JP2004251460A - Vacuum heat insulating material and refrigerating equipment, notebook computer, electric water heater and microwave oven - Google Patents

Vacuum heat insulating material and refrigerating equipment, notebook computer, electric water heater and microwave oven Download PDF

Info

Publication number
JP2004251460A
JP2004251460A JP2004133133A JP2004133133A JP2004251460A JP 2004251460 A JP2004251460 A JP 2004251460A JP 2004133133 A JP2004133133 A JP 2004133133A JP 2004133133 A JP2004133133 A JP 2004133133A JP 2004251460 A JP2004251460 A JP 2004251460A
Authority
JP
Japan
Prior art keywords
heat insulating
insulating material
vacuum heat
vacuum
core material
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2004133133A
Other languages
Japanese (ja)
Inventor
Akiko Yuasa
明子 湯淺
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Panasonic Holdings Corp
Original Assignee
Matsushita Refrigeration Co
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Matsushita Refrigeration Co filed Critical Matsushita Refrigeration Co
Priority to JP2004133133A priority Critical patent/JP2004251460A/en
Publication of JP2004251460A publication Critical patent/JP2004251460A/en
Pending legal-status Critical Current

Links

Images

Landscapes

  • Thermal Insulation (AREA)
  • Electric Ovens (AREA)
  • Refrigerator Housings (AREA)
  • Cookers (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a high performance vacuum heating insulating material having superior heat insulating performance and flexibility coping with its deformation and being free of deterioration in heat insulating performance due to an increase in the inner pressure with gas generated from a bonding material. <P>SOLUTION: A skin material 2 consists of a metal vapor deposited film layer and a thermoplastic polymer layer. It is filled with a plurality of laminated inorganic fiber material sheet 4 containing dominantly SiO<SB>2</SB>having fiber diameter distribution whose peak value is 1 μm or larger and 0.1 μm or smaller. It does not include the bonding material. <P>COPYRIGHT: (C)2004,JPO&NCIPI

Description

本発明は、真空断熱材、および、真空断熱材の適用機器に関するものである。   The present invention relates to a vacuum heat insulating material and a device to which the vacuum heat insulating material is applied.

近年、地球環境問題である温暖化を防止することの重要性から、省エネルギー化が望まれており、民生用機器に対しても省エネルギーの推進が行われている。特に温冷熱利用の機器や住宅に関しては、熱を効率的に利用するという観点から、優れた断熱性を有する断熱材が求められている。   In recent years, energy saving has been demanded because of the importance of preventing global warming, which is a global environmental problem, and energy saving has been promoted for consumer appliances. In particular, with respect to equipment and houses utilizing hot and cold heat, a heat insulating material having excellent heat insulating properties is required from the viewpoint of efficiently using heat.

また、冷温熱利用機器以外の機器としては、ノート型コンピュータにおいて、装置内部で発生した熱が装置ケースの表面に伝達され、装置ケース表面の温度が上昇したとき、装置利用者の身体と前記装置ケース表面とが長時間接触する部分の熱が、装置利用者に不快感を与えることが問題となっており、ここでも優れた断熱性を有する断熱材が求められている。   In addition, as a device other than the cold / hot heat utilizing device, in a notebook computer, when the heat generated inside the device is transmitted to the surface of the device case and the temperature of the device case surface rises, the body of the device user and the device There is a problem that heat in a portion that comes into contact with the case surface for a long period of time gives an unpleasant feeling to a user of the apparatus, and a heat insulating material having excellent heat insulating properties is also required here.

このような課題を解決する一手段として真空断熱材があるが、近年では、従来より一層高性能な真空断熱材が求められている。高性能な真空断熱材としては、例えば、特許文献1や特許文献2に提案されているものがある。   As one means for solving such a problem, there is a vacuum heat insulating material. In recent years, a vacuum heat insulating material having higher performance than ever has been demanded. Examples of high-performance vacuum heat insulating materials include those proposed in Patent Literature 1 and Patent Literature 2.

特許文献1に記載のものは、平均繊維径2μm以下、好ましくは1μm以下の無機質繊維に酸性水溶液処理、および、圧縮脱水処理を施し、無機質繊維の溶出成分を無機質繊維の交点に集め、結合材として作用させ、結着させたものを芯材として用い、真空断熱材を得るものである。   Patent Document 1 discloses that an inorganic fiber having an average fiber diameter of 2 μm or less, preferably 1 μm or less is subjected to an acidic aqueous solution treatment and compression dehydration treatment, and the elution component of the inorganic fiber is collected at the intersection of the inorganic fibers, Is used as the core material, and a vacuum heat insulating material is obtained.

特許文献2に記載のものは、平均繊維径2μm以下、好ましくは1μm以下の無機質繊維を酸性抄造して得られたペーパーを酸性雰囲気下で複数枚積層した後、圧縮処理を施し、無機質繊維同士をそれら繊維より溶出した成分により各交点で結着した真空断熱材を得るものである。
特開平7−167376号公報 特開平7−139691号公報
Patent Document 2 discloses a method in which a plurality of papers obtained by acid-making inorganic fibers having an average fiber diameter of 2 μm or less, and preferably 1 μm or less, are laminated in an acidic atmosphere, and then subjected to a compression treatment. Is obtained at each intersection with a component eluted from these fibers.
JP-A-7-167376 JP-A-7-139691

しかしながら、これら従来技術では、無機質繊維の溶出成分を無機質繊維の交点に集め、結合材として作用させて結着し、さらに圧縮処理が施されたものを芯材として用いているため、可とう性がなく、真空断熱材の折り曲げ、湾曲処理、円筒化などの変形化に対応できない。   However, in these prior arts, the eluting components of the inorganic fibers are collected at the intersections of the inorganic fibers, acted as a binder, bound, and further subjected to a compression treatment to be used as a core material. Therefore, it is not possible to cope with bending, bending, and deformation of the vacuum heat insulating material.

そこで、本発明の目的は、優れた断熱性能を有し、かつ、真空断熱材の変形に対応できる可とう性を有し、さらに、結合材から生じる気体による内圧増加により、断熱性能の劣化を招くことのない高性能な真空断熱材を提供することにある。   Therefore, an object of the present invention is to have excellent heat insulating performance, and have flexibility to cope with deformation of the vacuum heat insulating material. An object of the present invention is to provide a high-performance vacuum heat insulating material that is not invited.

本発明の真空断熱材は、無機繊維芯材と、表面保護層とガスバリア層と熱溶着層によって構成される多層フィルムからなるガスバリア性を有する外皮材とからなる真空断熱材であって、前記芯材がSiO2を主成分とし、かつ、結合材として作用するものを含まないことを特徴とするものである。 The vacuum heat insulating material of the present invention is a vacuum heat insulating material comprising an inorganic fiber core material and an outer material having a gas barrier property comprising a multilayer film composed of a surface protective layer, a gas barrier layer, and a heat welding layer, wherein the core It is characterized in that the material contains SiO 2 as a main component and does not include a material acting as a binder.

本発明によれば、優れた断熱性能を有し、かつ、真空断熱材の変形に対応でき、さらに、結合材から生じる気体による内圧増加により、断熱性能の劣化を招くことのない高性能な真空断熱材を提供することができる。   ADVANTAGE OF THE INVENTION According to this invention, it has the outstanding heat insulation performance, and can respond to the deformation of a vacuum heat insulating material. Insulation can be provided.

本発明の請求項1に記載の真空断熱材は、無機繊維芯材と、表面保護層とガスバリア層と熱溶着層によって構成される多層フィルムからなるガスバリア性を有する外皮材とからなる真空断熱材であって、前記芯材がSiO2を主成分とし、かつ、結合材として作用するものを含まないことを特徴とするものであり、優れた断熱性能を有し、かつ、真空断熱材の変形に対応でき、さらに、結合材から生じる気体による内圧増加により、断熱性能の劣化を招くことのない高性能な真空断熱材を提供することができる。 The vacuum heat insulating material according to claim 1 of the present invention is a vacuum heat insulating material comprising an inorganic fiber core material, and a gas barrier outer skin material comprising a multilayer film composed of a surface protective layer, a gas barrier layer, and a heat welding layer. Wherein the core material is mainly composed of SiO 2 and does not include a material that acts as a binder, has excellent heat insulating performance, and has a deformation property of a vacuum heat insulating material. In addition, it is possible to provide a high-performance vacuum heat insulating material that does not cause deterioration of heat insulating performance due to an increase in internal pressure due to gas generated from the binder.

本発明の請求項2に記載の真空断熱材は、シート状に成型された無機繊維を複数枚積層してなる無機繊維芯材と、表面保護層とガスバリア層と熱溶着層によって構成される多層フィルムからなるガスバリア性を有する外皮材とからなる真空断熱材であって、前記芯材がSiO2を主成分とし、かつ、結合材として作用するものを含まないことを特徴とするものであり、シート状に成型された無機繊維を複数枚積層したものを芯材に用いたので、芯材に硬度と張りが与えられ、外被材への挿入工程などでの作業性が向上する。また、優れた断熱性能を有し、かつ、真空断熱材の変形に対応でき、さらに、結合材から生じる気体による内圧増加により、断熱性能の劣化を招くことのない高性能な真空断熱材を提供することができる。 The vacuum heat insulating material according to claim 2 of the present invention has a multilayer structure comprising an inorganic fiber core material formed by laminating a plurality of inorganic fibers formed in a sheet shape, a surface protective layer, a gas barrier layer, and a heat welding layer. A vacuum heat insulating material comprising a gas-barrier outer material made of a film, wherein the core material is mainly composed of SiO 2 , and does not include a material acting as a binder, Since a core material is formed by laminating a plurality of sheet-shaped inorganic fibers, the core material is given hardness and tension, and the workability in the step of inserting the core material into the sheath material is improved. In addition, a high-performance vacuum heat insulating material that has excellent heat insulating performance, can cope with deformation of the vacuum heat insulating material, and does not cause deterioration of the heat insulating performance due to an increase in internal pressure due to gas generated from the binder. can do.

