JP2004254461A - Contactless power supply apparatus - Google Patents

Contactless power supply apparatus Download PDF

Info

Publication number
JP2004254461A
JP2004254461A JP2003043982A JP2003043982A JP2004254461A JP 2004254461 A JP2004254461 A JP 2004254461A JP 2003043982 A JP2003043982 A JP 2003043982A JP 2003043982 A JP2003043982 A JP 2003043982A JP 2004254461 A JP2004254461 A JP 2004254461A
Authority
JP
Japan
Prior art keywords
power
power supply
receiving coil
capacitor
load
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2003043982A
Other languages
Japanese (ja)
Inventor
Harumasa Yamamoto
治正 山本
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hitachi Kiden Kogyo Ltd
Original Assignee
Hitachi Kiden Kogyo Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Kiden Kogyo Ltd filed Critical Hitachi Kiden Kogyo Ltd
Priority to JP2003043982A priority Critical patent/JP2004254461A/en
Publication of JP2004254461A publication Critical patent/JP2004254461A/en
Pending legal-status Critical Current

Links

Images

Landscapes

  • Charge And Discharge Circuits For Batteries Or The Like (AREA)
  • Current-Collector Devices For Electrically Propelled Vehicles (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a contactless power supply apparatus that can supply stable power to a load by a single power-receiving coil even if an output of the power-receiving coil is decreased at a connecting point of feeder cables. <P>SOLUTION: The noncontact power feeder comprises a capacitor 18 as a power compensation means that performs charging when the power-receiving coil 2 is on the feeder cables 3, 4 and the output of the coil is normal, and supplies power to the load 31 when the power-receiving coil 2 comes on the connecting point 7 of the feeder cables 3, 4 and the output is decreased. <P>COPYRIGHT: (C)2004,JPO&NCIPI

