JP2004245062A - Variable intake device for internal combustion engine - Google Patents

Variable intake device for internal combustion engine Download PDF

Info

Publication number
JP2004245062A
JP2004245062A JP2003033118A JP2003033118A JP2004245062A JP 2004245062 A JP2004245062 A JP 2004245062A JP 2003033118 A JP2003033118 A JP 2003033118A JP 2003033118 A JP2003033118 A JP 2003033118A JP 2004245062 A JP2004245062 A JP 2004245062A
Authority
JP
Japan
Prior art keywords
intake
internal combustion
combustion engine
egr
valve
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
JP2003033118A
Other languages
Japanese (ja)
Inventor
Katsuhiko Miyamoto
勝彦 宮本
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Motors Corp
Original Assignee
Mitsubishi Motors Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Motors Corp filed Critical Mitsubishi Motors Corp
Priority to JP2003033118A priority Critical patent/JP2004245062A/en
Publication of JP2004245062A publication Critical patent/JP2004245062A/en
Withdrawn legal-status Critical Current

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02DCONTROLLING COMBUSTION ENGINES
    • F02D41/00Electrical control of supply of combustible mixture or its constituents
    • F02D41/0025Controlling engines characterised by use of non-liquid fuels, pluralities of fuels, or non-fuel substances added to the combustible mixtures
    • F02D41/0047Controlling exhaust gas recirculation [EGR]
    • F02D41/005Controlling exhaust gas recirculation [EGR] according to engine operating conditions
    • F02D41/0055Special engine operating conditions, e.g. for regeneration of exhaust gas treatment apparatus
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/10Internal combustion engine [ICE] based vehicles
    • Y02T10/40Engine management systems

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Electrical Control Of Ignition Timing (AREA)
  • Characterised By The Charging Evacuation (AREA)
  • Exhaust-Gas Circulating Devices (AREA)
  • Output Control And Ontrol Of Special Type Engine (AREA)
  • Combined Controls Of Internal Combustion Engines (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To perform optimum ignition timing control while improving intake efficiency in a variable intake device for an internal combustion engine. <P>SOLUTION: An intake control valve 33 is provided communicating a surge tank 31 and a sub-tank 32 with an intake pipe 22, and an EGR passage 34 and an EGR valve 35 are provided for recirculating exhaust gas to the surge tank 31. When an engine 11 is shifted from a high load state to a low load state and the intake control valve 33 is changed over into the open state from the closed state, the opening of the EGR valve 35 is held to the opening before the changeover, that is, to the closed state during a prescribed operation delay time, and the EGR valve 35 is opened after the lapse of the operation delay time. <P>COPYRIGHT: (C)2004,JPO&NCIPI