本発明の請求項3に記載の真空断熱材は、請求項1または2記載の発明における無機繊維の嵩密度が、圧縮されることにより、100kg/m3以上、300kg/m3未満となっていることを特徴とするものであり、請求項1または2記載の発明の作用に加えて、芯材に硬度が加えられるため、外皮材への挿入工程などでの作業性が向上する。また、嵩密度と、真空断熱材を作製した際の密度との差異が小さくなるために、真空断熱材の歪みが抑制され、表面平滑性が向上する。無機繊維を、圧縮する手段としては、物理的な圧縮、加熱圧縮など、高密度が可能な手段であれば、特に限定するものではない。 Vacuum heat insulating material according to claim 3 of the present invention, the bulk density of the inorganic fibers in the invention of claim 1 or 2 wherein is by being compressed, 100 kg / m 3 or more, is less than 300 kg / m 3 The hardness is added to the core material in addition to the effect of the first or second aspect of the present invention, so that the workability in the step of inserting the core material is improved. In addition, since the difference between the bulk density and the density at the time of manufacturing the vacuum heat insulating material is reduced, distortion of the vacuum heat insulating material is suppressed, and the surface smoothness is improved. The means for compressing the inorganic fibers is not particularly limited as long as it is a means capable of high density, such as physical compression or heat compression.

本発明の請求項4に記載の真空断熱材は、請求項1から3のいずれか一項に記載の発明における繊維材料が結合材として作用するものにより結着していないことを特徴とするものであり、請求項1から3のいずれか一項に記載の発明の作用に加えて、結合材により結着していないため真空断熱材の変形に対応できる。   The vacuum heat insulating material according to claim 4 of the present invention is characterized in that the fiber material according to any one of claims 1 to 3 is not bound by a material acting as a binder. In addition to the effect of the invention according to any one of the first to third aspects, the present invention can cope with deformation of the vacuum heat insulating material because it is not bound by the binder.

本発明の請求項5に記載の冷凍機器は、請求項1から4のいずれか一項に記載の真空断熱材を具備するものであり、請求項1から4のいずれか一項に記載の真空断熱材が、優れた断熱性能を有するために、高断熱化が達成され、省エネルギーに貢献できるものである。また、請求項1から4のいずれか一項に記載の真空断熱材が、折り曲げ、湾曲などが可能であるため、従来適用困難であった部位へ真空断熱材を適用することが可能となり、より省エネルギーに貢献できるものである。また、請求項1から4のいずれか一項に記載の真空断熱材が、結合材から生じる気体による内圧増加により、断熱性能の劣化を招くことのないため、経時的に断熱性能が劣化することがなく、継続して省エネルギーに貢献することが可能である。   A refrigeration apparatus according to a fifth aspect of the present invention includes the vacuum heat insulating material according to any one of the first to fourth aspects, and the vacuum apparatus according to any one of the first to fourth aspects. Since the heat insulating material has excellent heat insulating performance, high heat insulation is achieved, and it is possible to contribute to energy saving. Further, since the vacuum heat insulating material according to any one of claims 1 to 4 can be bent, bent, and the like, it is possible to apply the vacuum heat insulating material to a portion that was difficult to apply conventionally. It can contribute to energy saving. In addition, the vacuum heat insulating material according to any one of claims 1 to 4 does not cause deterioration of heat insulating performance due to an increase in internal pressure due to gas generated from the binder, so that heat insulating performance deteriorates with time. It is possible to continuously contribute to energy saving.

本発明の請求項6に記載のノート型コンピュータは、請求項1から4のいずれか一項に記載の真空断熱材を具備するものであり、請求項1から4のいずれか一項に記載の真空断熱材が、優れた断熱性能を有するために、高断熱化が達成され、装置内部の熱が表面に伝達することにより利用者に不快感を与えることがない。また、請求項1から4のいずれか一項に記載の真空断熱材が、折り曲げ、湾曲などが可能であるため、従来適用困難であった部位へ真空断熱材を適用することが可能となり、より装置内部の熱が表面に伝達することを抑制し、利用者に不快感を与えることがない。また、請求項1から4のいずれか一項に記載の真空断熱材が、結合材から生じる気体による内圧増加により、断熱性能の劣化を招くことのないため、経時的に断熱性能が劣化することがなく、継続して装置内部の熱が表面に伝達するのを抑制し、利用者に不快感を与えることがない。   A notebook computer according to a sixth aspect of the present invention includes the vacuum heat insulating material according to any one of the first to fourth aspects, and the notebook computer according to the first aspect. Since the vacuum heat insulating material has excellent heat insulating performance, high heat insulation is achieved, and the heat inside the device is transferred to the surface so that the user does not feel uncomfortable. Further, since the vacuum heat insulating material according to any one of claims 1 to 4 can be bent, bent, and the like, it is possible to apply the vacuum heat insulating material to a portion that was difficult to apply conventionally. The transfer of heat inside the device to the surface is suppressed, and the user is not discomforted. In addition, the vacuum heat insulating material according to any one of claims 1 to 4 does not cause deterioration of heat insulation performance due to an increase in internal pressure due to gas generated from the binder, so that heat insulation performance deteriorates with time. As a result, the heat inside the device is continuously prevented from being transmitted to the surface, and the user is not discomforted.

本発明の請求項7に記載の電気湯沸かし器は、請求項1から4のいずれか一項に記載の真空断熱材を具備するものであり、請求項1から4のいずれか一項に記載の真空断熱材が、優れた断熱性能を有するために、高断熱化が達成され、省エネルギーに貢献できるものである。また、請求項1から4のいずれか一項に記載の真空断熱材が、折り曲げ、湾曲などが可能であるため、従来適用困難であった部位へ真空断熱材を適用することが可能となり、より省エネルギーに貢献できるものである。また、請求項1から4のいずれか一項に記載の真空断熱材が、結合材から生じる気体による内圧増加により、断熱性能の劣化を招くことのないため、経時的に断熱性能が劣化することがなく、継続して省エネルギーに貢献することが可能である。   An electric water heater according to claim 7 of the present invention includes the vacuum heat insulating material according to any one of claims 1 to 4, and the vacuum water heater according to any one of claims 1 to 4. Since the heat insulating material has excellent heat insulating performance, high heat insulation is achieved, and it is possible to contribute to energy saving. Further, since the vacuum heat insulating material according to any one of claims 1 to 4 can be bent, bent, and the like, it is possible to apply the vacuum heat insulating material to a portion that was difficult to apply conventionally. It can contribute to energy saving. In addition, the vacuum heat insulating material according to any one of claims 1 to 4 does not cause deterioration of heat insulating performance due to an increase in internal pressure due to gas generated from the binder, so that heat insulating performance deteriorates with time. It is possible to continuously contribute to energy saving.

本発明の請求項8に記載のオーブンレンジは、請求項1から4のいずれか一項に記載の真空断熱材を具備するものであり、請求項1から4のいずれか一項に記載の真空断熱材が、優れた断熱性能を有するために、高断熱化が達成され、省エネルギーに貢献できるものである。また、請求項1から4のいずれか一項に記載の真空断熱材が、折り曲げ、湾曲などが可能であるため、従来適用困難であった部位へ真空断熱材を適用することが可能となり、より省エネルギーに貢献できるものである。また、請求項1から4のいずれか一項に記載の真空断熱材が、結合材から生じる気体による内圧増加により、断熱性能の劣化を招くことのないため、経時的に断熱性能が劣化することがなく、継続して省エネルギーに貢献することが可能である。   The microwave oven according to claim 8 of the present invention includes the vacuum heat insulating material according to any one of claims 1 to 4, and the vacuum oven according to any one of claims 1 to 4. Since the heat insulating material has excellent heat insulating performance, high heat insulation is achieved, and it is possible to contribute to energy saving. Further, since the vacuum heat insulating material according to any one of claims 1 to 4 can be bent, bent, and the like, it is possible to apply the vacuum heat insulating material to a portion that was difficult to apply conventionally. It can contribute to energy saving. In addition, the vacuum heat insulating material according to any one of claims 1 to 4 does not cause deterioration of heat insulating performance due to an increase in internal pressure due to gas generated from the binder, so that heat insulating performance deteriorates with time. It is possible to continuously contribute to energy saving.

以下、本発明による実施の形態について、図1から図6を用いて説明する。   An embodiment according to the present invention will be described below with reference to FIGS.

