JP2004249359A - Solder paste and electrically-conductive connection structure - Google Patents

Solder paste and electrically-conductive connection structure Download PDF

Info

Publication number
JP2004249359A
JP2004249359A JP2003044781A JP2003044781A JP2004249359A JP 2004249359 A JP2004249359 A JP 2004249359A JP 2003044781 A JP2003044781 A JP 2003044781A JP 2003044781 A JP2003044781 A JP 2003044781A JP 2004249359 A JP2004249359 A JP 2004249359A
Authority
JP
Japan
Prior art keywords
solder paste
connection structure
conductive connection
electrode
solder
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2003044781A
Other languages
Japanese (ja)
Inventor
Kiyoto Matsushita
清人 松下
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sekisui Chemical Co Ltd
Original Assignee
Sekisui Chemical Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sekisui Chemical Co Ltd filed Critical Sekisui Chemical Co Ltd
Priority to JP2003044781A priority Critical patent/JP2004249359A/en
Publication of JP2004249359A publication Critical patent/JP2004249359A/en
Pending legal-status Critical Current

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/10Bump connectors; Manufacturing methods related thereto
    • H01L2224/15Structure, shape, material or disposition of the bump connectors after the connecting process
    • H01L2224/16Structure, shape, material or disposition of the bump connectors after the connecting process of an individual bump connector
    • H01L2224/161Disposition
    • H01L2224/16151Disposition the bump connector connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive
    • H01L2224/16221Disposition the bump connector connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive the body and the item being stacked
    • H01L2224/16225Disposition the bump connector connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive the body and the item being stacked the item being non-metallic, e.g. insulating substrate with or without metallisation

Abstract

<P>PROBLEM TO BE SOLVED: To provide solder paste that has the ability to secure a lowered height as well as reliability for conductive connection and also to provide an electrically conductive connection structure in which such lowered height and reliability are secured. <P>SOLUTION: In the solder paste for the purpose of connecting the electrode of a semiconductor chip or that of an electronic component for example to the electrode of a mounting substrate, there are dispersed in the flux electrically conductive fine particles in which one or more metallic layers with solder in the outermost layer are formed on the surface of resin-made substrate fine particles. In the electrically conductive connection structure, the electrode of a semiconductor chip or that of an electronic component for example is connected to the electrode of the mounting substrate using the solder paste. <P>COPYRIGHT: (C)2004,JPO&NCIPI