Description

【0001】
【発明の属する技術分野】
本発明は非接触給電装置に関し、特に、給電線の連結部分において受電コイル部の出力が低下した場合でも、単一の受電コイル部で負荷に安定した電力供給を行うことができる非接触給電装置に関するものである。
【0002】
【従来の技術】
非接触給電装置は、例えば、半導体の製造工場で稼動する無人搬送車等の有軌道搬送設備において、発塵を防止するために、給電を地上側から非接触で給電する場合に使用される。
この非接触給電装置は、搬送路に敷設した往復する給電線に対向するようにE型のコアを配設し、給電線により発生する磁界をコアに誘導し、さらに、コアに巻いた2次巻線を介し、誘起した起電力を整流して負荷に電力を供給する。
【0003】
この場合、給電線は、自己インダクタンスと抵抗成分による電圧降下を生じることから、1台の電源装置に接続された給電線は、この電圧降下により給電できる距離が制限される。
そこで、長距離の搬送においては、複数の区間に給電線を分割し、それぞれ独立した高周波電源で給電線を励磁している。
【0004】
【発明が解決しようとする課題】
ところで、独立した電源で給電線を駆動する場合、隣接する給電区間で、電源装置の周波数と位相を完全に一致させることは困難である。
すなわち、同位相の場合は単一電源と同等の給電能力が得られるが、位相が180度ずれた状態では給電線の励磁電流による磁界の合成ベクトルは相殺されゼロになり全く電力を発生しなくなる。
位相ずれが0〜180度の中間では、発生電力は合成ベクトルの絶対値に比例し、0から1までの間の値をとる。
したがって、給電線の連結部分においては、単一の受電コイル部では安定した電力が得られないことから、搬送車1台に対して2個の受電コイル部を配置する必要があり、これにより、装置の大型化やコストアップを招くという問題があった。
【0005】
本発明は、上記従来の非接触給電装置が有する問題点に鑑み、給電線の連結部分において受電コイル部の出力が低下した場合でも、単一の受電コイル部で負荷に安定した電力供給を行うことができる非接触給電装置を提供することを目的とする。
【0006】
【課題を解決するための手段】
上記目的を達成するため、本発明の非接触給電装置は、1次側給電線から高周波電流を電磁誘導により非接触で2次側の受電コイル部に伝達する非接触給電装置において、前記受電コイル部側に、受電コイル部の出力が平常時に充電し、かつ受電コイル部の出力が低下したときに負荷に電力を供給する電力補償手段を設けたことを特徴とする。
【0007】
この非接触給電装置は、受電コイル部側に、受電コイル部の出力が平常時に充電し、かつ受電コイル部の出力が低下したときに負荷に電力を供給する電力補償手段を設けることから、給電線の連結部分において受電コイル部の出力が低下した場合でも、電力補償手段が負荷に電力を供給することができ、これにより、単一の受電コイル部でも負荷に安定した電力供給を行い、安価な構造で装置の大型化やコストアップを防止することができる。
【0008】
この場合において、電力補償手段の蓄電部材としてコンデンサを使用し、該コンデンサの充放電により負荷に電力を供給することができる。
【0009】
これにより、コンデンサのエネルギー密度と内部抵抗に適した充放電を行うことができる。
【0010】
【発明の実施の形態】
以下、本発明の非接触給電装置の実施の形態を図面に基づいて説明する。
【0011】
図1〜図2に、本発明の非接触給電装置の一実施例を示す。
この非接触給電装置は、搬送路6に複数の1次側給電線3、4を連結するように配設し、該給電線3、4から高周波電流を電磁誘導により非接触で2次側の受電コイル部2に伝達するようになっている。
そして、この非接触給電装置は、前記受電コイル部側に、図1(a)に示すように、受電コイル部2が給電線3、4上にありその出力が平常であるときに充電し、かつ図1(b)に示すように、受電コイル部2が給電線3、4の連結部分7上にさしかかりその出力が低下したときに負荷31に電力を供給する電力補償手段を備えている。
電力補償手段の蓄電部材としては、コンデンサ18が使用され、該コンデンサ18の充放電により負荷に電力を供給するようになっている。
【0012】
受電コイル部2は、搬送車1の車体に設置され、給電線3、4は、搬送路6に支持材5で床から浮かすように敷設されている。搬送車1は矢印の方向に移動し、受電コイル部2も車体の移動とともに移動する。
給電線3は、図1(a)に示すように、連結部分7で搬送路の下方に引き込まれて図示しない高周波電源装置に接続され、また、連結される給電線4は、連結部分7で搬送路の下から引き上げられて給電線支持材5により固定され、隣接する給電区間を個別に形成する。
【0013】
図1(b)に示すように、搬送車1が移動して受電コイル部2が連結部分7に重なった場合、その近傍での給電能力は、図3に示す如く、受電コイル部2の幅に相当する移動範囲の中で給電能力が低下する。
隣接する給電線3、4の励磁電流が同一の場合においても、位相が異なる場合、位相が完全に反転する180度のずれ状態の場合はゼロになる。この間の給電能力は、2台の高周波電源装置の周波数と位相が同一でない場合、時間的に給電能力が変動し安定しない。
なお、工程内や工程間の搬送装置で、製造装置前でしか作業を行わない搬送車1の場合は、給電線3、4の連結部分7は搬送車1が通過するだけで、この場所に留まることはない。
【0014】
受電回路28は受電コイル部2や共振コンデンサ等からなり、図2に示すように、該受電回路28の高周波出力を整流・平滑回路29で整流し、直流電源に変換する。
負荷31は、搬送車1の制御回路やサーボモータ等の動力回路から構成され、電力補償手段としての瞬断補償回路30が整流回路29と負荷31の中間に配置されている。
【0015】
瞬断補償回路30の構成を図4に示す。
整流・平滑回路29の正極を端子8に、負極を端子9に接続し、負荷31の正極を端子10、負極を端子11に接続する。
開閉スイッチ12は、非接触給電の通電中は常時オンとし、非通電時に回路を整流・平滑回路29、負荷31から切り離す。
抵抗14は、コンデンサ18が放電されている状態で非接触給電装置に通電し、コンデンサ18を充電する際に、図5の経路で突入電流を抑制する。
スイッチ13は突入電流を抑制し、コンデンサ18が充電された後に、抵抗14の両端を短絡し、運転中はスイッチ13は常時オンとする。
【0016】
スイッチ19はノーマリー・クローズ接点スイッチで、抵抗20と直列接続し、これをコンデンサ18と並列接続する。
このスイッチ19はスイッチ12と排他動作し、非接触給電が通電中は常時オフとし、非接触給電が通電を止めたときに抵抗20を介してコンデンサ18の電荷を放電する。
コンデンサ18が充電された状態でスイッチ12の存在しない回路では、コンデンサ18に蓄積された電荷を負荷で消費されるが、負荷状態によって放電時間が著しく変動し、サービスマン等が点検のため回路部分に触れると残留電荷で感電するリスクが高い。このため、図8の経路で強制的に抵抗20で放電することにより感電リスクを低減する。
【0017】
コンデンサ18は、複数のアルミ電解コンデンサを並列接続したものからなり、これにより、大容量を得ている。
コンデンサ18が完全に充電された状態では、ダイオード15の順方向電圧降下があるため、平滑・整流回路29の平滑コンデンサが負荷に応じてコンデンサ18を充放電する。
負荷が大きくなり、受電回路28の出力電圧がダイオード15の順方向電圧降下よりも低くなった場合、図7に示すように、コンデンサ18はダイオード15を介して負荷に対して放電を始める。
【0018】
搬送車が一定速度で連結部分7を通過する場合の動作について説明する。
給電線の連結部分にさしかかると、図9に示すように、端子8部の電圧すなわち給電電圧21は、受電コイル部が連結点7にさしかかった時刻26から下がり始め、連結部分7が受電コイル部の中央にきたときに最小となり、その後、受電コイル部が連結点7を抜ける時刻27で復帰する。
この間の負荷電流22は、搬送車が一定速度で通過するため一定値であるが、給電電圧21が時刻26から下がり始めた後は、充電されたコンデンサ18がダイオード15を介し、図7の経路で負荷に対して放電している。
受電コイル部が連結点7を過ぎると、給電電圧21は復帰し始める。同時に、コンデンサ18の放電電流23は徐々に減少し、受電コイル部が連結部分7を抜けた時刻27でゼロになる。
その後、コンデンサ18は、スイッチ12、スイッチ13、ダイオード16、電流制限抵抗17を介し、図6の経路で充電する。
【0019】
コンデンサ18は、放電する場合には負荷との間に抵抗は存在せず、瞬時に放電することができる。
一方、コンデンサ18の充電時には、抵抗20により制限を受け、抵抗20は充電の時定数を決定する。
コンデンサ18は、電流制限抵抗20を介して充電されるため、コンデンサ充電中のピーク電流をあらかじめ決定することができ、受電回路28から見た給電は過大になることなく運転を継続することができる。
コンデンサの充放電電流は、放電期間24と充電期間25の電荷は等しくなる。電荷は、コンデンサに流れる電流の時間積分と静電容量に比例するため、放電期間24と充電期間25の面積は等しくなる。
電流制限抵抗20の選定により、充電期間25は時間をかけ小さい充電電流とすることも、大電流で短時間することも任意に選択可能となる。
【0020】
以上、本実施例では、給電線の連結部分を通解する際の緩やかな給電電圧の変化について説明したが、本発明の非接触給電装置の構成は、給電線の励磁電流が瞬時停電したような、急激な変化が生じる場合においても動作することができる。
また、給電線の連結部分以外の部分で、搬送車の加速等により短時間で大電流を供給する場合、通常は、非接触給電の設備容量は負荷31の最大電力を供給可能な受電回路28を選定するが、本実施例に示すようにコンデンサで電力を貯蔵しておき、急激な負荷電流の増加に対して受電回路28の電圧が低下したときにコンデンサを放電することによって受電回路28の供給能力不足分を短時間だけ放電し、ピーク電力に対応することもできる。
