additive having an average particle size of 10 μm or more, a planar and hard barrier layer is formed inside the coating film, so that the coating film hardness is improved and the abrasion resistance is dramatically improved. You. However, when the average particle size of the flaky inorganic additive exceeds 100 μm, the non-adhesiveness may decrease due to the protrusion of the flaky inorganic additive from the coating film. In order to prevent a decrease in non-adhesiveness due to the protrusion of the flaky inorganic additive, a flaky inorganic additive having a thickness of 5 μm or less, more preferably 1 μm or less, is preferred.
[0015]
The scaly inorganic additive is dispersed and blended in the heat-resistant paint at a blending ratio of 1 to 30 parts by mass. By dispersing the scaly inorganic additive in the heat-resistant coating film, the pencil hardness, which was conventionally B to HB, is increased to F to 3H, and the abrasion resistance is dramatically improved. The effect of the scaly inorganic additive for improving the abrasion resistance without lowering the non-adhesiveness becomes remarkable when the average particle size is 10 to 100 μm and the dispersion amount is 1 to 30 parts by mass. When the amount is less than 1 part by mass, the effect of improving the coating film hardness and abrasion resistance due to the addition of the flaky inorganic additive is not sufficient. The non-adhesiveness tends to decrease due to the protrusion of the flaky inorganic additive from the film, thereby impairing the intrinsic properties of the coating film and causing adverse effects on physical properties and the like.
[0016]
Inorganic fibers are added to the heat-resistant paint as needed. Examples of the inorganic fibers include potassium titanate fibers, wollastonite fibers, silicon carbide fibers, alumina fibers, alumina silicate fibers, silica fibers, rock wool, slag wool, glass fibers, and carbon fibers.
By dispersing the inorganic fibers in the coating film, the coating film hardness is improved without lowering the non-adhesiveness and workability. While the scaly inorganic additive is dispersed along the direction parallel to the film surface of the coating, the inorganic fibers are three-dimensionally dispersed inside the coating so as to sew gaps between adjacent scaly inorganic additives. I do. From the difference in the dispersion form, it is assumed that the coating film hardness is improved without adversely affecting the non-adhesiveness and workability.
[0017]
The effect of improving the hardness of the coating film becomes remarkable with inorganic fibers having a diameter of 0.1 μm or more and a length of 10 μm or more. However, with inorganic fibers having a diameter of more than 20 μm and a length of 100 μm, non-adhesiveness and workability may be reduced due to the inorganic fibers protruding from the coating film surface. For this reason, inorganic fibers having a diameter of 0.1 to 20 μm and a length of 10 to 100 μm, particularly potassium titanate fibers having a diameter of 0.1 to 1 μm and a length of 0.1 to 30 μm, are preferable.
[0018]
The inorganic fibers are blended in the heat-resistant paint at a ratio of 0.1 parts by mass. In a heat-resistant coating film formed from a coating material in which a scaly inorganic additive material and an inorganic fiber are compositely added, the lower limit of the coating film hardness is improved by one rank to H to 3H. The effect of adding the inorganic fiber to improve the hardness of the coating film without lowering the non-adhesiveness and workability becomes remarkable at a dispersion amount of 0.1 to 40 parts by mass. If the amount of dispersion is less than 0.1% by mass, the effect of the dispersion of the inorganic fibers is not sufficiently exhibited. Conversely, if the amount of dispersion exceeds 40 parts by mass, the inorganic fibers tend to protrude from the surface of the coating film, resulting in non-adhesiveness. , Workability may be reduced and the intrinsic properties of the coating may be impaired. The amount of the inorganic fibers is preferably set in the range of 1 to 20 parts by mass so as not to adversely affect the adhesion and the processability.
[0019]
The heat-resistant paint prepared in a predetermined composition is applied to the original plate by a method such as roll coating, flow coating, curtain flow, spraying or the like which is usually used for the production of a pre-coated steel sheet. Burned in seconds. The application amount of the heat-resistant paint is adjusted such that a heat-resistant coating film having a dry film thickness of 5 to 40 μm is formed after baking. If the dry film thickness is less than 5 μm, the non-stickiness persistence is not sufficiently exhibited. Conversely, if the film thickness exceeds 40 μm, not only does the surface of the coating film become yuzu-skin-like and the appearance deteriorates, but also burning occurs during baking. Easier to do. From the viewpoint of workability, the thickness of the heat-resistant coating film is preferably 5 to 20 μm.