Description

【0001】
【発明の属する技術分野】
本発明は、内燃機関の運転状態に応じて吸気管長を変更することで、吸気効率を向上させるようにした内燃機関の可変吸気装置に関する。
【0002】
【従来の技術】
内燃機関の運転状態に応じて吸気管長を変更して吸気効率を向上させる可変吸気装置としては、特許文献1がある。また、可変吸気エンジンの排気ガス再循環制御装置として、特許文献2がある。
【0003】
【特許文献1】
実公平2−047235号公報
【特許文献2】
特開平9−324705号公報
【0004】
この特許文献1に記載された「多気筒内燃機関の吸気装置」は、吸気管にサージタンクを設けると共に、このサージタンクの下流側に連通路及び吸気制御弁を設け、この吸気制御弁を機関の高負荷・低中速回転域で閉じ、その他の運転域で開くように制御し、機関の広範囲な運転域にわたって吸気脈動を利用した高い体積効率を得ることで、吸気効率を向上させるものである。
【0005】
【発明が解決しようとする課題】
近年、排ガスの一部を吸気側に還流させて未燃焼ガスを新しい空気と共に燃焼させるEGR(排気ガス再循環)装置が多く採用されている。ところが、上述した従来の「多気筒内燃機関の吸気装置」にこのEGR装置を適用した場合、機関の高負荷・低中速回転域で閉じていた吸気制御弁を、低負荷・高速回転域になって開いたときに、一時的に連通路の空気が吸気管に流入して実際のEGR率が変化し、最適な点火時期制御ができなくなってしまう。
【0006】
図6に従来の内燃機関の可変吸気装置における運転状態変化を表すグラフを示す。図6に示すように、スロットル開度が大きいと内燃機関は高負荷状態であるため、吸気管及び連通路の内圧は高く、吸気制御弁及びEGR弁は閉じている。この状態からスロットル開度が閉じていくと、機関は低負荷となるために吸気管の内圧が下がり、吸気制御弁が開くと共にEGR弁が開いて吸気管に排ガスが導入される。このとき、吸気制御弁の開放動作により比較的高圧の連通路と低圧の吸気管が連通するため、吸気管の排ガスに対して連通路内の空気が吸気管に流入して混合されるため、EGR弁開度から推定される目標EGR率(連通路の上流側のEGR率)と連通路の下流側のEGR率とが異なり、最適な点火時期制御ができないという問題がある。また、この吸気制御弁の開放動作には制御遅れが生じるため、この制御遅れによっても排ガスに連通路からの空気が混入しやすく最適な点火時期制御を実施できない要因となっている。
【0007】
なお、前述した特許文献2に記載された「可変吸気エンジンの排気ガス再循環制御装置」には、可変吸気バルブとEGRの作動タイミングに起因する燃焼悪化を防止する技術が開示されているが、この装置では、可変吸気バルブが閉じられて所定時間経過後から排気再循環を可能とするものであり、単に可変吸気バルブの閉止直後のEGR作動を制限しているに過ぎず、上述したような吸気制御弁の開放直後に連通路から吸気管に空気が流出してEGR率が変化してしまうという問題には対処することはできない。
【0008】
本発明はこのような問題を解決するものであって、吸気効率を向上させる一方で最適な点火時期制御を可能とした内燃機関の可変吸気装置を提供することを目的とする。
【0009】
【課題を解決するための手段】
上述の目的を達成するために請求項1の発明の内燃機関の可変吸気装置では、吸気管にサージタンクを連通すると共に燃焼室との連通距離がサージタンクより短くなるようにサブタンクを連通し、吸気管とサブタンクとの連通部に制御弁を設け、また、この連通部より上流側の吸気管へ排気を再循環させるEGR機構を設けると共に、EGR弁の作動状態に応じて点火時期を補正する点火時期補正手段を設け、制御手段が、運転状態検出手段が検出した内燃機関の運転状態に基づいて制御弁及びEGR弁の作動を制御すると共に、この制御弁を閉から開に切換えてから所定期間はEGR弁の開度を切換前の開度に保持するようにしている。
【0010】
従って、機関の運転状態に応じて制御弁が閉から開に切換えられたとき、所定期間はEGR弁の開度を切換前の開度に保持しており、制御弁の開動作に伴ってサブタンクから吸気管へ空気が流入する時期には、EGR弁の開度が変化しないため、点火時期が不適切になる現象を確実に防止することができる。
【0011】
請求項2の発明の内燃機関の可変吸気装置では、制御手段は、制御弁が閉のときはEGR弁を閉とし、制御弁を閉から開に切換えてから所定期間はEGR弁を閉状態に保持している。従って、制御弁が閉から開に切換えられたとき、所定期間はEGR弁を閉状態として排ガスの再循環を停止しており、サブタンクから吸気管への空気の流入によりEGR率が変動する現象は全く問題にならず、点火時期が不適切になる現象を確実に防止することができる。
【0012】
請求項3の発明の内燃機関の可変吸気装置では、所定期間は、内燃機関の負荷が高いほど短く設定されるようにしている。従って、所定期間を、サブタンクからの空気の流入による影響が発生する期間に応じた適切なものに設定することができ、点火時期が不適切になる現象を確実に防止しながら、EGR弁の作動遅れを短縮することができる。