Description

【0001】
【発明の属する技術分野】
本発明は、導電性微粒子を含むハンダペースト、及びこれを用いて接続された、接続信頼性の高い導電接続構造体に関する。
【0002】
【従来の技術】
携帯電話等のモバイル通信機器、液晶ディスプレー、パーソナルコンピュータ等のエレクトロニクス製品において、電子部品等の電極とプリント基板の電極との電気的接続には、微細な電極を対向させて導電性微粒子やハンダペーストを用いて接続する方法が用いられていた。
近年、上記エレクトロニクス製品の高機能・多機能化及び小型軽量化に伴い、これに使用される半導体素子、半導体部品、電子部品等の高密度化、小型化が求められている。
【0003】
これに対応するために、半導体パッケージを3次元に配置したり、3次元に配置したものを一つの半導体パッケージとして構成することが行われている。
しかしながら、当然、その結果として半導体パッケージの高さは高くなるという問題点が発生し、より低背化が要望されていた。
上記導電性微粒子を用いる方法では、微粒子の粒径を小さくすることにより半導体パッケージの低背化は比較的容易に達成できるものの、電極部との接合面積が小さくなるため、導電接続の信頼性を確保することが困難であった。
【0004】
また、通常、ハンダ粉と有機酸からなるフラックスや溶剤とその他の添加剤とを含有してなるハンダペーストを用いる方法は、例えば、実装用基板の実装予定部に予めハンダペーストを印刷しておいて接続端子たる電極を構成し、次いで電子部品をその部分に搭載し、これを自動ライン上でリフローし、はんだ付けをする形で用いられる(例えば、特許文献1参照)。従って、電極部との接合面積は確保できるが、低背化により、電子部品と基板との線膨張係数等の相違から生じる歪み応力に対応し切れず、やはり導電接続の信頼性を確保することが困難であった。
【0005】
【特許文献1】
特開平10−109188号公報(段落0002)。
【0006】
【発明が解決しようとする課題】
本発明は、上記従来のハンダペーストが惹起する問題点、及び導電接続構造体の製造方法における問題点に鑑み、低背化と共に導電接続の信頼性を確保し得るハンダペースト、及び低背化と共に導電接続の信頼性を確保した導電接続構造体を提供することを目的とする。
【0007】
【課題を解決するための手段】
上記目的を達成するために、請求項1記載の発明は、半導体チップ又は電子部品等の電極と実装用基板の電極とを接続するためのハンダペーストであって、樹脂製基材微粒子の表面に最外層がハンダである1層以上の金属層が形成されてなる導電性微粒子が、フラックスに分散されてなるハンダペーストを提供する。
また、請求項2記載の発明は、半導体チップ又は電子部品等の電極と実装基板の電極とが請求項1記載のハンダペーストを用いて接続されてなる導電接続構造体を提供する。
以下、本発明を更に詳細に説明する。
【0008】
本発明のハンダペーストは、半導体チップ又は電子部品等の電極と実装用基板の電極とを接続するために用いられる。
例えば、電子部品としては、コンデンサー、抵抗器、LGA(Land Grid Array)形態の半導体デバイス等が挙げられる。
また、本発明において用いられる導電性微粒子は、樹脂製基材微粒子の表面に最外層がハンダである1層以上の金属層が形成されてなるものである。
樹脂製基材微粒子は樹脂の有する応力緩和効果により、接続部に或る程度の応力がかかっても吸収もしくは緩和することができる。
【0009】
上記樹脂製基材微粒子を構成する樹脂としては、例えば、スチレン、α−メチルスチレン、p−クロロスチレン、クロロメチルスチレン等のスチレン誘導体;塩化ビニル;酢酸ビニル、プロピオン酸ビニル等のビニルエステル類;アクリロニトリル等の不飽和ニトリル類;(メタ)アクリル酸メチル、(メタ)アクリル酸エチル、(メタ)アクリル酸ブチル、(メタ)アクリル酸2−エチルヘキシル、(メタ)アクリル酸ステアリル、エチレングリコール(メタ)アクリレート、トリフルオロエチル(メタ)アクリレート、ペンタフルオロプロピル(メタ)アクリレート、シクロヘキシル(メタ)アクリレート等の(メタ)アクリル酸エステル誘導体等を重合した物等が挙げられる。これらの樹脂は単独で用いてもよく、2種以上を併用しても良い。
【0010】
また、上記樹脂製基材微粒子を構成する樹脂を合成する際には、例えばジビニルベンゼン、ジビニルビフェニル、ジビニルナフタレン、ポリエチレングリコールジ(メタ)アクリレート、1,6−ヘキサンジオールジ(メタ)アクリレート、ネオペンチルグリコールジ(メタ)アクリレート、トリメチロールプロパントリ(メタ)アクリレート、テトラメチロールメタントリ(メタ)アクリレート、テトラメチロールプロパンテトラ(メタ)アクリレート、ジアリルフタレート及びその異性体、トリアリルイソシアヌレート及びその誘導体等の架橋性単量体を加えても良い。これら架橋性単量体は単独で用いてもよく、2種以上を併用しても良い。
【0011】
上記樹脂製基材微粒子の形状は特に限定されず、通常、球形、楕円形のもの等が用いられ、導電性微粒子の形状も、一般に、球形、楕円形のもの等が用いられる。
【0012】
上記金属層は、導電性の高い金属もしくは合金から構成されていることが好ましい。その例としては、例えば、金、銀、銅、白金、亜鉛、鉄、錫、鉛、アルミニウム、コバルト、インジウム、ニッケル、クロム、チタン、アンチモン、ビスマス、ゲルマニウム、カドミウム、珪素等、及び、ハンダ等のこれらの合金等が挙げられる。
【0013】
上記金属層は、2層以上の多層構造からなるものであってもよい。各層を構成する金属は、同じ金属であってもよいし、層ごとに異なる金属であってもよいが、最外層はハンダから構成されていることを要する。ハンダとしては、通常、鉛と錫との共晶ハンダが用いられるが、鉛と錫に少量の銀、アンチモン、ビスマスもしくはひ素等が含まれていてもよい。
更に、環境に配慮する観点から鉛を含まず、錫と銀、亜鉛、銅、ビスマス、もしくはインジウム等が含まれているものであってもよい。
上記金属層の厚さは特に限定されないが、好ましくは樹脂製基材微粒子の粒径の10〜30%程度とされる。
最外層のハンダ層の厚さは特に限定されないが、好ましくは樹脂製基材微粒子の粒径の30〜50%とされる。
【0014】
上記金属層を形成する方法としては特に限定されず、例えば、上記樹脂製基材微粒子表面に無電解メッキ等により形成する方法等が挙げられる。
本発明のハンダペーストは、上記導電性微粒子が、フラックスに分散されて構成されている。
フラックスは、ハンダ付けする母材(即ち、半導体チップ、各種電子部品、実装用基板等)及びハンダ層の表面の金属酸化物皮膜を溶解・除去して濡れ性を高めると共に、ハンダ付けする際に、熱によって母材及びハンダ層の表面が酸化されないようにこれらの表面を覆い、更に、ハンダの濡れ性を向上させるために用いられる。
【0015】
フラックスは、通常、活性剤である有機酸、アミン等の塩基性化合物の無機酸塩、その他の活性剤、ロジンまたはそれに代わる樹脂成分、チキソトロピー剤、及び溶剤等を含んでおり、本発明のハンダペーストは、上記導電性微粒子が、一般に、80〜90重量%の割合でフラックスに分散されて構成されている。
【0016】
通常、ハンダペーストはプリント基板の上に定量的にスクリーン印刷などにより塗装され、ハンダペーストを印刷または塗装した場所に回路部品が搭載され、次いではんだペーストがリフローされる。リフローとは、はんだペーストを予備加熱を含めてはんだが充分溶融するまで加熱し、次いで冷却固化させる一連の工程を意味する。
【0017】
フラックスとして配合される成分のうち、樹脂成分としては、例えば、天然ロジン、不均化ロジン、重合ロジン、変成ロジン、合成樹脂としてはポリエステル、ポリウレタン、アクリル系樹脂その他が用いられる。
【0018】
活性剤としては、アニリン臭化水素酸塩、イソプロピルアミン塩酸塩、モノエチルアミン臭化水素酸塩、ジフェニルグアニジン臭化水素酸塩などのアミンハロゲン塩、アミンの有機酸塩、蟻酸、酢酸、ミリスチン酸、パルミチン酸、ステアリン酸、安息香酸等の有機モノカルボン酸、シュウ酸、マロン酸、琥珀酸、アジピン酸、フマル酸、マレイン酸等の有機ジカルボン酸およびその無水物、またハロゲン化炭化水素、例えば2,3−ジブロモ−2−ブテン−1,4−ジオール、1,3−ジブロモ−2−プロパノールのようなハロゲン化アルコール等が挙げられる。
【0019】
溶剤としてはアルコール、ケトン、エステル、芳香族系の溶剤が挙げられ、具体的にはベンジルアルコール、エタノール、イソプロピルアルコール、ブタノール、エチルセロソルブ、ブチルセロソルブ、ブチルカルビトール、ターピネオール、トルエン、キシレン、テトラリン、プロピレングリコールモノフェニルエーテル、ジエチレングリコールモノヘキシルエーテルなどが挙げられる。
【0020】
また印刷性を改善するために添加されるチクソトロピー剤としては、微細なシリカ粒子、カオリン粒子などの無機系のもの、水添ヒマシ油、硬化ヒマシ油などの有機系のものが用いられる。この外に、酸化防止剤、銅害防止剤等の添加剤が加えてあってもよい。
【0021】
本発明のハンダペーストは、例えば、上記導電性微粒子80〜90重量%、活性剤0.02〜2重量%,溶剤0.05〜0.1重量%、ロジンまたは樹脂成分8〜10重量%、必要によりチクソトロピー剤を混合して得られる。混合はプラネタリーミキサー等公知の装置を用いて行われる。
【0022】
【発明の実施の形態】
本発明の導電接続構造体は、半導体チップ又は電子部品等の電極と実装用基板の電極とが本発明のハンダペーストを用いて接続されてなるものであり、以下に図面を参照しながら説明する。
