JP2004254401A - Boosting chopper device - Google Patents

Boosting chopper device Download PDF

Info

Publication number
JP2004254401A
JP2004254401A JP2003041161A JP2003041161A JP2004254401A JP 2004254401 A JP2004254401 A JP 2004254401A JP 2003041161 A JP2003041161 A JP 2003041161A JP 2003041161 A JP2003041161 A JP 2003041161A JP 2004254401 A JP2004254401 A JP 2004254401A
Authority
JP
Japan
Prior art keywords
snubber
voltage
switch element
capacitor
chopper device
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
JP2003041161A
Other languages
Japanese (ja)
Inventor
Sunao Ueno
直 上野
Junji Ozawa
順二 小澤
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toshiba Corp
Toshiba Plant Systems and Services Corp
Original Assignee
Toshiba Corp
Toshiba Plant Systems and Services Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toshiba Corp, Toshiba Plant Systems and Services Corp filed Critical Toshiba Corp
Priority to JP2003041161A priority Critical patent/JP2004254401A/en
Publication of JP2004254401A publication Critical patent/JP2004254401A/en
Withdrawn legal-status Critical Current

Links

Images

Landscapes

  • Dc-Dc Converters (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a boosting chopper device which has a high switching frequency and little loss in a snubber discharging resistor while a switching element is turned on. <P>SOLUTION: This boosting chopper device includes a snubber circuit which is connected with a DC power supply 1, stores energy in a DC reactor 3 by turning on the switching element 4, supplies a voltage higher than the voltage of the power supply 1 to a load 2 by charging the stored energy into an output side capacitor 7 through a diode 6 during an off-period of the switching element 4, and prevents the switching element 4 from being destructed due to an excess voltage by absorbing a surge voltage by a snubber capacitor 9 generated at turning off the switching element 4. The boosting chopper device is also provided with a snubber discharging reactor 12 connected in series with the snubber discharging resistor 11 for discharging the voltage of the snubber capacitor 9 charged up to the surge voltage during the off-period of the switching element 4 to the output side capacitor voltage. <P>COPYRIGHT: (C)2004,JPO&NCIPI

Description

【0001】
【発明の属する技術分野】
本発明は直流電圧を交流に変換することなく直接昇圧する昇圧チョッパ装置に係り、スイッチ素子のオフ時にサージエネルギを吸収するスナバコンデンサと、オフ期間中に前記サージエネルギを出力電圧まで放電するスナバ放電抵抗器からなるスナバ回路を備えた昇圧チョッパ装置に関する。
【0002】
【従来の技術】
直流電圧を交流に変換することなく直接昇圧する昇圧チョッパ装置は、図5に示すように、直流電源1と負荷2のあいだに接続された直流リアクトル3、スイッチ素子4、可飽和リアクトル5、ダイオード6および出力平滑コンデンサ7を備えている。
【0003】
このような構成によって、スイッチ素子4をオンとすることにより電流は直流電源1から直流リアクトル3、スイッチ素子4に流れて直流リアクトル3にエネルギが蓄積される。オン時間後にスイッチ素子4をオフとすると直流リアクトル3に蓄積されたエネルギはダイオード6を介して出力平滑コンデンサ7に充電され負荷2に供給される。
【0004】
入力電圧Vと出力電圧Vの関係はスイッチ素子4のオン時間TONとToffによって決定され、V=((TON+Toff)/Toff)Vである。可飽和リアクトル5はスイッチ素子4の電流の立ち上がりを抑制しオフからオン時にダイオード6がオフする間のリバースリカバリ電流の変化率を低減するために挿入されている。
【0005】
スイッチ素子4のオフ時には線路インダクタンス8を流れていた電流も遮断されるが、この時この電流の変化率と線路インダクタンス8によりスイッチ素子4のP側端子にはサージ電圧が発生する。このサージ電圧はスナバダイオード10を介して出力平滑コンデンサ7と同電位に常時充電されているスナバコンデンサ9に吸収され、スイッチ素子4のPN間の過電圧による破壊を防止する。スナバコンデンサ9に吸収されたサージエネルギは、次のスイッチ素子4のオフ時点までに出力平滑コンデンサ7と同電位までスナバ放電抵抗器11を介してスナバコンデンサ9との時定数で放電される。
【0006】
【発明が解決しようとする課題】
上記従来の技術では、低騒音や低入力電流リップルを目的としてスイッチ素子4のスイッチング周波数を上げるためには、スイッチ素子4のオフ時にスナバコンデンサ9に充電されたサージエネルギをスイッチング周期後、次のオフ時までに出力平滑コンデンサ7の電位に放電しなければならないが、スナバコンデンサ9とスナバ放電抵抗器11の時定数を小さくするためには、スナバコンデンサ9の静電容量を小さくするか、スナバ放電抵抗器11の抵抗値を小さくしなければならない。
【0007】
スナバコンデンサ9の静電容量Csは、線路インダクタンス8のインダクタンスLmと、スイッチ素子4のオフ時の遮断電流Imax、スイッチ素子4のPN間の許容最大電圧Vcepにより下記の[式1]で示される関係により制限されるので、スナバ放電抵抗器11の抵抗値を小さくする必要が生じる。
Cs=Lm×Imax/Vcep …………[式1]
【0008】
図6のスイッチ素子4のPN間電圧波形34に示す、スイッチ素子4がオンとなりダイオード6がオフとなるTON期間のあいだ、出力平滑コンデンサ7、ダイオード6、スイッチ素子4、可飽和リアクトル5、出力平滑コンデンサ7の電流経路21の合成インピーダンスをZ1とし、スナバコンデンサ9、スナバ放電抵抗器11、ダイオード6、スイッチ素子4、スナバコンデンサ9の電流経路22の合成インピーダンスをZ2として、電流経路21の電流ピーク値をIP21、電流経路22の電流ピーク値をIP22、出力平滑コンデンサ電圧(=スナバコンデンサ充電電圧)をE、TON期間のスイッチ素子4電流ピーク値をIとすれば、IP22は次の[式2]の通りとなる。
【0009】
【数1】