【0013】
請求項4の発明の内燃機関の可変吸気装置では、所定期間は、内燃機関の回転数が高いほど短く設定されるようにしている。従って、所定期間を、サブタンクからの空気の流入による影響が発生する期間に応じた適切なものに設定することができ、点火時期が不適切になる現象を確実に防止しながら、EGR弁の作動遅れを短縮することができる。
【0014】
【発明の実施の形態】
以下、図面に基づいて本発明の実施形態を詳細に説明する。
【0015】
図1に本発明の一実施形態に係る内燃機関の可変吸気装置の概略構成、図2に吸気制御弁の開閉領域を表すグラフ、図3にEGR弁の作動遅延時間を表すグラフ、図4に本実施形態の内燃機関の可変吸気装置による制御のフローチャート、図5に本実施形態の内燃機関の可変吸気装置における制御のタイムチャートを示す。
【0016】
本実施形態の内燃機関の可変吸気装置において、図1に示すように、車両に搭載されるエンジン11は火花点火式ガソリンエンジンであって、シリンダブロック12上にはシリンダヘッド13が締結され、このシリンダブロック12にピストン14が上下動自在に嵌合している。そして、シリンダブロック12の下部にはクランクシャフト15が回転自在に支持され、このクランクシャフト15とピストン14とがコネクティングロッド16により連結されている。
【0017】
シリンダブロック12とシリンダヘッド13とピストン14によって燃焼室17が構成され、この燃焼室17の両側に吸気ポート18及び排気ポート19が連通されており、この吸気ポート18及び排気ポート19に吸気バルブ20と排気バルブ21の先端部が臨み、燃焼室17と各ポート18,19との開閉を行うことができるようになっている。そして、吸気ポート18には吸気管22が、排気ポート19には水平な排気管23がそれぞれ連結されている。
【0018】
各吸気管22には気筒ごとにインジェクタ24が装着されると共に、シリンダヘッド13に点火プラグ25が装着されている。そして、このエンジン11には各気筒の所定のクランク位置でクランク角信号を出力するクランク角センサ26が設けられ、クランク角センサ26はエンジン回転速度を検出可能となっている。更に、吸気管22の上流端部にはエアクリーナ27が取付けられており、この吸気管22には電子制御スロットル弁28が取付けられると共に、このスロットル弁28の開度を検出するスロットルポジションセンサ29が取付けられ、スロットル弁28の上流側には吸入空気量を検出するエアフローセンサ30が取付けられている。
【0019】
また、吸気管22の中途部にはサージタンク31が設けられると共に、この吸気管22にはサージタンク31の上流側に位置して燃焼室17に対する連通距離がこのサージタンク31より短くなるようにサブタンク32が連結されている。そして、吸気管22とサブタンク32との連通部にはこの連通部を開閉する吸気制御弁33が設けられている。
【0020】
更に、エンジン11には、EGR機構として、排気管23と吸気管22のサージタンクとを連結して排気を吸気へ再循環させるEGR通路34が設けられると共に、このEGR通路34にEGR弁35が設けられている。
【0021】
車両にはエンジン11などを制御するエンジンの電子制御ユニット(ECU)36が設けられ、このECU36には、入出力装置、制御プログラムや制御マップ等の記憶を行う記憶装置、中央処理装置及びタイマやカウンタ類が具備されており、このECU36によりエンジン11の総合的な制御が実施される。
【0022】
即ち、前述したクランク角センサ26が検出したエンジン回転数、スロットルポジションセンサ29が検出したスロットル開度、エアフローセンサ30が検出した吸入空気量などの運転状態情報がECU36に入力される。ECU36は、このエンジン回転数、スロットル開度、吸入空気量などの運転状態情報に基づいて燃料噴射量、点火時期、排ガス還流時期等を決定し、インジェクタ24、点火プラグ25、スロットル弁28、EGR弁35等を駆動制御する。この場合、クランク角センサ26、スロットルポジションセンサ29、エアフローセンサ30が運転状態検出手段として機能し、ECU36が点火時期補正手段として機能する。
【0023】
また、本実施形態にて、エンジン11の高負荷・低中速回転域では吸気制御弁33を閉じることで実質的な吸気管長を長くし、吸気脈動の干渉を発生させずに体積効率を上昇させる一方、その他の運転域で吸気制御弁33を開くことで実質的な吸気管長を短くし、吸気脈動の干渉を利用して閉じたときより体積効率を高くし、エンジン11の広範囲な運転領域にわたって吸気効率を向上させるようにしている。
【0024】
即ち、図2(a)に示すように、エンジン回転数に対する体積効率(行程容積に対する1サイクル中に吸入した新気の体積の割合)を表すマップから吸気制御弁33の開領域と閉領域が設定されている。この場合、吸気制御弁33の閉領域は、エンジン回転数の上昇に応じて体積効率が上昇する領域となっている。
【0025】
また、図2(b)に示すように、エンジン回転数に対するスロットル開度を表すマップから吸気制御弁33の開領域と閉領域を設定するようにしてもよい。この場合も、吸気制御弁33の閉領域は、エンジン回転数の上昇に応じてスロットル開度が上昇する領域となっている。
【0026】
なお、吸気制御弁33の開領域と閉領域を設定するマップは、上述した2つのマップの形態に限らず、エンジン回転数に対するエンジン負荷のマップであればよく、エンジン負荷としては、前述した体積効率やスロットル開度の他、吸入空気量や筒内圧などであってもよい。
【0027】
