JP2004249316A - Metallic foil strip having excellent oxidation resistance at high temperature and method for manufacturing the same - Google Patents

Metallic foil strip having excellent oxidation resistance at high temperature and method for manufacturing the same Download PDF

Info

Publication number
JP2004249316A
JP2004249316A JP2003041410A JP2003041410A JP2004249316A JP 2004249316 A JP2004249316 A JP 2004249316A JP 2003041410 A JP2003041410 A JP 2003041410A JP 2003041410 A JP2003041410 A JP 2003041410A JP 2004249316 A JP2004249316 A JP 2004249316A
Authority
JP
Japan
Prior art keywords
strip
rolling
metal foil
oxidation resistance
steel
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2003041410A
Other languages
Japanese (ja)
Inventor
Junichi Tateno
純一 舘野
Toshiki Hiruta
敏樹 蛭田
Kunio Fukuda
國夫 福田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
JFE Steel Corp
Original Assignee
JFE Steel Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by JFE Steel Corp filed Critical JFE Steel Corp
Priority to JP2003041410A priority Critical patent/JP2004249316A/en
Publication of JP2004249316A publication Critical patent/JP2004249316A/en
Pending legal-status Critical Current

Links

Images

Landscapes

  • Metal Rolling (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a metallic foil strip having excellent oxidation resistance at a high temperature which is used for catalytic convertors or the like for exhaust gas of motor vehicles and a manufacturing method of the same. <P>SOLUTION: Steel strips containing ≥ 16 mass% Cr are arranged on both sides of an aluminum strip and they are press-fixed by rolling and cold-rolled to a desired thickness. <P>COPYRIGHT: (C)2004,JPO&NCIPI