(実施の形態1)
図1は、本発明の一実施の形態である真空断熱材1の断面図であり、金属蒸着フィルム層と熱可塑性ポリマー層とを有する外皮材2に、繊維径分布のピーク値が、1μm以下、0.1μm以上である無機繊維材料3が充填されているものである。
(Embodiment 1)
FIG. 1 is a cross-sectional view of a vacuum heat insulating material 1 according to an embodiment of the present invention, in which a skin material 2 having a metal-deposited film layer and a thermoplastic polymer layer has a fiber diameter distribution peak value of 1 μm or less. , 0.1 μm or more.

(実施の形態2)
図2は、本発明の一実施の形態である真空断熱材の断面図であり、金属蒸着フィルム層と熱可塑性ポリマー層とを有する外皮材2に、繊維径分布のピーク値が1μm以下、0.1μm以上であるシート化された無機繊維材料4が複数枚積層されたものを充填しているものである。
(Embodiment 2)
FIG. 2 is a cross-sectional view of a vacuum heat insulating material according to an embodiment of the present invention. The outer material 2 having a metal-deposited film layer and a thermoplastic polymer layer has a fiber diameter distribution peak value of 1 μm or less, A sheet in which a plurality of sheets of the inorganic fiber material 4 having a thickness of 1 μm or more are stacked.

(実施の形態3)
図3は、本発明の冷凍機器の一実施の形態である冷凍冷蔵庫5の断面図であり、内箱6と外箱7とで構成される箱体内部にあらかじめ実施の形態1における真空断熱材1を配設し、前記真空断熱材以外の空間部を硬質ウレタンフォーム8で発泡充填したことを特徴としており、冷蔵庫下部に位置する機械室9にあるコンプレッサー10近傍と庫内11との間にも、外箱の形状に沿って折り曲げた真空断熱材1を配設している。
(Embodiment 3)
FIG. 3 is a cross-sectional view of a refrigerator 5 as an embodiment of the refrigeration equipment of the present invention, in which a vacuum heat insulating material according to the first embodiment is previously provided inside a box constituted by an inner box 6 and an outer box 7. 1 is provided, and a space other than the vacuum heat insulating material is foam-filled with a hard urethane foam 8. Also, the vacuum heat insulating material 1 bent along the shape of the outer box is provided.

このように構成された冷凍冷蔵庫は、繊維径が1μm以下、0.1μm以上であり、従来の硬質ウレタンフォームの10倍以上の優れた断熱性能を有するために、高断熱化が達成され、省エネルギーに貢献できるものである。   The refrigerator configured as described above has a fiber diameter of 1 μm or less, 0.1 μm or more, and has excellent heat insulation performance of 10 times or more that of the conventional rigid urethane foam. Can contribute to

また、結合材により結着していないため、折り曲げ、湾曲などが可能であるため、従来適用困難であった部位へ真空断熱材を適用することが可能となり、より省エネルギーに貢献できる。さらに、結合材から生じる気体による内圧増加により、断熱性能の劣化を招くことのないため、経時的に断熱性能が劣化することがなく、継続して省エネルギーに貢献することが可能である。   Further, since it is not bound by the binder, it can be bent, bent, and the like. Therefore, it is possible to apply the vacuum heat insulating material to a portion that has been difficult to apply conventionally, thereby contributing to more energy saving. Further, since the heat insulation performance does not deteriorate due to the increase in the internal pressure due to the gas generated from the binder, the heat insulation performance does not deteriorate over time, and it is possible to continuously contribute to energy saving.

この冷凍機器としては他に業務用の冷凍冷蔵庫やショーケース並びに冷凍庫,冷蔵庫などがある。   Other examples of the refrigerating equipment include a commercial refrigerating refrigerator, a showcase, a freezer, and a refrigerator.

(実施の形態4)
図4は、本発明のノート型コンピュータ12の断面図であり、装置内部のメインボード13上の発熱部14と装置ケース15底部との間を遮断する、実施の形態1における真空断熱材1と、放熱板16とを具備することを特徴とする。
(Embodiment 4)
FIG. 4 is a cross-sectional view of the notebook computer 12 of the present invention. , And a radiator plate 16.

このように構成されたノート型コンピュータは、繊維径が1μm以下、0.1μm以上であり、従来の硬質ウレタンフォームの10倍以上の優れた断熱性能を有するため、高断熱化が達成され、装置内部の熱が表面に伝達することにより利用者に不快感を与えることがない。   The notebook computer thus configured has a fiber diameter of 1 μm or less, 0.1 μm or more, and has excellent heat insulation performance of 10 times or more that of the conventional rigid urethane foam. There is no discomfort to the user due to the transfer of internal heat to the surface.

また、結合材から生じる気体による内圧増加により、断熱性能の劣化を招くことのないため、経時的に断熱性能が劣化することがなく、継続して装置内部の熱が表面に伝達するのを抑制し、利用者に不快感を与えることがない。   In addition, since the heat generated by the binder does not cause deterioration of the heat insulation performance due to the increase of the internal pressure, the heat insulation performance does not deteriorate over time, and the heat inside the device is continuously transmitted to the surface. And does not give the user any discomfort.

(実施の形態5)
図5は、本発明の電気湯沸かし器17の断面図であり、外容器18と、貯湯容器19と、蓋体20と、加熱器21と、実施の形態2における真空断熱材1とから構成されることを特徴としている。また、貯湯容器の下部に取り付けられた加熱器の近傍付近まで、真空断熱材を取り付けている。
(Embodiment 5)
FIG. 5 is a cross-sectional view of an electric water heater 17 of the present invention, which is composed of an outer container 18, a hot water storage container 19, a lid 20, a heater 21, and the vacuum heat insulating material 1 in the second embodiment. It is characterized by: In addition, a vacuum heat insulating material is attached to the vicinity of the heater attached to the lower part of the hot water storage container.

このように構成された電気湯沸かし器は、繊維径が1μm以下、0.1μm以上であり、従来の硬質ウレタンフォームの10倍以上の優れた断熱性能を有するために、高断熱化が達成され、省エネルギーに貢献できるものである。   The electric water heater configured as described above has a fiber diameter of 1 μm or less, 0.1 μm or more, and has excellent heat insulation performance of 10 times or more of the conventional rigid urethane foam, so that high heat insulation is achieved, and energy saving is achieved. Can contribute to

また、結合材により結着していないため、折り曲げ、湾曲などが可能であるため、従来適用困難であった部位へ真空断熱材を容易に適用することが可能となり、より省エネルギーに貢献できる。さらに、結合材から生じる気体による内圧増加により、断熱性能の劣化を招くことのないため、経時的に断熱性能が劣化することがなく、継続して省エネルギーに貢献することが可能である。   In addition, since it is not bound by the binder, it can be bent or bent, so that it is possible to easily apply the vacuum heat insulating material to a portion where it has been difficult to apply conventionally, thereby contributing to more energy saving. Further, since the heat insulation performance does not deteriorate due to the increase in the internal pressure due to the gas generated from the binder, the heat insulation performance does not deteriorate over time, and it is possible to continuously contribute to energy saving.

(実施の形態6)
図6は、本発明のオーブンレンジ22の断面図であり、外壁23,オーブン壁24,誘電加熱手段25,電力変換器26,高周波磁界発生手段27、および、実施の形態2における真空断熱材1を具備することを特徴としている。
(Embodiment 6)
FIG. 6 is a cross-sectional view of the microwave oven 22 according to the present invention, which shows an outer wall 23, an oven wall 24, a dielectric heating unit 25, a power converter 26, a high-frequency magnetic field generating unit 27, and a vacuum heat insulating material 1 according to the second embodiment. It is characterized by having.

このように構成されたオーブンレンジは、繊維径が1μm以下、0.1μm以上であり、従来の硬質ウレタンフォームの10倍以上の優れた断熱性能を有するために、高断熱化が達成され、省エネルギーに貢献できるものである。   The microwave oven thus configured has a fiber diameter of 1 μm or less, 0.1 μm or more, and has excellent heat insulation performance of 10 times or more of the conventional rigid urethane foam. Can contribute to

また、結合材により結着していないため、折り曲げ、湾曲などが可能であるため、従来適用困難であった部位へ真空断熱材を適用することが可能となり、より省エネルギーに貢献できる。さらに、結合材から生じる気体による内圧増加により、断熱性能の劣化を招くことのないため、経時的に断熱性能が劣化することがなく、継続して省エネルギーに貢献することが可能である。   Further, since it is not bound by the binder, it can be bent, bent, and the like. Therefore, it is possible to apply the vacuum heat insulating material to a portion that has been difficult to apply conventionally, thereby contributing to more energy saving. Further, since the heat insulation performance does not deteriorate due to the increase in the internal pressure due to the gas generated from the binder, the heat insulation performance does not deteriorate over time, and it is possible to continuously contribute to energy saving.

本発明の真空断熱材は、芯材と外皮材とからなり、減圧下で芯材を外皮材に封入したものである。また、合成ゼオライト,活性炭,活性アルミナ,シリカゲル,ドーソナイト,ハイドロタルサイトなどの物理吸着剤、および、アルカリ金属やアルカリ土類金属の酸化物および水酸化物などの化学吸着剤などの、水分吸着剤やガス吸着剤を使用しても良い。   The vacuum heat insulating material of the present invention comprises a core material and a skin material, and the core material is sealed in the skin material under reduced pressure. Also, moisture adsorbents such as physical adsorbents such as synthetic zeolite, activated carbon, activated alumina, silica gel, dawsonite and hydrotalcite, and chemical adsorbents such as oxides and hydroxides of alkali metals and alkaline earth metals. Alternatively, a gas adsorbent may be used.