また、エンジン11が高負荷状態から低負荷状態に移行したとき、前述したように、吸気制御弁33が閉から開に切換って吸気管長が短くなると共に、EGR弁35が開いて吸気管22に排気が導入されるが、このとき、サブタンク32から吸気管22に空気が流入し、EGR率が変動してしまう。そこで、本実施形態では、ECU(制御手段)36は、吸気制御弁33を閉から開に切換えてから所定期間はEGR弁35の開度を切換前の開度、つまり、閉状態に保持するようにしている。即ち、ECU36は、吸気制御弁33を開に切換えてから所定の作動遅延時間(所定期間)が経過した後にEGR弁35を開くようにしている
【0028】
このとき、図3(a)に示すように、作動遅延時間を行程数で設定する場合、エンジン負荷(エンジン回転数、体積効率、スロットル開度、吸入空気量、筒内圧など)に対する行程数を表すマップからEGR弁35の作動遅延時間が作動遅延行程数として設定されている。また、図3(b)に示すように、作動遅延時間を時間として設定する場合、エンジン回転数に対するエンジン負荷(体積効率、スロットル開度、吸入空気量、筒内圧など)を表すマップからEGR弁35の作動遅延時間を設定してもよい。
【0029】
ここで、上述した本実施形態の内燃機関の可変吸気装置におけるECU36の制御を図4のフローチャート並びに図5のタイムチャートに基づいて詳細に説明する。
【0030】
図4に示すように、ステップS1にて、ECU36は、クランク角センサ26が検出したエンジン回転数を取り込み、ステップS2にて、ECU36は、エアフローセンサ30が検出した吸入空気量などに基づいて算出した体積効率を読み込み、ステップS3にて、ECU36は、エンジン回転数及びスロットルポジションセンサ29が検出したスロットル開度に基づいて算出したエンジン負荷を読み込む。
【0031】
ステップS4では、図2(a)に示すエンジン回転数に対する体積効率のマップから吸気制御弁33の開閉領域を設定し、ECU36はこの吸気制御弁33に開指示または閉指示を出す。ステップS5では、吸気制御弁33に開指示が出されたかどうかを判定し、閉指示が出されていれば、何もしないでこのルーチンを抜ける。
【0032】
一方、ステップS5にて、吸気制御弁33に開指示が出されていれば、ステップS6にて、図3(a)に示すエンジン負荷に対する行程数のマップからEGR弁35の作動遅延時間を作動遅延行程数として設定する。そして、ステップS7にて、タイマーなどを用いて吸気制御弁33の開指示から所定の作動遅延時間が経過しているかどうかを判定し、作動遅延時間が経過していなければ、ステップS8に移行し、EGR弁35の開度を0、つまり閉じたままとする。
【0033】
そして、作動遅延時間が経過するまでステップS7、S8の処理を繰り返し行い、作動遅延時間が経過したらステップS9に移行し、エンジン回転数と負荷に基づいてEGR弁35の開度を算出し、ECU36は、EGR弁35の開度を算出した運転状態に基づく開度に制御すると共に、EGR弁35開度に応じて点火時期を進角制御する。
【0034】
従って、吸気制御弁33が閉から開に切換えられたとき、所定の作動遅延時間はEGR弁35の開度を切換前の開度に保持しており、吸気制御弁33の開動作に伴ってサブタンク32から吸気管22へ空気が流入する時期には、EGR弁35の開度が変化しない、つまり、EGR弁35を閉状態として排ガスの再循環を停止しているため、サブタンク32から吸気管22への空気の流入によりEGR率が変動する現象は全く問題にならず、点火時期が不適切になる現象を確実に防止することができる。
【0035】
この現象を詳細に説明すると、図5に示すように、ドライバがアクセルペダルを踏み込んでスロットル開度が大きいとき、エンジン11は高負荷状態であるため、吸気管22及びサブタンク32の内圧は比較的高く、吸気制御弁33及びEGR弁35は閉じている。この状態からドライバがアクセルペダルの踏み込みを少なくしてスロットル開度が閉じていくと、エンジン11は低負荷となるために吸気管22の内圧が下がり、吸気制御弁33が開くが、EGR弁35は所定の作動遅延時間が経過してから開き、吸気管22に排ガスが導入される。
【0036】
この場合、吸気制御弁33の開放時にサブタンク32内の比較的高圧の空気が吸気管22に一時的に流入するが、この吸気管22への空気流入現象はEGR弁35が閉止状態にある作動遅延時間内に発生し、サブタンク32内の空気が吸気管22に流入した後にEGR弁35が開いて排ガスが導入される。そのため、サブタンク32から吸気管22への空気の流入現象はEGR率には全く関与せず、作動遅延時間が経過した後にEGR弁35が開いて吸気管22に排ガスが導入されても、EGR弁35の開度から推定される目標EGR率(サブタンク32の上流側のEGR率)と、サブタンク32の下流側のEGR率とは同じであり、最適な点火時期制御が可能となる。
【0037】
このように本実施形態の内燃機関の可変吸気装置にあっては、吸気管22にサージタンク32を連通すると共にサブタンク32を連通して吸気制御弁33を設け、また、排気ガスをサージタンク22に再循環させるEGR通路34及びEGR弁35を設け、エンジン11が高負荷状態から低負荷状態に移行したとき、吸気制御弁33が閉から開に切換るとき、所定の作動遅延時間はEGR弁35の開度を切換前の開度、つまり、閉状態に保持し、この作動遅延時間が経過した後にEGR弁35を開くようにしている。
【0038】
従って、吸気制御弁33が閉から開に切換えられたとき、サブタンク32から吸気管22へ空気が流入するが、EGR弁35は所定の作動遅延時間を経過して開くため、EGR弁35の開放時は吸気管22とサブタンク32の内圧は同様となり、吸気管22への流入空気がEGR率の変動に影響を与えることはなく、点火時期は不適切にならず、安定して適切な点火時期制御を可能とすることができる。また、EGR弁35の開放動作に対して、吸気制御弁33の開放動作に制御遅れが生じても、所定の作動遅延時間を制御遅れ時間を考慮して設定することで、前述と同様に、サブタンク32から吸気管22へ空気が流入した後にEGR弁35を開放することとなり、制御遅れがEGR率に影響を与えることはなく、最適な点火時期制御を実施できる。