図1〜図3は、半導体チップの電極と実装用基板の電極との導電接続構造体を得る際の説明図であり、図1は、半導体チップ1の接続端子(電極)12、12に、図示しないマスキング部材を用いてハンダペースト3を印刷した直後の状態を示す模式的断面図である。
図2は、図1に示した接続端子(電極)12上のハンダペースト3を、リフローして略ボール状とした後、予め用意しておいた、電極54にハンダペースト3を印刷した実装用基板5と、電極同士が対向するように位置を整えた状態を示す模式的断面図である。
図3は、本発明の導電接続構造体の実施形態の一を示す模式的断面図であり、図2の状態から電極14上のハンダペースト3をリフローして略ボール状とした後、半導体チップ1と実装用基板5とを対向状態で実装して電極12及び電極54をハンダペースト3を介して再度リフローを行って接続し、導電接続構造体を得た状態である。
【0023】
また、図4及び図5は、電子部品の電極と実装用基板の電極との導電接続構造体を得る際の説明図であり、図4は図2と略対応するもので、実装用基板5の電極54にはハンダペースト3が印刷されており、電子部品6の接続端子(電極)67、67を電極54と相対する位置に整えた状態を示す模式的断面図である。図5は、本発明の導電接続構造体の実施形態の他の一を示す模式的断面図であり、図4の状態から電極4上のハンダペースト3をリフローして略ボール状とした後、電子部品6と実装用基板5とを対向状態で実装して電極67及び電極54をハンダペースト3を介して再度リフローを行って接続し、導電接続構造体を得た状態である。
【0024】
【実施例】
以下実施例により発明の内容をさらに具体的に説明するが、本発明がこれらに限定されるものではない。
(実施例1及び比較例1)
平均粒径が5μmのジビニルベンゼン架橋重合体からなる樹脂製基材微粒子に、金属層の第1層としてニッケルめっきを施した後、電解めっき法により銅めっきをして金属層の第2層を形成した。更にその上に、錫96.5%、銀3.5%からなるハンダ合金めっきを施して、最外層がハンダである3層構成の金属層が形成された粒径10μmの導電性微粒子を得た。
【0025】
この導電性微粒子を、ベースとなる樹脂成分として重合ロジンを98重量%、活性剤としてステアリン酸1.5重量%、溶剤としてエタノール0.5重量%からなるフラックスに添加・分散させて、導電性のハンダペーストを得た。導電性微粒子とフラックスとの配合割合は、導電性微粒子が80重量%、フラックスが20重量%であった。
【0026】
得られたハンダペーストを、直径φ240μmの接続端子(電極)を81個有する□6mm角の半導体チップの前記接続端子に印刷し、150℃、1分間のプリヒートの後、ピーク温度240℃(225℃以上、20秒)で加熱後、室温まで徐冷し、電極(バンプ)を形成し、半導体パッケージを得た。
得られた半導体パッケージを、直径φ240μmの接続端子(電極)を81個有するプリント基板に、ハンダペーストを介して搭載し、リフローを行い、半導体パッケージとプリント基板との導電接続構造体を得た。
得られた導電接続構造体は、φ300μmの導電性微粒子を上記導電性のハンダペーストの代わりに用いて得た導電接続構造体(比較例1)に比べて、低背化が実現されており、従来のハンダ粉を含んだハンダペーストを使用した印刷法によって得られた導電接続構造体(後述の比較例2)と、同程度の高さにすることができた。
【0027】
〔接続信頼性の評価〕
得られた導電接続構造体に−25℃〜125℃の温度サイクル試験を施したところ、実施例1の導電接続構造体は、1000サイクルの試験終了時点で、不良発生は認められなかった(n=20)。尚、−25℃〜125℃各10分、常温晒し1分を1サイクルとする温度サイクル試験を行った。
(比較例2)
従来のハンダ粉を含んだハンダペーストを使用した以外は実施例1と同様にして、印刷法によって導電接続構造体を作製し、実施例1と同様にして−25℃〜125℃の温度サイクル試験を行った。
その結果、n=20の全てが、導通不良を起こした。
【0028】
【発明の効果】
本発明のハンダペーストは、樹脂製基材微粒子の表面に最外層がハンダである1層以上の金属層が形成されてなる導電性微粒子が、フラックスに分散されてなるので、半導体チップ又は電子部品等の電極と実装用基板の電極との接続に用いた際に、導電性微粒子の最外層に形成されたハンダがリフローすることによって、結合した導電性微粒子は恰も一つの焼結された金属のようになって接続部の導電性を改善するとともに、樹脂製基材微粒子の有する応力緩和作用と相俟って耐久性を向上させ、結局、導電接続構造体の低背化を図り得るとともに、接続信頼性の高い導電接続構造体を提供することができる。
一方、一般に、導電接続構造体の接続端子部等の高さを低くすると、接続信頼性は低下するものであるが、本発明の導電接続構造体は、上記本発明のハンダペーストを用いて、半導体チップ又は電子部品等の電極と実装基板の電極とが接続されてなるので、低背化を達成できているとともに、高い接続信頼性を発揮することができる。
【図面の簡単な説明】
【図1】半導体チップに本発明のハンダペーストを印刷した状態を示す模式的断面図。
【図2】半導体チップと実装基板とを、電極が対向するように配設した状態を示す模式的断面図。
【図3】本発明の導電接続構造体の一例を示す模式的断面図。
【図4】実装基板に電子部品を搭載する直前の状態を示す、部分的模式的断面図。
【図5】本発明の導電接続構造体の他の一例を示す、部分的模式的断面図。
【符号の説明】
1 ・・・半導体チップ
12・・・接続端子(電極)
3 ・・・ハンダペースト
5 ・・・実装用基板
54・・・電極
6 ・・・電子部品
67・・・接続端子(電極)
[0001]
TECHNICAL FIELD OF THE INVENTION
The present invention relates to a solder paste containing conductive fine particles, and a conductive connection structure having high connection reliability, which is connected using the paste.
[0002]
[Prior art]
In electronic products such as mobile communication devices such as mobile phones, liquid crystal displays, and personal computers, the electrical connection between the electrodes of electronic components and the electrodes of the printed circuit board is made by opposing fine electrodes to make conductive fine particles and solder paste. A method of connecting using a method has been used.
In recent years, as the above-mentioned electronic products have become highly functional and multifunctional and have been reduced in size and weight, there has been a demand for higher density and smaller size of semiconductor elements, semiconductor components, electronic components and the like used therein.
[0003]
In order to cope with this, it has been practiced to arrange the semiconductor packages three-dimensionally and to configure the three-dimensionally arranged semiconductor package as one semiconductor package.
However, naturally, as a result, the height of the semiconductor package is increased, and a reduction in height has been demanded.
In the method using the conductive fine particles, the height of the semiconductor package can be relatively easily reduced by reducing the particle size of the fine particles. However, since the bonding area with the electrode portion is reduced, the reliability of the conductive connection is reduced. It was difficult to secure.
[0004]