Description

【0001】
【発明の属する技術分野】
本発明は、自動車排気ガス触媒コンバーター等に使用される高温での耐酸化性に優れた金属箔帯およびその製造方法に関し、 特にAl含有量の高い、 高温での耐酸化性に優れた金属箔帯およびその製造方法に関する。
【0002】
【従来の技術】
自動車排気ガス触媒コンバーターには、たとえば図5にその全体的な構成(仮想的に2分割した断面図)、図6に部分拡大したようすを示すAl含有ステンレス鋼箔をハニカム状に成形加工した構造体が用いられている。箔のように超極薄の金属素材を用いることでコンバーターの外形寸法や重量をコンパクトで軽量にすることができる。また、ハニカム状に成形加工することで表面積を大きくできるので、その表面の触媒と自動車排気ガスとが、よく接触するようになっている。
【0003】
ところで自動車排気ガスは、摂氏1000℃以上の高温になる場合もあり、このハニカム状構造体の素材には高温での耐酸化性が要求されるため、CrとAl両方を含有するAl含有ステンレス鋼が用いられている。
Al含有ステンレス鋼は、高温の自動車排気ガスに曝されると、表面に地金との密着性の高い、ごく薄いAl皮膜ができて、鋼中内部までFeの酸化が浸透するのを抑制する性質がある。このためFeの酸化物がスケールとして剥離しにくくなる。
【0004】
Al含有ステンレス鋼を製造する方法としては、Crを含有する溶鋼中にAlを添加する方法が一般的であるが、鋼中Al量が大きくなると靭性が低下するため、これを箔に加工しようとすると、 特に冷間圧延中に割れて破断しやすくなる。したがって、Crを含有する溶鋼中にAlを添加する場合には、Al含有量は5質量%が限度であった。
【0005】
そこでAlを5質量%を超えて含有するAl含有ステンレス鋼箔を製造するためには、Crを含有する溶鋼中にAlを添加する以外の方法をとる必要であり、そのためのいくつかの方法が開示されている。
特許文献1では、ステンレス鋼帯の両表面にAlあるいはAl合金を圧延またはめっきで付加した複合箔をハニカム状構造体に形成した後、真空中あるいは還元雰囲気中で 600〜1300℃の温度で熱処理してハニカム状構造体の各接合部分を接着することを特徴とする触媒基体の製造方法を開示している。
【0006】
特許文献2では、厚み 100μm以下の鋼,ステンレス合金,耐熱合金からなる圧延金属箔であって、厚み全体に拡散されたAlを含む耐酸化性金属箔を開示しており、その製造方法として、厚み 100μm以下の鋼、ステンレス合金、耐熱合金からなる圧延金属箔を、Al粉末および焼結防止剤粉末を主体とする混合粉末中に埋設し、真空または不活性あるいは非酸化性雰囲気にて加熱処理する方法を開示している。
【0007】
特許文献3では、Al帯の両面にフェライトステンレス鋼帯を配置して冷間クラッド圧延を行ない、次いで 600〜1300℃の温度範囲に加熱して冷却後、その厚み方向の中央部において分割して2枚の高Al含有ステンレス鋼箔とするメタルハニカム用箔の製造方法を開示している。
【0008】
【特許文献1】
特開昭63−44942号公報
【特許文献2】
特開平4−318160号公報
【特許文献3】
特開平5−277505号公報
【0009】
【発明が解決しようとする課題】
しかしながら、特許文献1で開示された技術では、まずステンレス鋼帯の両表面にAlあるいはAl合金を圧延またはめっきで付加した複合箔をハニカム状構造体に成形する際の複雑な曲げ加工において、軟質なAlあるいはAl合金の表層でのきずや剥離が発生し易いという問題がある。さらに、ハニカム状構造体に成形できたとしても、これを 600〜1300℃の温度で熱処理する際には、表層のAlが溶けてしまって、ハニカム状構造体が変形したり、接合部分が剥離してしまう等の問題がある。
【0010】
特許文献2で開示された技術では、圧延金属箔をAl粉末および焼結防止剤粉末を主体とする混合粉末中に埋設させただけで圧延金属箔表面に粉末を付着させるわけであるが、このような方法ではAlの付着強度が不十分であるのは明らかであり、粉末が剥がれ落ちたり、付着量が不均一になりやすいという問題がある。さらに、真空または不活性あるいは非酸化性雰囲気にて加熱処理する際にも、Al粉末が飛散してしまう等の問題がある。
【0011】
特許文献3で開示された技術は、Al帯の両面にフェライト系ステンレス鋼帯を配置して冷間クラッド圧延を行なってから加熱して冷却し、その後、厚み方向の中央部において分割して2枚の箔にする方法であるが、圧延材を厚み方向の中央部において分割すること自体が極めて困難であり、生産性の著しい悪化を招くという問題がある。さらに、厚み方向の中央部において分割して得た箔は、穴があいてしまったり、厚みが均一にならなかったり、表面粗さが不均一になったり、と品質上も問題が生じやすい。
【0012】
本発明の目的は、かかる従来技術の種々の問題を解消することにあり、自動車排気ガス触媒コンバーター等に使用される高温での耐酸化性に優れた金属箔帯およびその製造方法、 特にAl含有量の高い高温での耐酸化性に優れた金属箔帯およびその製造方法を提供することを目的とする。
【0013】
【課題を解決するための手段】
前記した課題を解決するために、本発明は、Crを16質量%以上含む鋼帯をAl帯の両側に配置して圧延によって圧着した金属箔帯であって、所望の厚みまで冷間圧延を施す高温での耐酸化性に優れた金属箔帯とした。
また、前記した金属箔帯であって、冷間圧延の際に総圧下率を40%以上とする高温での耐酸化性に優れた金属箔帯とした。
【0014】
また、前記した金属箔帯であって、冷間圧延を施した後、焼鈍を施す高温での耐酸化性に優れた金属箔帯とした。
さらに、Crを16質量%以上含む鋼帯をAl帯の両側に配置して圧延によって圧着し、さらに所望の厚みまで冷間圧延を施す耐酸化性に優れた金属箔帯の製造方法とした。
【0015】
また、前記した金属箔帯の製造方法において、冷間圧延の際に総圧下率を40%以上とすることとした。
また前記した金属箔帯の製造方法において、冷間圧延を施した後、焼鈍を施すこととした。
【0016】
【発明の実施の形態】
本発明で使用するCrを16質量%以上含む鋼帯(以下、単に鋼帯と略して称している箇所もある)は、通常のフェライト系ステンレス鋼と同等以上の耐食性、耐熱性を確保するためにCrを16質量%以上含むものを用いた。また、高温での耐酸化性を確保するために、Al含有量を高くする必要があるが、鋼中に多量のAlを添加すると材料の靭性が低下するために生じる冷間圧延時の割れ等の問題を避けるため、Crを16質量%以上含む鋼帯をAl帯の両側に配置して圧延によって圧着し、さらに所望の厚みまで冷間圧延を施すこととした。中間にAl帯を挟む形でCrを16質量%以上含む鋼帯を圧延するため、実質的に鋼帯だけを圧延するのと大差なく、靭性低下による割れ等の問題を排除できる。
【0017】
鋼帯とAl帯を圧延によって圧着するには、図1に示すような圧延機を用いれば良い。図1において、1は鋼帯を巻き出すためのリール、2はAl帯を巻き出すためのリール、3、4はそれぞれ圧着させる前の被圧延材である鋼帯とAl帯、5は圧延ロール、6は圧着された金属箔帯、7は金属箔帯を巻き取るためのリールである。
【0018】