【0039】
なお、上述の実施形態では、吸気制御弁33が閉から開に切換るとき、所定の作動遅延時間だけEGR弁35の開度を0としたが、既にEGR弁35が開いていたときは所定の作動遅延時間だけ切換前の開度とすればよい。この場合、吸気制御弁33が開に切換るとき、EGR弁35の開度は大きくなるように変更されるが、所定の作動遅延時間だけ現在の小さい開度に保持されることで、サブタンク32から吸気管22へ流入する空気がEGR率に与える影響を最小限にすることができる。
【0040】
【発明の効果】
以上、実施形態において詳細に説明したように請求項1の発明の内燃機関の可変吸気装置によれば、吸気管にサージタンクを連通すると共に燃焼室との連通距離がサージタンクより短くなるようにサブタンクを連通し、吸気管とサブタンクとの連通部に制御弁を設け、また、この連通部より上流側の吸気管へ排気を再循環させるEGR機構を設けると共に、EGR弁の作動状態に応じて点火時期を補正する点火時期補正手段を設け、制御手段が、運転状態検出手段が検出した内燃機関の運転状態に基づいて制御弁及びEGR弁の作動を制御すると共に、この制御弁を閉から開に切換えてから所定期間はEGR弁の開度を切換前の開度に保持するので、機関の運転状態に応じて制御弁が閉から開に切換えられたとき、所定期間はEGR弁の開度を切換前の開度に保持しており、制御弁の開動作に伴ってサブタンクから吸気管へ空気が流入する時期には、EGR弁の開度が変化しないため、点火時期が不適切になる現象を確実に防止することができる。
【0041】
請求項2の発明の内燃機関の可変吸気装置によれば、制御手段は、制御弁が閉のときはEGR弁を閉とし、制御弁を閉から開に切換えてから所定期間はEGR弁を閉状態に保持するので、制御弁が閉から開に切換えられたとき、所定期間はEGR弁を閉状態として排ガスの再循環を停止しており、サブタンクから吸気管への空気の流入によりEGR率が変動する現象は全く問題にならず、点火時期が不適切になる現象を確実に防止することができる。
【0042】
請求項3の発明の内燃機関の可変吸気装置によれば、所定期間を内燃機関の負荷が高いほど短く設定するので、所定期間を、サブタンクからの空気の流入による影響が発生する期間に応じた適切なものに設定することができ、点火時期が不適切になる現象を確実に防止しながら、EGR弁の作動遅れを短縮することができる。
【0043】
請求項4の発明の内燃機関の可変吸気装置によれば、所定期間を内燃機関の回転数が高いほど短く設定するので、所定期間を、サブタンクからの空気の流入による影響が発生する期間に応じた適切なものに設定することができ、点火時期が不適切になる現象を確実に防止しながら、EGR弁の作動遅れを短縮することができる。
【図面の簡単な説明】
【図1】本発明の一実施形態に係る内燃機関の可変吸気装置の概略構成図である。
【図2】吸気制御弁の開閉領域を表すグラフである。
【図3】EGR弁の作動遅延時間を表すグラフである。
【図4】本実施形態の内燃機関の可変吸気装置による制御のフローチャートである。
【図5】本実施形態の内燃機関の可変吸気装置における制御のタイムチャートである。
【図6】従来の内燃機関の可変吸気装置における運転状態変化を表すグラフである。
【符号の説明】
11 エンジン(内燃機関)
17 燃焼室
12 点火プラグ
22 吸気管
24 インジェクション
26 クランク角センサ(運転状態検出手段)
28 スロットル弁
29 スロットルポジションセンサ(運転状態検出手段)
30 エアフローセンサ(運転状態検出手段)
31 サージタンク
32 サブタンク
33 吸気制御弁
34 EGR通路
35 EGR弁
36 電子制御ユニット、ECU(点火時期補正手段、制御手段)
[0001]
TECHNICAL FIELD OF THE INVENTION
The present invention relates to a variable intake device for an internal combustion engine that changes intake pipe length in accordance with an operation state of the internal combustion engine to improve intake efficiency.
[0002]
[Prior art]
Patent Literature 1 discloses a variable intake device that improves the intake efficiency by changing the intake pipe length according to the operation state of the internal combustion engine. Patent Document 2 discloses an exhaust gas recirculation control device for a variable intake engine.
[0003]
[Patent Document 1]
Japanese Patent Publication No. 2-047235 [Patent Document 2]
JP-A-9-324705