Figure 2004254401
【0010】
[式2]から明らかなように、可飽和リアクトル5によりZ1が大きく、前述の時定数低減のためスナバ放電抵抗器11によりZ2が小さくなると、Z1と(Z1+Z2)の比が大きくなりIP22の電流分担が多くなることによって、図6のスナバ放電抵抗器11の電流波形32のように、スイッチ素子4オフ後のサージエネルギの放電時の損失のみならず、TON期間の電流経路22によるスナバ放電抵抗器11の損失が無視できなくなる、そのため、スナバ放電抵抗器11の抵抗容量増大のため装置の大型化を招くという問題がある。
そこで本発明は、スイッチング周波数が高く、スイッチ素子オン時のスナバ放電抵抗器における損失の小さい昇圧チョッパ装置を提供することを目的とする。
【0011】
【課題を解決するための手段】
上記目的を達成するために請求項1の発明は、直流電源に接続され、スイッチ素子をオンすることにより直流リアクトルにエネルギを蓄積させ、前記スイッチ素子のオフ期間にダイオードを介して前記蓄積エネルギを出力側コンデンサに充電することにより負荷に前記電源の電圧より高い電圧を供給し、前記スイッチ素子のオフ時に発生するサージ電圧をスナバコンデンサにより吸収して前記スイッチ素子の過電圧による破壊を防止するスナバ回路を備えた昇圧チョッパ装置において、前記スイッチ素子のオフ期間にサージ電圧まで充電された前記スナバコンデンサの電圧を出力側コンデンサ電圧まで放電するスナバ放電抵抗器と直列に接続されたスナバ放電リアクトルを備えた構成とする。
【0012】
この発明によれば、スイッチ素子オン時、ダイオードがオフするまでの期間、スナバコンデンサからスイッチ素子に流れる電流の立ち上がりによりスナバ放電抵抗器に直列に接続されたリアクトルにより逆電圧を発生させてスナバコンデンサの放電を防止し、スナバ放電抵抗器の損失を抑えることができる。
【0013】
請求項2の発明は、請求項1の発明において、スナバ放電リアクトルはスナバ放電抵抗器と出力平滑コンデンサとの接続線を長くすることによって形成されている構成とする。
【0014】
この発明によれば、スイッチ素子オン時、ダイオードがオフするまでの期間、スナバコンデンサからスイッチ素子に流れる電流の立ち上がりによりスナバ放電抵抗器と出力平滑コンデンサとの線路の有するインダクタンスにより電圧を発生させてスナバコンデンサの放電を防止し、スナバ放電抵抗器の損失を抑えることができる。
【0015】
請求項3の発明は、直流電源に接続され、スイッチ素子をオンすることにより直流リアクトルにエネルギを蓄積させ、前記スイッチ素子のオフ期間にダイオードを介して前記蓄積エネルギを出力側コンデンサに充電することにより負荷に前記電源の電圧より高い電圧を供給し、前記スイッチ素子のオフ時に発生するサージ電圧をスナバコンデンサにより吸収して前記スイッチ素子の過電圧による破壊を防止するスナバ回路を備えた昇圧チョッパ装置において、前記スイッチ素子のオフ期間にサージ電圧まで充電された前記スナバコンデンサの電圧を出力側コンデンサ電圧まで放電するスナバ放電抵抗器と直列に接続されたスイッチと、スナバコンデンサ電圧と出力側コンデンサ電圧を比較して前記スイッチを開閉制御する比較器とを備えた構成とする。
【0016】
この発明によれば、スイッチ素子オフ時点でスナバコンデンサに蓄積されたサージエネルギを出力側コンデンサ電圧まで放電後にスイッチによりスナバ放電抵抗器を切り離しスイッチ素子オン時には電流が流れないようにして、スナバ放電抵抗器の損失を抑えることができる。
【0017】
【発明の実施の形態】
本発明の第1の形態の昇圧チョッパ装置を図1を参照して説明する。本実施の形態の昇圧チョッパ装置は、スナバ放電リアクトル12をスナバ放電抵抗器11と直列に接続した構成である。それ以外はすでに説明した図5の回路と同じである。
【0018】
スナバ放電リアクトル12のインダクタンス値は、スイッチ素子4がオンとなり、ダイオード6がオフとなるTON期間にスナバコンデンサ9、スナバ放電抵抗器11、スイッチ素子4からスナバコンデンサ9に至る電流経路22の電流により発生するスナバ放電リアクトルの逆電圧(図2のスイッチ素子4のPN間電圧波形33に示す。)によりスナバ放電抵抗器11のピーク電流を抑えるように選定する。
【0019】
スイッチ素子4のTON時のスナバコンデンサ9、スナバ放電抵抗器11、スナバ放電リアクトル12による電流経路22の電流値は下記のRLC放電の[式3]により表すことができる。
【0020】
【数2】
Figure 2004254401
【0021】
[式3]によって、TON時間内に電流経路22の所望の電流値を得ることができ、スイッチ周期内でサージエネルギを放電することのできるスナバ放電リアクトル12を直列に接続することによりスナバ放電抵抗器11の損失を低減することができる。
【0022】
図3は本発明の第2の形態の昇圧チョッパ装置の回路図である。本実施の形態の特徴はスナバ放電抵抗器11と直列に接続されたスイッチ13にある。スイッチ13は、スナバコンデンサ9の電圧が出力平滑コンデンサ7の電圧より大きい場合に比較器14により接続状態となる。スイッチ素子4のオフ時に線路インダクタンス8に発生するサージエネルギによりスナバコンデンサ9の電圧が出力平滑コンデンサ7の電圧よりも高くなると、比較器14によりスイッチ13が接続状態とされ、スナバ放電抵抗器11を経て出力平滑コンデンサ7の電圧まで放電される。
【0023】
放電によりスナバコンデンサ9の電圧と出力平滑コンデンサ7の電圧が等しくなると、スイッチ13によりスナバ放電抵抗器11が切り離され、スイッチ素子4のオン時のTON期間のスナバコンデンサ9からの放電を防止し、スナバ放電抵抗器11による損失を抑える。
【0024】
図4は本発明の第3の形態の昇圧チョッパ装置の回路図である。本実施の形態は、スナバ放電抵抗器11から出力平滑コンデンサ7までの配線長を長くした構成である。こうして得られる放電回路線路インダクタンス15により、第1の実施の形態と同様の作用効果を得ることができる。
【0025】
【発明の効果】
本発明によれば、スイッチング周波数が高く、スイッチ素子オン時のスナバ放電抵抗器における損失の小さい昇圧チョッパ装置を提供することができる。
【図面の簡単な説明】
【図1】本発明の第1の実施の形態の昇圧チョッパ装置の回路図。
【図2】上記第1の実施の形態の昇圧チョッパ装置の動作を説明する特性線図。
【図3】本発明の第2の形態の昇圧チョッパ装置の回路図。
【図4】本発明の第3の形態の昇圧チョッパ装置の回路図。
【図5】従来の昇圧チョッパ装置の回路図。
【図6】従来の昇圧チョッパ装置の動作を説明する特性線図。
【符号の説明】
1…直流電源、2…負荷、3…直流リアクトル、4…スイッチ素子、5…可飽和リアクトル、6…ダイオード、7…出力平滑コンデンサ、8…線路インダクタンス、9…スナバコンデンサ、10…スナバダイオード、11…スナバ放電抵抗器、12…スナバ放電リアクトル、13…スイッチ、14…比較器、15…放電回路線路インダクタンス、21,22…電流経路、32…スナバ放電抵抗器電流、33,34…スイッチ素子PN間電圧。[0001]
TECHNICAL FIELD OF THE INVENTION
The present invention relates to a step-up chopper device that directly boosts a DC voltage without converting it into an AC voltage, a snubber capacitor that absorbs surge energy when a switch element is off, and a snubber discharge that discharges the surge energy to an output voltage during an off period. The present invention relates to a step-up chopper device including a snubber circuit including a resistor.
[0002]
[Prior art]
As shown in FIG. 5, a step-up chopper device for directly boosting a DC voltage without converting it into an AC voltage includes a DC reactor 3, a switch element 4, a saturable reactor 5, a diode connected between a DC power supply 1 and a load 2. 6 and an output smoothing capacitor 7.
[0003]
