JP2004249296A - Method for producing zinc-base alloy-plated, electric resistance-welded steel tube - Google Patents

Method for producing zinc-base alloy-plated, electric resistance-welded steel tube Download PDF

Info

Publication number
JP2004249296A
JP2004249296A JP2003039624A JP2003039624A JP2004249296A JP 2004249296 A JP2004249296 A JP 2004249296A JP 2003039624 A JP2003039624 A JP 2003039624A JP 2003039624 A JP2003039624 A JP 2003039624A JP 2004249296 A JP2004249296 A JP 2004249296A
Authority
JP
Japan
Prior art keywords
zinc
plated
electric resistance
plating
welded
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
JP2003039624A
Other languages
Japanese (ja)
Inventor
Hideki Hamaya
秀樹 濱谷
Shinji Kodama
真二 児玉
Junichi Kobayashi
順一 小林
Nobuo Mizuhashi
伸雄 水橋
Kazumi Nishimura
一実 西村
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Steel Corp
Original Assignee
Nippon Steel Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Steel Corp filed Critical Nippon Steel Corp
Priority to JP2003039624A priority Critical patent/JP2004249296A/en
Publication of JP2004249296A publication Critical patent/JP2004249296A/en
Withdrawn legal-status Critical Current

Links

Images

Abstract

<P>PROBLEM TO BE SOLVED: To provide a method for producing a zinc-base alloy-plated, electric resistance-welded steel tube having excellent quality in the welded part without developing defective welding by reducing plating embrittlement crack easily developing when a electric resistance welding is applied, in the method for producing the zinc-base alloy plated, electric resistance-welded steel tube used for steel tubes and square tubes mainly used for buildings and cars. <P>SOLUTION: In the method for producing zinc-base alloy-plated electric resistance-welded steel tubes, when a zinc-base alloy-plated steel sheet is formed into a tubular-state and this butting parts are electric resistance-welded, the position of the rotating shaft of a squeezing roll is used as a reference, and to the welding part surface in the range from a position of 100 mm apart on the upstream side to a position of 50 mm apart on the downstream side and containing a welding HAZ part, compressed air or inert gas is blown at ≥100 m/sec gas flow velocity. <P>COPYRIGHT: (C)2004,JPO&NCIPI