The "intake device for a multi-cylinder internal combustion engine" described in Patent Document 1 includes a surge tank provided in an intake pipe, a communication path and an intake control valve provided downstream of the surge tank, and the intake control valve is connected to the engine. The engine is controlled to close in the high-load, low-medium-speed rotation range and open in other operation ranges, and to achieve high volumetric efficiency using intake pulsation over a wide operating range of the engine, thereby improving intake efficiency. is there.
[0005]
[Problems to be solved by the invention]
In recent years, an EGR (exhaust gas recirculation) device that recirculates a part of exhaust gas to an intake side and burns unburned gas with fresh air has been widely used. However, when this EGR device is applied to the above-mentioned conventional "intake device for a multi-cylinder internal combustion engine", the intake control valve that has been closed in the high-load / low-medium-speed range of the engine is changed to the low-load / high-speed range. When it is opened, the air in the communication passage temporarily flows into the intake pipe and the actual EGR rate changes, so that optimal ignition timing control cannot be performed.
[0006]
FIG. 6 is a graph showing an operating state change in a conventional variable intake device for an internal combustion engine. As shown in FIG. 6, when the throttle opening is large, the internal pressure of the intake pipe and the communication passage is high because the internal combustion engine is in a high load state, and the intake control valve and the EGR valve are closed. When the throttle opening is closed from this state, the internal pressure of the intake pipe is reduced due to the low load of the engine, the intake control valve is opened, and the EGR valve is opened to introduce exhaust gas into the intake pipe. At this time, since the relatively high-pressure communication path and the low-pressure intake pipe communicate with each other by the opening operation of the intake control valve, the air in the communication path flows into the intake pipe and mixes with the exhaust gas of the intake pipe. The target EGR rate (the EGR rate on the upstream side of the communication passage) estimated from the EGR valve opening is different from the EGR rate on the downstream side of the communication passage, and there is a problem that the optimal ignition timing control cannot be performed. Further, since a control delay occurs in the opening operation of the intake control valve, the control delay causes air from the communication passage to easily mix with the exhaust gas, which makes it impossible to perform optimal ignition timing control.