With such a configuration, when the switch element 4 is turned on, a current flows from the DC power supply 1 to the DC reactor 3 and the switch element 4, and energy is accumulated in the DC reactor 3. When the switch element 4 is turned off after the ON time, the energy stored in the DC reactor 3 is charged to the output smoothing capacitor 7 via the diode 6 and supplied to the load 2.
[0004]
The relationship between the input voltage V i and the output voltage V o is determined by the on-time T ON and T off of the switch element 4, and V o = ((T ON + T off ) / T off ) V i . The saturable reactor 5 is inserted to suppress the rise of the current of the switch element 4 and to reduce the rate of change of the reverse recovery current during turning off the diode 6 from off to on.
[0005]
When the switch element 4 is turned off, the current flowing through the line inductance 8 is also cut off. At this time, a surge voltage is generated at the P-side terminal of the switch element 4 by the change rate of the current and the line inductance 8. This surge voltage is absorbed by the snubber capacitor 9 which is always charged to the same potential as the output smoothing capacitor 7 via the snubber diode 10, and prevents the switching element 4 from being destroyed by an overvoltage between PN. The surge energy absorbed by the snubber capacitor 9 is discharged by the time constant of the snubber capacitor 9 via the snubber discharge resistor 11 to the same potential as the output smoothing capacitor 7 until the next switch element 4 is turned off.
[0006]
[Problems to be solved by the invention]
In the above-described conventional technique, in order to increase the switching frequency of the switching element 4 for the purpose of low noise and low input current ripple, the surge energy charged in the snubber capacitor 9 when the switching element 4 is turned off is switched after the switching cycle, and Although it is necessary to discharge to the potential of the output smoothing capacitor 7 before turning off, the time constant of the snubber capacitor 9 and the snubber discharge resistor 11 can be reduced by reducing the capacitance of the snubber capacitor 9 The resistance of the discharge resistor 11 must be reduced.
[0007]
The capacitance Cs of the snubber capacitor 9 is expressed by the following [Equation 1] based on the inductance Lm of the line inductance 8, the cutoff current Imax when the switch element 4 is off, and the maximum allowable voltage Vcep between the PNs of the switch element 4. Since it is limited by the relationship, it is necessary to reduce the resistance value of the snubber discharge resistor 11.
Cs = Lm × Imax 2 / Vcep 2 [Formula 1]
[0008]
During a TON period in which the switch element 4 is turned on and the diode 6 is turned off, as shown in the PN voltage waveform 34 of the switch element 4 in FIG. 6, the output smoothing capacitor 7, the diode 6, the switch element 4, the saturable reactor 5, the output The combined impedance of the current path 21 of the smoothing capacitor 7 is Z1, and the combined impedance of the current path 22 of the snubber capacitor 9, the snubber discharge resistor 11, the diode 6, the switch element 4, and the snubber capacitor 9 is Z2. If the peak value is I P21 , the current peak value of the current path 22 is I P22 , the output smoothing capacitor voltage (= snubber capacitor charging voltage) is E, and the switching element 4 current peak value during the TON period is I P , I P22 becomes The following [Equation 2] is obtained.
[0009]
(Equation 1)
Figure 2004254401
[0010]
As is apparent from [Equation 2], when Z1 is large due to the saturable reactor 5 and Z2 is small due to the snubber discharge resistor 11 to reduce the time constant described above, the ratio of Z1 to (Z1 + Z2) increases, and IP22 Due to the increased current sharing, not only the loss at the time of discharging the surge energy after the switch element 4 is turned off but also the snubber discharge by the current path 22 during the TON period as shown by the current waveform 32 of the snubber discharge resistor 11 in FIG. There is a problem that the loss of the resistor 11 cannot be ignored, and therefore the size of the device is increased due to an increase in the resistance capacity of the snubber discharge resistor 11.