In addition, usually, a method of using a solder paste containing a flux composed of a solder powder and an organic acid, or a solvent and other additives is performed, for example, by printing a solder paste in advance on a mounting portion of a mounting substrate in advance. Then, an electrode as a connection terminal is formed, and then an electronic component is mounted on the portion, which is reflowed on an automatic line and used in a form of soldering (for example, see Patent Document 1). Therefore, although the bonding area with the electrode part can be ensured, due to the reduction in height, it is not possible to cope with the strain stress generated due to the difference in the coefficient of linear expansion between the electronic component and the substrate, and also to ensure the reliability of the conductive connection. Was difficult.
[0005]
[Patent Document 1]
JP-A-10-109188 (paragraph 0002).
[0006]
[Problems to be solved by the invention]
The present invention has been made in view of the above-mentioned problems caused by the conventional solder paste, and problems in a method of manufacturing a conductive connection structure. An object of the present invention is to provide a conductive connection structure in which the reliability of the conductive connection is ensured.
[0007]
[Means for Solving the Problems]
In order to achieve the above object, the invention according to claim 1 is a solder paste for connecting an electrode of a semiconductor chip or an electronic component and an electrode of a mounting board, and the solder paste is applied to a surface of a resin base material fine particle. Provided is a solder paste in which conductive fine particles formed by forming one or more metal layers whose outermost layers are solder are dispersed in a flux.
According to a second aspect of the present invention, there is provided a conductive connection structure in which electrodes of a semiconductor chip or an electronic component are connected to electrodes of a mounting board using the solder paste of the first aspect.
Hereinafter, the present invention will be described in more detail.
[0008]
The solder paste of the present invention is used for connecting electrodes of a semiconductor chip or an electronic component to electrodes of a mounting substrate.
For example, examples of the electronic component include a capacitor, a resistor, and a semiconductor device in an LGA (Land Grid Array) form.
The conductive fine particles used in the present invention are obtained by forming at least one metal layer having an outermost layer of solder on the surface of resin-made base fine particles.
Due to the stress relaxation effect of the resin, the resin base particles can be absorbed or relaxed even when a certain level of stress is applied to the connection portion.
[0009]
Examples of the resin constituting the resin base fine particles include styrene derivatives such as styrene, α-methylstyrene, p-chlorostyrene, and chloromethylstyrene; vinyl chloride; vinyl esters such as vinyl acetate and vinyl propionate; Unsaturated nitriles such as acrylonitrile; methyl (meth) acrylate, ethyl (meth) acrylate, butyl (meth) acrylate, 2-ethylhexyl (meth) acrylate, stearyl (meth) acrylate, ethylene glycol (meth) Examples thereof include products obtained by polymerizing (meth) acrylate derivatives such as acrylate, trifluoroethyl (meth) acrylate, pentafluoropropyl (meth) acrylate, and cyclohexyl (meth) acrylate. These resins may be used alone or in combination of two or more.
[0010]
When synthesizing the resin constituting the resin base particles, for example, divinylbenzene, divinylbiphenyl, divinylnaphthalene, polyethylene glycol di (meth) acrylate, 1,6-hexanediol di (meth) acrylate, Pentyl glycol di (meth) acrylate, trimethylolpropane tri (meth) acrylate, tetramethylolmethane tri (meth) acrylate, tetramethylolpropane tetra (meth) acrylate, diallyl phthalate and its isomers, triallyl isocyanurate and its derivatives, etc. May be added. These crosslinkable monomers may be used alone or in combination of two or more.
[0011]
The shape of the resin substrate fine particles is not particularly limited, and a spherical or elliptical shape is generally used. The conductive fine particles also generally have a spherical or elliptical shape.