[0007]
In the "exhaust gas recirculation control device for a variable intake engine" described in Patent Document 2 described above, a technique for preventing combustion deterioration due to the operation timing of the variable intake valve and the EGR is disclosed. In this device, exhaust gas recirculation is enabled after a lapse of a predetermined time after the variable intake valve is closed, and this merely limits EGR operation immediately after the variable intake valve is closed. It is not possible to cope with the problem that air flows out of the communication passage into the intake pipe immediately after the intake control valve is opened and the EGR rate changes.
[0008]
SUMMARY OF THE INVENTION An object of the present invention is to solve such a problem, and an object of the present invention is to provide a variable intake device for an internal combustion engine that enables optimal ignition timing control while improving intake efficiency.
[0009]
[Means for Solving the Problems]
In order to achieve the above object, in the variable intake device for an internal combustion engine according to the first aspect of the present invention, the surge tank communicates with the intake pipe and the sub-tank communicates with the combustion chamber so that the communication distance with the combustion chamber is shorter than the surge tank. A control valve is provided in a communication section between the intake pipe and the sub tank, and an EGR mechanism is provided for recirculating exhaust gas to an intake pipe on the upstream side of the communication section, and the ignition timing is corrected according to the operation state of the EGR valve. An ignition timing correction means is provided, and the control means controls the operation of the control valve and the EGR valve based on the operation state of the internal combustion engine detected by the operation state detection means, and switches the control valve from a closed state to an open state, and then performs a predetermined operation. During the period, the opening of the EGR valve is kept at the opening before switching.
[0010]
Therefore, when the control valve is switched from the closed state to the open state in accordance with the operating state of the engine, the opening degree of the EGR valve is maintained at the opening degree before the switching for a predetermined period, and the sub tank is opened with the opening operation of the control valve. Since the opening degree of the EGR valve does not change at the time when air flows from the intake pipe into the intake pipe, it is possible to reliably prevent the ignition timing from becoming inappropriate.
[0011]
In the variable intake device for an internal combustion engine according to claim 2, the control means closes the EGR valve when the control valve is closed, and closes the EGR valve for a predetermined period after switching the control valve from closed to open. keeping. Therefore, when the control valve is switched from the closed state to the open state, the exhaust gas recirculation is stopped by closing the EGR valve for a predetermined period, and the phenomenon that the EGR rate fluctuates due to the inflow of air from the sub tank to the intake pipe is as follows. It does not matter at all and the phenomenon that the ignition timing becomes inappropriate can be reliably prevented.
[0012]
In the variable intake device for an internal combustion engine according to the third aspect of the present invention, the predetermined period is set shorter as the load on the internal combustion engine increases. Therefore, the predetermined period can be set to an appropriate period according to the period in which the influence of the inflow of air from the sub-tank occurs, and the operation of the EGR valve can be prevented while reliably preventing the phenomenon that the ignition timing becomes inappropriate. Delay can be reduced.
[0013]
In the variable intake device for an internal combustion engine according to the fourth aspect of the invention, the predetermined period is set to be shorter as the rotation speed of the internal combustion engine is higher. Therefore, the predetermined period can be set to an appropriate period according to the period in which the influence of the inflow of air from the sub-tank occurs, and the operation of the EGR valve can be prevented while reliably preventing the phenomenon that the ignition timing becomes inappropriate. Delay can be reduced.
[0014]
BEST MODE FOR CARRYING OUT THE INVENTION
Hereinafter, embodiments of the present invention will be described in detail with reference to the drawings.
[0015]
FIG. 1 is a schematic configuration of a variable intake device for an internal combustion engine according to an embodiment of the present invention, FIG. 2 is a graph showing an opening / closing region of an intake control valve, FIG. 3 is a graph showing an operation delay time of an EGR valve, and FIG. A flowchart of the control by the variable intake device of the internal combustion engine of the present embodiment, and FIG. 5 shows a time chart of the control in the variable intake device of the internal combustion engine of the present embodiment.
[0016]
In the variable intake device for an internal combustion engine according to the present embodiment, as shown in FIG. 1, an engine 11 mounted on a vehicle is a spark ignition gasoline engine, and a cylinder head 13 is fastened on a cylinder block 12. A piston 14 is fitted to the cylinder block 12 so as to be vertically movable. A crankshaft 15 is rotatably supported below the cylinder block 12, and the crankshaft 15 and the piston 14 are connected by a connecting rod 16.