鋼帯3とAl帯4を圧延によって圧着するには、公知のクラッド圧延法の技術、たとえば図4に模式的に示すように、圧着予定面を金属ブラシによって粗面化した後、圧着する方法等を適用すればよい。なお、図4中の矢印は、金属箔帯6の進行方向およびブラシの回転方向を示している。また、圧着を目的とした圧延は、圧下率を大きくする必要はなく、金属箔帯6の平坦度の悪化を防止するためには、むしろ圧下率は小さい方が好ましく、実質的にゼロ(最大で2%)で良い。
【0019】
圧着した金属箔帯6は、その後、 冷間圧延によって自動車排気ガス触媒コンバーター等に使用される箔帯としての所望の厚み(15〜100 μm)まで圧下される。その際の冷間圧延は、図1に示す圧延機において、リール1とリール7で互いに巻き出し,巻き取りを行ないながらリバース圧延を複数回繰り返すことにより可能である。
【0020】
本発明では、Alよりも硬質なCrを16質量%以上含有する鋼帯3を、Al帯4の両側に配置してあるので、鋼帯3の両表面にAl帯4を配置した複合箔をハニカム状構造体に成形する際の複雑な曲げ加工において発生する表層でのきずや剥離は発生しない。また熱処理において表層のAlが溶けてしまってハニカム状構造体が変形したり接合部分が剥離してしまうような問題も生じない。
【0021】
また本発明では、鋼帯3とAl帯4とを圧延によって圧着するので、Al粉末を付着させる方法で問題となるような粉末の剥がれ落ちや、付着量の不均一は生じない。また熱処理においてもAl粉末が飛散してしまうような問題も生じない。
また本発明では、クラッド圧延後に厚み方向の中央部において分割して2枚の箔にするような必要もないので、作業性や生産性の低下を招くこともなく、品質的にも穴あきや厚み精度不良、表面粗さの不均一等の問題も生じない。
【0022】
ここで発明者らは、鋼帯3とAl帯4を圧延によって圧着した金属箔帯6であって、さらに所望の厚みまで冷間圧延を施す際の総圧下率が金属箔帯6の圧着強度(剥離荷重)に及ぼす影響について鋭意検討したところ、両者には図2に示すような関係があることを見出した。
ここで、総圧下率とは、冷間圧延での厚みの減少量を、圧延前の厚みで除したものを百分率で表わした値である。
【0023】
また圧着強度の評価方法は、Tピール剥離試験を採用した。Tピール剥離試験とは、圧着した金属クラッド材を幅10mmに切り出し、圧着した各々の金属材を反対方向に引っ張り、剥離したときの荷重(剥離荷重)で圧着強度を評価するものである。本発明に係る金属箔帯6は、鋼帯3をAl帯4の両側に配置した3層構造となっているため、Tピール剥離試験は1層目と2層目、および2層目と3層目についてそれぞれ実施し、その平均値を採用した。
【0024】
図2によると、冷間圧延での総圧下率が大きくなるにつれて、圧着強度も大きくなっており、特に総圧下率が40%を超えると急激に圧着強度が大きくなり、 500N/10mmと十分な圧着強度となっている。これは、冷間圧延を施すことによって金属材が圧延方向に伸張し、総圧下率が40%を超えるあたりから新生面同士での圧着部分が大きくなって圧着性が向上することによるものと推定される。したがって圧着強度を確保する観点から総圧下率40%以上の冷間圧延を施すことが望ましい。
【0025】
また、圧着した金属箔帯6に冷間圧延を施した後、 金属箔帯6を焼鈍することによって、鋼帯3とAl帯4の成分が互いに拡散、融合して圧着性がさらに向上する。そこで金属箔帯6の圧着性を向上させるためには、圧着した金属箔帯6に冷間圧延を施した後、 焼鈍(拡散焼鈍ともいう)を施すことが望ましい。ここで、拡散の進行は焼鈍温度および焼鈍時間に依存することが知られているので、金属箔帯6の成分や厚み等の条件に応じて焼鈍条件を適宜設定すれば良い。焼鈍温度および時間の適正範囲の一例としては、 300〜1300℃で1分〜12時間が好ましい。
【0026】
【実施例】
図1に示すような4段圧延機を用いて金属クラッド材を製造する際に本発明を適用した実施例について説明する。
発明例では、リール1から鋼帯3を、リール2からAl帯4を巻き出して、鋼帯3をAl帯4の両側に配置した状態で圧延ロール5によって圧延して圧着し、圧着された金属箔帯6をリール7で巻き取った。次いで鋼帯3、Al帯4をリール1、2から切り離し、リール7から逆方向に金属箔帯6を巻き出して、圧延ロール5によって圧延した後、リール1(2つあるうちのいずれでも良い)に巻き取る。このようにリバース圧延で金属箔帯6を所望の厚みまで圧下する。金属箔帯6の板幅は、発明例および比較例とも全て500mm とした。
【0027】
発明例1は、鋼帯3として厚み0.018mm の20Cr鋼、Al帯4として厚み0.009mm のA1050 を使用して圧着圧延を行なった後、仕上げ厚み0.03mmまで2パスで総圧下率33.3%の冷間圧延を行なった。発明例2は、鋼帯3として厚み0.020mm の20Cr鋼、Al帯4として厚み0.010mm のA1050 を使用して圧着圧延を行なった後、仕上げ厚み0.03mmまで3パスで総圧下率40.0%の冷間圧延を行なった。発明例3は、鋼帯3として厚み0.030mm の20Cr鋼、Al帯4として厚み0.015mm のA1050 を使用して圧着圧延を行なった後、仕上げ厚み0.03mmまで4パスで総圧下率60%の冷間圧延を行なった。
【0028】
発明例4〜6は、それぞれ発明例1〜3と同じ条件で冷間圧延を行なった後、焼鈍を施した。焼鈍は真空雰囲気で行ない、焼鈍温度を 800℃,焼鈍時間を20分とした。
発明例7は、鋼帯3として厚み0.018mm の20Cr−3Al鋼、Al帯4として厚み0.009mm のA1050 を使用して圧着圧延を行なった後、仕上げ厚み0.03mmまで2パスで総圧下率33.3%の冷間圧延を行なった。
【0029】
発明例8は、鋼帯3として厚み0.020mm の20Cr−3Al鋼、Al帯4として厚み0.010mm のA1050 を使用して圧着圧延を行なった後、仕上げ厚み0.03mmまで3パスで総圧下率40%の冷間圧延を行なった。
発明例9は、鋼帯3として厚み0.030mm の20Cr−3Al鋼、Al帯4として厚み0.015mm のA1050 を使用して圧着圧延を行なった後、仕上げ厚み0.03mmまで4パスで総圧下率60%の冷間圧延を行なった。なお20Cr−3Al鋼は、製鋼工程でAlを添加して製造したものである。
【0030】
発明例10〜12は、それぞれ発明例7〜9と同じ条件で冷間圧延を行なった後、焼鈍を施した。焼鈍は真空雰囲気で行ない、焼鈍温度を 800℃,焼鈍時間を20分とした。
一方、比較例1は、鋼帯3として厚み0.012mm の20Cr鋼、Al帯4として厚み0.006mm のA1050 を使用して圧着圧延(圧下率1%)を行なったのみで、その後の冷間圧延は行なわなかった。すなわち冷間総圧下率は実質ゼロに相当する。比較例2は、鋼帯3として厚み0.040mm の20Cr鋼の両側にAl帯4(厚み0.005mm のA1050 )を配置して圧着圧延を行なった後、仕上げ厚み0.03mmまで3パスで総圧下率40%の冷間圧延を行なった。比較例3は、厚み0.050mm の20Cr−3Al鋼の鋼帯3のみを圧着圧延せずに、仕上げ厚み0.03mmまで3パスで総圧下率40%の冷間圧延を行なった。比較例では、いずれも焼鈍を施していない。
【0031】
表1に発明例1〜12および比較例1〜3について、鋼帯3とAl帯4の種類、厚み、圧延の条件および金属箔帯6の圧着強度の評価、耐酸化性の評価、成形性の評価を示す。
【0032】
【表1】