また、本発明の冷凍冷蔵庫および冷凍機器は、これらの動作温度帯である−30℃から常温、また自動販売機などの、より高温までの範囲で温冷熱を利用した機器を指す。また、電気機器に限ったものではなく、ガス機器なども含むものである。   In addition, the refrigerator and the refrigerator of the present invention refer to a device utilizing hot / cold heat in a range from the operating temperature range of −30 ° C. to a normal temperature and a higher temperature, such as a vending machine. Further, the present invention is not limited to electric equipment, but also includes gas equipment and the like.

また、本発明のノート型コンピュータは、動作温度帯である常温から80℃付近までの範囲で断熱を必要とする機器の代表として記したものであり、特にこれに限ったものではない。   Further, the notebook computer of the present invention is described as a representative example of a device that requires heat insulation in the operating temperature range from room temperature to around 80 ° C., and is not particularly limited to this.

また、本発明の電気湯沸かし器は、動作温度帯である常温から100℃付近までの範囲で断熱を必要とする機器の代表として記したものであり、例えば、炊飯器,食器洗浄乾燥器などにも同様に利用できるものである。また、電気機器に限ったものではなく、ガス機器なども含むものである。   In addition, the electric water heater of the present invention is described as a representative of equipment that requires heat insulation in a range from an ordinary temperature, which is an operating temperature range, to around 100 ° C., for example, a rice cooker, a dishwasher, and the like. It can be used as well. Further, the present invention is not limited to electric equipment, but also includes gas equipment and the like.

また、本発明のオーブンレンジは、動作温度帯である常温から250℃付近までの範囲で断熱を必要とする機器の代表として記したものであり、例えば、トースター,ホームベーカリーなどにも同様に利用できるものである。また、電気機器に限ったものではなく、ガス機器なども含むものである。   Further, the microwave oven according to the present invention is described as a representative example of equipment that requires heat insulation in a range from an ordinary temperature, which is an operating temperature range, to about 250 ° C., and can be similarly used for a toaster, a home bakery, and the like. Things. Further, the present invention is not limited to electric equipment, but also includes gas equipment and the like.

本発明の繊維材料は、グラスウール,セラミックファイバー,ロックウールなど、無機材料を繊維化したもので、繊維径分布のピーク値が、1μm以下、0.1μm以上のものが利用できる。繊維長は、特に指定するものではないが、2mm以下、さらには0.5mm以下のものが好ましい。   The fiber material of the present invention is obtained by fiberizing an inorganic material such as glass wool, ceramic fiber, rock wool and the like, and those having a fiber diameter distribution peak value of 1 μm or less and 0.1 μm or more can be used. The fiber length is not particularly specified, but is preferably 2 mm or less, more preferably 0.5 mm or less.

本発明の外皮材は、ガスバリア性を有するものが利用できるが、表面保護層,ガスバリア層、および熱溶着層によって構成されることが好ましい。表面保護層としては、ポリエチレンテレフタレートフィルム,ポリプロピレンフィルムの延伸加工品などが利用でき、さらに、外側にナイロンフィルムなどを設けると可とう性が向上し、耐折り曲げ性などが向上する。ガスバリア層としては、アルミなどの金属蒸着フィルムが利用可能であり、ポリエチレンテレフタレートフィルム,エチレン・ビニルアルコール共重合体樹脂フィルム,ポリエチレンナフタレートフィルムなどへの蒸着が好ましい。また、熱溶着層としては、低密度ポリエチレンフィルム,高密度ポリエチレンフィルム,ポリプロピレンフィルム,ポリアクリロニトリルフィルム,無延伸ポリエチレンテレフタレートフィルムなどが使用可能である。   Although the outer skin material of the present invention can use a material having gas barrier properties, it is preferable that the outer skin material be constituted by a surface protective layer, a gas barrier layer, and a heat welding layer. As the surface protective layer, a stretched product of a polyethylene terephthalate film or a polypropylene film or the like can be used. Further, if a nylon film or the like is provided on the outside, flexibility is improved, and bending resistance and the like are improved. As the gas barrier layer, a metal vapor-deposited film of aluminum or the like can be used, and vapor deposition on a polyethylene terephthalate film, an ethylene-vinyl alcohol copolymer resin film, a polyethylene naphthalate film, or the like is preferable. Further, as the heat welding layer, a low density polyethylene film, a high density polyethylene film, a polypropylene film, a polyacrylonitrile film, a non-stretched polyethylene terephthalate film, or the like can be used.

なお、本発明の繊維径分布のピーク値の測定方法は、JIS A 9504 人造鉱物繊維保温剤 4.8繊維の平均太さにほぼ準じ、精度のみ0.5μmから0.1μmへ変更するものとする。すなわち、1試料あたり3カ所から20gのサンプリングを行い、さらにそれぞれから、20本の繊維を採り、顕微鏡、または電子顕微鏡にて、0.1μmの精度まで測定するものとする。   The method for measuring the peak value of the fiber diameter distribution according to the present invention is based on JIS A 9504, an artificial mineral fiber heat insulating agent, which is substantially in accordance with the average thickness of 4.8 fibers, and only the accuracy is changed from 0.5 μm to 0.1 μm. I do. That is, sampling of 20 g is performed from three places per sample, and 20 fibers are taken from each of the samples and measured with a microscope or an electron microscope to an accuracy of 0.1 μm.

以下に実施例を用いて、本発明を具体的に説明する。本発明はこれらのみに限定されるものではない。   Hereinafter, the present invention will be specifically described with reference to Examples. The present invention is not limited to only these.

(実施例1)
真空断熱材の芯材には、繊維径分布のピーク値が0.8μm、嵩密度25kg/m3のシリカアルミナウールを用いた。外皮材は、表面保護層がポリエチレンテレフタレートフィルム、ガスバリア層がエチレン・ビニルアルコール共重合体樹脂フィルムにアルミ蒸着を施したもの、熱溶着層が無延伸ポリプロピレンのものを使用した。外皮材に芯材を充填し、圧力13.3Paにて封止し、真空断熱材とした。真空断熱材の大きさは、60cm×30cm×1cmとした。
(Example 1)
As the core material of the vacuum heat insulating material, silica alumina wool having a fiber diameter distribution peak value of 0.8 μm and a bulk density of 25 kg / m 3 was used. As the outer cover material, a polyethylene terephthalate film as a surface protective layer, an aluminum / vinyl alcohol copolymer resin film as a gas barrier layer subjected to aluminum vapor deposition, and a non-stretched polypropylene as a heat welding layer were used. The core material was filled in the outer skin material, and sealed at a pressure of 13.3 Pa to obtain a vacuum heat insulating material. The size of the vacuum heat insulating material was 60 cm × 30 cm × 1 cm.

この真空断熱材の熱伝導率を、測定したところ、0.0023W/mKであった。   When the thermal conductivity of this vacuum heat insulating material was measured, it was 0.0023 W / mK.

また、加速試験による断熱材の劣化を評価したが、10年経過条件での断熱性能の劣化は確認できなかった。   In addition, the deterioration of the heat insulating material was evaluated by an accelerated test, but no deterioration of the heat insulating performance was observed under the condition of 10 years.

(実施例2)
真空断熱材の芯材には、繊維径分布のピーク値が0.8μm、嵩密度を圧縮により120kg/m3としたシリカアルミナウールを用いた。外皮材は、表面保護層がポリエチレンテレフタレートフィルム、ガスバリア層がエチレン・ビニルアルコール共重合体樹脂フィルムにアルミ蒸着を施したもの、熱溶着層が無延伸ポリプロピレンのものを使用した。外皮材に芯材を充填し、圧力13.3Paにて封止し、真空断熱材とした。真空断熱材の大きさは、60cm×30cm×1cmとした。
(Example 2)
Silica alumina wool having a fiber diameter distribution peak value of 0.8 μm and a bulk density of 120 kg / m 3 by compression was used as a core material of the vacuum heat insulating material. As the outer cover material, a polyethylene terephthalate film as a surface protective layer, an aluminum / vinyl alcohol copolymer resin film as a gas barrier layer subjected to aluminum evaporation, and a non-stretched polypropylene as a heat welding layer were used. The core material was filled in the outer skin material, and sealed at a pressure of 13.3 Pa to obtain a vacuum heat insulating material. The size of the vacuum heat insulating material was 60 cm × 30 cm × 1 cm.

この真空断熱材の熱伝導率を、測定したところ、0.0023W/mKであった。   When the thermal conductivity of this vacuum heat insulating material was measured, it was 0.0023 W / mK.

また、加速試験による断熱材の劣化を評価したが、10年経過条件での断熱性能の劣化は確認できなかった。   In addition, the deterioration of the heat insulating material was evaluated by an accelerated test, but no deterioration of the heat insulating performance was observed under the condition of 10 years.

また、嵩密度が高くなったために、硬度が増し、外皮材への挿入が容易となった。   In addition, the increased bulk density increased the hardness and facilitated insertion into the outer shell material.

