JP2004250268A - Hydrated silicate and method of manufacturing the same and paper filled with the hydrated silicate - Google Patents

Hydrated silicate and method of manufacturing the same and paper filled with the hydrated silicate Download PDF

Info

Publication number
JP2004250268A
JP2004250268A JP2003041173A JP2003041173A JP2004250268A JP 2004250268 A JP2004250268 A JP 2004250268A JP 2003041173 A JP2003041173 A JP 2003041173A JP 2003041173 A JP2003041173 A JP 2003041173A JP 2004250268 A JP2004250268 A JP 2004250268A
Authority
JP
Japan
Prior art keywords
silicate
metal
hydrated
hydrated silicate
acid
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2003041173A
Other languages
Japanese (ja)
Inventor
Kazuyuki Fujita
一之 藤田
Masaru Nagahara
大 永原
Takashi Ochi
隆 越智
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Paper Industries Co Ltd
Jujo Paper Co Ltd
Original Assignee
Nippon Paper Industries Co Ltd
Jujo Paper Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Paper Industries Co Ltd, Jujo Paper Co Ltd filed Critical Nippon Paper Industries Co Ltd
Priority to JP2003041173A priority Critical patent/JP2004250268A/en
Publication of JP2004250268A publication Critical patent/JP2004250268A/en
Pending legal-status Critical Current

Links

Landscapes

  • Silicates, Zeolites, And Molecular Sieves (AREA)
  • Paper (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a novel hydrated silicate-based filler having average particle diameter suitable as a filler for paper making and specific scattering coefficient larger than that of the conventional hydrated silicate filler, a method of manufacturing the same and paper filled with the novel hydrated silicate-based filler and having high opacity and whiteness. <P>SOLUTION: The multiple metal-containing hydrated silicate containing ≥2 kinds of specific metals in addition to silicic acid and sodium in the quantity of 0.5-30% metal expressed in terms of oxide (the ratio (metal oxide)/SiO<SB>2</SB>), having 1-15 μm average particle diameter measured by the laser method and 300-500 m<SP>2</SP>/kg specific scattering coefficient is obtained by replacing a part or the whole of an acid by ≥2 kinds of acidic aqueous solutions each containing one kind of a metal salt or one kind of an acidic aqueous solution containing ≥2 kinds of metal salts at the same time and neutralizing sodium silicate to deposit in a process for neutralizing sodium silicate by adding an acid into a sodium silicate aqueous solution and wet pulverizing. The paper is obtained by filling 0.5-30 solid wt.% of the novel multiple metal-containing hydrated silicate. <P>COPYRIGHT: (C)2004,JPO&NCIPI