Figure 2004249316
【0033】
圧着性の評価は、Tピール剥離試験を採用した。表1では、剥離荷重が 500N/10mm以上を極めて良好(◎)、50N/10mm以上〜 500N/10mm未満を良好(○)、50N/10mm未満を不良(×)として評価した。
また、耐酸化性は、1100℃での大気酸化試験を行なって評価した。大気酸化試験では時間の経過毎に試験片の酸化増量を評価し、急激に酸化増量が進み始めた時間を耐久時間と見なし、この耐久時間が長いほど耐酸化性は良好と見なされる。ここでは、自動車排気ガス触媒コンバーターの用途において耐酸化性が良好とされる 300時間以上を良好(○)、 300時間未満を不良(×)として評価した。
【0034】
また成形性は、ハニカム状構造体に成形する際に波付け加工を行なった後の金属箔帯6の表面性状で評価した。金属箔帯6への波付け加工は、図3に示すような歯車状の波付け加工ロール8で金属箔帯6を挟んで回転させることによって行なうものである。図3中の矢印は、金属箔帯6の進行方向を示している。なお、金属箔帯6への波付け加工の後は、波の長手方向の間隔が10mm,山と谷の差が5mmとなるように施すものとする。そして波付け加工後の金属箔帯6の表面において、きず等の表面欠陥を調査し、面積1000mmあたりの表面欠陥の個数が1個未満を良好(○)、1個以上を不良(×)として評価した。また、波付け加工において、圧着した鋼帯3とAl帯4が剥離してしまった場合も不良(×)として評価した。
【0035】
総合評価として、圧着性の評価,耐酸化性の評価および成形性の評価が全て良好(○)のものを良好(○)とし、特に極めて良好(◎)が含まれるものを極めて良好(◎)とした。また、いずれかに不良(×)が含まれるものを不良(×)とした。ここで、表1中のAl含有量について説明しておくと、各値は、鋼帯3とAl帯4が完全に融合したものとみなした計算上の値である。
【0036】
Figure 2004249316
計算例として、たとえば発明例1の場合、
Figure 2004249316
となる。
【0037】
発明例では、圧着性はいずれも良好で、 特に冷間圧延の総圧下率が40%以上であるか、または焼鈍を施した発明例4〜6、10〜12では極めて良好であった。また、耐酸化性については、発明例はいずれも良好であった。これは発明例1〜6、7〜12では、Al含有量がそれぞれ 7.9質量%および12.9質量%と高いためである。成形性については、発明例はいずれも良好であった。その結果、発明例の総合評価はいずれも良好で、特に発明例2〜12では極めて良好であった。
【0038】
一方、比較例1は、冷間圧延での総圧下率が実質的にゼロであったため、Tピール剥離試験において低荷重で剥離してしまい、圧着性の評価は不良(×)であった。Al含有量は 7.9質量%であり、耐酸化性は良好であったが、成形性は鋼帯3とAl帯4が剥離したため不良となった。したがって総合評価は不良であった。
比較例2は、鋼帯3の両側にAl帯4を配置して圧着した金属箔帯6であるが、圧着性、耐酸化性は良好であったものの、成形性は表面に多くのきずが発生し、不良と評価された。その結果、 総合評価は不良となった。
【0039】
比較例3は、鋼中にAlを添加しているので、圧着性の評価は行なっていないが、耐酸化性は不良であった。これはAl含有量が3質量%と低いためと考えられる。したがって総合評価は不良となった。
【0040】
【発明の効果】
本発明によれば、自動車排気ガス触媒コンバーター等に使用される高温での耐酸化性に優れた金属箔帯およびその製造方法、 特にAl含有量の高い耐酸化性に優れた金属箔帯およびその製造方法を提供することが可能となる。
【図面の簡単な説明】
【図1】本発明を適用する設備の概略を示す側面図である。
【図2】総圧下率と剥離荷重との関係を示すグラフである。
【図3】波付け加工を示す概略図である。
【図4】金属ブラシによる粗面化のようすを示す概略図である。
【図5】自動車排気ガス触媒コンバーターの全体構成を示す図である。
【図6】自動車排気ガス触媒コンバーターの部分拡大図である。
【符号の説明】
1 リール
2 リール
3 鋼帯
4 Al帯
5 圧延ロール
6 金属箔帯
7 リール
8 波付け加工ロール
9 ブラシ[0001]
TECHNICAL FIELD OF THE INVENTION
The present invention relates to a metal foil strip excellent in oxidation resistance at a high temperature used for an automobile exhaust gas catalytic converter and the like, and a metal foil excellent in oxidation resistance at a high temperature particularly having a high Al content. The present invention relates to a band and a method for producing the band.
[0002]
[Prior art]
The automobile exhaust gas catalytic converter has, for example, a structure in which an Al-containing stainless steel foil, which is shown in FIG. 5 as a whole (virtually divided sectional view) and FIG. The body is used. By using an ultra-thin metal material such as foil, the external dimensions and weight of the converter can be made compact and lightweight. Further, since the surface area can be increased by forming into a honeycomb shape, the catalyst on the surface and the vehicle exhaust gas come into good contact with each other.
[0003]
By the way, since the exhaust gas of a vehicle may reach a high temperature of 1000 ° C. or more, the material of the honeycomb structure is required to have oxidation resistance at a high temperature. Therefore, an Al-containing stainless steel containing both Cr and Al is used. Is used.
When Al-containing stainless steel is exposed to high-temperature automobile exhaust gas, a very thin Al 2 O 3 film is formed on the surface with high adhesion to the metal, and the oxidation of Fe penetrates into the steel. Has the property of suppressing. For this reason, the Fe oxide is less likely to peel off as a scale.
[0004]
As a method for producing Al-containing stainless steel, it is common to add Al into molten steel containing Cr.However, when the amount of Al in the steel increases, the toughness decreases. Then, it is easily broken and broken particularly during cold rolling. Therefore, when Al was added to molten steel containing Cr, the Al content was limited to 5% by mass.
[0005]
Therefore, in order to produce an Al-containing stainless steel foil containing more than 5% by mass of Al, it is necessary to take a method other than adding Al to molten steel containing Cr. It has been disclosed.
In Patent Document 1, after forming a honeycomb-shaped structure with a composite foil obtained by rolling or plating Al or an Al alloy on both surfaces of a stainless steel strip, heat treatment is performed in a vacuum or a reducing atmosphere at a temperature of 600 to 1300 ° C. A method for manufacturing a catalyst substrate, characterized in that the bonding portions of the honeycomb structure are bonded to each other.
[0006]
Patent Document 2 discloses a rolled metal foil made of steel, a stainless steel alloy, and a heat-resistant alloy having a thickness of 100 μm or less, and an oxidation-resistant metal foil containing Al diffused throughout the thickness. Rolled metal foil made of steel, stainless steel alloy, heat-resistant alloy having a thickness of 100 μm or less is embedded in a mixed powder mainly composed of Al powder and sintering inhibitor powder, and heat-treated in a vacuum or in an inert or non-oxidizing atmosphere. A method for doing so is disclosed.
[0007]
In Patent Literature 3, cold clad rolling is performed by arranging ferritic stainless steel strips on both sides of an Al strip, and then heating and cooling to a temperature range of 600 to 1300 ° C., and then dividing at the center in the thickness direction. A method for producing a metal honeycomb foil as two high Al-containing stainless steel foils is disclosed.
[0008]
[Patent Document 1]
JP-A-63-44942 [Patent Document 2]
JP-A-4-318160 [Patent Document 3]
JP-A-5-277505
[Problems to be solved by the invention]
However, according to the technique disclosed in Patent Literature 1, first, a complex foil obtained by rolling or plating Al or an Al alloy on both surfaces of a stainless steel strip is formed into a honeycomb-shaped structure by a soft bending process. There is a problem that flaws and peeling are likely to occur on the surface layer of a thin Al or Al alloy. Furthermore, even if it can be formed into a honeycomb-shaped structure, when it is heat-treated at a temperature of 600 to 1300 ° C., Al in the surface layer is melted, and the honeycomb-shaped structure is deformed or the bonded portion is separated. Problems.
[0010]
According to the technique disclosed in Patent Document 2, the rolled metal foil is simply embedded in a mixed powder mainly composed of Al powder and a sintering inhibitor powder to adhere the powder to the rolled metal foil surface. Obviously, such a method has insufficient adhesion strength of Al, and there is a problem that the powder tends to peel off and the adhesion amount tends to be non-uniform. Further, there is a problem that the Al powder is scattered when performing the heat treatment in a vacuum or in an inert or non-oxidizing atmosphere.
[0011]
In the technique disclosed in Patent Document 3, a ferritic stainless steel strip is arranged on both sides of an Al strip, cold-clad rolling is performed, and then heating and cooling are performed. Although this is a method of forming a single foil, it is extremely difficult to divide the rolled material at the center in the thickness direction itself, and there is a problem that productivity is significantly deteriorated. Furthermore, the foil obtained by dividing at the central portion in the thickness direction tends to have a problem in quality, such as having holes, uneven thickness, and uneven surface roughness.
[0012]
SUMMARY OF THE INVENTION An object of the present invention is to solve the various problems of the prior art, and to provide a metal foil strip excellent in oxidation resistance at a high temperature used for an automobile exhaust gas catalytic converter and the like, and a method for producing the same, particularly containing Al. An object of the present invention is to provide a metal foil strip having a high amount and excellent in oxidation resistance at high temperatures and a method for producing the same.
[0013]
[Means for Solving the Problems]
In order to solve the above-mentioned problems, the present invention is a metal foil strip which is formed by arranging steel strips containing Cr in an amount of 16% by mass or more on both sides of an Al strip and pressing them by rolling, and performing cold rolling to a desired thickness. A metal foil strip having excellent oxidation resistance at a high temperature to be applied.
Further, the above-mentioned metal foil strip, which is excellent in oxidation resistance at high temperature and has a total draft of 40% or more during cold rolling, was obtained.
[0014]
Further, the above-mentioned metal foil strip, which is subjected to cold rolling and then annealed, is excellent in oxidation resistance at a high temperature at which annealing is performed.