また、本実施例はスイッチ12、13、19は有接点素子として説明したが、電磁接触器以外の半導体スイッチに適宜置き換えることも可能であり、さらに、抵抗17はインダクタンスと半導体スイッチング素子により定電流回路に置き換えることも可能である。
【0021】
【発明の効果】
本発明の非接触給電装置によれば、受電コイル部側に、受電コイル部の出力が平常時に充電し、かつ受電コイル部の出力が低下したときに負荷に電力を供給する電力補償手段を設けることから、給電線の連結部分において受電コイル部の出力が低下した場合でも、電力補償手段が負荷に電力を供給することができ、これにより、単一の受電コイル部でも負荷に安定した電力供給を行い、安価な構造で装置の大型化やコストアップを防止することができる。
【0022】
この場合、電力補償手段の蓄電部材としてコンデンサを使用し、該コンデンサの充放電により負荷に電力を供給することにより、コンデンサのエネルギー密度と内部抵抗に適した充放電を行うことができる。
【図面の簡単な説明】
【図1】本発明の非接触給電装置の一実施例を示し、(a)は受電コイル部が給電線上にある状態を示す説明図、(b)は受電コイル部が給電線の連結部分にさしかかった状態を示す説明図である。
【図2】同実施例の非接触給電装置の要部を示す回路図である。
【図3】給電線の連結部分での給電電力の低下を示すグラフである
【図4】電力補償手段の瞬断補償回路を示す図である。
【図5】瞬断補償回路のコンデンサの初期充電状態を示す回路図である。
【図6】同コンデンサの充電状態を示す回路図である。
【図7】同コンデンサの負荷への放電状態を示す回路図である。
【図8】同コンデンサの抵抗への放電状態を示す回路図である。
【図9】同実施例の非接触給電装置の給電電圧と負荷電流とコンデンサ電流の関係を示すグラフである。
【符号の説明】
1 搬送車
2 受電コイル部
3 給電線
4 給電線
5 支持材
6 搬送路
7 連結部分
8 端子
9 端子
10 端子
11 端子
12 スイッチ
13 スイッチ
14 抵抗
15 ダイオード
16 ダイオード
17 抵抗
18 コンデンサ
19 スイッチ
20 抵抗
[0001]
TECHNICAL FIELD OF THE INVENTION
The present invention relates to a non-contact power supply device, and particularly to a non-contact power supply device capable of performing stable power supply to a load with a single power receiving coil unit even when the output of the power receiving coil unit is reduced at a connection part of a power supply line. It is about.
[0002]
[Prior art]
2. Description of the Related Art A non-contact power supply device is used, for example, in a tracked transport facility such as an unmanned transport vehicle operating in a semiconductor manufacturing plant, in a case where power is supplied from a ground side in a non-contact manner in order to prevent dust generation.
In this non-contact power supply device, an E-shaped core is provided so as to face a reciprocating power supply line laid on a transport path, a magnetic field generated by the power supply line is guided to the core, and a secondary coil wound around the core is further provided. Through the winding, the induced electromotive force is rectified to supply power to the load.
[0003]
In this case, since the power supply line causes a voltage drop due to the self-inductance and the resistance component, the distance over which the power supply line connected to one power supply device can supply power is limited by the voltage drop.
Therefore, in long-distance transport, the power supply line is divided into a plurality of sections, and the power supply line is excited by independent high-frequency power supplies.
[0004]
[Problems to be solved by the invention]
When the power supply line is driven by an independent power supply, it is difficult to completely match the frequency and the phase of the power supply device in adjacent power supply sections.
That is, in the case of the same phase, the power supply capability equivalent to that of the single power supply is obtained, but when the phase is shifted by 180 degrees, the combined vector of the magnetic field due to the excitation current of the power supply line is canceled and becomes zero, and no power is generated at all. .
When the phase shift is between 0 and 180 degrees, the generated power is proportional to the absolute value of the combined vector and takes a value between 0 and 1.
Therefore, in the connection portion of the feeder line, since stable power cannot be obtained with a single power receiving coil unit, it is necessary to arrange two power receiving coil units for one carrier. There is a problem that the size of the apparatus is increased and the cost is increased.
[0005]
SUMMARY OF THE INVENTION In view of the above-described problems of the conventional contactless power supply device, the present invention performs stable power supply to a load with a single power reception coil unit even when the output of the power reception coil unit is reduced at a connection part of a power supply line. It is an object of the present invention to provide a non-contact power supply device capable of performing the following.
[0006]
[Means for Solving the Problems]
In order to achieve the above object, the non-contact power supply device of the present invention is a non-contact power supply device for transmitting a high-frequency current from a primary-side power supply line to a secondary-side power receiving coil unit by electromagnetic induction in a non-contact manner. A power compensation means is provided on the unit side for charging the output of the power receiving coil unit in normal times and supplying power to the load when the output of the power receiving coil unit decreases.