[0020]
When the cross section of the formed heat-resistant coating film is observed with a microscope, a fluororesin thin film 4 is formed on the surface layer of the heat-resistant and non-adhesive resin coating film 2 as schematically shown in FIG. The heat-resistant and non-adhesive resin coating 2 thus formed was formed on the surface of the base material / metal plate 1 via the undercoat coating 6. The scaly inorganic additive 5 is applied to the heat-resistant and non-adhesive resin coating 2 with the flake surface not substantially perpendicular to the surface of the base material / metal plate 1 but substantially parallel or slightly inclined to the surface of the base material / metal plate 1. The scaly inorganic additive 5 which was dispersed and protruded from the heat-resistant and non-adhesive resin coating film 2 was not detected. In the heat-resistant and non-adhesive resin coating film 2, the particulate fluororesin 7 in a dispersed state was also detected.
[0021]
The fluororesin thin film 4 is a continuous film in which the heat-meltable fluororesin floats and melts during the baking of the heat-resistant paint and is thinned on the surface of the coating film. The formation of the continuous fluororesin thin film 4 not only imparts non-adhesiveness to the heat-resistant and non-adhesive resin coating film 2 but also improves the initial wear property of the heat-resistant and non-adhesive resin coating film 2. In addition, the scale-like inorganic additive 5 dispersed in the heat-resistant and non-adhesive resin coating 2 increases the hardness of the coating and improves the abrasion resistance. Here, since the particle size of the flaky inorganic additive 5 is regulated, the protrusion from the heat-resistant non-adhesive resin coating film 2 is also prevented.
[0022]
In addition, since the particulate fluororesin 7 is dispersed in the heat-resistant and non-adhesive resin coating film 2, the non-adhesiveness is maintained even when the soft surface fluororesin thin film 4 is worn, and further from the viewpoint of abrasion resistance. The wear resistance is dramatically improved by the synergistic effect of the barrier effect of the flaky inorganic additive 5 and the slipperiness of the granular fluororesin 7.
It is presumed that such a coating film structure results in a coating film excellent in both abrasion resistance and non-adhesiveness. Incidentally, in the coating film in which the flaky inorganic additive 5 having a large particle diameter is dispersed, it is inevitable that the flaky inorganic additive 5 protrudes from the heat-resistant and non-adhesive resin coating 2, and the flaky inorganic additive 5 is inevitable. The effect (non-adhesiveness) of the fluororesin thin film 4 is likely to be impaired at the protruding portion of the resin.
[0023]
In the heat-resistant and non-adhesive resin coating film 2 in which the flaky inorganic additive 5 and the inorganic fiber are compounded and dispersed, as shown schematically in FIG. 3, the inorganic fibers 8 dispersed so as to sew gaps between the flaky inorganic additive 5. Is observed. The dispersion state of the inorganic fibers 8 is a three-dimensional distribution having components along the thickness direction of the heat-resistant and non-adhesive resin coating 2, and no inorganic fibers 8 protruding from the surface of the heat-resistant non-adhesive resin coating 2 are observed. It is presumed that due to such a coating film structure, the coating film hardness is further improved without a decrease in non-adhesiveness, and the coating film has excellent abrasion resistance.
[0024]
On the other hand, a black heat-resistant coating film 3 having good heat absorption characteristics is formed on the outer surface of the baking mold facing the heating source. If the black heat-resistant coating film 3 has a heat resistance of about 250 ° C., it can be sufficiently used as a baking mold for bread and cake, and can be made of polyethersulfone, polyamideimide, polyimide, polyphenylsulfide, epoxy, phenol, urethane, or the like. A coating composition as a base resin can be used. The black heat-resistant coating film 3 is formed by applying and baking a coating composition on the base material / metal plate 1 that has been pre-treated, and is preferably adjusted to a dry film thickness of 5 to 20 μm.