[0012]
The metal layer is preferably made of a highly conductive metal or alloy. Examples thereof include, for example, gold, silver, copper, platinum, zinc, iron, tin, lead, aluminum, cobalt, indium, nickel, chromium, titanium, antimony, bismuth, germanium, cadmium, silicon, and the like, and solder. And the like of these alloys.
[0013]
The metal layer may have a multilayer structure of two or more layers. The metal forming each layer may be the same metal or a different metal for each layer, but the outermost layer needs to be formed of solder. As the solder, a eutectic solder of lead and tin is usually used, but lead and tin may contain a small amount of silver, antimony, bismuth or arsenic.
Furthermore, from the viewpoint of consideration for the environment, lead may not be contained, but may contain tin and silver, zinc, copper, bismuth, indium, or the like.
The thickness of the metal layer is not particularly limited, but is preferably about 10 to 30% of the particle diameter of the resin base particles.
The thickness of the outermost solder layer is not particularly limited, but is preferably set to 30 to 50% of the particle diameter of the resin base material fine particles.
[0014]
The method for forming the metal layer is not particularly limited, and includes, for example, a method of forming the surface of the resin base material fine particles by electroless plating or the like.
The solder paste of the present invention is configured such that the conductive fine particles are dispersed in a flux.
The flux increases the wettability by dissolving and removing the base material to be soldered (that is, semiconductor chips, various electronic components, mounting substrates, etc.) and the metal oxide film on the surface of the solder layer. It is used to cover the surfaces of the base material and the solder layer so as not to be oxidized by heat, and to further improve the wettability of the solder.
[0015]
The flux usually contains an organic acid as an activator, an inorganic acid salt of a basic compound such as an amine, another activator, a resin component instead of rosin, a thixotropic agent, a solvent, and the like. The paste is composed of the conductive fine particles dispersed in a flux at a ratio of generally 80 to 90% by weight.
[0016]
Usually, the solder paste is quantitatively applied on a printed circuit board by screen printing or the like, and circuit components are mounted on the printed or painted solder paste, and then the solder paste is reflowed. Reflow refers to a series of steps of heating the solder paste, including preheating, until the solder is sufficiently melted, and then cooling and solidifying.
[0017]
Among the components blended as a flux, for example, natural rosin, disproportionated rosin, polymerized rosin, modified rosin, and synthetic resin such as polyester, polyurethane, and acrylic resin are used as the resin component.
[0018]
Examples of the activator include amine halides such as aniline hydrobromide, isopropylamine hydrochloride, monoethylamine hydrobromide, diphenylguanidine hydrobromide, organic acid salts of amines, formic acid, acetic acid, and myristic acid. , Palmitic acid, stearic acid, organic monocarboxylic acids such as benzoic acid, oxalic acid, malonic acid, succinic acid, adipic acid, fumaric acid, organic dicarboxylic acids such as maleic acid and anhydrides thereof, and also halogenated hydrocarbons, for example. Examples thereof include halogenated alcohols such as 2,3-dibromo-2-butene-1,4-diol and 1,3-dibromo-2-propanol.
[0019]
Examples of the solvent include alcohols, ketones, esters, and aromatic solvents.Specifically, benzyl alcohol, ethanol, isopropyl alcohol, butanol, ethyl cellosolve, butyl cellosolve, butyl carbitol, terpineol, toluene, xylene, tetralin, propylene Glycol monophenyl ether, diethylene glycol monohexyl ether and the like can be mentioned.
[0020]
As the thixotropic agent added to improve printability, inorganic agents such as fine silica particles and kaolin particles, and organic agents such as hydrogenated castor oil and hydrogenated castor oil are used. In addition, additives such as an antioxidant and a copper damage inhibitor may be added.