[0007]
This non-contact power supply device is provided with power compensating means on the side of the power receiving coil unit, which charges the output of the power receiving coil unit in normal times and supplies power to the load when the output of the power receiving coil unit decreases. Even when the output of the power receiving coil section is reduced at the connection portion of the electric wire, the power compensating means can supply power to the load, thereby providing a stable power supply to the load even with a single power receiving coil section, and reducing the cost. With a simple structure, it is possible to prevent an increase in the size and cost of the device.
[0008]
In this case, a capacitor can be used as a power storage member of the power compensation means, and power can be supplied to the load by charging and discharging the capacitor.
[0009]
Thereby, charging and discharging suitable for the energy density and the internal resistance of the capacitor can be performed.
[0010]
BEST MODE FOR CARRYING OUT THE INVENTION
Hereinafter, embodiments of the non-contact power supply device of the present invention will be described with reference to the drawings.
[0011]
1 and 2 show one embodiment of the non-contact power supply device of the present invention.
This non-contact power supply device is disposed so as to connect a plurality of primary-side power supply lines 3 and 4 to a transport path 6, and a high-frequency current is supplied from the power supply lines 3 and 4 to a secondary-side power supply by electromagnetic induction in a non-contact manner. The power is transmitted to the power receiving coil unit 2.
This non-contact power supply device charges the power receiving coil unit when the power receiving coil unit 2 is on the power supply lines 3 and 4 and the output is normal, as shown in FIG. In addition, as shown in FIG. 1B, the power receiving coil unit 2 is provided on the connecting portion 7 of the power supply lines 3 and 4 and has a power compensating means for supplying power to the load 31 when the output of the power receiving coil unit 2 is reduced.
A capacitor 18 is used as a power storage member of the power compensation means, and power is supplied to a load by charging and discharging the capacitor 18.
[0012]
The power receiving coil unit 2 is installed on the vehicle body of the transport vehicle 1, and the power supply lines 3 and 4 are laid on the transport path 6 so as to float off the floor with a support member 5. The carrier 1 moves in the direction of the arrow, and the power receiving coil unit 2 also moves with the movement of the vehicle body.
As shown in FIG. 1A, the feeder line 3 is drawn into the lower part of the conveyance path at a connecting portion 7 and connected to a high-frequency power supply device (not shown). It is lifted up from under the transport path and fixed by the feeder line support member 5, so that adjacent feed sections are individually formed.
[0013]
As shown in FIG. 1B, when the carrier 1 moves and the power receiving coil unit 2 overlaps the connecting part 7, the power supply capacity in the vicinity thereof is, as shown in FIG. The power supply capacity is reduced in the moving range corresponding to.
Even when the exciting currents of the adjacent power supply lines 3 and 4 are the same, the phase becomes zero when the phases are different, and when the phases are completely reversed, and the phases are 180 degrees. If the frequency and the phase of the two high-frequency power supply devices are not the same during this period, the power supply capability fluctuates with time and becomes unstable.
In addition, in the case of the transporting vehicle 1 which performs the work only in front of the manufacturing device in the transporting device within the process or between the processes, the connecting portion 7 of the power supply lines 3 and 4 only passes through the transporting vehicle 1 and is located at this place. Will not stay.
[0014]