Further, a steel strip containing 16% by mass or more of Cr was arranged on both sides of the Al strip, pressed by rolling, and further cold-rolled to a desired thickness to provide a method for producing a metal foil strip having excellent oxidation resistance.
[0015]
In the above-described method for manufacturing a metal foil strip, the total draft is set to 40% or more during cold rolling.
In the above-described method for manufacturing a metal foil strip, annealing is performed after cold rolling.
[0016]
BEST MODE FOR CARRYING OUT THE INVENTION
The steel strip containing 16% by mass or more of Cr used in the present invention (hereinafter, sometimes abbreviated simply to steel strip) is used to secure corrosion resistance and heat resistance equal to or higher than that of ordinary ferritic stainless steel. Containing 16% by mass or more of Cr. In addition, in order to ensure oxidation resistance at high temperatures, it is necessary to increase the Al content. However, when a large amount of Al is added to steel, the toughness of the material is reduced, and cracks during cold rolling are caused. In order to avoid the problem described above, steel strips containing 16% by mass or more of Cr were arranged on both sides of the Al strip, pressed by rolling, and cold-rolled to a desired thickness. Since a steel strip containing 16% by mass or more of Cr is rolled with an Al band interposed therebetween, a problem such as cracking due to a decrease in toughness can be eliminated without much difference from substantially rolling only a steel strip.
[0017]
In order to press-bond a steel strip and an Al strip by rolling, a rolling mill as shown in FIG. 1 may be used. In FIG. 1, 1 is a reel for unwinding a steel strip, 2 is a reel for unwinding an Al strip, 3 and 4 are a steel strip and an Al strip, respectively, which are materials to be rolled before being pressed, and 5 is a rolling roll. , 6 are crimped metal foil strips, and 7 is a reel for winding the metal foil strips.
[0018]
In order to press-bond the steel strip 3 and the Al strip 4 by rolling, a technique of a known clad rolling method, for example, as schematically shown in FIG. Etc. may be applied. The arrows in FIG. 4 indicate the traveling direction of the metal foil strip 6 and the rotating direction of the brush. In the rolling for the purpose of crimping, it is not necessary to increase the rolling reduction. To prevent the flatness of the metal foil strip 6 from deteriorating, it is preferable that the rolling reduction is rather small, and substantially zero (maximum). 2%).
[0019]
Thereafter, the pressed metal foil strip 6 is reduced by cold rolling to a desired thickness (15 to 100 μm) as a foil strip used for an automobile exhaust gas catalytic converter or the like. In this case, the cold rolling can be performed by repeating the reverse rolling a plurality of times while unwinding and winding the reels 1 and 7 with each other in the rolling mill shown in FIG.
[0020]
In the present invention, since the steel strip 3 containing 16% by mass or more of Cr harder than Al is disposed on both sides of the Al strip 4, the composite foil having the Al strip 4 disposed on both surfaces of the steel strip 3 is used. No flaws or peeling on the surface layer occurs in complicated bending when forming into a honeycomb-shaped structure. Further, there is no problem that the Al in the surface layer is melted in the heat treatment and the honeycomb-shaped structure is deformed or the bonded portion is separated.
[0021]
Further, in the present invention, since the steel strip 3 and the Al strip 4 are press-bonded by rolling, there is no occurrence of peeling off of the powder and nonuniformity of the adhesion amount, which are problems in the method of attaching the Al powder. Also, there is no problem that the Al powder is scattered in the heat treatment.
Further, in the present invention, it is not necessary to divide the central portion in the thickness direction into two foils after the clad rolling, so that the workability and productivity are not reduced, and the perforation and the quality are not reduced. Problems such as poor thickness accuracy and uneven surface roughness do not occur.
[0022]
Here, the present inventors have developed a metal foil strip 6 obtained by pressing a steel strip 3 and an Al strip 4 by rolling, and the total rolling reduction when cold rolling to a desired thickness is further performed. As a result of intensive studies on the effect on (peeling load), it was found that the two had a relationship as shown in FIG.
Here, the total rolling reduction is a value obtained by dividing the amount of reduction in thickness in cold rolling by the thickness before rolling, expressed as a percentage.
[0023]
In addition, as a method for evaluating the pressure bonding strength, a T peel peel test was employed. The T-peel peeling test is to cut out the pressed metal clad material to a width of 10 mm, pull each of the pressed metal materials in opposite directions, and evaluate the compression strength by a load (peeling load) at the time of peeling. Since the metal foil strip 6 according to the present invention has a three-layer structure in which the steel strip 3 is disposed on both sides of the Al strip 4, the T-peel test is performed on the first and second layers, and on the second and third layers. The measurement was performed for each layer, and the average value was adopted.
[0024]
According to FIG. 2, as the total rolling reduction in the cold rolling increases, the crimping strength also increases. In particular, when the total rolling reduction exceeds 40%, the crimping strength rapidly increases, and a sufficient value of 500 N / 10 mm is obtained. Crimping strength. This is presumed to be due to the fact that the metal material is stretched in the rolling direction by performing cold rolling, and the pressure-bonding portion between the newly-formed surfaces becomes large from around a total draft of more than 40%, thereby improving the pressure-bonding property. You. Therefore, it is desirable to perform cold rolling with a total draft of 40% or more from the viewpoint of securing the pressure bonding strength.
[0025]
Further, after the cold-rolled metal foil strip 6 is subjected to cold rolling, the metal foil strip 6 is annealed, whereby the components of the steel strip 3 and the Al strip 4 are diffused and fused with each other to further improve the pressure-bonding property. Therefore, in order to improve the pressure bonding property of the metal foil strip 6, it is preferable to perform cold rolling on the pressed metal foil strip 6 and then perform annealing (also referred to as diffusion annealing). Here, it is known that the progress of the diffusion depends on the annealing temperature and the annealing time. Therefore, the annealing conditions may be appropriately set according to the conditions such as the components and the thickness of the metal foil strip 6. An example of an appropriate range of the annealing temperature and time is preferably 300 to 1300 ° C. for 1 minute to 12 hours.
[0026]
【Example】
An embodiment to which the present invention is applied when manufacturing a metal clad material using a four-high rolling mill as shown in FIG. 1 will be described.
In the invention example, the steel strip 3 was unwound from the reel 1 and the Al strip 4 was unwound from the reel 2, and the steel strip 3 was rolled and crimped by the rolling roll 5 in a state where the steel strip 3 was arranged on both sides of the Al strip 4. The metal foil strip 6 was wound on a reel 7. Next, the steel strip 3 and the Al strip 4 are cut off from the reels 1 and 2, the metal foil strip 6 is unwound from the reel 7 in the opposite direction, and is rolled by the rolling roll 5, and then the reel 1 (any of two reels may be used). ). Thus, the metal foil strip 6 is reduced to a desired thickness by the reverse rolling. The width of the metal foil strip 6 was 500 mm in all of the invention examples and the comparative examples.
[0027]
Inventive Example 1 was obtained by performing crimp rolling using 20Cr steel having a thickness of 0.018 mm as the steel strip 3 and A1050 having a thickness of 0.009 mm as the Al strip 4, and then reducing the total rolling reduction in two passes to a finished thickness of 0.03 mm. A cold rolling of 33.3% was performed. Inventive Example 2 was a 20Cr steel plate having a thickness of 0.020 mm 2 as the steel strip 3, and an A1050 having a thickness of 0.010 mm 2 as the Al strip 4. 40.0% cold rolling was performed. Inventive Example 3 was performed by crimp rolling using 20Cr steel having a thickness of 0.030 mm as the steel strip 3 and A1050 having a thickness of 0.015 mm as the Al strip 4, and then reducing the total rolling reduction in four passes to a finished thickness of 0.03 mm. 60% cold rolling was performed.