Therefore, an object of the present invention is to provide a boost chopper device having a high switching frequency and a small loss in the snubber discharge resistor when the switching element is turned on.
[0011]
[Means for Solving the Problems]
In order to achieve the above object, the invention according to claim 1 is connected to a DC power supply, stores energy in a DC reactor by turning on a switching element, and stores the stored energy via a diode during an OFF period of the switching element. A snubber circuit that supplies a voltage higher than the voltage of the power supply to a load by charging an output-side capacitor, absorbs a surge voltage generated when the switch element is turned off by a snubber capacitor, and prevents destruction of the switch element due to overvoltage. A booster chopper device comprising a snubber discharge reactor connected in series with a snubber discharge resistor that discharges a voltage of the snubber capacitor charged to a surge voltage to an output-side capacitor voltage during an off period of the switch element. Configuration.
[0012]
According to the present invention, when the switch element is on, during the period until the diode turns off, a reverse voltage is generated by the reactor connected in series to the snubber discharge resistor due to the rise of the current flowing from the snubber capacitor to the switch element. , And the loss of the snubber discharge resistor can be suppressed.
[0013]
According to a second aspect of the present invention, in the first aspect, the snubber discharge reactor is formed by extending a connection line between the snubber discharge resistor and the output smoothing capacitor.
[0014]
According to the present invention, when the switch element is on, during the period until the diode is turned off, a voltage is generated by the inductance of the line between the snubber discharge resistor and the output smoothing capacitor due to the rise of the current flowing from the snubber capacitor to the switch element. Discharge of the snubber capacitor can be prevented, and loss of the snubber discharge resistor can be suppressed.
[0015]
According to a third aspect of the present invention, an energy is stored in a DC reactor by turning on a switch element, and the stored energy is charged to an output side capacitor via a diode during an OFF period of the switch element. A booster chopper device provided with a snubber circuit that supplies a voltage higher than the voltage of the power supply to the load, absorbs a surge voltage generated when the switch element is turned off by a snubber capacitor, and prevents destruction of the switch element due to overvoltage. A switch connected in series with a snubber discharge resistor that discharges the voltage of the snubber capacitor charged to the surge voltage to the output capacitor voltage during the off period of the switch element, and compares the snubber capacitor voltage with the output capacitor voltage. And a comparator for controlling the opening and closing of the switch. To.
[0016]
According to the present invention, the snubber discharge resistor is disconnected by the switch after the surge energy accumulated in the snubber capacitor is discharged to the output capacitor voltage when the switch element is turned off, so that no current flows when the switch element is turned on. Vessel loss can be suppressed.
[0017]
BEST MODE FOR CARRYING OUT THE INVENTION
A boost chopper device according to a first embodiment of the present invention will be described with reference to FIG. The boost chopper device according to the present embodiment has a configuration in which snubber discharge reactor 12 is connected in series with snubber discharge resistor 11. Otherwise, the circuit is the same as the circuit of FIG. 5 already described.
[0018]