The power receiving circuit 28 includes the power receiving coil unit 2, a resonance capacitor, and the like. As shown in FIG. 2, the high frequency output of the power receiving circuit 28 is rectified by a rectification / smoothing circuit 29 and converted into a DC power supply.
The load 31 is composed of a control circuit of the transport vehicle 1 and a power circuit such as a servomotor. An instantaneous interruption compensation circuit 30 as power compensation means is arranged between the rectifier circuit 29 and the load 31.
[0015]
FIG. 4 shows the configuration of the instantaneous interruption compensation circuit 30.
The positive electrode of the rectifying / smoothing circuit 29 is connected to the terminal 8, the negative electrode is connected to the terminal 9, the positive electrode of the load 31 is connected to the terminal 10, and the negative electrode is connected to the terminal 11.
The on / off switch 12 is always turned on while the non-contact power supply is energized, and disconnects the circuit from the rectifying / smoothing circuit 29 and the load 31 when the non-contact power supply is not energized.
The resistor 14 supplies current to the non-contact power supply device while the capacitor 18 is being discharged, and suppresses an inrush current through the path shown in FIG. 5 when the capacitor 18 is charged.
The switch 13 suppresses the inrush current, short-circuits both ends of the resistor 14 after the capacitor 18 is charged, and keeps the switch 13 on during operation.
[0016]
The switch 19 is a normally closed contact switch, which is connected in series with the resistor 20 and connected in parallel with the capacitor 18.
The switch 19 performs an exclusive operation with the switch 12, always turns off while the non-contact power supply is energized, and discharges the electric charge of the capacitor 18 via the resistor 20 when the non-contact power supply is stopped.
In a circuit in which the switch 12 does not exist when the capacitor 18 is charged, the charge stored in the capacitor 18 is consumed by the load. If you touch, there is a high risk of electric shock due to residual charges. For this reason, the risk of electric shock is reduced by forcibly discharging the resistor 20 through the path shown in FIG.
[0017]
The capacitor 18 is formed by connecting a plurality of aluminum electrolytic capacitors in parallel, thereby obtaining a large capacity.
When the capacitor 18 is fully charged, the forward voltage drop of the diode 15 causes the smoothing capacitor of the smoothing / rectifying circuit 29 to charge and discharge the capacitor 18 according to the load.
When the load increases and the output voltage of the power receiving circuit 28 becomes lower than the forward voltage drop of the diode 15, the capacitor 18 starts discharging to the load via the diode 15, as shown in FIG.
[0018]
The operation when the carrier passes through the connecting portion 7 at a constant speed will be described.
When reaching the connection part of the power supply line, as shown in FIG. 9, the voltage of the terminal 8, that is, the supply voltage 21, starts to decrease from the time 26 when the power reception coil part approaches the connection point 7, and the connection part 7 becomes the power reception coil part. , And then returns at time 27 when the power receiving coil section passes through the connection point 7.
The load current 22 during this time is constant because the vehicle passes at a constant speed. However, after the supply voltage 21 starts to decrease from the time 26, the charged capacitor 18 passes through the diode 15 and passes through the path shown in FIG. Is discharged to the load.
When the power receiving coil section passes the connection point 7, the power supply voltage 21 starts to recover. At the same time, the discharge current 23 of the capacitor 18 gradually decreases, and becomes zero at time 27 when the power receiving coil part has passed through the connection part 7.
After that, the capacitor 18 is charged via the switch 12, the switch 13, the diode 16, and the current limiting resistor 17 along the path shown in FIG.
[0019]
When discharging the capacitor 18, there is no resistance between the capacitor 18 and the load, and the capacitor 18 can be discharged instantaneously.
On the other hand, when the capacitor 18 is charged, it is limited by the resistor 20, and the resistor 20 determines a time constant of the charging.