[0021]
The solder paste of the present invention comprises, for example, 80 to 90% by weight of the conductive fine particles, 0.02 to 2% by weight of an activator, 0.05 to 0.1% by weight of a solvent, 8 to 10% by weight of a rosin or resin component, If necessary, it can be obtained by mixing a thixotropic agent. Mixing is performed using a known device such as a planetary mixer.
[0022]
BEST MODE FOR CARRYING OUT THE INVENTION
The conductive connection structure of the present invention is formed by connecting electrodes of a semiconductor chip or an electronic component and electrodes of a mounting board using the solder paste of the present invention, and will be described below with reference to the drawings. .
1 to 3 are explanatory diagrams for obtaining a conductive connection structure between an electrode of a semiconductor chip and an electrode of a mounting substrate. FIG. 1 shows connection terminals (electrodes) 12 and 12 of a semiconductor chip 1. FIG. 4 is a schematic cross-sectional view showing a state immediately after printing a solder paste 3 using a masking member (not shown).
FIG. 2 shows a mounting method in which the solder paste 3 on the connection terminals (electrodes) 12 shown in FIG. 1 is reflowed into a substantially ball shape, and the solder paste 3 prepared on the electrode 54 is printed in advance. FIG. 4 is a schematic cross-sectional view showing a state in which a position is adjusted so that a substrate 5 and electrodes face each other.
FIG. 3 is a schematic cross-sectional view showing an embodiment of the conductive connection structure of the present invention. After reflowing the solder paste 3 on the electrode 14 from the state of FIG. 1 and the mounting substrate 5 are mounted in an opposed state, and the electrodes 12 and the electrodes 54 are connected again by reflowing via the solder paste 3 to obtain a conductive connection structure.
[0023]
FIGS. 4 and 5 are explanatory diagrams for obtaining a conductive connection structure between the electrodes of the electronic component and the electrodes of the mounting substrate. FIG. 4 substantially corresponds to FIG. FIG. 4 is a schematic cross-sectional view showing a state in which solder paste 3 is printed on the electrodes 54 and connection terminals (electrodes) 67 of the electronic component 6 are arranged at positions facing the electrodes 54. FIG. 5 is a schematic cross-sectional view showing another embodiment of the conductive connection structure of the present invention. After reflowing the solder paste 3 on the electrode 4 from the state of FIG. In this state, the electronic component 6 and the mounting substrate 5 are mounted in an opposed state, and the electrode 67 and the electrode 54 are connected again by reflow via the solder paste 3 to obtain a conductive connection structure.
[0024]
【Example】
Hereinafter, the content of the present invention will be described more specifically with reference to Examples, but the present invention is not limited thereto.
(Example 1 and Comparative Example 1)
After nickel plating is applied as a first layer of a metal layer to fine resin particles made of a crosslinked divinylbenzene polymer having an average particle diameter of 5 μm, copper plating is performed by an electrolytic plating method to form a second layer of the metal layer. Formed. Furthermore, a solder alloy plating composed of 96.5% of tin and 3.5% of silver is applied thereon to obtain conductive fine particles having a particle diameter of 10 μm on which a three-layered metal layer whose outermost layer is solder is formed. Was.
[0025]
The conductive fine particles are added and dispersed in a flux composed of 98% by weight of polymerized rosin as a resin component serving as a base, 1.5% by weight of stearic acid as an activator, and 0.5% by weight of ethanol as a solvent. Was obtained. The mixing ratio of the conductive fine particles to the flux was 80% by weight of the conductive fine particles and 20% by weight of the flux.
[0026]