Description

【0001】
【発明の属する技術分野】
本発明は、主に、建築、自動車用の鋼管、角管などに使用される、表面に亜鉛系合金めっきが施された亜鉛系合金めっき電縫鋼管の製造する方法に関し、特に亜鉛系合金めっき鋼板を管状に成形加工してその突合せ部を電縫溶接する際に発生するめっき脆化割れを低減するための亜鉛系合金めっき電縫鋼管の製造方法に関する。
【0002】
【従来の技術】
従来からZnめっき鋼板は、建築や自動車の構造部材の耐食性向上の点から幅広く用いられ、最近ではZnめっき中にAl、MgまたはSiなどを添加したZn−Al系、Zn−Al−Mg系、Zn−Al−Mg−Si系などの亜鉛系合金めっきを鋼板表面に施された耐食性に優れた亜鉛系合金めっき鋼板が特許文献1および特許文献2で知られている。また、これらと同様の亜鉛系合金めっきを表面に施した亜鉛系合金めっき電縫鋼管も多く用いられている。
【0003】
亜鉛系合金めっき電縫鋼管は、めっきのない鋼板を用いて鋼管を製造した後、高温の溶融めっき浴でめっき処理して製造する方法が従来の主流であったが、近年になって生産性の向上及びコスト削減の点から亜鉛系合金めっき鋼板を用いて鋼管を製造する方法が実用化されている。
【0004】
一方、鋼管などの溶接構造物では、溶接による熱膨張・収縮の結果、その溶接部および溶接HAZ部(以下、溶接HAZ部ということもある)には、引っ張り応力は残留しやすい。このような溶接構造物を高温の溶融めっき浴でめっき処理する場合には、高温状態の液体金属が鋼材表面に接触し、かつその溶接部および溶接HAZ部の表面に残留応力または熱応力などの引張応力が作用し、鋼材表面に脆化域が形成され、それによる割れが発生することが知られている。このような現象は、一般に液体金属脆化割れ:LME(Liquid Metal Embrittlement)と称されている(例えば、非特許文献1など)。
【0005】
鋼管などの溶接構造物を高温の溶融亜鉛めっき浴でめっき処理する際に発生する液体金属脆化割れ(以下、めっき脆化割れということもある)は、めっき浴の温度と溶接部および溶接HAZ部の残留引っ張り応力の大きさに支配されることが知られており、従来、めっき脆化割れを抑制するための方法として、鋼材成分の規定による組織制御が試みられている。例えば、アーク溶接法により溶接した溶接構造物を約500℃の溶融亜鉛めっき浴中に浸漬してめっき処理する際には、鋼材成分の設計指標としてJIS G 3474−1995で規定されるLME炭素当量を一定値以下とすることにより、脆化が進みやすい溶接HAZ部の組織の改善を行なわれている。
【0006】
このようなめっき脆化割れは、亜鉛系合金めっき鋼板を用いて鋼管を製造する際にも発生することが知られている。
【0007】
亜鉛系合金めっき鋼板を用いて鋼管を製造する場合は、亜鉛系合金めっき鋼板を管状に成形し、その突合せ部を高周波誘導溶接および高周波抵抗溶接(以下、電縫溶接という。)等の方法により溶接される。電縫溶接によって形成される溶接HAZ部では、溶接入熱により結晶粒界が成長し粗大な結晶粒の組織となりやすく、また、鋼板表面に施された亜鉛系合金めっきが完全に蒸発、離散されずに表面に溶融状態のまま残留しやすい。さらに、溶接入熱により鋼材は加熱膨張された後、室温までの冷却過程で熱収縮されるため、この熱収縮により鋼材表面には引っ張り応力が発生し、表面の溶融めっきが鋼材の結晶粒界へ侵入する作用を助長し、粒界脆化が促進される。また、鋼管を管状に成形加工する際には、大きなスプリングバック(加工反力)が働くため、電縫溶接時の溶接部および溶接HAZ部には熱収縮による引っ張り応力に加えて、スプリングバック力も粒界脆化を促進させ、めっき脆化割れを発生する原因となる。
【0008】
亜鉛系合金めっき鋼板を用いて鋼管を製造する場合に発生するめっき脆化割れは、鋼管などの溶接構造物を溶融めっき処理する際に発生する温度、つまり、めっき浴の温度に比べて遥かに高い溶接ピーク温度から亜鉛系合金めっきの融点までの幅広い温度域(約1500℃〜約450℃)かつ大きな引っ張り応力が作用する状態で発生する。
【0009】
特に、近年、自動車分野などで多く用いられる亜鉛系合金めっき鋼板として、車体の軽量化による燃費向上、排ガス低減などの地球環境維持のために、従来の加工性が良好なIF鋼などの軟質低炭鋼に替わって、Cや合金元素などの焼き入れ成分を含有する高強度鋼を母材とし、その表面に、従来のZnめっきよりも耐食性を向上させるために、亜鉛にAl、MgおよびSiなどを1種または2種以上の含有した亜鉛系合金めっきを施したものが用いられるようになった。それに伴い、従来はめっき脆化割れが発生しなかった溶接条件でも、割れが発生することが多くなってきた。
【0010】
亜鉛系合金めっき鋼板を用いて鋼管を製造する場合に発生するめっき脆化割れは、鋼管などの溶接構造物を溶融めっき処理する際に発生するめっき脆化割れを抑制するための上記のLME炭素当量による鋼材の組織制御の方法をそのまま適用しても割れの発生条件およびメカニズムが異なるため、抑制することは困難である。
【0011】
亜鉛系合金めっき電縫鋼管を製造する際のめっき脆化割れを抑制する方法として、特許文献3では、Zn−Al−Mg系合金めっき鋼板を管状に成形加工してその突合せ部を溶接する際のアップセット量を制御し、溶接止端部の形状を応力集中を低減するようになだらかにすることにより、めっき脆化割れを抑制する方法が開示されている。しかし、アップセット量を制御することにより応力集中を低減できる条件が、一部の鋼管サイズや鋼種に限定されるため、幅広い製造条件で安定してめっき脆化割れを低減することは困難である。
【0012】
【特許文献1】
特開平10−226865号公報
【特許文献2】
特開2000−64061号公報
【特許文献3】
特開2002−115793号公報
【非特許文献1】
Journal of Institute of Metals (1914) p.108. (A.K. Huntington)
【0013】
【発明が解決しようとする課題】
上記従来技術の実情を鑑みて、本発明は、亜鉛めっき、さらには、Zn−Al系、Zn−Al−Mg系、Zn−Al−Mg−Si系などの亜鉛系合金めっきが表面に施された亜鉛系合金めっき鋼管の製造方法において、亜鉛系合金めっき鋼板を管状に成形加工してその突合せ部を電縫溶接する際に発生する亜鉛系合金めっきに起因した液体金属脆化割れ(めっき脆化割れ)を低減し、よって、溶接部品質に優れた亜鉛系合金めっき電縫鋼管の製造方法を提供することを目的とする。
【0014】
【課題を解決するための手段】
本発明は、上記課題を解決するためになされたもので、その要旨は、亜鉛系合金めっき電縫鋼管の製造方法において、前記亜鉛系合金めっき鋼板を管状に成形加工し、その突合せ部を電縫溶接する際に、スクイーズロールの回転軸位置を基準とし、上流側に100mm離れた位置から下流側に50mm離れた位置の範囲で、かつ溶接HAZ部を含む溶接部表面に対して、100m/sec 以上のガス流速で圧縮空気或いは不活性ガスを吹きつけることを特徴とする溶接部の品質に優れた亜鉛系合金めっき電縫鋼管の製造方法、である。
【0015】
【発明の実施の形態】
一般に、鋼材同士を溶接する場合、溶接部は、溶接入熱により溶融された後、溶接金属は凝固し室温までの冷却過程で熱収縮が生じるが、この際に溶接金属部及びその周囲の溶接HAZ部において引っ張り応力が発生し、室温で引っ張り応力が残留する(以下、この溶接部に残留した引っ張り応力を残留引っ張り応力という)。
【0016】
亜鉛系合金めっき鋼板を管状成形後、その突合せ部を電縫溶接して鋼管を製造する場合も同様に、溶接部に熱収縮による引っ張り応力が発生するが、これに加えて、管状成形によるスプリングバック(加工反力)も引っ張り応力として作用する。
【0017】
この引っ張り応力は、鋼材の高温強度に依存し、溶接直後の高温状態では引っ張り応力は小さいが、冷却されるにとともに鋼材の高温強度は回復し、亜鉛系合金めっきの融点に相当する低温域(約400〜500℃)では、溶接部、特に溶接HAZ部の引っ張り応力は大きくなると考えられる。また、鋼材の高温強度は、鋼中に炭素及び合金成分などの焼き入れ成分を多く含有する高強度鋼材ほど高くなるため、熱収縮に起因して発生する引っ張り応力も鋼材強度(引っ張り強度)が高いほど大きいと考えられる。
【0018】
一方、亜鉛系合金めっき鋼板を電縫溶接する場合は、溶接入熱により特に温度が高くなる溶接金属とその近傍はめっきが蒸発、離散されて鋼板表面には残らないが、それよりも温度が低い溶接HAZ部では、めっきは溶融した状態で鋼板表面に残留される可能性がある。めっきが蒸発、離散するか、残存するかは、めっきの融点に依存すると考えられるが、近年の亜鉛めっき中にAl、MgおよびSiを1種または2種以上添加したZn−Al系、Zn−Al−Mg系、Zn−Al−Mg−Si系などの亜鉛系合金めっきは、従来の亜鉛めっきに比べて融点が高いため、これらのめっきを施した鋼板を電縫溶接する場合に、溶接HAZ部に残存する溶融めっきが増加すると考えられる。
【0019】