Since the capacitor 18 is charged through the current limiting resistor 20, the peak current during the charging of the capacitor can be determined in advance, and the operation can be continued without excessive power supply as viewed from the power receiving circuit 28. .
Regarding the charge / discharge current of the capacitor, the charge in the discharge period 24 and the charge in the charge period 25 are equal. Since the charge is proportional to the time integral of the current flowing through the capacitor and the capacitance, the areas of the discharge period 24 and the charge period 25 are equal.
By selecting the current limiting resistor 20, the charging period 25 can be arbitrarily selected to take a short time with a small charging current or a large current and a short time.
[0020]
As described above, in the present embodiment, the gradual change in the supply voltage when the connection portion of the power supply line is dissipated has been described. It can operate even when a sudden change occurs.
When a large current is supplied in a short time due to acceleration of a transport vehicle or the like at a portion other than the connection portion of the power supply line, the equipment capacity of the non-contact power supply usually has a power receiving circuit 28 capable of supplying the maximum power of the load 31. However, as shown in this embodiment, the power is stored in a capacitor, and when the voltage of the power receiving circuit 28 decreases in response to a sudden increase in the load current, the capacitor is discharged. It is also possible to discharge the shortage of the supply capacity only for a short time and to cope with the peak power.
In this embodiment, the switches 12, 13, and 19 are described as contact elements. However, the switches can be replaced with semiconductor switches other than electromagnetic contactors. It is also possible to replace with a circuit.
[0021]
【The invention's effect】
According to the non-contact power supply device of the present invention, the power receiving coil unit is provided with a power compensating unit that charges the output of the power receiving coil unit during normal times and supplies power to the load when the output of the power receiving coil unit decreases. Therefore, even when the output of the power receiving coil unit is reduced at the connection part of the power supply line, the power compensating means can supply power to the load. Thus, it is possible to prevent an increase in the size and cost of the device with an inexpensive structure.
[0022]
In this case, by using a capacitor as a power storage member of the power compensation means and supplying power to the load by charging and discharging the capacitor, charging and discharging suitable for the energy density and internal resistance of the capacitor can be performed.
[Brief description of the drawings]
FIGS. 1A and 1B show an embodiment of a non-contact power supply device according to the present invention, wherein FIG. 1A is an explanatory view showing a state in which a power receiving coil portion is on a power supply line, and FIG. It is explanatory drawing which shows the state which has begun.
FIG. 2 is a circuit diagram showing a main part of the wireless power supply device of the embodiment.
FIG. 3 is a graph showing a decrease in power supply at a connection portion of a power supply line. FIG. 4 is a diagram showing an instantaneous interruption compensation circuit of a power compensator.
FIG. 5 is a circuit diagram showing an initial charging state of a capacitor of the instantaneous interruption compensation circuit.
FIG. 6 is a circuit diagram showing a charged state of the capacitor.
FIG. 7 is a circuit diagram showing a discharge state of the capacitor to a load.
FIG. 8 is a circuit diagram showing a discharge state of the capacitor to a resistor.
FIG. 9 is a graph showing a relationship between a supply voltage, a load current, and a capacitor current of the contactless power supply device of the embodiment.
[Explanation of symbols]
DESCRIPTION OF SYMBOLS 1 Car carrier 2 Receiving coil part 3 Feeding line 4 Feeding line 5 Supporting material 6 Conveying path 7 Connecting part 8 Terminal 9 Terminal 10 Terminal 11 Terminal 12 Switch 13 Switch 14 Resistance 15 Diode 16 Diode 17 Resistance 18 Capacitor 19 Switch 20 Resistance