Description

【0001】
【発明の属する技術分野】
本発明は、紙の填料として特に好適に使用される平均粒子径を持ち、かつ、その高い光散乱能により、紙に用いた場合には、紙の不透明性を改善することができる水和珪酸塩填料に関するものであり、また該水和珪酸塩填料の製造方法及びこの該水和珪酸塩填料を充填した紙に関するものである。
【0002】
【従来の技術】
水和珪酸系填料は紙の高品質化用填料して用いられる一般的な填料のひとつである。この水和珪酸系填料を製紙過程でパルプ中に添加分散すると、内部に大きな空隙を有することで紙が嵩高になり、低い配合量では、炭酸カルシウムやタルク等よりも白色度、不透明度の改善効果が高い。また、この空隙の存在により、印刷時のインキ成分を吸収する能力(吸油量)が他の填料の数倍という特性を持つため、製紙工程での重要な添加物質の一つに位置付けられている。
【0003】
しかし、近年、紙の一層の高品質化とパルプ原料の低減化を図るため、水和珪酸系填料に対し、より高度な性能改善が望まれていることは明らかである。特に最近は紙の軽量化、高白色度化が望まれるようになったため、用紙の不透明度や、印刷面のインクが紙の裏面へ通過するで起こる裏抜け(プリントスルー)を維持することは難しくなってきている。ここで、裏抜け防止効果を高くするため、填料に求められるのは、高い吸油量および紙の不透明性を高くする能力(比散乱係数が大きいほど不透明度が高い)であり、これらを兼ね備えることが望ましい。
【0004】
水和珪酸系填料は結晶質ではない不定形構造に由来する高い空隙性を有し、紙に内添した場合、白色度や不透明度が改善され、さらに吸油量も高いため、裏抜け防止効果が高いことが一般に知られており、近年では特に新聞用紙用の内添填料として多用されてきている。この水和珪酸系填料の工業的な製造技術としては、アルカリ性である珪酸ソーダに鉱酸を用いて中和し、珪酸分を析出、凝集させて製造する沈降法と呼ばれる方法、また、酸性領域で珪酸を加え、シリカを析出、ゲル化させた後、目的粒径に分散、乾燥させることで製造されるゲル法と呼ばれる製造方法等が一般的に知られており、いずれの方法についても古くから検討が進められている。製紙用填料として用いる場合、その製造時の反応条件を細部にわたって制御することで、最も効果的な構造を形成し、吸油量や細孔容積の大きい水和珪酸が得られるようになり、紙の裏抜け防止効果は相当に向上した。しかし、これら水和珪酸系填料の品質向上の検討は、近年においてますます活発になっており、また、その製造方法も複雑化している。
【0005】
近年検討されている製造方法のひとつとして挙げられるものに、水和珪酸系填料の粒子径を制御した製造技術がある。従来、製造後の水和珪酸は比較的粒子径が大きく、粒度分布は広くならざるを得なかった。さらにこの目的粒子径より極端に大きい粗粒分と呼ばれる不純物を多く含有するため、粒子性状に問題があった。このため、粗粒分を含まない微粒子性状の水和珪酸を得る製造方法が盛んに開発されて来ている。例えば、反応終了後のスラリーを湿式粉砕する方法が記載されている(特許文献1、特許文献2、特許文献3など参照。)。また鉱酸を2段階に分割して中和する場合に第1段添加後スラリーと反応終了スラリーを2回湿式粉砕する方法が提案されている(特許文献4参照。)。これらの方法によれば、反応終了スラリーを粉砕する過程で粗粒分が減少し、裏抜け防止効果と併せて粗粒子が印刷時に紙から剥落する現象(粉落ち)を防止する効果がもたらされるとしている。しかし、反応終了スラリーを湿式粉砕する方法では、粉砕後における水和珪酸の粒度分布が微粒子側へ偏るため、過度の粉砕を行うと紙中への填料歩留まりが悪くなり、同時に水和珪酸の高次構造が破壊されて細孔容積が小さくなり、吸油量が低下するという欠点があり、紙の裏抜け防止効果が低くなり好ましくない。そこで、その製造プロセス中の珪酸析出工程で徹底的に粉砕処理をすることが、粗粒分を減らし、かつ1μm以下の微粒子の生成を少なくしつつ、平均粒子径を小さく出来るため、紙に内添する場合に填料歩留まりを大きく阻害せず、また印刷時に填料の剥離(粉落ち)が少なくすることが可能であること、また吸油度低下を抑制し、高い吸油度を維持するため、裏抜け防止効果の大きい水和珪酸系填料の製造方法が記載されている(特許文献5参照。)。
【0006】
次に水和珪酸製造時に珪酸やナトリウム以外の金属、例えばマグネシウムやアルミニウム等を導入することで、高性能化とする検討も数多く行われている。水和珪酸系填料により紙の不透明度を上げる方法としては、前述のように填料の平均粒子径を小さくする方法の他に、水和珪酸に微細な不定形金属化合物(マグネシウムまたはアルミニウム)を含有させる方法が記載されている。これは、珪酸ソーダに硫酸を分割添加する方法において、硫酸の一部に酸性金属硫酸塩(硫酸アルミニウムまたは硫酸マグネシウム)を含ませて反応させる方法であり、不定形金属化合物含有量(1〜20%)が増えるに従い、紙の不透明度を上げる効果が高くなる(特許文献6参照。)。また、硫酸の代わりに硫酸アルミニウムを添加することで、アルミニウムを一部導入することが検討される(特許文献7参照。)。しかしながら、これらの方法では、金属含有量が増えるに従い、逆に吸油度は低くなる傾向となった。また、マグネシウムを核とし、さらにこの核部分を酸で溶解させ、内部に大きな細孔を作ることで、吸油度が高くさらに白紙不透明度の高いシリカ粒子の製造について検討されている(特許文献8参照。)。しかし、この方法では核となるマグネシウムを溶解させるため、完成時のスラリーを酸性とする必要があること、またマグネシウム分を系外へ排出するため歩留が落ちること、さらに粒径制御が難しいと考えられる。
【0007】
【特許文献1】
特開平5−178606号公報
【特許文献2】
特開平5−301707号公報
【特許文献3】
特開昭61−141767号公報
【特許文献4】
特開昭60−65713号公報
【特許文献5】
特許第2908253号明細書
【特許文献6】
特開平6−166987号公報
【特許文献7】
特開2002−274837号公報
【特許文献8】
特開2002−220221号公報
【0008】
このように水和珪酸製造時に他金属化合物を含有させ、その内部構造を適切に制御することで、その諸性能は大きく変化することがわかる。そこで、この水和珪酸塩製造時の各条件を最適化し、紙の主たる印刷適性である白色度、不透明度の向上効果をさらに高めることができれば、抄紙工程において多大な利益をもたらすことは間違いない。
【0009】
【発明が解決しようとする課題】
本発明が解決しようとする課題の第1は、製紙用填料として好適な平均粒子径を有し、かつ紙の不透明度や白色度を上げる能力である比散乱係数が、従来の水和珪酸系填料よりも大きい新規な水和珪酸系填料と、その製造方法の提供にあり、第2には、該新規水和珪酸系填料を充填した不透明度や白色度が高い紙の提供にある。
【0010】
【課題を解決するための手段】
珪酸ソーダ水溶液に酸を添加し中和する工程において、酸の一部または全量を、金属塩1種類を含有する酸性水溶液の2種類以上、または金属塩2種類以上を同時に含有する酸性水溶液の1種類に置き換え、珪酸を析出させると同時に、湿式粉砕処理を施すことにより、珪酸とナトリウム以外にマグネシウム、カルシウム、ストロンチウム、バリウム、チタン、ジルコニウム、ニッケル、鉄、アルミニウムの群から選ばれる2種類以上の金属を含有し、該金属含有量が酸化物換算で0.5〜30重量%(金属酸化物/SiO比率)であり、平均粒子径がレーザー法による測定値で1〜15μm、かつ比散乱係数が300〜500m/kgである多金属含有水和珪酸塩を得る。これを0.5〜30固形分重量%充填して紙を得る。
【0011】
【発明の実施の形態】
本発明者らは、珪酸ソーダ水溶液を中和し、水和珪酸塩を得る製造技術について鋭意検討した結果、
(1)珪酸ソーダ水溶液に酸を添加し中和する工程において、酸の一部または全量を、金属塩1種類を含有する酸性水溶液の2種類以上、または金属塩2種類以上を同時に含有する酸性水溶液の1種類に置き換え、珪酸を析出させることにより、生成する水和珪酸塩中に、珪酸とナトリウム以外の2種類以上の金属を含有させることができること。
(2)特定の2種類以上の金属を水和珪酸塩に含有させることにより、高白色度、高比散乱係数を有する水和珪酸が得られること。
(3)また、上記の2種類以上の金属を含有する水和珪酸塩(以下、多金属含有水和珪酸塩と記述する)の製造工程中の珪酸析出時に、湿式粉砕処理を施して得られる多金属含有水和珪酸塩は、填料として紙へ内添した場合に、印刷工程で紙から填料が脱離することで発生する紙粉トラブルを起こしづらく、さらに抄紙時の歩留まりを低下させない好適な粒子径となり、かつ比散乱係数が高いこと。
(4)平均粒子径がレーザー法による測定値で1〜15μm、好ましくは3〜15μm、かつ比散乱係数が300〜500m/kgである多金属含有水和珪酸塩は、製紙用填料として優れた品質を有すること。
などを見いだし、本発明を完成するに至った。
【0012】
第1の発明である多金属含有水和珪酸塩の特徴は、該水和珪酸塩中の微細な不定形金属化合物の含有量が酸化物換算で0.5〜30%(金属酸化物/SiO比率)であり、珪酸、ナトリウム以外に特定の2種類以上の金属を含有する。該金属は、マグネシウム、カルシウム、ストロンチウム、バリウム、チタン、ジルコニウム、ニッケル、鉄、アルミニウムの群から選ばれる2種類以上の金属である。平均粒子径は、レーザー法による測定値で1〜15μm、好ましくは3〜15μmであり、さらに、比散乱係数が300〜500m/kgである。
【0013】
第2の発明である該多金属含有水和珪酸塩の製造方法の特徴は、シリカ濃度がSiOとして5〜10重量%の珪酸ソーダに、70℃以上で反応系の沸点以下の温度下、珪酸ソーダ水溶液に酸を添加し中和する工程において、酸の一部または全量を、金属塩1種類を含有する酸性水溶液の2種類以上、または金属塩2種類以上を同時に含有する酸性水溶液の1種類に置き換え、珪酸ソーダ水溶液のpHを5.0〜9.0の範囲に調整することで珪酸を析出させ、これら反応中に湿式粉砕処理を施すことにある。この製造方法により、珪酸、ナトリウム以外の金属の含有量が酸化物換算で0.5〜30%(金属酸化物/SiO比率)の水和珪酸塩を得る。該金属は、マグネシウム、カルシウム、ストロンチウム、バリウム、チタン、ジルコニウム、ニッケル、鉄、アルミニウムの群から選ばれる2種類以上の金属である。平均粒子径は、レーザー法による測定値で1〜15μm、好ましくは3〜15μmであり、さらに、比散乱係数が300〜500m/kgである、平均粒子径が1〜15μm、好ましくは3〜15μmの多金属含有水和珪酸塩を製造することができる。
【0014】
第3の発明である該多金属含有水和珪酸塩を内添した紙の特徴は、該多金属含有水和珪酸塩の含有率が0.5〜30重量%であり、白色度、不透明度、インクの裏抜けなどに優れた点にある。
【0015】
まず、第1発明の多金属含有水和珪酸塩と、第2発明の該多金属含有水和珪酸塩の製造方法について説明する。珪酸ソーダには、NaO/SiOのモル比が異なる珪酸ソーダ1号、2号、3号があるが、本発明ではいずれのグレードの珪酸ソーダも使用でき、水に希釈した形で使用する。ただし、本発明では珪酸ソーダ水溶液のアルカリ濃度が高いほど、生成する水和珪酸中の金属含有率を高めることができるので、NaO比率が高い珪酸ソーダ3号を使用することが好ましい。なお、珪酸ソーダ1号または2号の水溶液に水酸化ナトリウムを加えて水溶液中のアルカリ濃度を高めることもできる。また、珪酸ソーダ3号の水溶液に水酸化ナトリウムを加えることにより珪酸ソーダ水溶液のアルカリ濃度を珪酸ソーダ3号よりも高くできる。本発明の珪酸ソーダ水溶液とは以上のように定義される。珪酸ソーダ水溶液の濃度は、シリカ濃度(SiO換算)として、5〜10重量%が好ましい。これより薄い濃度であると工業的に好ましくなく、また濃い場合は反応時の反応液粘度が高くなり製造に不向きである。
【0016】
珪酸ソーダ水溶液の中和に使用する酸としては、塩酸、硝酸、硫酸、臭酸、リン酸などの無機酸、あるいはシュウ酸、コハク酸などの有機酸が挙げられる。ただし、工業的なコストおよびハンドリング、また通常水和珪酸を製造する際に硫酸が多く用いられることを考慮すると、硫酸を使用することが好ましい。
【0017】
金属塩の酸性水溶液は、水溶液に金属を含み、かつ遊離の酸がまだ存在することで酸性を示すものと定義される。具体的には、金属または金属塩を酸で溶解し、まだ遊離酸が存在するものであれば良い。金属の種類としてはマグネシウム、カルシウム、ストロンチウム、バリウム等のアルカリ土類金属、あるいはチタン、ジルコニウム、ニッケル、鉄、アルミニウムなどが挙げられる。金属塩としては前記金属の塩酸塩、硝酸塩、硫化物、硫酸塩、臭酸塩、リン酸塩、シュウ酸塩、コハク酸塩などがあげられる。酸としては塩酸、硝酸、硫酸、臭酸、リン酸などの無機酸、あるいはシュウ酸、コハク酸などの有機酸が挙げられる。ただし、工業的なコストおよびハンドリング、また通常水和珪酸を製造する際に硫酸が多く用いられることを考慮すると、金属塩としては硫酸塩、酸としては硫酸を使用することが好ましい。
【0018】
また、金属塩の酸性水溶液は、同一水溶液中に金属または金属塩を2種類以上溶解した酸性水溶液を使用しても良いし、単一の金属または金属塩の酸性水溶液を複数使用してもかまわない。
【0019】