[0028]
Inventive Examples 4 to 6 were each subjected to cold rolling under the same conditions as Inventive Examples 1 to 3, and then annealed. Annealing was performed in a vacuum atmosphere, the annealing temperature was 800 ° C., and the annealing time was 20 minutes.
Inventive Example 7 was obtained by performing crimp rolling using 20Cr-3Al steel having a thickness of 0.018 mm as the steel strip 3 and A1050 having a thickness of 0.009 mm as the Al strip 4, and then performing a total of two passes to a finished thickness of 0.03 mm. Cold rolling was performed at a draft of 33.3%.
[0029]
Inventive Example 8 was subjected to crimp rolling using 20Cr-3Al steel having a thickness of 0.020 mm as the steel strip 3 and A1050 having a thickness of 0.010 mm as the Al strip 4, and then performing three passes to a finished thickness of 0.03 mm in three passes. Cold rolling was performed at a rolling reduction of 40%.
Inventive Example 9 was subjected to crimp rolling using 20Cr-3Al steel having a thickness of 0.030 mm as the steel strip 3 and A1050 having a thickness of 0.015 mm as the Al strip 4, and then performing a total of 4 passes to a finished thickness of 0.03 mm. Cold rolling was performed at a rolling reduction of 60%. In addition, 20Cr-3Al steel was manufactured by adding Al in the steel making process.
[0030]
Inventive Examples 10 to 12 were annealed after cold rolling was performed under the same conditions as Inventive Examples 7 to 9, respectively. Annealing was performed in a vacuum atmosphere, the annealing temperature was 800 ° C., and the annealing time was 20 minutes.
On the other hand, in Comparative Example 1, the crimp rolling (rolling reduction 1%) was performed only using 20Cr steel having a thickness of 0.012 mm as the steel strip 3 and A1050 having a thickness of 0.006 mm as the Al strip 4, and the subsequent cold rolling was performed. No cold rolling was performed. That is, the total cold rolling reduction corresponds to substantially zero. In Comparative Example 2, Al band 4 (A1050 having a thickness of 0.005 mm) was placed on both sides of a 20Cr steel plate having a thickness of 0.040 mm as a steel band 3 and subjected to pressure-compression rolling, followed by three passes to a finished thickness of 0.03 mm. Cold rolling was performed at a total draft of 40%. In Comparative Example 3, cold rolling was performed with a total reduction of 40% in three passes to a finished thickness of 0.03 mm without crimp rolling only the steel strip 3 of the 20Cr-3Al steel having a thickness of 0.050 mm. In each of the comparative examples, no annealing was performed.
[0031]
Table 1 shows the invention examples 1 to 12 and comparative examples 1 to 3, the types and thicknesses of the steel strip 3 and the Al strip 4, the rolling conditions, the evaluation of the compression strength of the metal foil strip 6, the evaluation of oxidation resistance, and the formability The evaluation is shown.
[0032]
[Table 1]
Figure 2004249316
[0033]
The evaluation of the pressure-bonding property employed a T-peel peel test. In Table 1, a peeling load of 500 N / 10 mm or more was evaluated as very good (◎), 50 N / 10 mm or more to less than 500 N / 10 mm was evaluated as good (○), and a peeling load of less than 50 N / 10 mm was evaluated as poor (×).
The oxidation resistance was evaluated by performing an atmospheric oxidation test at 1100 ° C. In the atmospheric oxidation test, the amount of increase in oxidation of the test piece is evaluated at each passage of time, and the time when the increase in oxidation rapidly starts is regarded as the durability time. The longer the durability time, the better the oxidation resistance. Here, 300 hours or more, at which oxidation resistance is considered to be good for use in an automotive exhaust gas catalytic converter, was evaluated as good (O), and less than 300 hours was evaluated as poor (X).
[0034]
The formability was evaluated based on the surface properties of the metal foil strip 6 after corrugating when forming into a honeycomb-shaped structure. The corrugating process on the metal foil band 6 is performed by rotating the metal foil band 6 with a gear-shaped corrugating roll 8 as shown in FIG. The arrow in FIG. 3 indicates the traveling direction of the metal foil strip 6. Note that, after the corrugating process on the metal foil strip 6, the corrugation is performed so that the interval in the longitudinal direction of the wave is 10 mm and the difference between the peak and the valley is 5 mm. Then, on the surface of the metal foil strip 6 after the corrugation processing, surface defects such as flaws are investigated, and the number of surface defects per area of 1000 mm 2 is less than 1 (good) and 1 or more is defective (x). Was evaluated. Further, in the corrugating process, the case where the crimped steel strip 3 and the Al strip 4 were separated was also evaluated as defective (x).
[0035]
As the overall evaluation, the evaluation of the crimpability, the oxidation resistance and the evaluation of the moldability are all good (○), and the evaluation is good (○). Particularly, the evaluation containing extremely good (◎) is very good (◎). And In addition, one containing a defect (x) was determined as a defect (x). Here, the Al content in Table 1 will be described. Each value is a calculated value on the assumption that the steel strip 3 and the Al strip 4 are completely fused.
[0036]
Figure 2004249316
As a calculation example, for example, in the case of Invention Example 1,
Figure 2004249316
It becomes.
[0037]
In the invention examples, the crimping properties were all good, and in particular, the total rolling reduction in the cold rolling was 40% or more, or the invention examples 4 to 6 and 10 to 12 annealed were extremely good. As for the oxidation resistance, all of the invention examples were good. This is because in Examples 1 to 6 and 7 to 12, the Al content was as high as 7.9% by mass and 12.9% by mass, respectively. Regarding moldability, all of the invention examples were good. As a result, the overall evaluations of the invention examples were all good, and especially the invention examples 2 to 12 were extremely good.
[0038]
On the other hand, in Comparative Example 1, since the total rolling reduction in the cold rolling was substantially zero, the film was peeled with a low load in the T-peel peeling test, and the evaluation of the crimpability was poor (x). The Al content was 7.9% by mass, and the oxidation resistance was good, but the formability was poor because the steel strip 3 and the Al strip 4 were separated. Therefore, the overall evaluation was poor.
Comparative Example 2 is a metal foil strip 6 in which an Al strip 4 is arranged on both sides of a steel strip 3 and pressure-bonded. Although the press-bonding property and the oxidation resistance are good, the formability has many flaws on the surface. Occurred and rated as bad. As a result, the overall evaluation was poor.
[0039]
In Comparative Example 3, since Al was added to the steel, the evaluation of the crimpability was not performed, but the oxidation resistance was poor. This is probably because the Al content was as low as 3% by mass. Therefore, the overall evaluation was poor.
[0040]
【The invention's effect】
According to the present invention, a metal foil strip excellent in oxidation resistance at a high temperature used in an automobile exhaust gas catalytic converter and the like, and a method for producing the same, particularly a metal foil strip excellent in oxidation resistance having a high Al content and its It is possible to provide a manufacturing method.
[Brief description of the drawings]
FIG. 1 is a side view schematically showing a facility to which the present invention is applied.
FIG. 2 is a graph showing a relationship between a total draft and a peeling load.
FIG. 3 is a schematic view showing a corrugating process.
FIG. 4 is a schematic view showing how a metal brush is used to roughen the surface.
FIG. 5 is a diagram showing the overall configuration of a vehicle exhaust gas catalytic converter.
FIG. 6 is a partially enlarged view of an automobile exhaust gas catalytic converter.
[Explanation of symbols]
Reference Signs List 1 reel 2 reel 3 steel strip 4 Al strip 5 rolling roll 6 metal foil strip 7 reel 8 corrugating roll 9 brush