[0025]
An oven for baking bread, cake and the like uses infrared radiation heat as a main heat source because of its extremely high heating efficiency. The radiant heat of infrared rays is hardly heated by a medium such as air, so that there is no energy loss and is efficiently absorbed by water or an organic substance to be heated. The absorbed energy is converted into heat energy and transmitted to the inside of the bread, cake, etc. by conduction and convection, and the bread, cake, etc. are simultaneously heated from outside and inside.
In order to efficiently use the radiant heat of infrared rays for baking bread, cake, etc., in the present invention, the black heat-resistant coating film 3 having a heat absorption of 0.8 or more is formed on the outer surface of the baking mold facing the heating source. Radiation heat absorption is promoted by the black heat-resistant coating film 3, which makes it possible to improve the thermal efficiency and shorten the baking time as compared with a baking die without the black heat-resistant coating film 3.
[0026]
The reason why the black heat-resistant coating film 3 improves the thermal efficiency and shortens the baking time can be explained as follows.
Infrared rays are a kind of electromagnetic waves in a wavelength range invisible to humans, and when absorbed by a substance, infrared energy is converted to heat energy. The energy absorption ratio varies depending on the type and surface shape of the object, but assuming that thermal equilibrium is maintained, the same amount of energy as the absorbed energy (thermal energy moved into the object) is emitted from the object to the outside. Regarding the relationship between the absorbed energy and the radiated energy, the absorptance and the emissivity are equal irrespective of the type and surface shape of the object (Kirchhoff's law).
[0027]
The emissivity is based on a black body having the maximum radiation ability, and the radiant energy at each wavelength is measured using an emissivity meter (model AREED, manufactured by S & D) according to ASTM C1371. Is calculated as From Kirchhoff's law, the obtained emissivity can be said to be the heat absorption rate of the measured object.
Investigation of the relationship between the heat absorption rate and the coating film obtained in this way revealed that a coating film having a radiation ability closer to a black body was effective for improving the thermal efficiency and shortening the baking time. Specifically, the emissivity of the pigment alone added to the coating film was measured, and the relationship with the color tone was evaluated. As is clear from the results in Table 1, the light such as gold, silver, and white was reflected without being absorbed. The easy-to-make color tone had a low emissivity, and the light-absorbing black coating showed a high emissivity. That is, black is the most effective color tone for increasing the heat absorption rate.
[0028]
Figure 2004254663
[0029]
After the formation of the heat-resistant and non-adhesive resin coating film 2 and the black heat-resistant coating film 3, the substrate / metal plate 1 is cut out to a predetermined size, and the metal cut plate is pressed so that the heat-resistant non-adhesive resin coating film 2 is on the inside. As a heat-resistant and non-adhesive resin coating film 2 and a black heat-resistant coating film 3 are selected because of their excellent workability, no defects are introduced into the coating film by press working, and good adhesion and heat-resistant non-adhesion A baking mold such as a pan or cake in which the resin coating film 2 and the black heat-resistant coating film 3 are laminated on the base material / metal plate 1 is obtained.
The prepared baking mold efficiently absorbs the heat (infrared radiation) from the heating source with the black heat-resistant coating film 3 and heats the bread dough or the cake dough during cooking by heat conduction through the base material / metal plate 1. Therefore, the cooking time is reduced. Since the non-adhesive heat-resistant and non-adhesive resin coating film 2 is provided inside the baking mold, the heated bread dough and cake dough are easily taken out of the baking mold, and there is no need for oiling. Moreover, since it is a heat-resistant and non-adhesive resin coating film 2 excellent in abrasion resistance and scratch resistance, it is not scratched by washing after cooking, maintains a beautiful surface state for a long period of time, and has a rich baking feeling. Type.
[0030]
【Example】