以上から、近年、比較的強度の高い鋼板の表面にZn−Al系、Zn−Al−Mg系、Zn−Al−Mg−Si系などの比較的融点の高い亜鉛系合金めっき層を有する亜鉛系合金めっき鋼板を用いて鋼管を製造する際に、溶融めっき割れの発生が顕著になった原因として、主として、電縫溶接において特に溶接HAZ部で発生する引っ張り応力の増大と、溶接HAZ部に残留する溶融めっき量の増加により、溶融めっきが鋼板の結晶粒界に浸入し粒界脆化を助長させ、その結果、めっき脆化割れの発明が顕著になったためと考えられる。
【0020】
本発明者らは、これらの考察を踏まえ、亜鉛系合金めっき鋼板を用いた鋼管の製造おいて、めっき脆化割れの発生を抑制するために、その一要因である電縫溶接時に溶接HAZ部に残存する溶融めっきを除去する方法を検討し、その結果を基に本発明をなしたものである。
【0021】
以下に図面を参照して本発明の詳細について説明する。
【0022】
図1は、本発明の亜鉛系合金めっき電縫鋼管の製造方法を説明するための模式図である。
【0023】
本発明において、亜鉛系合金めっき鋼板と用い、電縫溶接時の鋼板表面に残留する溶融めっきを除去する方法以外は、特に限定するものではなく、通常の電縫鋼管を製造する方法が本発明でも適用される。
【0024】
つまり、通常の電縫鋼管を製造する方法として、本発明でもロールフォーミング法、またはロールレスフォーミング法などの製管方法を用いて、亜鉛系合金めっき鋼板1を通材(通材方向15)しながら管状に成形し、その突合せ部4を高周波コイル2より給電加熱し溶融すると共に、スクイーズロール3よりアップセットを加えて突合せ部4に溶接シーム5を形成(電縫溶接)することにより電縫鋼管は製造される。
【0025】
本発明では、この電縫鋼管の製造方法において、亜鉛系合金めっき鋼板1を用い、これを電縫溶接する際に、通材方向の高周波コイル2下流側の所定範囲で、突合せ部4(溶接部)の直上にガスブロー管6を配置し、これを用いて圧縮空気或いは不活性ガス7を溶接HAZ部を含む溶接部表面に所定流速で吹き付けることにより溶接HAZ部に残留する溶融めっきを除去する。
【0026】
ガスブロー管6としては、ガス導入本管下部に2本の分岐ノズルを有し、少なくとも溶接HAZ部を含む溶接線両側の領域に対してガスを吹き付けられる構造のものが用いられる。
【0027】
図2にガスブローをしない従来法による亜鉛系合金めっき電縫鋼管のシーム部の垂直断面拡大図を示す。
【0028】
既に説明したように、亜鉛系合金めっき鋼板1を管状成形後にその突合せ部4を電縫溶接する場合、溶接金属に相当する溶接シーム5とその周囲の溶接HAZ部11は熱収縮とスプリングバック(加工反力)に起因する引っ張り応力が発生する。この際、溶接シーム5から溶接HAZ部11に接続する繋ぎ目に相当する溶接止端部13は、電縫溶接時のアップセットの付加により急峻な切欠形状となりやすいため特に溶接止端部13に引っ張り応力が集中しやすい。
【0029】
また、電縫溶接時の溶接HAZ部11の温度は約900〜1,000℃であり、温度域はめっき脆化を受け易い粗大粒径のオーステナイトを形成するために充分な温度である一方、亜鉛系合金めっき12を完全に蒸発、離散させるためには温度が低いため亜鉛系合金めっき12は溶融状態のまま鋼板表面に残留しめっき溜り14を形成する。その結果、熱収縮及びスプリングバックに起因する引っ張り応力の発生と溶融めっきの残留との相乗作用で溶融した亜鉛系合金めっき12が鋼板の結晶粒界へ浸入し粒界脆化の形成を促進させ、特に溶接HAZ部でめっき脆化割れ16が発生する。
【0030】
本発明では、図2に示すめっき溜まりを図1に示すガスブロー管6を通して圧縮空気或いは不活性ガス7を少なくとも溶接HAZ部に吹き付けることにより、鋼板と非接触の状態、つまり鋼板表面を何ら損傷することなく除去する。
【0031】
本発明において、溶融めっきの残留と、熱収縮およびスプリングバックに起因する引っ張り応力の発生との相乗作用によって発生するめっき脆化割れを低減するためには、特に、ガスブロー位置と、ガス流速を適正な範囲に規定することがその効果を充分に発揮する上で重要となる。
【0032】
本発明者らは、高周波コイル2からスクイーズロール3の方向の所定範囲にガスブロー管6を配置し種々の条件で実験を行なうことにより、ガスブロー位置及びガス流速とめっき脆化割れの発生との関係を明らかにし、これを基にガスブロー位置及びガス流速を以下のように規定した。
【0033】
図3に11%Al−3%Mg−0.2%Si−残部Znの溶融亜鉛系合金めっき鋼板を用い、圧縮空気でブローしながら電縫溶接した場合のブロー位置とめっき脆化割れ深さとの関係、図4に同様にガス流速とめっき脆化割れ深さとの関係を示す。
【0034】
なお、図3ではガス流速を300m/s一定とし、図4ではブロー位置を+50mm(アップセットを与えるスクイーズロールの回転軸位置を基準(原点)とし、+側を上流側(通材方向と反対方向)とし、−側を下流(通材方向)とする)に固定した。また、めっき脆化割れは、電縫溶接部の垂直断面を観察し、板厚方向の割れ深さを測定し、板厚に対する割れ深さの比で評価した。
【0035】
図3から電縫溶接時のブロー位置は+100mm〜−50mmの範囲、つまり、スクイーズロールの回転軸の位置を基準(原点)とし、上流側(通材方向と反対方向)に100mm離れた位置から下流側(通材方向)に50mm離れた位置の範囲、図4からガス流速は100m/sec 以上で、それぞれめっき脆化割れは殆ど皆無になる。
【0036】
本発明では、亜鉛系合金めっき電縫鋼管の製造方法において、亜鉛系合金めっきに起因するめっき脆化割れを充分に低減するために、電縫溶接時のブロー位置を、スクイーズロールの回転軸の位置を基準(原点)とし、上流側(高周波コイル方向)に100mm離れた位置から下流側(高周波コイルと反対方向)に50mm離れた位置の範囲に規定するとともに、ガス流速を100m/sec 以上に規定する。
【0037】
電縫溶接時のブロー位置及びガス流速の何れか一方でも上記範囲から外れると、熱収縮及びスプリングバックに起因する引っ張り応力の発生と、溶融めっきの残留との相乗作用で発生するめっき脆化割れを充分に抑制することはできない。
【0038】
なお、ガス流速の上限は、めっき脆化割れを抑制する観点からは、特に限定する必要はないが、ガス流速を過度に増加させると効果が飽和するだけでなく、設備能力またはランニングコストの点から好ましくない。その上限は1,000m/sec以下とすることが好ましい。
【0039】
ガスブロー用のガスの種類は、特に限定する必要はなく、例えば、工業的に広く用いられている圧縮空気または不活性ガスが用いられる。
【0040】
但し、ブロー用のガスとして酸素ガスまたは酸素を過度(50%を超える程度)に含有するガスは、溶接部の酸化などにより電縫溶接部の品質を著しく低下させる原因となるため好ましくない。
【0041】
また、本発明で使用する亜鉛系合金めっき鋼板のめっきの種類も特に限定する必要はなく、例えば、亜鉛めっきの他に、特許文献1に記載されているようなZn−Al−Mg系、特許文献2に記載されているようなZn−Al−Mg−Si系、或いはZn−Al系の亜鉛系合金めっきが挙げられる。
【0042】
因みに、Zn−Al系合金めっきでは、Al:0.18〜5%を含有し、さらに、Mg:0.01〜0.5%、La:0.001〜0.5%、および、Ce:0.001〜0.5%のうちのいずれか1種または2種以上を含有し、残部がZnからなり、Zn−Al−Mg系合金めっきでは、Al:2〜19%、Mg:0.5〜10%、残部Znからなるめっきからなり、Zn−Al−Mg−Si系合金めっきでは、Al:2〜19%、Mg:0.5〜10%、Si:0.01〜2%、残部Znからなるめっきからなる。
【0043】
【実施例】
板厚が4.5mmで、C:0.15質量%、Si:0.25質量%、Mn:0.5質量%を含有し残部Feからなる低炭素鋼板の表面に、目付量片面が90g/mで、Al:11%、Mg:3%、Si:0.2%を含有し、残部Znからなる溶融亜鉛合金めっきを施した亜鉛系合金めっき鋼板を用いて、これを管状に成形し、その突合せ部を表1に示す条件で溶接HAZ部を含む溶接部を圧縮空気を用いてブローしながら、溶接速度:30m/min、高周波パワー:450kW、アプセット量:3mmの条件で電縫溶接し、外径355mmの電縫鋼管を製造した。
【0044】
なお、ガスブロー管は、図1に示すようなガス導入本管下部に内径2mmφの2本の分岐ノズルを有するものを用い、溶接HAZ部を含む溶接線両側の領域に対して、下流側(通材方向)の方向にガスを吹き付けた。
【0045】
めっき脆化割れは、電縫溶接部の垂直断面を光学顕微鏡(x15倍)で観察し、板厚方向の割れ深さを測定し、板厚に対する割れ深さの比で評価した。その評価結果を表1に示す。
【0046】
なお、表1におけるブロー位置は、アップセットを与えるスクイーズロールの回転軸位置を基準(原点)とし、+側を上流側(通材方向と反対方向)とし、−側を下流(通材方向)とする。
【0047】
【表1】