The inductance value of the snubber discharge reactor 12 depends on the current in the snubber capacitor 9, the snubber discharge resistor 11, and the current in the current path 22 from the switch element 4 to the snubber capacitor 9 during the TON period when the switch element 4 is turned on and the diode 6 is turned off. The snubber discharge resistor 11 is selected so as to suppress the peak current of the snubber discharge resistor 11 by the generated reverse voltage of the snubber discharge reactor (shown in the PN voltage waveform 33 of the switch element 4 in FIG. 2).
[0019]
The current value of the current path 22 by the snubber capacitor 9, the snubber discharge resistor 11, and the snubber discharge reactor 12 at the time of TON of the switch element 4 can be expressed by the following RLC discharge [Equation 3].
[0020]
(Equation 2)
Figure 2004254401
[0021]
According to [Equation 3], a desired current value of the current path 22 can be obtained within the TON time, and a snubber discharge resistor 12 capable of discharging surge energy within a switch cycle is connected in series to form a snubber discharge resistor. The loss of the vessel 11 can be reduced.
[0022]
FIG. 3 is a circuit diagram of a boost chopper device according to a second embodiment of the present invention. The feature of the present embodiment resides in a switch 13 connected in series with the snubber discharge resistor 11. The switch 13 is connected by the comparator 14 when the voltage of the snubber capacitor 9 is higher than the voltage of the output smoothing capacitor 7. When the voltage of the snubber capacitor 9 becomes higher than the voltage of the output smoothing capacitor 7 due to surge energy generated in the line inductance 8 when the switch element 4 is turned off, the switch 13 is turned on by the comparator 14 and the snubber discharge resistor 11 is turned on. After that, the voltage is discharged to the voltage of the output smoothing capacitor 7.
[0023]
When the voltage of the snubber capacitor 9 becomes equal to the voltage of the output smoothing capacitor 7 by the discharge, the snubber discharge resistor 11 is disconnected by the switch 13 to prevent the discharge from the snubber capacitor 9 during the TON period when the switch element 4 is turned on. The loss due to the snubber discharge resistor 11 is suppressed.
[0024]
FIG. 4 is a circuit diagram of a boost chopper device according to a third embodiment of the present invention. This embodiment has a configuration in which the wiring length from the snubber discharge resistor 11 to the output smoothing capacitor 7 is increased. With the discharge circuit line inductance 15 obtained in this way, the same operation and effect as in the first embodiment can be obtained.
[0025]
【The invention's effect】
According to the present invention, it is possible to provide a boost chopper device having a high switching frequency and a small loss in the snubber discharge resistor when the switching element is turned on.
[Brief description of the drawings]
FIG. 1 is a circuit diagram of a boost chopper device according to a first embodiment of the present invention.
FIG. 2 is a characteristic diagram illustrating the operation of the boost chopper device according to the first embodiment.
FIG. 3 is a circuit diagram of a boost chopper device according to a second embodiment of the present invention.
FIG. 4 is a circuit diagram of a boost chopper device according to a third embodiment of the present invention.
FIG. 5 is a circuit diagram of a conventional boost chopper device.
FIG. 6 is a characteristic diagram illustrating the operation of a conventional boost chopper device.
[Explanation of symbols]
DESCRIPTION OF SYMBOLS 1 ... DC power supply, 2 ... load, 3 ... DC reactor, 4 ... switch element, 5 ... saturable reactor, 6 ... diode, 7 ... output smoothing capacitor, 8 ... line inductance, 9 ... snubber capacitor, 10 ... snubber diode, 11 snubber discharge resistor, 12 snubber discharge reactor, 13 switch, 14 comparator, 15 discharge circuit line inductance, 21, 22 current path, 32 snubber discharge resistor current, 33, 34 switch element PN voltage.