(実施例3)
真空断熱材の芯材には、繊維径分布のピーク値が0.8μm、嵩密度が25kg/m3シリカアルミナウールをシート状とし、複数枚積層したものを用いた。
外皮材は、表面保護層がポリエチレンテレフタレートフィルム、ガスバリア層がエチレン・ビニルアルコール共重合体樹脂フィルムにアルミ蒸着を施したもの、熱溶着層が無延伸ポリプロピレンのものを使用した。外皮材に芯材を充填し、圧力13.3paにて封止し、真空断熱材とした。真空断熱材の大きさは、60cm×30cm×1cmとした。
(Example 3)
As the core material of the vacuum heat insulating material, a laminate of a plurality of sheets of silica alumina wool having a fiber diameter distribution peak value of 0.8 μm and a bulk density of 25 kg / m 3 was used.
As the outer cover material, a polyethylene terephthalate film as a surface protective layer, an aluminum / vinyl alcohol copolymer resin film as a gas barrier layer subjected to aluminum vapor deposition, and a non-stretched polypropylene as a heat welding layer were used. The core material was filled in the outer cover material, and sealed at a pressure of 13.3 pa to obtain a vacuum heat insulating material. The size of the vacuum heat insulating material was 60 cm × 30 cm × 1 cm.

この真空断熱材の熱伝導率を、測定したところ、0.0023W/mKであった。   When the thermal conductivity of this vacuum heat insulating material was measured, it was 0.0023 W / mK.

また、加速試験による断熱材の劣化を評価したが、10年経過条件での断熱性能の劣化は確認できなかった。   In addition, the deterioration of the heat insulating material was evaluated by an accelerated test, but no deterioration of the heat insulating performance was observed under the condition of 10 years.

また、繊維をシート状とし、積層しているため、硬度が増し、外皮材への挿入が容易となった。   Further, since the fibers are formed into a sheet and laminated, the hardness is increased and the insertion into the outer cover material is facilitated.

(実施例4)
真空断熱材の芯材には、繊維径分布のピーク値が0.6μm、嵩密度が25kg/m3シリカアルミナウールをシート状とし、複数枚積層したものを用いた。
外皮材は、表面保護層がポリエチレンテレフタレートフィルム、ガスバリア層がエチレン・ビニルアルコール共重合体樹脂フィルムにアルミ蒸着を施したもの、熱溶着層が無延伸ポリプロピレンのものを使用した。外皮材に芯材を充填し、圧力13.3paにて封止し、真空断熱材とした。真空断熱材は3つ作製し、2つは30cm×30cm×1cmとした。もう1つは平板状で60cm×30cm×1cmのものを作製し、中心部で折り曲げ加工を行った。
(Example 4)
As the core material of the vacuum heat insulating material, a laminate of a plurality of sheets of silica alumina wool having a fiber diameter distribution peak value of 0.6 μm and a bulk density of 25 kg / m 3 was used.
As the outer cover material, a polyethylene terephthalate film as a surface protective layer, an aluminum / vinyl alcohol copolymer resin film as a gas barrier layer subjected to aluminum vapor deposition, and a non-stretched polypropylene as a heat welding layer were used. The core material was filled in the outer cover material, and sealed at a pressure of 13.3 pa to obtain a vacuum heat insulating material. Three vacuum heat insulating materials were prepared, and two were set to 30 cm × 30 cm × 1 cm. The other one was a flat plate having a size of 60 cm × 30 cm × 1 cm, and was bent at the center.

これらの真空断熱材の熱伝導率を、測定したところ、0.0017W/mKであった。これは、繊維径のピーク値がより小さくなったために、固体熱伝導,気体熱伝導が共に低減した効果によるものと考える。   The measured thermal conductivity of these vacuum heat insulating materials was 0.0017 W / mK. This is thought to be due to the effect that both the solid heat conduction and the gas heat conduction were reduced because the fiber diameter peak value became smaller.

また、加速試験による断熱材の劣化を評価したが、10年経過条件での断熱性能の劣化は確認できなかった。   In addition, the deterioration of the heat insulating material was evaluated by an accelerated test, but no deterioration of the heat insulating performance was observed under the condition of 10 years.

また、繊維をシート状とし、積層しているため、硬度が増し、外皮材への挿入が容易となった。   Further, since the fibers are formed into a sheet and laminated, the hardness is increased and the insertion into the outer cover material is facilitated.

(実施例5)
真空断熱材の芯材、および、外皮材は、実施例4と同じものを使用した。外皮材に芯材を充填し、圧力13.3paにて封止し、真空断熱材とした。真空断熱材の大きさは、12cm×12cm×1mmとした。この真空断熱材の熱伝導率を測定したところ、0.0017W/mKであった。
(Example 5)
The same core material and outer skin material of the vacuum heat insulating material as those in Example 4 were used. The core material was filled in the outer cover material, and sealed at a pressure of 13.3 pa to obtain a vacuum heat insulating material. The size of the vacuum heat insulating material was 12 cm × 12 cm × 1 mm. When the thermal conductivity of this vacuum heat insulating material was measured, it was 0.0017 W / mK.

(実施例6)
真空断熱材の芯材、および、外皮材は、実施例4と同じものを使用した。外皮材に芯材を充填し、圧力13.3paにて封止し、真空断熱材とした。真空断熱材の大きさは、60cm×15cm×7mmとし、円筒状に加工した。この真空断熱材の熱伝導率を測定したところ、0.0017W/mKであった。
(Example 6)
The same core material and outer skin material of the vacuum heat insulating material as those in Example 4 were used. The core material was filled in the outer cover material, and sealed at a pressure of 13.3 pa to obtain a vacuum heat insulating material. The size of the vacuum heat insulating material was 60 cm × 15 cm × 7 mm, and was processed into a cylindrical shape. When the thermal conductivity of this vacuum heat insulating material was measured, it was 0.0017 W / mK.

(実施例7)
真空断熱材の芯材、および、外皮材は、実施例4と同じものを使用した。外皮材に芯材を充填し、圧力13.3Paにて封止し、2つの真空断熱材を作製した。1つの真空断熱材の大きさは、20cm×20cm×7mmとした。もう一方は、可とう性を活かし、図4の電気湯沸かし器蓋部に適合する形状に変形加工した。これらの真空断熱材の熱伝導率を測定したところ、0.0017W/mKであった。
(Example 7)
The same core material and outer skin material of the vacuum heat insulating material as those in Example 4 were used. The outer shell material was filled with a core material, sealed at a pressure of 13.3 Pa, and two vacuum heat insulating materials were produced. The size of one vacuum heat insulating material was 20 cm × 20 cm × 7 mm. The other was deformed into a shape that fits the lid of the electric kettle of FIG. 4 by making use of its flexibility. When the thermal conductivity of these vacuum heat insulating materials was measured, it was 0.0017 W / mK.

(実施例8)
実施例4の真空断熱材3つを図3のように、冷蔵庫へ適用した。平板状の2つは背面および庫内バリア層に埋設し、折り曲げ加工したものは底部へ埋設した。消費電力量を測定したところ、ブランクよりも12%低下しており、断熱効果を確認した。また、加速試験による断熱材の劣化を評価したが、10年経過条件での断熱性能の劣化は確認できなかった。
(Example 8)
Three vacuum insulation materials of Example 4 were applied to a refrigerator as shown in FIG. The two flat plates were buried in the back and inside barrier layers, and the bent ones were buried in the bottom. When the power consumption was measured, it was 12% lower than the blank, and the heat insulation effect was confirmed. In addition, the deterioration of the heat insulating material was evaluated by an accelerated test, but no deterioration of the heat insulating performance was observed under the condition of 10 years.

(実施例9)
実施例5の真空断熱材を図4のようにノート型コンピュータに装填し、底面の温度を測定したところ、ブランクよりも5℃低下しており、断熱効果を確認した。また、加速試験による断熱材の劣化を評価したが、10年経過条件での断熱性能の劣化は確認できなかった。
(Example 9)
The vacuum heat insulating material of Example 5 was loaded into a notebook computer as shown in FIG. 4, and the temperature of the bottom surface was measured. As a result, the temperature was lower by 5 ° C. than that of the blank. In addition, the deterioration of the heat insulating material was evaluated by an accelerated test, but no deterioration of the heat insulating performance was observed under the condition of 10 years.

(実施例10)
実施例6の真空断熱材を図5のように電気湯沸かし器に適用し、消費電力量を測定したところ、ブランクよりも40%低下しており、断熱効果を確認した。また、加速試験による断熱材の劣化を評価したが、10年経過条件での断熱性能の劣化は確認できなかった。
(Example 10)
The vacuum heat insulating material of Example 6 was applied to an electric water heater as shown in FIG. 5, and the power consumption was measured. As a result, the power consumption was 40% lower than that of the blank, and the heat insulating effect was confirmed. In addition, the deterioration of the heat insulating material was evaluated by an accelerated test, but no deterioration of the heat insulating performance was observed under the condition of 10 years.

(実施例11)
実施例7の真空断熱材を図6のようにオーブンレンジに適用し、消費電力量を測定したところ、ブランクよりも57%低下しており、断熱効果を確認した。また、加速試験による断熱材の劣化を評価したが、10年経過条件での断熱性能の劣化は確認できなかった。
(Example 11)
When the vacuum heat insulating material of Example 7 was applied to a microwave oven as shown in FIG. 6, and the power consumption was measured, it was 57% lower than that of the blank, and the heat insulating effect was confirmed. In addition, the deterioration of the heat insulating material was evaluated by an accelerated test, but no deterioration of the heat insulating performance was observed under the condition of 10 years.