Figure 2004249296
【0048】
表1から分かるように、エアーブロー位置を、スクイーズロールの回転軸位置を基準(原点)とし、+100〜−50mmの範囲とし、かつ、ガス流速を100m/sec 以上とすることによりめっき脆化割れをほとんど皆無とすることができる。
【0049】
【発明の効果】
以上の通り、本発明によれば、亜鉛系合金めっき鋼管の製造方法において、亜鉛系合金めっき鋼板を管状に成形加工してその突合せ部を電縫溶接する際に発生する亜鉛系合金めっきに起因した液体金属脆化割れ(めっき脆化割れ)を低減し、よって、溶接部品質に優れた亜鉛系合金めっき電縫鋼管の製造方法を提供することが可能となる。
【図面の簡単な説明】
【図1】本発明の亜鉛系合金めっき電縫鋼管の製造方法を説明するための模式図。
【図2】従来法の亜鉛系合金めっき電縫鋼管のシーム部の垂直断面拡大図。
【図3】電縫溶接時のブロー位置とめっき脆化割れ深さとの関係を示すグラフ。
【図4】電縫溶接時のガス流速とめっき脆化割れ深さとの関係を示すグラフ。
【符号の説明】
1…亜鉛系合金めっき鋼板
2…高周波コイル
3…スクイーズロール
4…突合せ部
5…溶接シーム
6…ガスブロー管
7…圧縮空気或いは不活性ガス
8…スクイーズロールの回転軸の位置
9…上流側(+)
10…下流側(−)
11…溶接HAZ部
12…亜鉛系合金めっき層
13…溶接止端部
14…めっき溜まり
15…通材方向
16…めっき脆化割れ
17…鋼板母材[0001]
TECHNICAL FIELD OF THE INVENTION
The present invention mainly relates to a method of manufacturing a zinc-based alloy-plated electric resistance welded steel pipe having a surface coated with a zinc-based alloy, which is mainly used for construction, steel pipes for automobiles, square pipes, etc. The present invention relates to a method for producing a zinc-based alloy plated electric resistance welded steel pipe for reducing plating embrittlement cracks generated when a steel plate is formed into a tubular shape and its butt portion is subjected to electric resistance welding.
[0002]
[Prior art]
Conventionally, Zn-plated steel sheets have been widely used from the viewpoint of improving corrosion resistance of structural members of buildings and automobiles, and recently, Zn-Al-based, Zn-Al-Mg-based, and the like added with Al, Mg, or Si during Zn plating. Patent Literature 1 and Patent Literature 2 disclose zinc-based alloy-plated steel sheets having excellent corrosion resistance in which zinc-based alloy plating such as Zn-Al-Mg-Si is applied to the surface of the steel sheet. Also, zinc-based alloy-plated electric resistance welded steel pipes having the same zinc-based alloy plating applied to the surface thereof are widely used.
[0003]
Conventionally, zinc-alloy-plated ERW steel pipes are manufactured by using steel sheets without plating and then plating in a high-temperature hot-dip plating bath. From the viewpoint of improvement in cost and cost reduction, a method of manufacturing a steel pipe using a zinc-based alloy-plated steel sheet has been put to practical use.
[0004]
On the other hand, in a welded structure such as a steel pipe, as a result of thermal expansion and contraction due to welding, tensile stress tends to remain in a welded portion and a welded HAZ portion (hereinafter, also referred to as a welded HAZ portion). When plating such a welded structure in a hot-dip plating bath, the liquid metal in a high-temperature state comes into contact with the surface of the steel material, and the surface of the welded portion and the welded HAZ portion has residual stress or thermal stress. It is known that a tensile stress acts to form an embrittled region on the surface of a steel material, which causes cracking. Such a phenomenon is generally called liquid metal embrittlement cracking: LME (Liquid Metal Embrittlement) (for example, Non-Patent Document 1).
[0005]
Liquid metal embrittlement cracking (hereinafter sometimes referred to as plating embrittlement cracking) that occurs when plating a welded structure such as a steel pipe in a high-temperature hot-dip galvanizing bath depends on the temperature of the plating bath, the weld zone and the welding HAZ. It is known that it is governed by the magnitude of the residual tensile stress in the part. Conventionally, as a method for suppressing the embrittlement cracking of the plating, the control of the structure by defining the steel component has been attempted. For example, when a welded structure welded by an arc welding method is immersed in a hot-dip galvanizing bath at about 500 ° C. to perform a plating treatment, an LME carbon equivalent specified by JIS G 3474-1995 as a design index of a steel material component is used. Is set to a certain value or less, the structure of the welded HAZ portion where embrittlement is likely to progress is improved.
[0006]
It is known that such plating embrittlement cracks also occur when a steel pipe is manufactured using a zinc-based alloy-plated steel sheet.
[0007]
When a steel pipe is manufactured using a zinc-based alloy-plated steel sheet, the zinc-based alloy-plated steel sheet is formed into a tube, and the butt portion is formed by a method such as high-frequency induction welding and high-frequency resistance welding (hereinafter referred to as electric resistance welding). Welded. In the welded HAZ formed by ERW, the grain boundary grows due to the heat input of the weld and tends to become a coarse crystal grain structure, and the zinc-based alloy plating applied to the steel sheet surface is completely evaporated and separated. Without melting and remain on the surface in a molten state. Furthermore, after the steel material is heated and expanded by the heat input from welding, it is thermally contracted in the process of cooling to room temperature. This thermal contraction generates tensile stress on the surface of the steel material, and the hot-dip plating on the surface causes the grain boundary of the steel material to grow. And promotes the action of infiltration into the grains, and promotes grain boundary embrittlement. Further, when a steel pipe is formed into a tubular shape, a large springback (working reaction force) acts, so that in addition to the tensile stress due to thermal contraction, the springback force is exerted on the welded portion and the welded HAZ portion during ERW. It promotes grain boundary embrittlement and causes plating embrittlement cracking.
[0008]
Plating embrittlement cracking that occurs when steel pipes are manufactured using zinc-based alloy-plated steel sheets is much lower than the temperature that occurs when hot-dip coating welded structures such as steel pipes, that is, the temperature of the plating bath. It occurs in a wide temperature range (from about 1500 ° C. to about 450 ° C.) from a high welding peak temperature to the melting point of the zinc-based alloy plating and in a state where a large tensile stress acts.
[0009]
In particular, in recent years, as a zinc-based alloy-plated steel sheet that is often used in the automotive field and the like, in order to maintain the global environment such as improving fuel efficiency and reducing exhaust gas by reducing the weight of the body, it has been proposed to use soft steel such as conventional IF steel with good workability. In place of carbon steel, a high-strength steel containing a quenching component such as C or an alloy element is used as a base material, and on the surface thereof, Al, Mg and Si are added to zinc in order to improve corrosion resistance more than conventional Zn plating. And the like, which has been subjected to zinc-based alloy plating containing one or more of these. Along with this, cracking has often occurred even under welding conditions in which plating embrittlement cracking has not conventionally occurred.
[0010]
Plating embrittlement cracking that occurs when a steel pipe is manufactured using a zinc-based alloy-plated steel sheet is the above-mentioned LME carbon for suppressing plating embrittlement cracking that occurs when hot-dip plating a welded structure such as a steel pipe. Even if the method of controlling the structure of the steel material by the equivalent amount is applied as it is, it is difficult to suppress the crack generation condition and mechanism because it is different.
[0011]
As a method for suppressing plating embrittlement cracking when manufacturing a zinc-based alloy-plated electric resistance welded steel pipe, Patent Document 3 discloses a method of forming a Zn-Al-Mg-based alloy-plated steel sheet into a tubular shape and welding a butt portion thereof. A method of controlling plating embrittlement cracking by controlling the upset amount of the steel plate and making the shape of the weld toe portion smooth so as to reduce stress concentration is disclosed. However, since the conditions under which the stress concentration can be reduced by controlling the upset amount are limited to some steel pipe sizes and steel types, it is difficult to stably reduce plating embrittlement cracking under a wide range of manufacturing conditions. .
[0012]
[Patent Document 1]
JP-A-10-226865 [Patent Document 2]
JP 2000-64061 A [Patent Document 3]
Japanese Patent Application Laid-Open No. 2002-115793 [Non-Patent Document 1]
Journal of Institute of Metals (1914) p. 108. (AK Huntington)
[0013]
[Problems to be solved by the invention]