Claims (3)

直流電源に接続され、スイッチ素子をオンすることにより直流リアクトルにエネルギを蓄積させ、前記スイッチ素子のオフ期間にダイオードを介して前記蓄積エネルギを出力側コンデンサに充電することにより負荷に前記電源の電圧より高い電圧を供給し、前記スイッチ素子のオフ時に発生するサージ電圧をスナバコンデンサにより吸収して前記スイッチ素子の過電圧による破壊を防止するスナバ回路を備えた昇圧チョッパ装置において、前記スイッチ素子のオフ期間にサージ電圧まで充電された前記スナバコンデンサの電圧を出力側コンデンサ電圧まで放電するスナバ放電抵抗器と直列に接続されたスナバ放電リアクトルを備えたことを特徴とする昇圧チョッパ装置。It is connected to a DC power supply, stores energy in a DC reactor by turning on a switch element, and charges the stored energy through a diode to an output-side capacitor during a period in which the switch element is off, thereby causing a voltage of the power supply to be applied to a load. A booster chopper device including a snubber circuit for supplying a higher voltage and absorbing a surge voltage generated when the switch element is turned off by a snubber capacitor to prevent destruction of the switch element due to overvoltage; A booster chopper device comprising a snubber discharge reactor connected in series with a snubber discharge resistor for discharging the voltage of the snubber capacitor charged to a surge voltage to an output-side capacitor voltage. スナバ放電リアクトルはスナバ放電抵抗器と出力平滑コンデンサとの接続線を長くすることによって形成されていることを特徴とする請求項1記載の昇圧チョッパ装置。2. The step-up chopper device according to claim 1, wherein the snubber discharge reactor is formed by extending a connection line between the snubber discharge resistor and the output smoothing capacitor. 直流電源に接続され、スイッチ素子をオンすることにより直流リアクトルにエネルギを蓄積させ、前記スイッチ素子のオフ期間にダイオードを介して前記蓄積エネルギを出力側コンデンサに充電することにより負荷に前記電源の電圧より高い電圧を供給し、前記スイッチ素子のオフ時に発生するサージ電圧をスナバコンデンサにより吸収して前記スイッチ素子の過電圧による破壊を防止するスナバ回路を備えた昇圧チョッパ装置において、前記スイッチ素子のオフ期間にサージ電圧まで充電された前記スナバコンデンサの電圧を出力側コンデンサ電圧まで放電するスナバ放電抵抗器と直列に接続されたスイッチと、スナバコンデンサ電圧と出力側コンデンサ電圧を比較して前記スイッチを開閉制御する比較器とを備えたことを特徴とする昇圧チョッパ装置。It is connected to a DC power supply, stores energy in a DC reactor by turning on a switch element, and charges the stored energy through a diode to an output-side capacitor during a period in which the switch element is off, thereby causing a voltage of the power supply to be applied to a load. A booster chopper device including a snubber circuit for supplying a higher voltage and absorbing a surge voltage generated when the switch element is turned off by a snubber capacitor to prevent destruction of the switch element due to overvoltage; A switch connected in series with a snubber discharge resistor that discharges the voltage of the snubber capacitor charged to the surge voltage to the output side capacitor voltage, and compares the snubber capacitor voltage with the output side capacitor voltage to control the opening and closing of the switch Booster, comprising: Chopper apparatus.
JP2003041161A 2003-02-19 2003-02-19 Boosting chopper device Withdrawn JP2004254401A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2003041161A JP2004254401A (en) 2003-02-19 2003-02-19 Boosting chopper device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2003041161A JP2004254401A (en) 2003-02-19 2003-02-19 Boosting chopper device