これら金属塩の酸性水溶液中に溶解できる金属量は、それぞれの金属のもつ溶解度に依存するため、極端に多い量を溶解させようとすると、金属塩の析出が起こる。そのため、金属塩の酸性水溶液の添加量は、珪酸ソーダの濃度(厳密に言えば、珪酸ソーダ中のアルカリ濃度)によって決定されてしまうので、市販の珪酸ソーダ1号から3号を使用する限り、多金属含有水和珪酸塩中の金属含有量を極端に高くすることはできない。しかし本発明者らは、市販の珪酸ソーダの水溶液に水酸化ナトリウムを加え、アルカリ濃度を高くすることにより、金属塩の酸性水溶液の添加量を増やすことが可能であることを見いだした。この技術により、製造する多金属含有水和珪酸塩中の金属含有量を飛躍的に高めることができる。
【0020】
本発明で製造される多金属含有水和珪酸塩中に含有される金属は、マグネシウム、カルシウム、ストロンチウム、バリウム、チタン、ジルコニウム、ニッケル、鉄、アルミニウムの群から選ばれる2種類以上であるが、中でも少なくともマグネシウムとアルミニウムの2種類の金属を含むことが好ましい。
【0021】
珪酸ソーダ水溶液のpHを5.0〜9.0の範囲に中和しなければならない。pHが5.0未満では、生成する水和珪酸塩中に含まれる珪酸やナトリウム以外の金属が再溶解するので好ましくなく、pHが9.0を超えると珪酸の析出が不十分となり好ましくない。この中和工程の数は特に限定は無く、酸または金属塩の酸性水溶液は一括して添加しても2工程以上に分割添加しても問題はない。しかし、3工程に分割して添加する方法では、生成する多金属含有珪酸塩の吸油量が高くなるという良い傾向が認められ、最も好ましい。3工程に分けて分割添加する場合、第1工程では珪酸ソーダの中和当量(珪酸ソーダ水溶液のpHを5.0〜9.0に調整するのに必要な当量)の30〜60%を中和し、第2工程では第1工程添加分と積算して中和率が80〜95%となるように制御し、第3工程は残りの5〜20%を中和することが好ましい。
【0022】
金属塩の酸性水溶液の適正添加量は、上記中和相当量と同じとしても良いし、その中和等量の一部分としても問題ない。ただし、最終的な多金属含有水和珪酸塩中の金属含有率が0.5〜30%、好ましくは1〜25%になるように、酸性金属塩水溶液中の酸濃度と金属含有濃度に合わせて、添加量を決めなければならない。
【0023】
また、金属塩の酸性水溶液の添加時期は、いずれの工程でも良いが、中和反応が終了する間際に添加すると、多金属含有水和珪酸塩の完成スラリーのpHが変動する恐れがあり、あるいはこのpH変動を避けるために該酸性水溶液の添加量が一定になりにくく、また珪酸の一次粒子形成やこの一次粒子が2次粒子へと凝集される反応は反応初期で行われていることなどを考慮すると、反応初期に行うことが好ましい。
【0024】
珪酸ソーダを中和する反応時の温度に関しては、中和反応時の一次粒子析出および二次粒子の凝集は温度が高いほど早く反応が速く進行するので、なるべく高温が好ましい。低温で反応を行うと、スラリー中に一次粒子のゲルを生じやすくなり、さらに反応時間も延長されることとなり工業的に不向きである。これらの要因を考慮すると70℃以上、沸点以下での反応が好ましい。
【0025】
珪酸ソーダの中和反応中に行う粒子計制御を目的とした粉砕は湿式粉砕であり、これに用いる粉砕機としては、ボールミル、ロッドミル等の広義のボールミルや、タワーミル、アトライター、セイトリーミル、サンドグラインダー、アニューラミル等の媒体撹拌式粉砕機、コロイドミル、ホモミキサー、インラインミル等の高速回転粉砕機などが挙げられ、いずれの粉砕機を使用しても問題ない。また近年ではマルチパス方式をもつ粉砕機が数多く見られ、バッチ式の非粉砕物を均一に粉砕することが容易にできるようになった。内添填料として用いる場合、粒度分布幅は極力狭い方が、歩留まりを含めた紙の諸性能向上に有利と考えられるため、マルチパス方式の粉砕機は非常に有用である。前記の粉砕機のほか分散機や乳化機の類で粉砕することもできるから、これらを粉砕機と組み合わせて使用しても差し支えない。
【0026】
また粉砕時期については、析出する珪酸あるいは珪酸塩粒子は非常に微細であり、特に反応初期で析出するシリカは比較的粉砕されにくいが、中和反応終了間際または中和終了後の製品を粉砕すると細孔が破砕され、いたずらに吸油度を下げる場合もある。これらの理由から、極力、反応の前段階で目的粒径まで粉砕をすることが好ましい。
【0027】
本発明の多金属含有水和珪酸塩の製造に関しては、反応前の珪酸ソーダ水溶液中に導入したい金属の水酸化物の粒子を分散させた後、酸を添加して中和する方法も考えられるが、この方法では生成する水和珪酸塩中に金属をうまく導入することができなかった。例えば、反応前の珪酸ソーダ水溶液に水酸化マグネシウム粒子をスラリー状に分散させた後、硫酸バンドを添加して中和して、多金属含有水和珪酸塩を製造する方法について検討したが、マグネシウムは珪酸ソーダ中で凝集、沈殿を生じてしまい、意図していた金属を水和珪酸中に取りこむことが難しかった。さらに不都合なことに、この場合のマグネシウムの歩留まりは20%程度と非常に低いうえ、作成された水和珪酸の物性も、硫酸のみで作成したものに比べ、光学特性が劣るものしか得られなかった。
【0028】
本発明の多金属含有水和珪酸塩の製造方法は、珪酸ソーダに金属を導入する際、酸性溶液中に金属または金属塩を溶解させた後、これを珪酸ソーダ水溶液に添加し、中和する。この製造方法では、水和珪酸中に各金属を十分に分散させることが可能となり、光学特性を向上させることができる。また、比散乱性さらに結晶性を調査するため、X線分析も行ったが、結晶の明確なピークはどれも認めらなかった。これによって金属塩の酸性水溶液によって導入された金属が、水和珪酸中にその金属酸化物や水酸化物の粒子としてでなく、水和珪酸を構成するシリカと有機的に複合された形状で存在していると考えられる。
【0029】
第3の発明である多金属含有水和珪酸塩を内添した紙について説明する。本発明の多金属含有水和珪酸塩を填料とする紙の種類には特に限定は無いが、高不透明度や裏抜けが無いことが要求される紙に好適に使用される。具体的には、例えば、包装用紙、各種記録用紙(インキジェット用紙、PPC用紙、感熱記録紙、感圧記録紙など)、各種印刷用紙(新聞用紙、上質紙、中質紙、コート原紙)、薄葉紙などが挙げられる。また、酸性抄紙、中性抄紙の抄紙方法にも限定は無く、使用することができる。該多金属含有水和珪酸塩の紙中の含有率は、前記の紙の種類により、まちまちであるが、通常0.5〜30重量%である。また、本発明の多金属含有水和珪酸塩の効果を損なわない範囲で、他の無機填料(例えば、タルク、カオリン、二酸化チタン、水酸化アルミニウム、炭酸カルシウムなど)や有機填料などを使用することもできる。
【0030】
【実施例】
以下、本発明の実施例を比較例と対比して具体的に説明する。なお、水和珪酸系填料の特性評価(元素分析、粒度分布、平均粒子径、填料の比散乱係数)は下記の方法により実施した。
(1)元素分析(蛍光X線分析装置):絶乾したサンプルにバインダーを加えて錠剤状にし、これをオックスフォードED2000型により各元素の酸化物量として測定した。この測定値から、(珪酸、ナトリウム以外の金属酸化物)/SiO比率などを計算した。
(2)粒度分布および平均粒子径:水和珪酸の試料スラリーを分散剤ヘキサメタリン酸ソーダ0.2重量%を添加した純水中で滴下混合して均一分散体とし、レーザー法粒度測定機(使用機器:マルバーン社製マスターサイザーS型)を使用して粒度分布、平均粒子径を測定した。
(3)填料の比散乱係数:熊谷理機工業(株)製の配向性抄紙機により、新聞用紙を想定して、抄紙原料としてN−BKP:TMP:GP:DIP=20:30:20:30の混合比率のパルプスラリーを用い、各例において得られた填料スラリーを填料として、その添加率を対パルプ2、5、8%として坪量40g/mになるように抄造して、プレスにより脱水後、シリンダードライヤーにて乾燥し、各添加率のシートサンプルを作製した。このシートサンプルをハンター反射率計により緑色フィルターを用いて、黒色標準板を裏当てした時の1枚のシートの反射率をR0、同様に標準白色板を裏当てした時の反射率(R0.89)を測定し、ハンター不透明度(JIS P 8138)を算出して、さらに、Kubelka−Munk式に従って各シートサンプルの比散乱係数を算出した。一方、各シートサンプルを575℃にて焼成し、残さ分を灰分量として算出した。各シートの灰分量から填料を無添加で同様に抄造したシートサンプルの灰分量を減じて、サンプルの実際に充填された填料量を算出した。この各填料量と各シートの比散乱係数から填料分100%とした時の比散乱係数を算出し、填料の比散乱係数とした。
【0031】
【実施例1】
(1)第1工程;反応容器(12L)中で市販の3号珪酸ソーダ(SiO:20%、NaO:9.5%) と苛性ソーダ361gを加えを水で希釈し、SiOとして7重量%の希釈珪酸ソーダ溶液12Lを調製した。また、金属塩の酸性水溶液として、硫酸バンド3,575gに水677g、無水硫酸マグネシウム169gを混合した。この珪酸ソーダ溶液を85℃に加熱した後、1,106gの酸性金属塩水溶液を30分かけて、粗大ゲルが発生しない十分な強撹拌下で添加した。その後、得られた部分中和液を攪拌下で熟成処理を行うと同時に、サンドグラインダー(三井鉱山SC100型サンドグラインダー、直径0.8mmガラスビーズ充填率50%)により粒径5μmを目標に循環粉砕処理を行った。この熟成、粉砕処理を2時間行った。
(2)第二工程;1,475gの金属塩酸性水溶液を30分かけて添加した後、30分間熟成として攪拌を継続しながら放置した。
(3)第三工程;483gの金属塩酸性水溶液を18分かけて添加し、スラリーの最終pHを7とした。その後、10分間熟成として攪拌を継続しながら放置した。
得られたスラリーを濾過、水洗し、純水に再懸濁させ、水和珪酸塩スラリーを回収した。得られたスラリーの平均粒子径を測定し、また填料として、上記に示した方法で抄紙し、填料の比散乱係数、裏抜け防止効果および填料歩留りの評価を行った。また、スラリーを濾過し、エタノール中に固形分10%になるよう溶解し再度濾過し、これを105℃にて乾燥して吸油量を測定した。反応条件を表1に、生成水和珪酸塩の品質を表2に示した。なお、表2中の白色度と不透明度は、填料無配合紙(パルプのみ)の各値に対する、紙中填料含有率2.0%の紙の各値向上幅で記載した。
【0032】
【実施例2】
(1)第1工程;反応容器(12L)中で前述の市販の3号珪酸ソーダを水で希釈し、SiOとして7重量%の希釈珪酸ソーダ溶液12Lを調製した。また、酸性金属塩水溶液として、硫酸バンド(AL:8%、HSO:25%)2,000gに水1,602g、無水硫酸マグネシウム178gを混合した。この珪酸ソーダ溶液を85℃に加熱した後、1,310gの酸性金属塩水溶液を30分かけて、粗大ゲルが発生しない十分な強撹拌下で添加した。その後、得られた部分中和液を攪拌下で熟成処理を行うと同時に、サンドグラインダー(三井鉱山SC100型サンドグラインダー、直径0.8mmガラスビーズ充填率50%)により粒径5μmを目標に循環粉砕処理を行った。この熟成、粉砕処理を2時間行った。
(2)第二工程;644gの酸性金属塩水溶液を16分間で同様に添加し、最終pHを8に調節し、その後30分間熟成として攪拌を継続しながら放置した。
得られたスラリーは、実施例1と同様に物性を測定評価し、反応条件を表1に、生成水和珪酸塩の品質を表2に示した。
【0033】
【実施例3】
実施例2の第二工程後、第三工程の中和処理として、さらに353gの金属塩の酸性水溶液を16分かけて添加し、最終pHを5とした以外は実施例2と同一条件により水和珪酸塩スラリーを製造した。得られたスラリーは、実施例1と同様に物性を測定評価し、反応条件を表1に、生成水和珪酸塩の品質を表2に示した。
【0034】
【比較例1】
珪酸ソーダ溶液に苛性ソーダを加えず、また中和に使用する金属塩の酸性水溶液の代わりに98%濃硫酸を第1、2、3工程で、180g、180g、57gをそれぞれ15分間で添加し、最終pHを6とした以外は、実施例1と同条件により水和珪酸を製造した。反応条件を表1に、生成水和珪酸塩の品質を表2に示した。
【0035】
【比較例2】
珪酸ソーダ溶液に苛性ソーダを加えず、また中和に使用する酸性金属塩水溶液として硫酸バンドを第1、2、3工程で、582g、582g、291gをそれぞれ15分間で添加し、最終pHを6とした以外は、実施例1と同条件により水和珪酸塩を製造した。反応条件を表1に、生成水和珪酸塩の品質を表2に示した。
【0036】
【比較例3】
珪酸ソーダ溶液に苛性ソーダを加えず、また中和に使用する酸性金属塩水溶液として98%濃硫酸364gに水820g、無水硫酸マグネシウム116gを混合した。この酸性金属塩水溶液を第1、2、3工程で、440g、440g、330gをそれぞれ30分間で添加し、最終pHを6とした以外は、実施例1と同条件により水和珪酸塩を製造した。反応条件を表1に、生成水和珪酸塩の品質を表2に示した。
【0037】
【比較例4】
珪酸ソーダ溶液に苛性ソーダの代わりに、微細水酸化マグネシウム(粒径0.6μm)64g加えたものを調整した。これに金属塩の酸性水溶液として硫酸バンドを第1、2、3工程で、450g、600g、510gをそれぞれ30分間で添加し、最終pHを6とした以外は、実施例1と同条件により水和珪酸塩を製造した。反応条件を表1に、生成水和珪酸塩の品質を表2に示した。
【0038】
【表1】