A Zn-55% Al alloy plated steel sheet with a thickness of 0.5 mm and a coating weight per side of 60 g / m 2 is used for the substrate / metal plate 1, and after pre-coating treatment such as degreasing, washing, and chromate treatment, A heat-resistant non-adhesive resin coating film 2 and a black heat-resistant coating film 3 on the other surface were formed.
The heat-resistant and non-adhesive resin coating film 2 and the black heat-resistant coating film 3 are formed on the basis of a polyether sulfone resin colored black metallic with carbon black and aluminum flakes, and a PFA (tetrafluoroethylene-par A coating composition was used in which 50% by mass of a fluoroalkyl vinyl ether copolymer (heat-fusible fluororesin powder) and 20% by mass of glass flakes having a particle size of 25 μm were blended. The coating composition was applied to the base material / metal plate 1 and baked and dried at 400 ° C. for 120 seconds to form a heat-resistant non-adhesive resin coating film 2 having a dry film thickness of 10 μm and a black heat-resistant coating film 3 having a dry film thickness of 10 μm. The substrate / metal plate 1 after the film formation was cut out to a predetermined size, and formed into a box-shaped baking die having a width of 100 mm, a length of 200 mm, and a depth of 70 mm by press working. When the coating film after molding was observed, no coating film defects such as cracks and peeling were detected.
[0031]
The dough was put in a baking mold and charged in an oven. After baking the dough at a maximum temperature of 190 ° C., the baking mold was taken out of the oven. When the baking mold was inverted, the baked dough was easily separated from the baking mold, and no scorching occurred on the inner surface of the baking mold. The heating time required for baking was 33 to 35 minutes. When the same baking mold was repeatedly used for baking without oiling, a beautiful surface without burning was maintained even after 100 cycles. In addition, since the scaly inorganic additive and the heat-meltable fluororesin powder have improved abrasion resistance and scratch resistance, even if the baking mold after cooking is washed, the heat-resistant non-adhesive resin coating 2, black The heat-resistant coating film 3 was maintained in a surface state free from scratches and wear.
[0032]
For comparison, when a baking die having the same heat-resistant and non-adhesive resin coating film 2 was used except that the black heat-resistant coating film 3 was not used, there was no scorching on the inner surface side, but 45-55 by baking. It took a minute and a long time. Since the time during which the heat-resistant and non-adhesive resin coating film 2 is exposed to the high-temperature atmosphere becomes longer, the deterioration of the heat-resistant and non-adhesive resin coating film 2 is concerned. In the baking mold provided with the heat-resistant non-adhesive resin coating film 2 containing no heat-fusible fluororesin powder, when heated without oiling, the heat-resistant non-adhesive resin coating film 2 was scorched in one cycle. In the baking mold provided with the heat-resistant and non-adhesive resin coating film 2 containing no scaly inorganic additive, the heat-resistant and non-adhesive resin coating film 2 was damaged even after washing with a nylon scrub after cooking.
[0033]
【The invention's effect】
As described above, the baking mold in which the heat-resistant non-adhesive resin coating is provided on the surface facing the internal space in which the cooking material is stored, and the black heat-resistant coating is provided on the surface facing the heating source, does not require oiling. The bread dough and the cake dough are heated to the set temperature in a short time without the cake dough being scorched. In addition, because of its excellent abrasion resistance and scratch resistance, the coating film is not scratched or worn even by washing after cooking or contact with foreign matter, and the normal coating surface is maintained for a long period of time. Is done. Therefore, the burden of the cleaning operation is reduced, and it is used as an easy-to-use baking die.
[Brief description of the drawings]
FIG. 1 is a perspective view showing a baking mold of bread dough. FIG. 2 is a model diagram of a heat-resistant coating film in which a scaly inorganic additive and a heat-fusible fluororesin powder are dispersed. FIG. 3 is a scaly inorganic additive and a heat-fusible material. Model diagram of heat-resistant coating film in which fluororesin powder and inorganic fibers are dispersed [Explanation of symbols]
1: base material / metal plate 2: heat-resistant coating film 3: black heat-resistant coating film 4: fluororesin thin film 5: scaly inorganic additive material 6: undercoat coating film 7: granular fluororesin 8: inorganic fiber