Publications (1)

Publication Number Publication Date
JP2004254401A true JP2004254401A (en) 2004-09-09

Family

ID=33024818

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2003041161A Withdrawn JP2004254401A (en) 2003-02-19 2003-02-19 Boosting chopper device

Country Status (1)

Country Link
JP (1) JP2004254401A (en)

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103138575A (en) * 2013-03-26 2013-06-05 西安理工大学 Clamping type Boost converter with buffer absorption circuit
CN104038044A (en) * 2014-05-20 2014-09-10 广东美的暖通设备有限公司 IGBT buffer circuit, PFC circuit and air conditioner control system
CN109167511A (en) * 2018-11-05 2019-01-08 宁波市北仑临宇电子科技有限公司 Lossless synchronous absorbing circuit, boosting and step-down switching power supply circuit
KR20190086759A (en) * 2016-12-01 2019-07-23 레이 스트라티직 홀딩스, 인크. Rechargeable Lithium-Ion Capacitors for Aerosol Transfer Devices
KR20190086765A (en) * 2015-10-21 2019-07-23 레이 스트라티직 홀딩스, 인크. Lithium-ion battery with linear regulation for aerosol delivery devices
WO2020152948A1 (en) 2019-01-24 2020-07-30 株式会社京三製作所 Dc pulsed power supply device
US11806471B2 (en) 2015-10-21 2023-11-07 Rai Strategic Holdings, Inc. Power supply for an aerosol delivery device