(比較例1)
真空断熱材の芯材には、繊維径分布のピーク値が7μm、嵩密度が25kg/m3シリカアルミナウールを用いた。外皮材は、表面保護層がポリエチレンテレフタレートフィルム、ガスバリア層がエチレン・ビニルアルコール共重合体樹脂フィルムにアルミ蒸着を施したもの、熱溶着層が無延伸ポリプロピレンのものを使用した。外皮材に芯材を充填し、圧力13.3Paにて封止し、真空断熱材とした。真空断熱材の大きさは、30cm×30cm×1cmとした。
(Comparative Example 1)
As the core material of the vacuum heat insulating material, silica alumina wool having a fiber diameter distribution peak value of 7 μm and a bulk density of 25 kg / m 3 was used. As the outer cover material, a polyethylene terephthalate film as a surface protective layer, an aluminum / vinyl alcohol copolymer resin film as a gas barrier layer subjected to aluminum vapor deposition, and a non-stretched polypropylene as a heat welding layer were used. The core material was filled in the outer skin material, and sealed at a pressure of 13.3 Pa to obtain a vacuum heat insulating material. The size of the vacuum heat insulating material was 30 cm × 30 cm × 1 cm.

この真空断熱材の熱伝導率を、測定したところ、0.0062W/mKであった。繊維径にピーク値が0.8μmのものを適用した際より約2.7倍大きくなっている。これは、繊維径が増大したため、固体接触の増大による固体熱伝導の増加と、空隙径の増大による気体熱意伝導の増大に起因するものである。   The measured thermal conductivity of the vacuum heat insulating material was 0.0062 W / mK. The fiber diameter is about 2.7 times larger than when a fiber having a peak value of 0.8 μm is applied. This is attributable to an increase in solid heat conduction due to an increase in solid contact due to an increase in fiber diameter, and an increase in gas thermal conduction due to an increase in void diameter.

(比較例2)
真空断熱材の芯材には、繊維径分布のピーク値が7μm、嵩密度が25kg/m3シリカアルミナウールをシート状とし、複数枚積層したものを用いた。外皮材は、表面保護層がポリエチレンテレフタレートフィルム、ガスバリア層がエチレン・ビニルアルコール共重合体樹脂フィルムにアルミ蒸着を施したもの、熱溶着層が無延伸ポリプロピレンのものを使用した。外皮材に芯材を充填し、圧力13.3Paにて封止し、真空断熱材とした。真空断熱材の大きさは、30cm×30cm×1cmとした。
(Comparative Example 2)
As the core material of the vacuum heat insulating material, a laminate of a plurality of sheets of silica alumina wool having a fiber diameter distribution peak value of 7 μm and a bulk density of 25 kg / m 3 was used. As the outer cover material, a polyethylene terephthalate film as a surface protective layer, an aluminum / vinyl alcohol copolymer resin film as a gas barrier layer subjected to aluminum vapor deposition, and a non-stretched polypropylene as a heat welding layer were used. The core material was filled in the outer skin material, and sealed at a pressure of 13.3 Pa to obtain a vacuum heat insulating material. The size of the vacuum heat insulating material was 30 cm × 30 cm × 1 cm.

この真空断熱材の熱伝導率を、測定したところ、0.0062W/mKであった。繊維径にピーク値が0.8μmのものを適用した際より約2.7倍大きくなっている。これは、繊維径が増大したため、固体接触の増大による固体熱伝導の増加と、空隙径の増大による気体熱意伝導の増大に起因するものである。   The measured thermal conductivity of the vacuum heat insulating material was 0.0062 W / mK. The fiber diameter is about 2.7 times larger than when a fiber having a peak value of 0.8 μm is applied. This is attributable to an increase in solid heat conduction due to an increase in solid contact due to an increase in fiber diameter, and an increase in gas thermal conduction due to an increase in void diameter.

(比較例3)
真空断熱材の芯材には、繊維径分布のピーク値が0.8μm、嵩密度が25kg/m3シリカアルミナウールをアクリル系結合材にて、結着したものを用いた。外皮材は、表面保護層がポリエチレンテレフタレートフィルム、ガスバリア層がエチレン・ビニルアルコール共重合体樹脂フィルムにアルミ蒸着を施したもの、熱溶着層が無延伸ポリプロピレンのものを使用した。外皮材に芯材を充填し、圧力13.3Paにて封止し、真空断熱材とした。真空断熱材の大きさは、60cm×30cm×1cmとした。
(Comparative Example 3)
As the core material of the vacuum heat insulating material, a material obtained by binding silica alumina wool having a fiber diameter distribution peak value of 0.8 μm and a bulk density of 25 kg / m 3 with an acrylic binder was used. As the outer cover material, a polyethylene terephthalate film as a surface protective layer, an aluminum / vinyl alcohol copolymer resin film as a gas barrier layer subjected to aluminum evaporation, and a non-stretched polypropylene as a heat welding layer were used. The core material was filled in the outer skin material, and sealed at a pressure of 13.3 Pa to obtain a vacuum heat insulating material. The size of the vacuum heat insulating material was 60 cm × 30 cm × 1 cm.

この真空断熱材の熱伝導率を、測定したところ、0.0031W/mKであった。繊維径にピーク値が0.8μmのもので、結合材を用いていないものを適用した際より8ポイント大きくなっている。これは、結合材を用いたために、繊維の接触点で固着が生じており、固体の伝熱が高くなっていると考える。   When the thermal conductivity of this vacuum heat insulating material was measured, it was 0.0031 W / mK. The peak value of the fiber diameter is 0.8 μm, which is 8 points larger than that in the case where no binder is used. This is thought to be due to the fact that the use of the binder resulted in the sticking of the fibers at the contact points, and the solid heat transfer was high.

また、有機結合材を用いているために、経時的な気体の発生が確認されており、加速試験による断熱材の劣化を評価したが、1年経過条件において断熱性能の劣化が確認された。   Further, since the organic binder was used, generation of gas over time was confirmed. The deterioration of the heat insulating material was evaluated by an accelerated test. However, deterioration of the heat insulating performance was confirmed under the condition of one year.

(比較例4)
真空断熱材の芯材には、繊維径分布のピーク値が0.8μm、嵩密度が25kg/m3シリカアルミナウールを集綿して酸性水溶液を付着処理後、圧縮脱水して乾燥させ、無機質繊維の溶出成分を繊維の交点に集めて硬化させて、繊維同士が結着したものを用いた。外皮材は、表面保護層がポリエチレンテレフタレートフィルム、ガスバリア層がエチレン・ビニルアルコール共重合体樹脂フィルムにアルミ蒸着を施したもの、熱溶着層が無延伸ポリプロピレンのものを使用した。外皮材に芯材を充填し、圧力13.3Paにて封止し、真空断熱材とした。真空断熱材の大きさは、30cm×30cm×1cmとした。
(Comparative Example 4)
The core material of the vacuum heat insulating material has a fiber diameter distribution peak value of 0.8 μm and a bulk density of 25 kg / m 3 silica alumina wool. The eluted components of the fibers were collected at the intersections of the fibers and cured, and the fibers bound together were used. As the outer cover material, a polyethylene terephthalate film as a surface protective layer, an aluminum / vinyl alcohol copolymer resin film as a gas barrier layer subjected to aluminum vapor deposition, and a non-stretched polypropylene as a heat welding layer were used. The core material was filled in the outer skin material, and sealed at a pressure of 13.3 Pa to obtain a vacuum heat insulating material. The size of the vacuum heat insulating material was 30 cm × 30 cm × 1 cm.

この真空断熱材の熱伝導率を、測定したところ、0.0023W/mKであり、実施例1と同等であった。   The measured thermal conductivity of this vacuum heat insulating material was 0.0023 W / mK, which was equivalent to that of Example 1.

しかしながら、可とう性を有していないため、折り曲げ、円筒化などの変形加工が不可能であるために、平板状の限られた用途でしか使用することができなかった。   However, since it has no flexibility, it cannot be bent or cylindrically deformed, so that it can be used only for a limited use in a flat plate shape.

(比較例5)
真空断熱材の芯材、および、外皮材は、比較例2と同じものを使用した。外皮材に芯材を充填し、圧力13.3Paにて封止し、真空断熱材とした。真空断熱材の大きさは、12cm×12cm×1mmとした。
(Comparative Example 5)
The same core material and outer skin material as those of Comparative Example 2 were used for the vacuum heat insulating material. The core material was filled in the outer skin material, and sealed at a pressure of 13.3 Pa to obtain a vacuum heat insulating material. The size of the vacuum heat insulating material was 12 cm × 12 cm × 1 mm.

(比較例6)
真空断熱材の芯材、および、外皮材は、比較例3と同じものを使用した。外皮材に芯材を充填し、圧力13.3Paにて封止し、真空断熱材とした。真空断熱材の大きさは、12cm×12cm×1mmとした。
(Comparative Example 6)
The same core material and outer skin material as those of Comparative Example 3 were used for the vacuum heat insulating material. The core material was filled in the outer skin material, and sealed at a pressure of 13.3 Pa to obtain a vacuum heat insulating material. The size of the vacuum heat insulating material was 12 cm × 12 cm × 1 mm.