Claims (6)

調理材料が収容される内部空間に臨む面に耐熱非粘着樹脂塗膜が設けられ、加熱源に臨む面に黒色耐熱塗膜が形成された焼き型であり、平均粒径1μm以下の熱溶融性フッ素樹脂粉末及び平均粒径10〜100μmの鱗片状無機質添加材が耐熱非粘着樹脂塗膜に分散していることを特徴とする耐熱非粘着ハードコート鋼板製焼き型。A heat-resistant, non-adhesive resin coating is provided on the surface facing the internal space where the cooking material is stored, and a black heat-resistant coating is formed on the surface facing the heating source. A baking die made of a heat-resistant and non-adhesive hard-coated steel sheet, wherein a fluororesin powder and a scaly inorganic additive having an average particle size of 10 to 100 μm are dispersed in a heat-resistant and non-adhesive resin coating film. 耐熱非粘着樹脂塗膜がポリエーテルスルホン樹脂,ポリフェニルスルフィド樹脂,ポリアミドイミド樹脂の少なくとも1種を主成分とする請求項1記載の耐熱非粘着ハードコート鋼板製焼き型。2. The heat-resistant and non-adhesive hard-coated steel plate baking mold according to claim 1, wherein the heat-resistant and non-adhesive resin coating film mainly contains at least one of a polyether sulfone resin, a polyphenyl sulfide resin and a polyamideimide resin. 熱溶融性フッ素樹脂がテトラフルオロエチレン−パーフルオロアルキルビニルエーテル共重合体(PFA),テトラフルオロエチレン−パーフルオロアルキルビニルエーテル−ヘキサフルオロプロピレン共重合体(FEP)の1種又は2種である請求項1記載の耐熱非粘着ハードコート鋼板製焼き型。2. The heat-fusible fluororesin is one or two of tetrafluoroethylene-perfluoroalkylvinylether copolymer (PFA) and tetrafluoroethylene-perfluoroalkylvinylether-hexafluoropropylene copolymer (FEP). The baking mold made of the heat-resistant non-adhesive hard-coated steel sheet described. 鱗片状無機質添加材がガラスフレーク,硫酸バリウムフレーク,グラファイトフレーク,合成マイカフレーク,シリカフレーク,合成アルミナフレークの1種又は2種以上である請求項1記載の耐熱非粘着ハードコート鋼板製焼き型。The heat-resistant and non-adhesive hard-coated steel plate baking mold according to claim 1, wherein the scaly inorganic additive is one or more of glass flakes, barium sulfate flakes, graphite flakes, synthetic mica flakes, silica flakes, and synthetic alumina flakes. チタン酸カリウム繊維,ウォラスナイト繊維,炭化ケイ素繊維,アルミナ繊維,アルミナシリケート繊維,シリカ繊維,ロックウール,スラグウール,ガラス繊維,炭素繊維の1種又は2種以上の無機質繊維が耐熱非粘着樹脂塗膜に分散している請求項1〜4何れかに記載の耐熱非粘着ハードコート鋼板製焼き型。One or more inorganic fibers of potassium titanate fiber, wollastonite fiber, silicon carbide fiber, alumina fiber, alumina silicate fiber, silica fiber, rock wool, slag wool, glass fiber, carbon fiber are coated with heat-resistant and non-adhesive resin. The baking mold made of a heat-resistant and non-adhesive hard-coated steel sheet according to any one of claims 1 to 4, which is dispersed in a film. 黒色耐熱塗膜の放射率計で測定した熱吸収率が0.8以上である請求項1記載の耐熱非粘着ハードコート鋼板製焼き型。The heat-resistant, non-adhesive hard-coated steel plate baking die according to claim 1, wherein the heat absorption of the black heat-resistant coating film measured by an emissivity meter is 0.8 or more.
JP2003052206A 2003-02-28 2003-02-28 Baking mold made from heat resistant and non-sticking hard-coated steel plate Pending JP2004254663A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2003052206A JP2004254663A (en) 2003-02-28 2003-02-28 Baking mold made from heat resistant and non-sticking hard-coated steel plate