In view of the situation of the above-mentioned conventional technology, the present invention provides a method of applying zinc plating, and further, zinc-based alloy plating such as Zn-Al-based, Zn-Al-Mg-based, Zn-Al-Mg-Si-based to the surface. Liquid zinc embrittlement cracking (plating brittleness) caused by zinc-based alloy plating generated when a zinc-based alloy-plated steel sheet is formed into a tubular shape and its butt joint is subjected to ERW welding It is an object of the present invention to provide a method for producing a zinc-based alloy-plated electric resistance welded steel pipe having reduced weld cracking and thus excellent weld quality.
[0014]
[Means for Solving the Problems]
SUMMARY OF THE INVENTION The present invention has been made to solve the above-mentioned problems. The gist of the present invention is to provide a method for manufacturing a zinc-based alloy-plated electric resistance welded steel pipe, in which the zinc-based alloy-plated steel sheet is formed into a tubular shape, and the butt portion is subjected to electroforming. When performing the seam welding, 100 m / m from the position of the rotation axis of the squeeze roll as a reference, from a position 100 mm away from the upstream to a position 50 mm away from the downstream and from the surface of the weld including the weld HAZ. A method for producing a zinc-based alloy-plated ERW steel pipe having excellent weld quality, characterized by blowing compressed air or inert gas at a gas flow rate of at least sec.
[0015]
BEST MODE FOR CARRYING OUT THE INVENTION
Generally, when welding steel materials, the weld metal is melted by heat input during welding, then the weld metal solidifies and undergoes heat shrinkage during the cooling process to room temperature. Tensile stress is generated in the HAZ portion, and the tensile stress remains at room temperature (hereinafter, the tensile stress remaining in the welded portion is referred to as residual tensile stress).
[0016]
Similarly, when a steel pipe is manufactured by subjecting a butt portion of the zinc-based alloy-plated steel sheet to tubular forming and then performing electric resistance welding, a tensile stress is generated in the welded part due to heat shrinkage. The back (working reaction force) also acts as a tensile stress.
[0017]
This tensile stress depends on the high-temperature strength of the steel material. Although the tensile stress is small in the high-temperature state immediately after welding, the high-temperature strength of the steel material recovers with cooling, and the low-temperature region (corresponding to the melting point of zinc-based alloy plating) At about 400 to 500 ° C.), it is considered that the tensile stress in the welded part, particularly in the welded HAZ part, becomes large. In addition, since the high-temperature strength of steel materials increases as the strength of steel materials containing more quenched components such as carbon and alloy components increases, the tensile stress generated due to heat shrinkage also increases the steel material strength (tensile strength). Higher is considered larger.
[0018]
On the other hand, when performing galvanic welding on a zinc-based alloy-plated steel sheet, the plating is evaporated and separated from the weld metal and its vicinity, where the temperature is particularly high due to the heat input, and does not remain on the steel sheet surface. In a low weld HAZ, the plating may remain on the steel sheet surface in a molten state. It is thought that whether the plating evaporates, separates, or remains depends on the melting point of the plating. However, Zn-Al-based, Zn-Al-based alloys in which one, two or more of Al, Mg and Si are added during recent zinc plating. Zinc alloy plating such as Al-Mg and Zn-Al-Mg-Si has a higher melting point than conventional zinc plating. It is considered that the hot-dip plating remaining in the part increases.
[0019]
From the above, in recent years, a zinc-based alloy having a relatively high melting point zinc-based alloy plating layer such as a Zn-Al-based, Zn-Al-Mg-based, or Zn-Al-Mg-Si-based on the surface of a relatively high-strength steel sheet Causes of the occurrence of hot-dip cracks when manufacturing steel pipes using alloy-plated steel sheets are mainly due to the increase in tensile stress particularly generated in the welded HAZ in ERW, and the residual in the welded HAZ. It is considered that due to the increase in the amount of hot-dip coating, hot-dip coating penetrated into grain boundaries of the steel sheet and promoted grain boundary embrittlement, and as a result, the invention of plating embrittlement cracking became prominent.
[0020]
In view of these considerations, the inventors of the present invention, in the production of steel pipe using a zinc-based alloy-plated steel sheet, in order to suppress the occurrence of plating embrittlement cracking, the welding HAZ portion during ERW welding, which is one of the factors. The present invention has been made based on the results of studying a method for removing the hot-dip plating remaining in the steel sheet.
[0021]
Hereinafter, the present invention will be described in detail with reference to the drawings.
[0022]
FIG. 1 is a schematic diagram for explaining a method for producing a zinc-based alloy-plated electric resistance welded steel pipe of the present invention.
[0023]
In the present invention, there is no particular limitation, except for the method of using the zinc-based alloy-plated steel sheet and removing the hot-dip coating remaining on the steel sheet surface during the electric resistance welding, and a method of manufacturing a normal electric resistance welded steel pipe is used in the present invention. But it applies.
[0024]
In other words, as a method of manufacturing a normal ERW steel pipe, the zinc-based alloy-plated steel sheet 1 is passed through (through direction 15) by using a pipe manufacturing method such as a roll forming method or a rollless forming method in the present invention. While the butt portion 4 is heated and melted by supplying power from the high-frequency coil 2, an upset is added from the squeeze roll 3 to form a welding seam 5 at the butt portion 4 (ERW). Steel pipes are manufactured.
[0025]
According to the present invention, in the method for manufacturing an electric resistance welded steel pipe, when the zinc-based alloy-plated steel sheet 1 is used and subjected to the electric resistance welding, a butt portion 4 (welding) is provided in a predetermined range on the downstream side of the high-frequency coil 2 in the passing direction. Section), a gas blow pipe 6 is arranged, and by using this, a compressed air or an inert gas 7 is blown at a predetermined flow rate to the surface of the weld section including the weld HAZ section, thereby removing hot-dip plating remaining in the weld HAZ section. .
[0026]
As the gas blow pipe 6, a gas blow pipe having a structure in which two branch nozzles are provided at the lower part of the gas introduction main pipe, and gas can be blown at least to a region on both sides of a welding line including a welding HAZ portion is used.
[0027]
FIG. 2 is an enlarged vertical cross-sectional view of a seam portion of a zinc-based alloy-plated electric resistance welded steel pipe according to a conventional method without gas blowing.
[0028]
As described above, when the butt portion 4 is welded by electric resistance welding after the tubular formation of the zinc-based alloy-plated steel sheet 1, the weld seam 5 corresponding to the weld metal and the weld HAZ portion 11 surrounding the weld seam 5 are subjected to heat shrinkage and spring back ( A tensile stress is generated due to the processing reaction force). At this time, the weld toe portion 13 corresponding to the joint connecting the weld seam 5 to the weld HAZ portion 11 tends to have a steep notch shape due to the addition of an upset at the time of the electric resistance welding, so that the weld toe portion 13 is particularly formed. Easy to concentrate tensile stress.
[0029]
Further, the temperature of the welding HAZ portion 11 at the time of the electric resistance welding is about 900 to 1,000 ° C., and the temperature range is a temperature sufficient to form coarse austenite which is susceptible to plating embrittlement, Since the temperature is low to completely evaporate and separate the zinc-based alloy plating 12, the zinc-based alloy plating 12 remains on the steel sheet surface in a molten state to form a plating pool 14. As a result, the molten zinc-based alloy plating 12 penetrates into the grain boundaries of the steel sheet due to the synergistic effect of the generation of tensile stress due to heat shrinkage and springback and the residual hot-dip plating, thereby promoting the formation of grain boundary embrittlement. In particular, plating embrittlement cracks 16 occur in the weld HAZ.