Cited By (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103138575A (en) * 2013-03-26 2013-06-05 西安理工大学 Clamping type Boost converter with buffer absorption circuit
CN104038044A (en) * 2014-05-20 2014-09-10 广东美的暖通设备有限公司 IGBT buffer circuit, PFC circuit and air conditioner control system
KR20190086765A (en) * 2015-10-21 2019-07-23 레이 스트라티직 홀딩스, 인크. Lithium-ion battery with linear regulation for aerosol delivery devices
KR102537810B1 (en) 2015-10-21 2023-05-31 레이 스트라티직 홀딩스, 인크. Lithium-ion battery with linear regulation for aerosol delivery device
US11806471B2 (en) 2015-10-21 2023-11-07 Rai Strategic Holdings, Inc. Power supply for an aerosol delivery device
KR20190086759A (en) * 2016-12-01 2019-07-23 레이 스트라티직 홀딩스, 인크. Rechargeable Lithium-Ion Capacitors for Aerosol Transfer Devices
KR102598879B1 (en) * 2016-12-01 2023-11-07 레이 스트라티직 홀딩스, 인크. Aerosol delivery device and control body
CN109167511A (en) * 2018-11-05 2019-01-08 宁波市北仑临宇电子科技有限公司 Lossless synchronous absorbing circuit, boosting and step-down switching power supply circuit
WO2020152948A1 (en) 2019-01-24 2020-07-30 株式会社京三製作所 Dc pulsed power supply device
KR20210099100A (en) 2019-01-24 2021-08-11 가부시끼가이샤교산세이사꾸쇼 DC pulse power supply
US11799373B2 (en) 2019-01-24 2023-10-24 Kyosan Electric Mfg. Co., Ltd. DC pulse power supply device

Similar Documents

Publication Publication Date Title
US8488340B2 (en) Power converter with boost-buck-buck configuration utilizing an intermediate power regulating circuit
JP3711245B2 (en) DC / DC converter for a fuel cell having a nonlinear inductor
WO2019133978A1 (en) Converter topology with adaptive power path architecture
JP2008109775A (en) Dc-dc converter and control method therefor
TWM513378U (en) Input dropping and output holding circuit
WO2015079538A1 (en) Dc-dc converter
EP2302773A2 (en) DC-DC converter
KR101851930B1 (en) Ac-dc converter
CN107408881A (en) Integrated tri-state EMI Filtering and circuit adjustment module
US5719754A (en) Integrated power converter and method of operation thereof
JP2004201373A (en) Switching power circuit
JP2010124567A (en) Switching power supply device
US8379422B2 (en) Circuit arrangement comprising a voltage transformer and associated method
KR101256032B1 (en) Solid state switching circuit
US8098022B2 (en) Circuit configuration for operating at least one discharge lamp and method for generating an auxiliary voltage
JP2004254401A (en) Boosting chopper device
JP2009050080A (en) Snubber circuit
JPH07123707A (en) Partial resonance type constant-frequency pwm controlled dc-dc converter
CN114709109A (en) Relay slow discharge driving circuit
JP2001161066A (en) Power converting apparatus
JP2010200470A (en) Energy regeneration snubber circuit
JP2005245119A (en) Non-isolated dc-dc converter
CN117811364B (en) Voltage holding circuit and method, power supply circuit and electronic equipment
JPH10309078A (en) Switching dc power unit
KR102220077B1 (en) High-efficiency dc-dc booster converter for reduce switching power loss

Legal Events

Date Code Title Description
A711 Notification of change in applicant

Free format text: JAPANESE INTERMEDIATE CODE: A712

Effective date: 20041007

A300 Withdrawal of application because of no request for examination

Free format text: JAPANESE INTERMEDIATE CODE: A300

Effective date: 20060509