(比較例7)
真空断熱材の芯材、および、外皮材は、比較例2と同じものを使用した。外皮材に芯材を充填し、圧力13.3Paにて封止し、真空断熱材とした。真空断熱材の大きさは、60cm×15cm×7mmとした。
(Comparative Example 7)
The same core material and outer skin material as those of Comparative Example 2 were used for the vacuum heat insulating material. The core material was filled in the outer skin material, and sealed at a pressure of 13.3 Pa to obtain a vacuum heat insulating material. The size of the vacuum heat insulating material was 60 cm × 15 cm × 7 mm.

(比較例8)
真空断熱材の芯材、および、外皮材は、比較例3と同じものを使用した。外皮材に芯材を充填し、圧力13.3Paにて封止し、真空断熱材とした。真空断熱材の大きさは、60cm×15cm×7mmとした。
(Comparative Example 8)
The same core material and outer skin material as those of Comparative Example 3 were used for the vacuum heat insulating material. The core material was filled in the outer skin material, and sealed at a pressure of 13.3 Pa to obtain a vacuum heat insulating material. The size of the vacuum heat insulating material was 60 cm × 15 cm × 7 mm.

(比較例9)
真空断熱材の芯材、および、外皮材は、比較例2と同じものを使用した。外皮材に芯材を充填し、圧力13.3Paにて封止し、真空断熱材とした。真空断熱材の大きさは、20cm×20cm×7mmとした。
(Comparative Example 9)
The same core material and outer skin material as those of Comparative Example 2 were used for the vacuum heat insulating material. The core material was filled in the outer skin material, and sealed at a pressure of 13.3 Pa to obtain a vacuum heat insulating material. The size of the vacuum heat insulating material was 20 cm × 20 cm × 7 mm.

(比較例10)
真空断熱材の芯材、および、外皮材は、比較例3と同じものを使用した。外皮材に芯材を充填し、圧力13.3Paにて封止し、真空断熱材とした。真空断熱材の大きさは、20cm×20cm×7mmとした。
(Comparative Example 10)
The same core material and outer skin material as those of Comparative Example 3 were used for the vacuum heat insulating material. The core material was filled in the outer skin material, and sealed at a pressure of 13.3 Pa to obtain a vacuum heat insulating material. The size of the vacuum heat insulating material was 20 cm × 20 cm × 7 mm.

(比較例11)
比較例2の真空断熱材を折り曲げ加工の不要な図3の3カ所に適用し、消費電力量を測定したところ、ブランクより5%の低下にとどまり、実施例8と比較して消費電力量低減効果は7%低かった。
(Comparative Example 11)
The vacuum heat-insulating material of Comparative Example 2 was applied to three places in FIG. 3 where bending was unnecessary, and the power consumption was measured. As a result, the power consumption was only 5% lower than that of the blank, and the power consumption was reduced as compared with Example 8. The effect was 7% lower.

(比較例12)
比較例3の真空断熱材を図3の3カ所に適用し、消費電力量を測定したところ、ブランクより9%の低下であり、実施例8と比較して3%低かった。また、加速試験による断熱材の劣化を評価したが、1年経過条件にて断熱性能の劣化を確認した。
(Comparative Example 12)
The vacuum heat-insulating material of Comparative Example 3 was applied to three places in FIG. 3 and the power consumption was measured. As a result, the power consumption was 9% lower than that of the blank, and 3% lower than that of Example 8. In addition, the deterioration of the heat insulating material was evaluated by an accelerated test, and the deterioration of the heat insulating performance was confirmed under the condition of one year.

(比較例13)
比較例6の真空断熱材を図4のようにノート型コンピュータに装填し、底面の温度を測定したところ、ブランクよりも2℃低下であり、実施例9より断熱効果は低かった。
(Comparative Example 13)
The vacuum heat insulating material of Comparative Example 6 was loaded into a notebook computer as shown in FIG. 4, and the temperature of the bottom surface was measured. The temperature was lower by 2 ° C. than that of the blank, and the heat insulating effect was lower than that of Example 9.

(比較例14)
比較例7の真空断熱材を図4のようにノート型コンピュータに装填し、底面の温度を測定したところ、ブランクよりも4℃低下であり、実施例9より断熱効果は低かった。また、加速試験による断熱材の劣化を評価したが、1年経過条件にて断熱性能の劣化を確認した。
(Comparative Example 14)
The vacuum heat insulating material of Comparative Example 7 was loaded into a notebook computer as shown in FIG. 4, and the temperature of the bottom surface was measured. As a result, the temperature was lower by 4 ° C. than that of the blank, and the heat insulating effect was lower than that of Example 9. In addition, the deterioration of the heat insulating material was evaluated by an accelerated test, and the deterioration of the heat insulating performance was confirmed under the condition of one year.

(比較例15)
比較例8の真空断熱材を図5のように電気湯沸かし器に適用し、消費電力量を測定したところ、ブランクより20%低下しており、実施例10と比較して消費電力量低減効果は約20%少なかった。
(Comparative Example 15)
The vacuum heat insulating material of Comparative Example 8 was applied to an electric water heater as shown in FIG. 5, and the power consumption was measured. As a result, the power consumption was 20% lower than that of the blank. 20% less.

(比較例16)
比較例9の真空断熱材を図5のように電気湯沸かし器に適用し、消費電力量を測定したところ、ブランクより35%低下しており、実施例10と比較して消費電力量低減効果は約5%少なかった。また、加速試験による断熱材の劣化を評価したが、1年経過条件にて断熱性能の劣化を確認した。
(Comparative Example 16)
The vacuum heat insulating material of Comparative Example 9 was applied to an electric water heater as shown in FIG. 5, and the power consumption was measured. As a result, the power consumption was 35% lower than that of the blank. 5% less. In addition, the deterioration of the heat insulating material was evaluated by an accelerated test, and the deterioration of the heat insulating performance was confirmed under the condition of one year.

(比較例17)
比較例10の真空断熱材を図6のようにオーブンレンジに適用し、消費電力量を測定したところ、ブランクと比較して20%低減しており、実施例11と比較して断熱効果は約37%小さかった。
(Comparative Example 17)
The vacuum heat insulating material of Comparative Example 10 was applied to a microwave oven as shown in FIG. 6, and the power consumption was measured. The power consumption was reduced by 20% as compared with the blank, and the heat insulating effect was about 20% lower than that of Example 11. 37% smaller.

(比較例18)
比較例11の真空断熱材を図6のようにオーブンレンジに適用し、消費電力量を測定したところ、ブランクと比較して50%低減しており、実施例11と比較して断熱効果は約7%小さかった。また、加速試験による断熱材の劣化を評価したが、1年経過条件にて断熱性能の劣化を確認した。
(Comparative Example 18)
When the vacuum heat insulating material of Comparative Example 11 was applied to a microwave oven as shown in FIG. 6 and the power consumption was measured, the power consumption was reduced by 50% as compared with the blank. 7% smaller. In addition, the deterioration of the heat insulating material was evaluated by an accelerated test, and the deterioration of the heat insulating performance was confirmed under the condition of one year.

以上のように本発明の真空断熱材は、優れた断熱性能を有し、かつ、真空断熱材の変形に対応でき、さらに、結合材から生じる気体による内圧増加により、断熱性能の劣化を招くことのない高性能な真空断熱材であるので、冷凍冷蔵庫などの冷凍機器、ノート型コンピュータ、電気湯沸かし器、オーブンレンジに適用できる。   As described above, the vacuum heat insulating material of the present invention has excellent heat insulating performance and can cope with the deformation of the vacuum heat insulating material, and further, the deterioration of the heat insulating performance is caused by the increase of the internal pressure due to the gas generated from the binder. Since it is a high-performance vacuum insulation material without any material, it can be applied to refrigeration equipment such as refrigerators and freezers, notebook computers, electric water heaters, and microwave ovens.

本発明の実施の形態1の真空断熱材の断面図Sectional view of the vacuum heat insulating material according to the first embodiment of the present invention. 本発明の実施の形態2の真空断熱材の断面図Sectional view of a vacuum heat insulating material according to Embodiment 2 of the present invention. 本発明の実施の形態3の冷凍冷蔵庫の断面図Sectional view of refrigerator-freezer according to Embodiment 3 of the present invention 本発明の実施の形態4のノート型コンピュータの断面図Sectional view of a notebook computer according to Embodiment 4 of the present invention. 本発明の実施の形態5の電気湯沸かし器の断面図Sectional view of electric kettle of Embodiment 5 of the present invention 本発明の実施の形態6のオーブンレンジの断面図Sectional view of a microwave oven according to Embodiment 6 of the present invention.