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2003052206A JP2004254663A (en) 2003-02-28 2003-02-28 Baking mold made from heat resistant and non-sticking hard-coated steel plate

Publications (1)

Publication Number Publication Date
JP2004254663A true JP2004254663A (en) 2004-09-16

Family

ID=33117130

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2003052206A Pending JP2004254663A (en) 2003-02-28 2003-02-28 Baking mold made from heat resistant and non-sticking hard-coated steel plate

Country Status (1)

Country Link
JP (1) JP2004254663A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008221746A (en) * 2007-03-15 2008-09-25 Nitto Denko Corp Hard coat film, hard coat film laminate and image display device
US20120160109A1 (en) * 2010-12-24 2012-06-28 Ko Young Shin Apparatus for cooking by heat convection comprising temperature control layer

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008221746A (en) * 2007-03-15 2008-09-25 Nitto Denko Corp Hard coat film, hard coat film laminate and image display device
US20120160109A1 (en) * 2010-12-24 2012-06-28 Ko Young Shin Apparatus for cooking by heat convection comprising temperature control layer

Similar Documents

Publication Publication Date Title
EP0056280B2 (en) Article coated with fluoropolymer finish with improved durability
US4548986A (en) Undercoating composition
CN103465574B (en) A kind of scratch resistance non-sticking lining and painting method thereof
CN103396709B (en) Fluororesin coating film
RU2516016C2 (en) Kitchenware having solid base layer made of ceramic and/or metal and/or polymer material and nonstick coating containing fluorocarbon polymer
JP4288855B2 (en) Thin layer coating made of fluoropolymer and method for forming the same
EP0909800B1 (en) Coating composition and coating film
EP0980665A1 (en) Composite materials for cookware
EP0254269A2 (en) Polytetrafluoroethylene containing coating composition and use thereof
TW201323533A (en) Ceramic paints and protective coatings
KR101507527B1 (en) Coating composition, method for manufacturing film using the same, and coated body using the same
JP2004255850A (en) Heat-resistant, nontacky precoated metal plate improved in heat emission characteristics
JP2019205790A (en) Cooking tool
JP3670230B2 (en) Heat-resistant, non-adhesive coated metal plate with excellent wear resistance
JP4813077B2 (en) Heat-resistant non-adhesive painted metal plate
JP2001218684A (en) Member for cooking utensil and cooking utensil
JP2589459B2 (en) kitchenware
JP2004254663A (en) Baking mold made from heat resistant and non-sticking hard-coated steel plate
WO1981002161A1 (en) Composition for coating fluoroplastics
JP5744410B2 (en) COATING COMPOSITION, COATING MANUFACTURING METHOD USING SAME, AND COATING BODY
JP5658536B2 (en) Painted aluminized steel sheet
JP2000062105A (en) Structure having transparent layer composed of fluorinecontaining polymer and reflecting sheet using it
JP4335716B2 (en) Heat-resistant non-adhesive pre-coated metal plate
JP4243806B2 (en) Heat-resistant non-adhesive coated steel sheet
JPS58198573A (en) Wear resistant coating material

Legal Events

Date Code Title Description
A621 Written request for application examination

Effective date: 20050624

Free format text: JAPANESE INTERMEDIATE CODE: A621

RD03 Notification of appointment of power of attorney

Effective date: 20070411

Free format text: JAPANESE INTERMEDIATE CODE: A7423

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A821

Effective date: 20070417

RD04 Notification of resignation of power of attorney

Effective date: 20070417

Free format text: JAPANESE INTERMEDIATE CODE: A7424

A977 Report on retrieval

Effective date: 20071004

Free format text: JAPANESE INTERMEDIATE CODE: A971007

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20071016

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20080318