Claims (2)

1次側給電線から高周波電流を電磁誘導により非接触で2次側の受電コイル部に伝達する非接触給電装置において、前記受電コイル部側に、受電コイル部の出力が平常時に充電し、かつ受電コイル部の出力が低下したときに負荷に電力を供給する電力補償手段を設けたことを特徴とする非接触給電装置。In a non-contact power supply device for transmitting a high-frequency current from a primary power supply line to a secondary power receiving coil unit in a non-contact manner by electromagnetic induction, an output of the power receiving coil unit is normally charged to the power receiving coil unit side, and A non-contact power supply device comprising: a power compensating unit that supplies power to a load when an output of a power receiving coil unit decreases. 電力補償手段の蓄電部材としてコンデンサを使用し、該コンデンサの充放電により負荷に電力を供給するようにしたことを特徴とする請求項1記載の非接触給電装置。The wireless power supply device according to claim 1, wherein a capacitor is used as a power storage member of the power compensation means, and power is supplied to a load by charging and discharging the capacitor.
JP2003043982A 2003-02-21 2003-02-21 Contactless power supply apparatus Pending JP2004254461A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2003043982A JP2004254461A (en) 2003-02-21 2003-02-21 Contactless power supply apparatus

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2003043982A JP2004254461A (en) 2003-02-21 2003-02-21 Contactless power supply apparatus