符号の説明Explanation of reference numerals

1 真空断熱材
2 外皮材
3 無機繊維材料
4 シート化された無機繊維材料
5 冷凍冷蔵庫
6 内箱
7 外箱
8 硬質ウレタンフォーム
9 機械室
10 コンプレッサー
11 庫内
12 ノート型コンピュータ
13 メインボード
14 発熱部
15 装置ケース
16 放熱板
17 電気湯沸かし器
18 外容器
19 貯湯容器
20 蓋体
21 加熱器
22 オーブンレンジ
23 外壁
24 オーブン壁
25 誘電加熱手段
26 電力変換器
27 高周波磁界発生手段
DESCRIPTION OF SYMBOLS 1 Vacuum heat insulating material 2 Outer skin material 3 Inorganic fiber material 4 Inorganic fiber material 5 Sheet refrigerator 5 Refrigerator 6 Inner box 7 Outer box 8 Hard urethane foam 9 Machine room 10 Compressor 11 Storage 12 Laptop computer 13 Main board 14 Heating part DESCRIPTION OF SYMBOLS 15 Device case 16 Heat sink 17 Electric water heater 18 Outer container 19 Hot water storage container 20 Lid 21 Heater 22 Microwave oven 23 Outer wall 24 Oven wall 25 Dielectric heating means 26 Power converter 27 High frequency magnetic field generating means

Claims (8)

無機繊維芯材と、表面保護層とガスバリア層と熱溶着層によって構成される多層フィルムからなるガスバリア性を有する外皮材とからなる真空断熱材であって、前記芯材がSiO2を主成分とし、かつ、結合材として作用するものを含まないことを特徴とする真空断熱材。 An inorganic fiber core material, a vacuum heat insulating material comprising a gas barrier outer skin material comprising a multilayer film composed of a surface protective layer, a gas barrier layer, and a heat welding layer, wherein the core material is mainly composed of SiO 2. A vacuum heat insulating material characterized by not including a material acting as a binder. シート状に成型された無機繊維を複数枚積層してなる無機繊維芯材と、表面保護層とガスバリア層と熱溶着層によって構成される多層フィルムからなるガスバリア性を有する外皮材とからなる真空断熱材であって、前記芯材がSiO2を主成分とし、かつ、結合材として作用するものを含まないことを特徴とする真空断熱材。 Vacuum insulation consisting of an inorganic fiber core material formed by laminating a plurality of sheet-shaped inorganic fibers, and a gas-barrier outer material consisting of a multilayer film composed of a surface protective layer, a gas barrier layer, and a heat welding layer A vacuum heat insulating material, characterized in that the core material contains SiO 2 as a main component and does not function as a binder. 無機繊維の嵩密度が、圧縮されることにより、100kg/m3以上、300kg/m3未満となっていることを特徴とする請求項1または2記載の真空断熱材。 The bulk density of the inorganic fibers, by being compressed, 100 kg / m 3 or more, according to claim 1 or 2 vacuum insulation material according to, characterized in that it is less than 300 kg / m 3. 繊維材料が結合材として作用するものにより結着していないことを特徴とする請求項1から3のいずれか一項に記載の真空断熱材。   The vacuum heat insulating material according to any one of claims 1 to 3, wherein the fiber material is not bound by what acts as a binder. 請求項1から4のいずれか一項に記載の真空断熱材を具備する冷凍機器。   A refrigeration apparatus comprising the vacuum heat insulating material according to claim 1. 請求項1から4のいずれか一項に記載の真空断熱材を具備するノート型コンピュータ。   A notebook computer comprising the vacuum heat insulating material according to claim 1. 請求項1から4のいずれか一項に記載の真空断熱材を具備する電気湯沸かし器。   An electric water heater comprising the vacuum heat insulating material according to claim 1. 請求項1から4のいずれか一項に記載の真空断熱材を具備するオーブンレンジ。   A microwave oven comprising the vacuum heat insulating material according to claim 1.
JP2004133133A 2004-04-28 2004-04-28 Vacuum heat insulating material and refrigerating equipment, notebook computer, electric water heater and microwave oven Pending JP2004251460A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2004133133A JP2004251460A (en) 2004-04-28 2004-04-28 Vacuum heat insulating material and refrigerating equipment, notebook computer, electric water heater and microwave oven

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2004133133A JP2004251460A (en) 2004-04-28 2004-04-28 Vacuum heat insulating material and refrigerating equipment, notebook computer, electric water heater and microwave oven

Related Parent Applications (1)

Application Number Title Priority Date Filing Date
JP2000269854A Division JP2002081596A (en) 2000-04-21 2000-09-06 Vacuum heat insulating material, method of manufacturing the same, refrigerating, equipment notebook type computer, electric water boiler and oven range

Publications (1)

Publication Number Publication Date
JP2004251460A true JP2004251460A (en) 2004-09-09

Family

ID=33028644

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2004133133A Pending JP2004251460A (en) 2004-04-28 2004-04-28 Vacuum heat insulating material and refrigerating equipment, notebook computer, electric water heater and microwave oven

Country Status (1)

Country Link
JP (1) JP2004251460A (en)

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100790662B1 (en) 2005-08-24 2008-01-02 히타치 어플라이언스 가부시키가이샤 Vacuum Heat Insulator and Refrigerator Using The Same
JP2009024922A (en) * 2007-07-19 2009-02-05 Hitachi Appliances Inc Refrigerator
JP2009024921A (en) * 2007-07-19 2009-02-05 Hitachi Appliances Inc Refrigerator
JP2009228917A (en) * 2008-03-19 2009-10-08 Hitachi Appliances Inc Refrigerator
JP2012202622A (en) * 2011-03-25 2012-10-22 Sharp Corp Refrigerator and method of manufacturing the same
JP2012202621A (en) * 2011-03-25 2012-10-22 Sharp Corp Refrigerator
KR20190049734A (en) 2016-09-20 2019-05-09 쌩-고벵 이조베르 Inorganic fiber laminate, vacuum insulation material using the same, and manufacturing method thereof

Cited By (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100790662B1 (en) 2005-08-24 2008-01-02 히타치 어플라이언스 가부시키가이샤 Vacuum Heat Insulator and Refrigerator Using The Same
JP2009024922A (en) * 2007-07-19 2009-02-05 Hitachi Appliances Inc Refrigerator
JP2009024921A (en) * 2007-07-19 2009-02-05 Hitachi Appliances Inc Refrigerator
JP2009228917A (en) * 2008-03-19 2009-10-08 Hitachi Appliances Inc Refrigerator
JP4695663B2 (en) * 2008-03-19 2011-06-08 日立アプライアンス株式会社 refrigerator
JP2012202622A (en) * 2011-03-25 2012-10-22 Sharp Corp Refrigerator and method of manufacturing the same
JP2012202621A (en) * 2011-03-25 2012-10-22 Sharp Corp Refrigerator
KR20190049734A (en) 2016-09-20 2019-05-09 쌩-고벵 이조베르 Inorganic fiber laminate, vacuum insulation material using the same, and manufacturing method thereof
KR102405640B1 (en) 2016-09-20 2022-06-07 쌩-고벵 이조베르 Inorganic fiber laminate, vacuum insulating material using same, and manufacturing method thereof

Similar Documents

Publication Publication Date Title
TW470837B (en) Vacuum heat insulator
JP3544653B2 (en) refrigerator
JP2001336691A (en) Vacuum insulation material and refrigerator using vacuum insulation material
JP3478771B2 (en) refrigerator
WO2017098694A1 (en) Vacuum heat insulator, heat insulation device provided with same, and method for manufacturing vacuum heat insulator
JP2002310384A (en) Vacuum heat insulation material, refrigerating appliance with vacuum heat insulation material, electric water heater, and oven-range
KR20060032656A (en) Vacuum thermally insulating material and method for production thereof, thermally insulated equipment having the vacuum thermally insulating material, and thermally insulated board
JP3513142B2 (en) Vacuum insulation, insulation, insulation box, insulation door, storage and refrigerator
WO2003076855A1 (en) Refrigerator
CN104634047A (en) Refrigerator
TW536614B (en) Refrigerator
JP2004251460A (en) Vacuum heat insulating material and refrigerating equipment, notebook computer, electric water heater and microwave oven
CN101652600A (en) Insulating layer for use in thermal insulation, insulating element and method for producing the same
JP2002081596A (en) Vacuum heat insulating material, method of manufacturing the same, refrigerating, equipment notebook type computer, electric water boiler and oven range
JP2011149501A (en) Vacuum heat insulating material and refrigerator using the same
JP3482399B2 (en) Vacuum insulation material, method for manufacturing vacuum insulation material, notebook computer, refrigeration equipment, electric water heater, microwave oven
JP2005127409A (en) Vacuum heat insulation material, freezing device and cooling-warming device using vacuum heat insulation material
JP2017133615A (en) Heat insulation material, vacuum heat insulation material, method for manufacturing heat insulation material and equipment using heat insulation material or vacuum heat insulation material
JP2009299764A (en) Vacuum heat insulation material and heat insulation vessel using the same
JP2005220954A (en) Vacuum heat insulating material and method for manufacturing the same, insulation appliance provided with vacuum heat insulating material and heat insulating board
ITVA20010040A1 (en) DOMESTIC REFRIGERATOR WITH IMPROVED THERMAL INSULATION
JP3488229B2 (en) Insulated box and refrigerator
JP2005307995A (en) Vacuum heat insulation material, method for manufacturing same and apparatus using same
JP2001165389A (en) Insulated box body
JP3563729B2 (en) Vacuum insulation material, and refrigeration equipment and cooling / heating equipment using vacuum insulation material

Legal Events

Date Code Title Description
A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20040608

A975 Report on accelerated examination

Free format text: JAPANESE INTERMEDIATE CODE: A971005

Effective date: 20040617

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20040721

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20050201

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20050607