Claims (6)

Crを16質量%以上含む鋼帯をAl帯の両側に配置して圧延によって圧着した金属箔帯であって、所望の厚みまで冷間圧延を施したものであることを特徴とする高温での耐酸化性に優れた金属箔帯。A metal foil strip comprising a steel strip containing 16% by mass or more of Cr on both sides of an Al strip and compression-bonded by rolling, wherein the strip is cold-rolled to a desired thickness. Metal foil strip with excellent oxidation resistance. 前記冷間圧延の際に総圧下率を40%以上とすることを特徴とする請求項1に記載の高温での耐酸化性に優れた金属箔帯。The metal foil strip excellent in oxidation resistance at high temperatures according to claim 1, wherein a total draft is set to 40% or more during the cold rolling. 前記冷間圧延を施した後、焼鈍を施すことを特徴とする請求項1または2に記載の高温での耐酸化性に優れた金属箔帯。The metal foil strip excellent in oxidation resistance at high temperatures according to claim 1 or 2, wherein annealing is performed after the cold rolling. Crを16質量%以上含む鋼帯をAl帯の両側に配置して圧延によって圧着し、さらに所望の厚みまで冷間圧延を施すことを特徴とする高温での耐酸化性に優れた金属箔帯の製造方法。A metal foil strip excellent in oxidation resistance at high temperatures, wherein steel strips containing 16% by mass or more of Cr are arranged on both sides of an Al strip, pressed by rolling, and cold-rolled to a desired thickness. Manufacturing method. 前記冷間圧延の際に総圧下率を40%以上とすることを特徴とする請求項4に記載の高温での耐酸化性に優れた金属箔帯の製造方法。The method for producing a metal foil strip having excellent oxidation resistance at high temperatures according to claim 4, wherein a total draft is set to 40% or more during the cold rolling. 前記冷間圧延を施した後、焼鈍を施すことを特徴とする請求項4または5に記載の高温での耐酸化性に優れた金属箔帯の製造方法。The method for producing a metal foil strip having excellent oxidation resistance at high temperatures according to claim 4 or 5, wherein annealing is performed after the cold rolling.
JP2003041410A 2003-02-19 2003-02-19 Metallic foil strip having excellent oxidation resistance at high temperature and method for manufacturing the same Pending JP2004249316A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2003041410A JP2004249316A (en) 2003-02-19 2003-02-19 Metallic foil strip having excellent oxidation resistance at high temperature and method for manufacturing the same