Figure 2004250268
【0039】
【表2】
Figure 2004250268
【0040】
表1および表2の結果から、本発明の新規な水和珪酸塩である多金属含有水和珪酸塩は高いレベルでの比散乱係数を示し、紙の内添填料として用いた場合、紙の不透明度、白色度を大きく改善できることが分かる。また、比較例1(珪酸、ナトリウム以外の金属含有なし)と比較例2、3(珪酸、ナトリウム以外にアルミニウム、またはマグネシウムのみ単独で含有しているもの)、さらに比較例4のようにアルミニウムを金属塩の酸性水溶液として添加したがマグネシウムは固体状で添加したものでは、比散乱係数はほとんど変わらなかった。これらの結果から、実施例に示されている2種類の金属を含有させた多金属含有水和珪酸塩とすることで、比散乱係数を大きく改善でき、紙の白色度、不透明度を改善できることは明白である。このように、金属塩の酸性水溶液を用い、2種類以上の金属を含有させた多金属含有水和珪酸塩とすることで、従来の水和珪酸塩では得られなかった高い比散乱係数をもつ新規な水和珪酸塩の製造が可能であることがわかる。
【0041】
【発明の効果】
本発明の多金属含有水和珪酸塩は、珪酸、ナトリウム以外に2種類以上の金属を含有し、該金属含有量が酸化物換算で0.5〜30%(金属酸化物/SiO比率)であり、平均粒子径がレーザー法による測定値で1〜15μm、好ましくは3〜5μm、かつ比散乱係数が300〜500m/kgであることを特徴とし、紙の填料として好適な粒子径と高い比散乱係数を有するものである。この多金属含有水和珪酸塩を填料として紙に内添すると、従来の水和珪酸塩によりも、白色度と不透明度が高い紙が得られる。その結果、製紙工程に多大な益をもたらすものと考えられる。[0001]
TECHNICAL FIELD OF THE INVENTION
The present invention provides a hydrated silicate having an average particle diameter particularly preferably used as a filler for paper, and which can improve the opacity of paper when used in paper due to its high light scattering ability. The present invention relates to a method for producing the hydrated silicate filler and a paper filled with the hydrated silicate filler.
[0002]
[Prior art]
A hydrated silica filler is one of the general fillers used as a filler for improving the quality of paper. When this hydrated silica filler is added and dispersed in the pulp during the papermaking process, the paper becomes bulky due to the large voids inside, and at low loadings, the whiteness and opacity are improved over calcium carbonate and talc. High effect. In addition, due to the presence of these voids, the ability to absorb ink components during printing (oil absorption) is several times that of other fillers, and is thus positioned as one of the important additives in the papermaking process. .
[0003]
However, in recent years, in order to further improve the quality of paper and reduce the amount of pulp raw material, it is clear that higher performance improvement is required for hydrated silica-based fillers. In particular, recently, it has been desired to reduce the weight and whiteness of paper. Therefore, it is difficult to maintain the opacity of the paper and the print-through caused by the ink on the printing surface passing through the back surface of the paper. It's getting harder. Here, in order to enhance the effect of preventing strike-through, the filler is required to have a high oil absorption and the ability to increase the opacity of the paper (the greater the specific scattering coefficient, the higher the opacity). Is desirable.
[0004]
Hydrated silica-based fillers have high porosity derived from amorphous structures that are not crystalline.When internally added to paper, whiteness and opacity are improved, and the oil absorption is also high. Is generally known, and in recent years it has been frequently used as an internal filler especially for newsprint. As an industrial production technology of this hydrated silica-based filler, a method called a sedimentation method in which alkaline sodium silicate is neutralized with a mineral acid to precipitate and aggregate silicic acid components, A silica gel is added, silica is precipitated, gelled, then dispersed to a target particle size, and a manufacturing method called a gel method manufactured by drying is generally known. The study is underway. When used as a filler for papermaking, by controlling the reaction conditions during the production in detail, the most effective structure can be formed, and hydrated silica with a large oil absorption and a large pore volume can be obtained. The strike-through prevention effect has been considerably improved. However, studies on improving the quality of these hydrated silica-based fillers have been increasingly active in recent years, and the production methods thereof have become more complicated.
[0005]
As one of the production methods studied in recent years, there is a production technique in which the particle size of a hydrated silica-based filler is controlled. Conventionally, hydrated silicic acid after production has had a relatively large particle size and a wide particle size distribution. In addition, since it contains a lot of impurities called coarse particles extremely larger than the target particle diameter, there is a problem in particle properties. For this reason, production methods for obtaining hydrated silica in the form of fine particles containing no coarse particles have been actively developed. For example, a method of wet-grinding a slurry after the reaction is described (see Patent Literature 1, Patent Literature 2, Patent Literature 3, etc.). In addition, a method has been proposed in which, when a mineral acid is divided into two stages and neutralized, the slurry after the first stage addition and the slurry after the reaction are wet-milled twice (see Patent Document 4). According to these methods, coarse particles are reduced in the process of pulverizing the reaction-completed slurry, and in addition to the effect of preventing strike-through, an effect of preventing the phenomenon that coarse particles peel off from paper during printing (powdering) is brought about. And However, in the method in which the slurry after the reaction is wet-milled, the particle size distribution of the hydrated silica after the milling is biased toward the fine particles. There is a disadvantage that the secondary structure is destroyed, the pore volume is reduced, and the oil absorption is reduced. Therefore, thorough pulverization in the silicic acid precipitation step in the production process can reduce the average particle diameter while reducing coarse particles and reducing the generation of fine particles of 1 μm or less. Filling does not significantly impair the filler yield and can reduce the exfoliation (powdering) of the filler at the time of printing. A method for producing a hydrated silica-based filler having a large inhibitory effect is described (see Patent Document 5).
[0006]
Next, many studies have been made to improve the performance by introducing metals other than silicic acid and sodium, for example, magnesium and aluminum, during the production of hydrated silicic acid. As a method of increasing the opacity of the paper with a hydrated silica-based filler, in addition to the method of reducing the average particle size of the filler as described above, a fine amorphous metal compound (magnesium or aluminum) is contained in the hydrated silica. A method is described. This is a method in which sulfuric acid is added to sodium silicate in a divided manner, in which a part of sulfuric acid is mixed with an acidic metal sulfate (aluminum sulfate or magnesium sulfate) to cause a reaction. %), The effect of increasing the opacity of the paper increases (see Patent Document 6). It is also considered to add aluminum partially by adding aluminum sulfate instead of sulfuric acid (see Patent Document 7). However, in these methods, as the metal content increases, the oil absorption tends to decrease. Also, production of silica particles having high oil absorption and high white paper opacity by using magnesium as a core and further dissolving the core with an acid to form large pores therein has been studied (Patent Document 8). reference.). However, in this method, it is necessary to acidify the slurry at the time of completion in order to dissolve the core magnesium, and it is difficult to control the particle size because the yield is reduced because the magnesium component is discharged out of the system. Conceivable.
[0007]
[Patent Document 1]
JP-A-5-178606
[Patent Document 2]
JP-A-5-301707
[Patent Document 3]
JP-A-61-141767
[Patent Document 4]
JP-A-60-65713
[Patent Document 5]
Patent No. 2908253
[Patent Document 6]
JP-A-6-166787
[Patent Document 7]
JP 2002-274837 A
[Patent Document 8]
JP 2002-220221 A
[0008]
As described above, it is found that various properties are greatly changed by adding other metal compounds during the production of hydrated silicic acid and appropriately controlling the internal structure. Therefore, if the conditions at the time of production of this hydrated silicate are optimized, and if the effect of improving the whiteness, which is the main printability of paper, and the improvement of opacity can be further enhanced, there is no doubt that a great benefit will be brought about in the papermaking process. .
[0009]
[Problems to be solved by the invention]
The first problem to be solved by the present invention is that a specific scattering coefficient, which is an ability to increase the opacity and whiteness of paper, has a suitable average particle diameter as a filler for papermaking, and the conventional hydrated silicate-based filler. Another object of the present invention is to provide a novel hydrated silica-based filler larger than a filler and a method for producing the same, and secondly, to provide a paper filled with the new hydrated silica-based filler and having high opacity and whiteness.
[0010]
[Means for Solving the Problems]
In the step of adding and neutralizing the acid to the aqueous sodium silicate solution, a part or the entire amount of the acid is converted into two or more acidic aqueous solutions containing one metal salt or one or more acidic aqueous solutions containing two or more metal salts at the same time. At the same time as the precipitation of silicic acid and the wet crushing treatment, in addition to sodium and magnesium, calcium, strontium, barium, titanium, zirconium, nickel, iron, two or more types selected from the group of aluminum Containing metal, and the metal content is 0.5 to 30% by weight in terms of oxide (metal oxide / SiO 2 Ratio), the average particle diameter is 1 to 15 μm as measured by a laser method, and the specific scattering coefficient is 300 to 500 m. 2 / Kg of multimetal-containing hydrated silicate. This is filled with 0.5 to 30% by solid content to obtain paper.
[0011]
BEST MODE FOR CARRYING OUT THE INVENTION
The inventors of the present invention have conducted intensive studies on a production technique for obtaining a hydrated silicate by neutralizing an aqueous sodium silicate solution,
(1) In the step of adding and neutralizing an acid to an aqueous solution of sodium silicate, a part or all of the acid is converted into two or more acidic aqueous solutions containing one metal salt or two or more acidic metal salts. By replacing it with one type of aqueous solution and precipitating silicic acid, the resulting hydrated silicate can contain two or more metals other than silicic acid and sodium.
(2) By including two or more specific metals in the hydrated silicate, hydrated silica having high whiteness and a high specific scattering coefficient can be obtained.
(3) It can be obtained by performing a wet pulverization treatment during the precipitation of silicic acid during the production process of a hydrated silicate containing two or more kinds of metals (hereinafter referred to as a multimetal-containing hydrated silicate). Polymetal-containing hydrated silicate, when internally added to paper as a filler, is unlikely to cause paper powder troubles caused by the separation of the filler from the paper in the printing process, and furthermore, it is preferable that the yield during papermaking is not reduced. Particle size and high specific scattering coefficient.
(4) The average particle diameter is 1 to 15 μm, preferably 3 to 15 μm as measured by a laser method, and the specific scattering coefficient is 300 to 500 m. 2 / Kg of polymetal-containing hydrated silicate having excellent quality as a filler for papermaking.
The inventors have found that the present invention has been completed.
[0012]
The feature of the multimetal-containing hydrated silicate according to the first invention is that the content of the fine amorphous metal compound in the hydrated silicate is 0.5 to 30% in terms of oxide (metal oxide / SiO2). 2 And two or more specific metals besides silicic acid and sodium. The metal is at least two metals selected from the group consisting of magnesium, calcium, strontium, barium, titanium, zirconium, nickel, iron and aluminum. The average particle size is 1 to 15 μm, preferably 3 to 15 μm as measured by a laser method, and the specific scattering coefficient is 300 to 500 m. 2 / Kg.
[0013]