Publications (1)

Publication Number Publication Date
JP2004254461A true JP2004254461A (en) 2004-09-09

Family

ID=33026822

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2003043982A Pending JP2004254461A (en) 2003-02-21 2003-02-21 Contactless power supply apparatus

Country Status (1)

Country Link
JP (1) JP2004254461A (en)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010148210A (en) * 2008-12-17 2010-07-01 Nippon Soken Inc Contactless power supply circuit and induction type power supply circuit
JP2012055103A (en) * 2010-09-02 2012-03-15 Murata Machinery Ltd Running vehicle system
JP2013247794A (en) * 2012-05-28 2013-12-09 Ihi Corp Vibration-proof structure
CN105388949A (en) * 2014-08-27 2016-03-09 瑞萨电子株式会社 Semiconductor device
US10778040B2 (en) 2016-08-29 2020-09-15 Ihi Corporation Power transmitter

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010148210A (en) * 2008-12-17 2010-07-01 Nippon Soken Inc Contactless power supply circuit and induction type power supply circuit
JP2012055103A (en) * 2010-09-02 2012-03-15 Murata Machinery Ltd Running vehicle system
JP2013247794A (en) * 2012-05-28 2013-12-09 Ihi Corp Vibration-proof structure
CN105388949A (en) * 2014-08-27 2016-03-09 瑞萨电子株式会社 Semiconductor device
JP2016048973A (en) * 2014-08-27 2016-04-07 ルネサスエレクトロニクス株式会社 Semiconductor device
US10033372B2 (en) 2014-08-27 2018-07-24 Renesas Electronics Corporation Semiconductor device
US10305468B2 (en) 2014-08-27 2019-05-28 Renesas Electronics Corporation Semiconductor device
US10778040B2 (en) 2016-08-29 2020-09-15 Ihi Corporation Power transmitter

Similar Documents

Publication Publication Date Title
EP1368815B1 (en) Inductive coupling system with capacitive parallel compensation of the mutual self-inductance between the primary and the secondary windings
US10833538B2 (en) Electronic unit and power feeding system
JP3900822B2 (en) A power supply circuit for a mobile unit that is powered without contact
KR101676698B1 (en) Contactless power-feed equipment
US20130038282A1 (en) Power reception apparatus and power receiving method
CN101938151A (en) Chargeable electric device
JP6124136B2 (en) Non-contact power receiving device
CN103460555A (en) Power transmission system
US20220410725A1 (en) Method of operating an electric vehicle and electric vehicle
JP2019071719A (en) Wireless power supply system for mobile
JP2010187471A (en) Non-contact power receiving apparatus and automated guided vehicle
JP2005094862A (en) Contactless power feeding method and apparatus
JP2004254461A (en) Contactless power supply apparatus
WO2020203689A1 (en) Electricity transmitting device, and wireless electric power transmission system
JP5246654B2 (en) Non-contact point power supply equipment
JP2003204637A (en) Noncontact feeding device
CN114901508A (en) Method for operating an electric vehicle and electric vehicle
CN113508510A (en) Wireless power transmission system, power transmission device, power reception device, and moving object
JP5250867B2 (en) Induction power receiving circuit
JP2017175703A (en) Wireless power reception device and wireless power transmission system
CN116323298A (en) Device and system for contactless energy transfer
JP2017147822A (en) Wireless power transmission system
TWI553993B (en) Non-contact power supply equipment secondary side of the receiving circuit
JP5413849B2 (en) Induction power receiving circuit
WO2020196785A1 (en) Power receiving device, moving body, wireless power transmission system, and moving body system

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20051011

A711 Notification of change in applicant

Free format text: JAPANESE INTERMEDIATE CODE: A712

Effective date: 20060605

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20061018

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20061024

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20061225

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20070130