The obtained solder paste is printed on the connection terminals of a 6 mm square semiconductor chip having 81 connection terminals (electrodes) having a diameter of 240 μm, and after preheating at 150 ° C. for 1 minute, a peak temperature of 240 ° C. (225 ° C.) After heating for 20 seconds as described above, the resultant was gradually cooled to room temperature to form electrodes (bumps) to obtain a semiconductor package.
The obtained semiconductor package was mounted on a printed circuit board having 81 connection terminals (electrodes) having a diameter of 240 μm via solder paste, and reflow was performed to obtain a conductive connection structure between the semiconductor package and the printed circuit board.
The height of the obtained conductive connection structure is reduced as compared with the conductive connection structure (Comparative Example 1) obtained by using conductive fine particles of φ300 μm instead of the conductive solder paste. The conductive connection structure (Comparative Example 2 described later) obtained by a printing method using a solder paste containing conventional solder powder could be made as high as the conductive connection structure.
[0027]
[Evaluation of connection reliability]
When a temperature cycle test of −25 ° C. to 125 ° C. was performed on the obtained conductive connection structure, no failure was found in the conductive connection structure of Example 1 at the end of the 1000 cycle test (n = 20). A temperature cycle test was performed in which each cycle was performed at -25 ° C. to 125 ° C. for 10 minutes and at room temperature for 1 minute.
(Comparative Example 2)
A conductive connection structure was produced by a printing method in the same manner as in Example 1 except that a solder paste containing conventional solder powder was used, and a temperature cycle test at −25 ° C. to 125 ° C. in the same manner as in Example 1. Was done.
As a result, all of n = 20 caused conduction failure.
[0028]
【The invention's effect】
The solder paste of the present invention is formed by dispersing, in a flux, conductive fine particles in which at least one metal layer whose outermost layer is solder is formed on the surface of a resin base fine particle, and is dispersed in a flux. When used for connection between the electrodes of the mounting substrate and the electrodes of the mounting substrate, the solder formed on the outermost layer of the conductive fine particles reflows, so that the combined conductive fine particles are made of one sintered metal. As such, while improving the conductivity of the connection portion, the durability is improved in combination with the stress relaxation action of the resin base particles, and eventually, the height of the conductive connection structure can be reduced, A conductive connection structure with high connection reliability can be provided.
On the other hand, in general, when the height of the connection terminal portion or the like of the conductive connection structure is reduced, the connection reliability is reduced, but the conductive connection structure of the present invention uses the solder paste of the present invention, Since the electrodes of the semiconductor chip or the electronic components are connected to the electrodes of the mounting substrate, the height can be reduced and the connection reliability can be enhanced.
[Brief description of the drawings]
FIG. 1 is a schematic cross-sectional view showing a state where a solder paste of the present invention is printed on a semiconductor chip.
FIG. 2 is a schematic cross-sectional view showing a state in which a semiconductor chip and a mounting board are arranged so that electrodes face each other.
FIG. 3 is a schematic cross-sectional view showing an example of the conductive connection structure of the present invention.
FIG. 4 is a partial schematic cross-sectional view showing a state immediately before mounting an electronic component on a mounting board.
FIG. 5 is a partial schematic cross-sectional view showing another example of the conductive connection structure of the present invention.
[Explanation of symbols]
1 ... semiconductor chip 12 ... connection terminal (electrode)
3 solder paste 5 mounting board 54 electrode 6 electronic component 67 connection terminal (electrode)