A feature of the method for producing the multimetal-containing hydrated silicate according to the second invention is that the silica concentration is SiO 2 2 In the step of adding an acid to a sodium silicate aqueous solution at a temperature of 70 ° C. or more and a temperature not higher than the boiling point of the reaction system to 5 to 10% by weight of sodium silicate and neutralizing the acid, a part or all of the acid is replaced with one metal salt Is replaced by one or more kinds of acidic aqueous solutions containing two or more kinds of acidic aqueous solutions or two or more kinds of metal salts at the same time, and the pH of the sodium silicate aqueous solution is adjusted to a range of 5.0 to 9.0 to convert silicic acid. Precipitation and subjecting them to wet grinding during these reactions. According to this production method, the content of metals other than silicic acid and sodium is 0.5 to 30% (metal oxide / SiO 2 Ratio) of hydrated silicate. The metal is at least two metals selected from the group consisting of magnesium, calcium, strontium, barium, titanium, zirconium, nickel, iron and aluminum. The average particle size is 1 to 15 μm, preferably 3 to 15 μm as measured by a laser method, and the specific scattering coefficient is 300 to 500 m. 2 / Kg, having an average particle diameter of 1 to 15 µm, preferably 3 to 15 µm.
[0014]
The paper of the third invention in which the polymetal-containing hydrated silicate is internally added is characterized in that the content of the multimetal-containing hydrated silicate is 0.5 to 30% by weight, and the whiteness and opacity And ink strike-through.
[0015]
First, the multimetal-containing hydrated silicate of the first invention and the method for producing the multimetal-containing hydrated silicate of the second invention will be described. Sodium silicate contains Na 2 O / SiO 2 There are sodium silicates No. 1, No. 2 and No. 3 having different molar ratios, but in the present invention, any grade of sodium silicate can be used and used in a form diluted with water. However, in the present invention, the higher the alkali concentration of the aqueous sodium silicate solution, the higher the metal content in the resulting hydrated silicic acid can be. 2 It is preferable to use sodium silicate No. 3 having a high O ratio. In addition, sodium hydroxide can be added to the aqueous solution of sodium silicate No. 1 or 2 to increase the alkali concentration in the aqueous solution. Further, by adding sodium hydroxide to the aqueous solution of sodium silicate No. 3, the alkali concentration of the aqueous solution of sodium silicate can be made higher than that of sodium silicate No. 3. The aqueous sodium silicate solution of the present invention is defined as described above. The concentration of the aqueous sodium silicate solution is determined by the silica concentration (SiO 2 2 As conversion, 5 to 10% by weight is preferable. If the concentration is lower than this, it is not industrially preferable. If the concentration is higher, the viscosity of the reaction solution at the time of the reaction increases, which is not suitable for production.
[0016]
Examples of the acid used for neutralizing the aqueous sodium silicate solution include inorganic acids such as hydrochloric acid, nitric acid, sulfuric acid, bromic acid, and phosphoric acid, and organic acids such as oxalic acid and succinic acid. However, in view of industrial cost and handling, and the fact that sulfuric acid is often used when producing hydrated silicic acid, it is preferable to use sulfuric acid.
[0017]
An acidic aqueous solution of a metal salt is defined as one that contains a metal in the aqueous solution and exhibits acidity in the presence of free acid. Specifically, it is sufficient that the metal or metal salt is dissolved with an acid and the free acid still exists. Examples of the type of metal include alkaline earth metals such as magnesium, calcium, strontium, and barium, and titanium, zirconium, nickel, iron, and aluminum. Examples of the metal salt include hydrochloride, nitrate, sulfide, sulfate, bromate, phosphate, oxalate, and succinate of the metal. Examples of the acid include an inorganic acid such as hydrochloric acid, nitric acid, sulfuric acid, bromic acid and phosphoric acid, and an organic acid such as oxalic acid and succinic acid. However, considering the industrial cost and handling, and the fact that sulfuric acid is often used in the production of hydrated silicic acid, it is preferable to use sulfate as the metal salt and sulfuric acid as the acid.
[0018]
As the acidic aqueous solution of the metal salt, an acidic aqueous solution in which two or more kinds of metals or metal salts are dissolved in the same aqueous solution may be used, or a plurality of acidic aqueous solutions of a single metal or metal salt may be used. Absent.
[0019]
The amount of metal that can be dissolved in the acidic aqueous solution of these metal salts depends on the solubility of each metal, and if an extremely large amount is to be dissolved, precipitation of the metal salt occurs. Therefore, since the amount of the acidic aqueous solution of the metal salt is determined by the concentration of sodium silicate (strictly speaking, the alkali concentration in sodium silicate), as long as commercially available sodium silicate Nos. 1 to 3 are used, The metal content in the multimetal-containing hydrated silicate cannot be extremely high. However, the present inventors have found that it is possible to increase the amount of an acidic aqueous solution of a metal salt by adding sodium hydroxide to a commercially available aqueous solution of sodium silicate to increase the alkali concentration. By this technique, the metal content in the produced multimetal-containing hydrated silicate can be dramatically increased.
[0020]
The metal contained in the multimetal-containing hydrated silicate produced by the present invention is magnesium, calcium, strontium, barium, titanium, zirconium, nickel, iron, two or more selected from the group of aluminum, Among them, it is preferable to include at least two kinds of metals, magnesium and aluminum.
[0021]
The pH of the aqueous sodium silicate solution must be neutralized to a range of 5.0 to 9.0. If the pH is less than 5.0, metals other than silicic acid and sodium contained in the hydrated silicate to be formed are not preferably dissolved, and if the pH exceeds 9.0, the precipitation of silicic acid becomes insufficient, which is not preferable. The number of the neutralization steps is not particularly limited, and there is no problem if the acidic aqueous solution of the acid or the metal salt is added all at once or dividedly added in two or more steps. However, the method of adding in three steps is most preferable because the resulting multimetal-containing silicate has a good tendency to increase the oil absorption. In the case of dividing and adding in three steps, in the first step, 30 to 60% of the neutralization equivalent of sodium silicate (equivalent to adjust the pH of the aqueous sodium silicate solution to 5.0 to 9.0) is used. In the second step, it is preferable that the neutralization rate is controlled to be 80 to 95% by integrating with the amount added in the first step, and that the third step is to neutralize the remaining 5 to 20%.
[0022]
The appropriate addition amount of the acidic aqueous solution of the metal salt may be the same as the above-mentioned equivalent amount of neutralization, or there is no problem as a part of the equivalent amount of neutralization. However, the acid content and the metal content concentration in the acidic metal salt aqueous solution are adjusted so that the metal content in the final multimetal-containing hydrated silicate is 0.5 to 30%, preferably 1 to 25%. Therefore, the amount to be added must be determined.
[0023]
Further, the timing of adding the acidic aqueous solution of the metal salt may be any step, but if it is added just before the neutralization reaction is completed, the pH of the completed slurry of the multimetal-containing hydrated silicate may fluctuate, or In order to avoid this pH fluctuation, the amount of the acidic aqueous solution to be added is difficult to be constant, and the formation of the primary particles of silicic acid and the reaction in which the primary particles are aggregated into the secondary particles are performed in the initial stage of the reaction. Considering this, it is preferable to carry out the reaction at the early stage of the reaction.
[0024]
Regarding the temperature during the reaction for neutralizing the sodium silicate, the higher the temperature, the faster the reaction proceeds in the precipitation of the primary particles and the aggregation of the secondary particles during the neutralization reaction. When the reaction is performed at a low temperature, a gel of primary particles is easily generated in the slurry, and the reaction time is prolonged, which is not industrially suitable. Considering these factors, a reaction at 70 ° C. or higher and a boiling point or lower is preferable.
[0025]
The pulverization for the purpose of controlling the particle size during the neutralization reaction of sodium silicate is wet pulverization. Examples of the pulverizer used for the pulverization include ball mills such as ball mills and rod mills, tower mills, attritors, seitry mills, and sand grinders. And a high-speed rotary pulverizer such as a colloid mill, a homomixer and an in-line mill, etc., and there is no problem using any pulverizer. In recent years, there have been many pulverizers having a multi-pass method, and it has become easy to uniformly pulverize a batch type non-pulverized material. When used as an internal filler, a narrower particle size distribution width is considered to be advantageous for improving various properties of paper including the yield, so that a multi-pass type pulverizer is very useful. In addition to the above-mentioned pulverizers, pulverization can also be performed with a disperser or an emulsifier, and these may be used in combination with a pulverizer.
[0026]
Regarding the pulverization time, the precipitated silicic acid or silicate particles are very fine, and particularly the silica precipitated at the beginning of the reaction is relatively difficult to pulverize. In some cases, the pores are crushed and the oil absorption is unnecessarily reduced. For these reasons, it is preferable to grind to the target particle size as much as possible before the reaction.
[0027]
With respect to the production of the multimetal-containing hydrated silicate of the present invention, a method of dispersing the hydroxide particles of the metal to be introduced into the aqueous sodium silicate solution before the reaction, and then neutralizing by adding an acid is also considered. However, this method did not allow the metal to be successfully introduced into the resulting hydrated silicate. For example, after dispersing magnesium hydroxide particles in an aqueous solution of sodium silicate before the reaction in a slurry state, neutralizing by adding a sulfuric acid band, a method for producing a multimetal-containing hydrated silicate was studied. Agglomerates and precipitates in sodium silicate, making it difficult to incorporate the intended metal into the hydrated silicic acid. More disadvantageously, the yield of magnesium in this case is as low as about 20%, and the physical properties of the hydrated silicic acid produced are only poor in optical properties as compared with those produced only with sulfuric acid. Was.
[0028]
The method for producing a polymetal-containing hydrated silicate according to the present invention is characterized in that, when introducing a metal into sodium silicate, after dissolving the metal or the metal salt in an acidic solution, this is added to a sodium silicate aqueous solution and neutralized. . According to this production method, each metal can be sufficiently dispersed in the hydrated silicic acid, and the optical characteristics can be improved. X-ray analysis was also performed to investigate specific scattering properties and crystallinity, but no clear peaks of crystals were found. As a result, the metal introduced by the acidic aqueous solution of the metal salt exists not in the hydrated silica as particles of the metal oxide or hydroxide, but in an organically complexed form with the silica constituting the hydrated silica. it seems to do.