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2003041410A JP2004249316A (en) 2003-02-19 2003-02-19 Metallic foil strip having excellent oxidation resistance at high temperature and method for manufacturing the same

Publications (1)

Publication Number Publication Date
JP2004249316A true JP2004249316A (en) 2004-09-09

Family

ID=33024998

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2003041410A Pending JP2004249316A (en) 2003-02-19 2003-02-19 Metallic foil strip having excellent oxidation resistance at high temperature and method for manufacturing the same

Country Status (1)

Country Link
JP (1) JP2004249316A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN111727087A (en) * 2018-03-14 2020-09-29 东洋钢钣株式会社 Rolled joined body and method for producing same

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN111727087A (en) * 2018-03-14 2020-09-29 东洋钢钣株式会社 Rolled joined body and method for producing same
CN111727087B (en) * 2018-03-14 2024-01-12 东洋钢钣株式会社 Rolled joined body and method for producing same
US11999131B2 (en) 2018-03-14 2024-06-04 Toyo Kohan Co., Ltd. Roll-bonded laminate and method for producing the same

Similar Documents

Publication Publication Date Title
JP6865172B2 (en) Metal laminate and its manufacturing method
RU2355788C2 (en) Steel sheet with high content of aluminium and method of its manufacturing
WO2013114833A1 (en) Ferritic stainless steel foil
KR20160009688A (en) Ferrite stainless steel foil
JP7126105B1 (en) Stainless steel foil for catalyst carrier of exhaust gas purifier
JP6637200B2 (en) Rolled joint and manufacturing method thereof
JP2004249316A (en) Metallic foil strip having excellent oxidation resistance at high temperature and method for manufacturing the same
JPH0726192B2 (en) Manufacturing method of high Al content stainless steel plate
JP3816974B2 (en) Diffusion bonded metal carrier for catalyst having strong bonding strength and method for producing the same
JP2822141B2 (en) Method for producing high Al-containing ferritic stainless steel foil
JP3168930B2 (en) Method for producing copper-stainless steel clad plate
US20040247494A1 (en) In-situ diffusion alloying and pre-oxidation annealing in air of FeCrAI alloy catalytic converter material
JP2541377B2 (en) Method for producing copper / stainless steel composite material
JP2004237335A (en) Metal foil strip
JP3300225B2 (en) Stainless steel foil with excellent diffusion bonding properties and metal carrier using the same
US20070237690A1 (en) FeCrAl ALLOY FOIL FOR CATALYTIC CONVERTERS AT MEDIUM HIGH TEMPERATURE AND A METHOD OF MAKING THE MATERIAL
JPS6350113B2 (en)
JPH10273759A (en) Fe-cr-al ferritic stainless steel excellent in high temperature strength, high temperature oxidation resistance and diffusion joinability
JP2663811B2 (en) Manufacturing method of aluminum clad steel sheet
WO2020170628A1 (en) FERRITE STAINLESS STEEL SHEET, PRODUCTION METHOD FOR SAME, AND STAINLESS STEEL SHEET HAVING Al VAPOR-DEPOSITED LAYER
JP4255993B2 (en) Long pressure welded composite plate and manufacturing method thereof
JP2523701B2 (en) Manufacturing method of honeycomb substrate for automobile exhaust gas purifying apparatus
JP3779188B2 (en) Method for producing laminated material having ultra-thin or ultra-thick soft material, and laminated material produced by the production method
JPH02261548A (en) Production of metal carrier of catalyst for purification of exhaust gas from automobile
JP3321397B2 (en) Method for producing metal carrier for exhaust gas purification by diffusion bonding

Legal Events

Date Code Title Description
A621 Written request for application examination

Effective date: 20051222

Free format text: JAPANESE INTERMEDIATE CODE: A621

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20071001

A131 Notification of reasons for refusal

Effective date: 20071106

Free format text: JAPANESE INTERMEDIATE CODE: A131

A02 Decision of refusal

Effective date: 20080304

Free format text: JAPANESE INTERMEDIATE CODE: A02