Claims (2)

半導体チップ又は電子部品等の電極と実装用基板の電極とを接続するためのハンダペーストであって、樹脂製基材微粒子の表面に最外層がハンダである1層以上の金属層が形成されてなる導電性微粒子が、フラックスに分散されてなることを特徴とするハンダペースト。A solder paste for connecting an electrode of a semiconductor chip or an electronic component to an electrode of a mounting substrate, wherein at least one metal layer whose outermost layer is solder is formed on the surface of the resin base material fine particles. A solder paste comprising conductive fine particles dispersed in a flux. 半導体チップ又は電子部品等の電極と実装基板の電極とが請求項1記載のハンダペーストを用いて接続されてなることを特徴とする導電接続構造体。A conductive connection structure, wherein electrodes of a semiconductor chip or an electronic component and electrodes of a mounting board are connected by using the solder paste according to claim 1.
JP2003044781A 2003-02-21 2003-02-21 Solder paste and electrically-conductive connection structure Pending JP2004249359A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2003044781A JP2004249359A (en) 2003-02-21 2003-02-21 Solder paste and electrically-conductive connection structure

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2003044781A JP2004249359A (en) 2003-02-21 2003-02-21 Solder paste and electrically-conductive connection structure

Publications (1)

Publication Number Publication Date
JP2004249359A true JP2004249359A (en) 2004-09-09

Family

ID=33027380

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2003044781A Pending JP2004249359A (en) 2003-02-21 2003-02-21 Solder paste and electrically-conductive connection structure

Country Status (1)

Country Link
JP (1) JP2004249359A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2012142137A (en) * 2010-12-28 2012-07-26 Sekisui Chem Co Ltd Conductive particle, anisotropic conductive material and connection structure
WO2021177283A1 (en) * 2020-03-02 2021-09-10 積水化学工業株式会社 Solder paste, metal-coated particle for solder paste, and connection structure

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0536306A (en) * 1991-07-26 1993-02-12 Sekisui Fine Chem Kk Conductive fine-grain, electrode connection structural body and manufacture thereof
JPH05261586A (en) * 1992-03-23 1993-10-12 Matsushita Electric Ind Co Ltd Cream solder
JPH11179585A (en) * 1997-12-22 1999-07-06 Matsushita Electric Ind Co Ltd Cream solder

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0536306A (en) * 1991-07-26 1993-02-12 Sekisui Fine Chem Kk Conductive fine-grain, electrode connection structural body and manufacture thereof
JPH05261586A (en) * 1992-03-23 1993-10-12 Matsushita Electric Ind Co Ltd Cream solder
JPH11179585A (en) * 1997-12-22 1999-07-06 Matsushita Electric Ind Co Ltd Cream solder

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2012142137A (en) * 2010-12-28 2012-07-26 Sekisui Chem Co Ltd Conductive particle, anisotropic conductive material and connection structure
WO2021177283A1 (en) * 2020-03-02 2021-09-10 積水化学工業株式会社 Solder paste, metal-coated particle for solder paste, and connection structure

Similar Documents

Publication Publication Date Title
JP5342453B2 (en) Conductive paste and electrical and electronic equipment using the same
JP4401411B2 (en) Mounting body provided with semiconductor chip and manufacturing method thereof
KR20060126677A (en) Soldering flux and soldering method
JP2006339057A (en) Resin metal composite conductive material, its manufacturing method, and electronic device using it
US20020005247A1 (en) Electrically conductive paste materials and applications
KR20050094478A (en) Method for interconnecting terminals and method for mounting semiconductor device
TWI486976B (en) Conductive particles and an anisotropic conductive connecting material using the same, and a method for producing a conductive particle body
JP2011192651A (en) Anisotropic conductive film, connection method, and connection structure
WO2011052615A1 (en) Conductive connection material and terminal-to-terminal connection method using same
US9662730B2 (en) Bump electrode, board which has bump electrodes, and method for manufacturing the board
US20180236609A1 (en) Hybrid low metal loading flux
JP6769986B2 (en) Metal conductive hot melt paste based on thermoplastic polymer
JP2007242900A (en) Electron device, and its manufacturing method
WO2014133124A1 (en) Electroconductive microparticles, anisotropic electroconductive material, and electroconductive connection structure
JP5560713B2 (en) Electronic component mounting method, etc.
JP2004249359A (en) Solder paste and electrically-conductive connection structure
JP5275736B2 (en) Method for producing conductive fine particles, conductive fine particles, anisotropic conductive material, and conductive connection structure
JP5210236B2 (en) Conductive fine particles, anisotropic conductive material, and connection structure
JP5438450B2 (en) Conductive fine particles, anisotropic conductive material, and connection structure
JP5113390B2 (en) Wiring connection method
JP3682156B2 (en) Conductive fine particles and conductive connection structure
Li et al. Isotropically conductive adhesives (ICAs)
JP5275735B2 (en) Method for producing conductive fine particles, conductive fine particles, anisotropic conductive material, and conductive connection structure
JP2011216813A (en) Solder joint method, semiconductor device and method of manufacturing the same
Lu et al. Electrically conductive adhesives–a lead-free alternative

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20051125

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20070724

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20070801

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20071121