[0029]
The paper in which the polymetal-containing hydrated silicate according to the third invention is internally added will be described. Although there is no particular limitation on the type of paper using the polymetal-containing hydrated silicate of the present invention as a filler, it is suitably used for paper that requires high opacity and no show-through. Specifically, for example, packaging paper, various recording papers (ink jet paper, PPC paper, thermal recording paper, pressure-sensitive recording paper, etc.), various printing papers (newspaper, high-quality paper, medium-quality paper, coated base paper), Thin paper etc. are mentioned. In addition, there is no limitation on the papermaking method for acidic papermaking and neutral papermaking, and they can be used. The content of the polymetal-containing hydrated silicate in the paper varies depending on the type of the paper, but is usually 0.5 to 30% by weight. Further, other inorganic fillers (for example, talc, kaolin, titanium dioxide, aluminum hydroxide, calcium carbonate, etc.) and organic fillers may be used as long as the effects of the multimetal-containing hydrated silicate of the present invention are not impaired. You can also.
[0030]
【Example】
Hereinafter, examples of the present invention will be specifically described in comparison with comparative examples. The characteristics evaluation (elemental analysis, particle size distribution, average particle diameter, specific scattering coefficient of the filler) of the hydrated silica-based filler was performed by the following method.
(1) Elemental analysis (X-ray fluorescence spectrometer): A binder was added to a completely dried sample to form a tablet, which was measured as an oxide amount of each element using an Oxford ED2000 type. From this measured value, (metal oxides other than silicic acid and sodium) / SiO 2 The ratio was calculated.
(2) Particle size distribution and average particle size: A sample slurry of hydrated silicic acid was dropped and mixed in pure water to which 0.2% by weight of dispersant sodium hexametaphosphate was added to form a uniform dispersion, and a laser particle size analyzer (used) The particle size distribution and the average particle size were measured using an instrument: Mastersizer S type manufactured by Malvern.
(3) Specific scattering coefficient of filler: N-BKP: TMP: GP: DIP = 20: 30: 20: As a papermaking raw material, assuming newsprint, using an oriented paper machine manufactured by Kumagai Riki Kogyo Co., Ltd. A pulp slurry having a mixing ratio of 30 was used as a filler, and the filler slurry obtained in each example was used as a filler. 2 , And after dehydration by a press, dried by a cylinder drier to prepare sheet samples of each addition ratio. The reflectance of one sheet when this sheet sample was backed with a black standard plate by a Hunter reflectometer using a green filter was R. 0, Similarly, the reflectance (R 0.89 ) Was measured, the Hunter opacity (JIS P 8138) was calculated, and the specific scattering coefficient of each sheet sample was calculated according to the Kubelka-Munk equation. On the other hand, each sheet sample was fired at 575 ° C., and the residue was calculated as the amount of ash. The amount of ash actually filled in the sample was calculated by subtracting the amount of ash of the sheet sample similarly prepared without adding any filler from the amount of ash in each sheet. The specific scattering coefficient when the filler content was set to 100% was calculated from the respective filler amounts and the specific scattering coefficient of each sheet, and was defined as the specific scattering coefficient of the filler.
[0031]
Embodiment 1
(1) First step: commercially available sodium silicate No. 3 (SiO 2) in a reaction vessel (12 L) 2 : 20%, Na 2 O: 9.5%) and 361 g of caustic soda were added and diluted with water. 2 As a result, 12 L of a 7 wt% diluted sodium silicate solution was prepared. As an acidic aqueous solution of a metal salt, 677 g of water and 169 g of anhydrous magnesium sulfate were mixed with 3,575 g of a sulfuric acid band. After the sodium silicate solution was heated to 85 ° C., 1,106 g of an aqueous solution of an acidic metal salt was added thereto over 30 minutes under sufficient vigorous stirring without generating a coarse gel. Thereafter, the obtained partially neutralized solution is subjected to an aging treatment under stirring, and at the same time, is circulated and pulverized by a sand grinder (Mitsui Mine SC100 type sand grinder, 0.8 mm in diameter, glass beads filling rate 50%) to a target particle size of 5 μm. Processing was performed. This aging and pulverization treatment was performed for 2 hours.
(2) Second step: After adding 1,475 g of an aqueous metal hydrochloric acid solution over 30 minutes, the mixture was aged for 30 minutes and allowed to stand while continuing to stir.
(3) Third step: 483 g of an aqueous metal hydrochloric acid solution was added over 18 minutes to adjust the final pH of the slurry to 7. Thereafter, the mixture was aged for 10 minutes and left while continuing stirring.
The obtained slurry was filtered, washed with water, and resuspended in pure water to recover a hydrated silicate slurry. The average particle diameter of the obtained slurry was measured, and as a filler, paper was made by the method described above, and the specific scattering coefficient of the filler, the strike-through prevention effect, and the filler yield were evaluated. The slurry was filtered, dissolved in ethanol to a solid content of 10%, filtered again, dried at 105 ° C., and the oil absorption was measured. The reaction conditions are shown in Table 1, and the quality of the resulting hydrated silicate is shown in Table 2. The whiteness and opacity in Table 2 are shown in terms of the improvement of each value of the paper having a filler content of 2.0% in the paper with respect to each value of the filler-free paper (pulp only).
[0032]
Embodiment 2
(1) First step: The above-mentioned commercially available No. 3 sodium silicate was diluted with water in a reaction vessel (12 L), 2 As a result, 12 L of a 7 wt% diluted sodium silicate solution was prepared. In addition, a sulfuric acid band (AL 2 O 3 : 8%, H 2 SO 4 : 25%) 2,000 g of water, 1,602 g of water and 178 g of anhydrous magnesium sulfate were mixed. After heating the sodium silicate solution to 85 ° C., an aqueous solution of an acidic metal salt (1,310 g) was added over 30 minutes with sufficient vigorous stirring without generating a coarse gel. Thereafter, the obtained partially neutralized solution is subjected to an aging treatment under stirring, and at the same time, is circulated and pulverized by a sand grinder (Mitsui Mine SC100 type sand grinder, 0.8 mm in diameter, glass beads filling rate 50%) to a target particle size of 5 μm. Processing was performed. This aging and pulverization treatment was performed for 2 hours.
(2) Second step: 644 g of an aqueous solution of an acidic metal salt was similarly added over 16 minutes, the final pH was adjusted to 8, and the mixture was aged for 30 minutes and left with stirring.
The physical properties of the obtained slurry were measured and evaluated in the same manner as in Example 1. The reaction conditions are shown in Table 1, and the quality of the produced hydrated silicate is shown in Table 2.
[0033]
Embodiment 3
After the second step in Example 2, as a neutralization treatment in the third step, 353 g of an aqueous acidic solution of a metal salt was added over 16 minutes, and the pH was adjusted to 5 under the same conditions as in Example 2 except that the final pH was set to 5. A silicate slurry was produced. The physical properties of the obtained slurry were measured and evaluated in the same manner as in Example 1. The reaction conditions are shown in Table 1, and the quality of the produced hydrated silicate is shown in Table 2.
[0034]
[Comparative Example 1]
Caustic soda was not added to the sodium silicate solution, and instead of the acidic aqueous solution of the metal salt used for neutralization, 98 g of concentrated sulfuric acid was added in the first, second and third steps in 180 g, 180 g and 57 g for 15 minutes, respectively. A hydrated silicic acid was produced under the same conditions as in Example 1 except that the final pH was set to 6. The reaction conditions are shown in Table 1, and the quality of the resulting hydrated silicate is shown in Table 2.
[0035]
[Comparative Example 2]
Caustic soda was not added to the sodium silicate solution, and a sulfuric acid band was added in the first, second and third steps as an aqueous solution of an acidic metal salt used for neutralization, in which 582 g, 582 g and 291 g were respectively added in 15 minutes, and the final pH was 6 A hydrated silicate was produced under the same conditions as in Example 1 except for the above. The reaction conditions are shown in Table 1, and the quality of the resulting hydrated silicate is shown in Table 2.
[0036]
[Comparative Example 3]
Caustic soda was not added to the sodium silicate solution, and 820 g of water and 116 g of anhydrous magnesium sulfate were mixed with 364 g of 98% concentrated sulfuric acid as an aqueous solution of an acidic metal salt used for neutralization. In the first, second and third steps, 440 g, 440 g and 330 g of this acidic metal salt aqueous solution were added in 30 minutes, respectively, to produce a hydrated silicate under the same conditions as in Example 1 except that the final pH was 6. did. The reaction conditions are shown in Table 1, and the quality of the resulting hydrated silicate is shown in Table 2.
[0037]
[Comparative Example 4]
A solution prepared by adding 64 g of fine magnesium hydroxide (particle size: 0.6 μm) to a sodium silicate solution instead of caustic soda was prepared. A sulfuric acid band was added as an acidic aqueous solution of a metal salt in the first, second and third steps in the same manner as in Example 1 except that 450 g, 600 g and 510 g were added in 30 minutes each, and the final pH was adjusted to 6. A silicate was produced. The reaction conditions are shown in Table 1, and the quality of the resulting hydrated silicate is shown in Table 2.
[0038]
[Table 1]
Figure 2004250268
[0039]
[Table 2]
Figure 2004250268
[0040]
From the results shown in Tables 1 and 2, the multimetal-containing hydrated silicate of the present invention, which is a novel hydrated silicate, exhibits a high level of specific scattering coefficient. It can be seen that opacity and whiteness can be greatly improved. Further, as in Comparative Example 1 (containing no metal other than silicic acid and sodium) and Comparative Examples 2 and 3 (containing only aluminum or magnesium in addition to silicic acid and sodium), and further, as in Comparative Example 4, aluminum was used. The specific scattering coefficient hardly changed when magnesium was added as an acidic aqueous solution of a metal salt but magnesium was added in a solid state. From these results, by using a polymetal-containing hydrated silicate containing two kinds of metals shown in Examples, the specific scattering coefficient can be greatly improved, and the whiteness and opacity of paper can be improved. Is obvious. As described above, by using an acidic aqueous solution of a metal salt to form a multimetal-containing hydrated silicate containing two or more metals, it has a high specific scattering coefficient that cannot be obtained with a conventional hydrated silicate. It can be seen that a new hydrated silicate can be produced.
[0041]
【The invention's effect】
The multimetal-containing hydrated silicate of the present invention contains two or more metals in addition to silicic acid and sodium, and the metal content is 0.5 to 30% (metal oxide / SiO 2 Ratio), the average particle diameter is 1 to 15 μm, preferably 3 to 5 μm, and the specific scattering coefficient is 300 to 500 m as measured by a laser method. 2 / Kg, and has a particle diameter suitable for a paper filler and a high specific scattering coefficient. When this polymetal-containing hydrated silicate is internally added to paper as a filler, paper having higher whiteness and opacity than conventional hydrated silicate is obtained. As a result, it is believed that the papermaking process will be greatly benefited.