[0030]
In the present invention, the plating pool shown in FIG. 2 is blown at least to the welding HAZ portion with compressed air or an inert gas 7 through the gas blow pipe 6 shown in FIG. Remove without.
[0031]
In the present invention, in order to reduce the plating embrittlement cracks generated by the synergistic action of the residual hot-dip plating and the generation of the tensile stress caused by heat shrinkage and springback, in particular, the gas blow position and the gas flow rate are properly adjusted. It is important to define the range within a proper range in order to sufficiently exhibit the effect.
[0032]
The present inventors arranged the gas blow pipe 6 in a predetermined range in the direction from the high-frequency coil 2 to the squeeze roll 3 and performed experiments under various conditions to find out the relationship between the gas blow position and the gas flow rate and the occurrence of plating embrittlement cracking. Was clarified, and based on this, the gas blow position and the gas flow rate were defined as follows.
[0033]
FIG. 3 shows the blow position, the plating embrittlement crack depth, and the welding position when performing ERW welding while blowing with compressed air using a hot-dip zinc-based alloy-plated steel sheet of 11% Al-3% Mg-0.2% Si-balance Zn. FIG. 4 similarly shows the relationship between the gas flow rate and the plating embrittlement crack depth.
[0034]
In FIG. 3, the gas flow rate is fixed at 300 m / s, and in FIG. 4, the blow position is +50 mm (the rotation axis position of the squeeze roll that gives the upset is the reference (origin), and the + side is the upstream side (opposite to the passing direction). Direction), and the minus side is defined as downstream (through-material direction). The plating embrittlement cracking was evaluated by observing the vertical cross section of the ERW weld, measuring the crack depth in the sheet thickness direction, and evaluating the ratio of the crack depth to the sheet thickness.
[0035]
From FIG. 3, the blow position during the electric resistance welding is in the range of +100 mm to −50 mm, that is, from the position 100 mm away from the position upstream of the squeeze roll as the reference (origin) with respect to the rotation axis of the squeeze roll (opposite to the passing direction). The gas flow velocity is 100 m / sec or more in the range of the position 50 mm away from the downstream side (through-hole direction), as shown in FIG. 4, and there is almost no plating embrittlement crack.
[0036]
In the present invention, in the method of manufacturing a zinc-based alloy-plated ERW steel pipe, in order to sufficiently reduce the embrittlement cracking caused by the zinc-based alloy plating, the blow position at the time of the ERW welding is set to the rotation axis of the squeeze roll. With the position as a reference (origin), the range is defined as a range from a position 100 mm away from the upstream side (direction of the high-frequency coil) to 50 mm away from the downstream side (the opposite direction to the high-frequency coil), and the gas flow rate is set to 100 m / sec or more. Stipulate.
[0037]
If any one of the blow position and gas flow rate during ERW welding is out of the above range, the generation of tensile stress due to thermal shrinkage and springback and the occurrence of plating embrittlement cracking caused by the synergistic effect of the residual molten coating. Cannot be sufficiently suppressed.
[0038]
The upper limit of the gas flow rate does not need to be particularly limited from the viewpoint of suppressing plating embrittlement cracking. However, if the gas flow rate is excessively increased, the effect is not only saturated but also the facility capacity or the running cost is reduced. Is not preferred. It is preferable that the upper limit be 1,000 m / sec or less.
[0039]
The type of gas for gas blowing does not need to be particularly limited. For example, compressed air or inert gas widely used industrially is used.
[0040]
However, an oxygen gas or a gas containing oxygen in an excessive amount (about more than 50%) as a blowing gas is not preferable because it causes deterioration of the quality of the electric resistance welded portion due to oxidation of the welded portion.
[0041]
Further, the type of plating of the zinc-based alloy-plated steel sheet used in the present invention does not need to be particularly limited. For example, in addition to zinc plating, a Zn-Al-Mg based steel described in Patent Literature 1, Zn-Al-Mg-Si-based or Zn-Al-based zinc-based alloy plating as described in Literature 2 can be mentioned.
[0042]
Incidentally, Zn-Al-based alloy plating contains 0.18 to 5% of Al, and further contains 0.01 to 0.5% of Mg, 0.001 to 0.5% of La, and Ce: One or more of 0.001 to 0.5% is contained, and the balance is made of Zn. In the case of Zn-Al-Mg based alloy plating, Al: 2 to 19%, Mg: 0. 5 to 10%, with the balance being Zn. In the case of Zn-Al-Mg-Si alloy plating, Al: 2 to 19%, Mg: 0.5 to 10%, Si: 0.01 to 2%, It consists of plating of the remainder Zn.
[0043]
【Example】
The sheet thickness is 4.5 mm, the surface of a low carbon steel sheet containing 0.15% by mass of C, 0.25% by mass of Si, 0.5% by mass of Mn and 0.5% by mass of Mn, and the balance of Fe is 90 g on one surface. / M 2 , formed into a tube using a zinc-based alloy-coated steel sheet containing 11% Al, 3% Mg, and 0.2% Si and subjected to hot-dip zinc alloy plating with the balance being Zn. Then, while blowing the butted portion including the welded HAZ using compressed air under the conditions shown in Table 1, the welding speed was 30 m / min, the high frequency power was 450 kW, and the upset amount was 3 mm. By welding, an electric resistance welded steel pipe having an outer diameter of 355 mm was manufactured.
[0044]
A gas blow pipe having two branch nozzles having an inner diameter of 2 mmφ at the lower part of the gas introduction main pipe as shown in FIG. 1 is used. The gas was blown in the direction of (material direction).
[0045]
Plating embrittlement cracking was observed by observing a vertical cross section of the ERW weld with an optical microscope (× 15), measuring the crack depth in the sheet thickness direction, and evaluating the ratio of the crack depth to the sheet thickness. Table 1 shows the evaluation results.
[0046]
The blow position in Table 1 is based on the rotation axis position of the squeeze roll that gives the upset (reference point), the + side is the upstream side (the direction opposite to the passing direction), and the-side is the downstream (the passing direction). And
[0047]
[Table 1]
Figure 2004249296
[0048]
As can be seen from Table 1, plating embrittlement cracking occurs when the air blow position is in the range of +100 to -50 mm with the rotation axis position of the squeeze roll as the reference (origin) and the gas flow rate is 100 m / sec or more. Can be almost completely absent.
[0049]
【The invention's effect】
As described above, according to the present invention, in the method for producing a zinc-based alloy-plated steel pipe, the zinc-based alloy-plated steel sheet is formed into a tubular shape, and the butt portion thereof is caused by the zinc-based alloy plating generated when performing the electric resistance welding. Liquid metal embrittlement cracking (plating embrittlement cracking) is reduced, and thus a method of manufacturing a zinc-based alloy-plated ERW steel pipe having excellent weld quality can be provided.
[Brief description of the drawings]
FIG. 1 is a schematic view for explaining a method for manufacturing a zinc-based alloy-plated electric resistance welded steel pipe of the present invention.
FIG. 2 is an enlarged vertical cross-sectional view of a seam portion of a conventional zinc-based alloy-plated electric resistance welded steel pipe.
FIG. 3 is a graph showing a relationship between a blow position and a plating embrittlement crack depth during electric resistance welding.
FIG. 4 is a graph showing the relationship between the gas flow rate during ERW and the plating embrittlement crack depth.
[Explanation of symbols]
DESCRIPTION OF SYMBOLS 1 ... Zinc alloy plating steel plate 2 ... High frequency coil 3 ... Squeeze roll 4 ... Butt joint 5 ... Weld seam 6 ... Gas blow tube 7 ... Compressed air or inert gas 8 ... Rotary shaft position 9 of squeeze roll 9 ... Upstream side (+ )
10 ... Downstream side (-)
DESCRIPTION OF SYMBOLS 11 ... Weld HAZ part 12 ... Zinc alloy plating layer 13 ... Welding toe part 14 ... Plating pool 15 ... Penetration direction 16 ... Plating embrittlement crack 17 ... Steel plate base metal