Claims (5)

珪酸ソーダ水溶液を中和して得られる水和珪酸塩であって、珪酸とナトリウム以外にマグネシウム、カルシウム、ストロンチウム、バリウム、チタン、ジルコニウム、ニッケル、鉄、アルミニウムの群から選ばれる2種類以上の金属を含有し、該金属含有量が酸化物換算で0.5〜30重量%(金属酸化物/SiO比率)であることを特徴とする多金属含有水和珪酸塩。A hydrated silicate obtained by neutralizing an aqueous solution of sodium silicate, comprising two or more metals selected from the group consisting of magnesium, calcium, strontium, barium, titanium, zirconium, nickel, iron and aluminum, in addition to silicic acid and sodium And a metal content of 0.5 to 30% by weight (metal oxide / SiO 2 ratio) in terms of oxide. レーザー法による平均粒子径が1〜15μm、かつ比散乱係数が300〜500m/kgであることを特徴とする請求項1記載の多金属含有水和珪酸塩。Multi-metal-containing hydrated silicate of claim 1 wherein the average particle size of 1 to 15 m, and a specific scattering coefficient, characterized in that a 300~500m 2 / kg by laser method. 水和珪酸塩の製造方法であって、珪酸ソーダ水溶液に酸を添加し中和する工程において、酸の一部または全量を、金属塩1種類を含有する酸性水溶液の2種類以上、または金属塩2種類以上を含有する酸性水溶液の1種類に置き換え、その中和反応時に湿式粉砕処理を施し、珪酸とナトリウム以外にマグネシウム、カルシウム、ストロンチウム、バリウム、チタン、ジルコニウム、ニッケル、鉄、アルミニウムの群から選ばれる2種類以上の金属を含有し、該金属含有量が酸化物換算で0.5〜30重量%(金属酸化物/SiO比率)である水和珪酸塩を得ることを特徴とする多金属含有水和珪酸塩の製造方法。A method for producing a hydrated silicate, wherein, in a step of adding an acid to an aqueous solution of sodium silicate and neutralizing the acid, a part or all of the acid is mixed with two or more types of an acidic aqueous solution containing one type of a metal salt, or Replaced with one kind of acidic aqueous solution containing two or more kinds, and subjected to a wet pulverization process during the neutralization reaction, from the group of magnesium, calcium, strontium, barium, titanium, zirconium, nickel, iron, aluminum in addition to silicic acid and sodium A hydrated silicate containing two or more selected metals and having a metal content of 0.5 to 30% by weight (metal oxide / SiO 2 ratio) in terms of oxide. A method for producing a metal-containing hydrated silicate. 平均粒子径がレーザー法による測定値で1〜15μm、かつ比散乱係数が300〜500m/kgである水和珪酸塩を得ることを特徴とする請求項3記載の多金属含有水和珪酸塩の製造方法。1~15μm a measure average particle diameter by the laser method, and the ratio multi-metal-containing hydrated silicate of claim 3, wherein the scattering coefficient and obtaining a hydrated silicate is 300~500m 2 / kg Manufacturing method. 請求項1または2に記載の多金属含有水和珪酸塩を、0.5〜30固形分重量%充填したことを特徴とする紙。Paper characterized by being filled with the hydrated silicate containing multimetal according to claim 1 or 2 at a solid content of 0.5 to 30% by weight.
JP2003041173A 2003-02-19 2003-02-19 Hydrated silicate and method of manufacturing the same and paper filled with the hydrated silicate Pending JP2004250268A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2003041173A JP2004250268A (en) 2003-02-19 2003-02-19 Hydrated silicate and method of manufacturing the same and paper filled with the hydrated silicate

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2003041173A JP2004250268A (en) 2003-02-19 2003-02-19 Hydrated silicate and method of manufacturing the same and paper filled with the hydrated silicate

Publications (1)

Publication Number Publication Date
JP2004250268A true JP2004250268A (en) 2004-09-09

Family

ID=33024828

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2003041173A Pending JP2004250268A (en) 2003-02-19 2003-02-19 Hydrated silicate and method of manufacturing the same and paper filled with the hydrated silicate

Country Status (1)

Country Link
JP (1) JP2004250268A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006328605A (en) * 2005-05-27 2006-12-07 Daio Paper Corp Newsprint paper
JP2007284822A (en) * 2006-04-17 2007-11-01 Oji Paper Co Ltd Porous filler and method for producing the same, and porous filler slurry and paper

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006328605A (en) * 2005-05-27 2006-12-07 Daio Paper Corp Newsprint paper
JP2007284822A (en) * 2006-04-17 2007-11-01 Oji Paper Co Ltd Porous filler and method for producing the same, and porous filler slurry and paper
JP4742963B2 (en) * 2006-04-17 2011-08-10 王子製紙株式会社 Porous filler and production method thereof, porous filler slurry and paper

Similar Documents

Publication Publication Date Title
US20060272549A1 (en) Purified Precipitated Calcium Carbonate and Purified Calcium Silicate Compounds, a Method for Their Production, and Their Use as Paper Fillers
CA2453936C (en) High surface area aggregated pigments
JP2908253B2 (en) Hydrated silica and its production method
JP2003212539A (en) Novel composite for paper making and method for producing the same
JP3982027B2 (en) Method for producing composite particles
JP4568921B2 (en) Silica particles, method for producing the same, and silica particle-containing paper
WO2002081573A1 (en) High surface area aggregated pigments
US20040079504A1 (en) Doped precipitate silica suspensions with low-particle-size distribution and their use a paper filler
JP3084125B2 (en) Filler for paper and paper using it
JPH0673690A (en) Production of precipitated light calcium carbonate for papermaking
JP3879306B2 (en) Light calcium carbonate grinding method
JP2004250268A (en) Hydrated silicate and method of manufacturing the same and paper filled with the hydrated silicate
JP3728215B2 (en) Aluminum silicate
JPH05178606A (en) Production of hydrated silicic acid for paper making
JP4225929B2 (en) Light calcium carbonate-silica composite
JP4834958B2 (en) Silica particles and silica particle-containing paper
JPH09156919A (en) Complex particle of titania and silica and its production
JP2960002B2 (en) Manufacturing method of filler-filled paper
JP2008239465A (en) Slurry containing light calcium carbonate-silica composite and aluminum-based water-soluble inorganic compound
JPH09176988A (en) Production of filler added paper
JP4069516B2 (en) Light calcium carbonate grinding method and light calcium carbonate
JP5946672B2 (en) Newspaper
JP2710529B2 (en) Hydrated silica-based filler for papermaking, method for producing the same, and paper internally containing the filler
JPH05301707A (en) Water-containing silicic acid and its production
WO2023074608A1 (en) Calcium carbonate water slurry and method for producing calcium carbonate water slurry

Legal Events

Date Code Title Description
A621 Written request for application examination

Effective date: 20060215

Free format text: JAPANESE INTERMEDIATE CODE: A621

RD01 Notification of change of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7421

Effective date: 20080314

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20090331

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20090526

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20090908