Claims (1)

亜鉛系合金めっき電縫鋼管の製造方法において、前記亜鉛系合金めっき鋼板を管状に成形加工し、その突合せ部を電縫溶接する際に、スクイーズロールの回転軸位置を基準とし、上流側に100mm離れた位置から下流側に50mm離れた位置の範囲で、かつ溶接HAZ部を含む溶接部表面に対して、100m/sec 以上のガス流速で圧縮空気或いは不活性ガスを吹きつけることを特徴とする溶接部の品質に優れた亜鉛系合金めっき電縫鋼管の製造方法。In the method for producing a zinc-based alloy-plated electric resistance welded steel pipe, the zinc-based alloy-plated steel sheet is formed into a tubular shape, and when the butted portions are subjected to electric resistance welding, 100 mm upstream from the rotational axis position of the squeeze roll. Compressed air or an inert gas is blown at a gas flow rate of 100 m / sec or more to the welded surface including the welded HAZ in a range of 50 mm downstream from the distant position. A method for manufacturing a zinc-based alloy-plated ERW steel pipe with excellent weld quality.
JP2003039624A 2003-02-18 2003-02-18 Method for producing zinc-base alloy-plated, electric resistance-welded steel tube Withdrawn JP2004249296A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2003039624A JP2004249296A (en) 2003-02-18 2003-02-18 Method for producing zinc-base alloy-plated, electric resistance-welded steel tube

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2003039624A JP2004249296A (en) 2003-02-18 2003-02-18 Method for producing zinc-base alloy-plated, electric resistance-welded steel tube

Publications (1)

Publication Number Publication Date
JP2004249296A true JP2004249296A (en) 2004-09-09

Family

ID=33023743

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2003039624A Withdrawn JP2004249296A (en) 2003-02-18 2003-02-18 Method for producing zinc-base alloy-plated, electric resistance-welded steel tube

Country Status (1)

Country Link
JP (1) JP2004249296A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2017051973A (en) * 2015-09-09 2017-03-16 積水化学工業株式会社 Plating removing method, welding method, welding object and structure

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2017051973A (en) * 2015-09-09 2017-03-16 積水化学工業株式会社 Plating removing method, welding method, welding object and structure

Similar Documents

Publication Publication Date Title
Shao et al. Effect of joining parameters on microstructure of dissimilar metal joints between aluminum and galvanized steel
JP6317453B2 (en) Hot-dip galvanized steel sheet with excellent liquid metal embrittlement cracking resistance
JP5936390B2 (en) Hot-dip Zn-Al-Mg-based plated steel sheet and manufacturing method
CA2932854C (en) Steel sheet hot-dip coated with zn-al-mg-based system having excellent workability and method for manufacturing same
WO2014156671A1 (en) High-strength plated steel sheet for welded structural member and method for manufacturing said sheet
JP6645635B1 (en) Steel plate, tailored blank, hot press molded product, steel pipe, hollow quenched molded product, and method for producing steel plate
JP6874919B1 (en) High-strength thin steel sheet and its manufacturing method
RU2518870C2 (en) Steel material coated with zinc-based alloy of high cracking resistance owing to embrittlement by fused metal
JP7124991B1 (en) Welded joints and auto parts
JP2003236676A (en) Method for spot-welding high tensile strength galvanized base steel sheet
JP5264235B2 (en) High yield ratio type Zn-Al-Mg plated steel sheet having excellent resistance to molten metal embrittlement cracking and method for producing the same
JP7124990B1 (en) Welded joints and auto parts
JP7124992B1 (en) Welded joints and auto parts
JP6694961B2 (en) Austenitic hot-dip aluminized steel sheet having excellent plating property and weldability, and method for producing the same
JP4601502B2 (en) Manufacturing method of high strength ERW steel pipe
JP2009091654A (en) Ferritic stainless steel having excellent weldability
WO2019097729A1 (en) Al-PLATED WELDED PIPE FOR HARDENING, Al-PLATED HOLLOW MEMBER, AND PRODUCTION METHOD THEREFOR
JP5264234B2 (en) Zn-Al-Mg-based plated steel sheet having excellent resistance to molten metal embrittlement cracking and method for producing the same
JP4173990B2 (en) Zinc-based alloy-plated steel for welding and its ERW steel pipe
WO2023054717A1 (en) Steel welded member
JP5364993B2 (en) High-strength hot-dip galvanized steel sheet excellent in workability and manufacturing method thereof
JP2006089804A (en) Method for producing high strength electric resistance welded tube for instrument panel reinforcement having excellent tube shrinking property
US20240042541A1 (en) Welded structural member having excellent crack resistance and manfuacturing method thereof
JP2004249296A (en) Method for producing zinc-base alloy-plated, electric resistance-welded steel tube
JP5053652B2 (en) Zn-Al-Mg plated steel sheet with excellent resistance to molten metal embrittlement cracking

Legal Events

Date Code Title Description
A300 Withdrawal of application because of no request for examination

Free format text: JAPANESE INTERMEDIATE CODE: A300

Effective date: 20060509