[0017]
A combustion chamber 17 is constituted by the cylinder block 12, the cylinder head 13, and the piston 14. An intake port 18 and an exhaust port 19 communicate with both sides of the combustion chamber 17, and an intake valve 20 is connected to the intake port 18 and the exhaust port 19. And the front end of the exhaust valve 21 faces, so that the combustion chamber 17 and the ports 18 and 19 can be opened and closed. An intake pipe 22 is connected to the intake port 18, and a horizontal exhaust pipe 23 is connected to the exhaust port 19.
[0018]
An injector 24 is mounted on each intake pipe 22 for each cylinder, and a spark plug 25 is mounted on the cylinder head 13. The engine 11 is provided with a crank angle sensor 26 that outputs a crank angle signal at a predetermined crank position of each cylinder. The crank angle sensor 26 can detect the engine speed. Further, an air cleaner 27 is attached to the upstream end of the intake pipe 22. An electronically controlled throttle valve 28 is attached to the intake pipe 22, and a throttle position sensor 29 for detecting the opening of the throttle valve 28 is provided. An airflow sensor 30 for detecting the amount of intake air is mounted on the upstream side of the throttle valve 28.
[0019]
A surge tank 31 is provided in the middle of the intake pipe 22. The surge pipe 31 is located on the upstream side of the surge tank 31 so that the communication distance with the combustion chamber 17 is shorter than the surge tank 31. The sub tank 32 is connected. An intake control valve 33 that opens and closes the communication portion is provided at a communication portion between the intake pipe 22 and the sub tank 32.
[0020]
Further, the engine 11 is provided with an EGR passage 34 as an EGR mechanism, which connects the exhaust pipe 23 and a surge tank of the intake pipe 22 to recirculate exhaust gas to the intake air. An EGR valve 35 is provided in the EGR passage 34. Is provided.
[0021]
The vehicle is provided with an engine electronic control unit (ECU) 36 for controlling the engine 11 and the like. The ECU 36 includes an input / output device, a storage device for storing control programs and control maps, a central processing unit, a timer, and the like. The ECU 36 controls the engine 11 comprehensively.
[0022]
That is, operating state information such as the engine speed detected by the crank angle sensor 26, the throttle opening detected by the throttle position sensor 29, and the amount of intake air detected by the air flow sensor 30 are input to the ECU 36. The ECU 36 determines a fuel injection amount, an ignition timing, an exhaust gas recirculation timing, and the like based on the operating state information such as the engine speed, the throttle opening, the intake air amount, and the like, and the injector 24, the ignition plug 25, the throttle valve 28, the EGR The drive of the valve 35 and the like is controlled. In this case, the crank angle sensor 26, the throttle position sensor 29, and the air flow sensor 30 function as operating state detecting means, and the ECU 36 functions as ignition timing correcting means.
[0023]
Further, in this embodiment, in the high-load / low-medium-speed rotation range of the engine 11, the intake control valve 33 is closed to increase the substantial intake pipe length, thereby increasing the volumetric efficiency without causing interference of intake pulsation. On the other hand, by opening the intake control valve 33 in the other operation range, the actual intake pipe length is shortened, the volume efficiency is made higher than when the intake control valve 33 is closed by utilizing the interference of the intake pulsation, and the engine 11 has a wide operating range. To improve intake efficiency.
[0024]
That is, as shown in FIG. 2A, the open area and the closed area of the intake control valve 33 are determined from a map representing the volume efficiency (the ratio of the volume of fresh air sucked in one cycle to the stroke volume) with respect to the engine speed. Is set. In this case, the closed region of the intake control valve 33 is a region where the volumetric efficiency increases as the engine speed increases.
[0025]
Further, as shown in FIG. 2B, the open area and the closed area of the intake control valve 33 may be set from a map representing the throttle opening with respect to the engine speed. Also in this case, the closed region of the intake control valve 33 is a region where the throttle opening increases as the engine speed increases.
[0026]
The map for setting the open area and the closed area of the intake control valve 33 is not limited to the above-described two maps, and may be any map of the engine load with respect to the engine speed. In addition to the efficiency and the throttle opening, the intake air amount and the in-cylinder pressure may be used.
[0027]
Further, when the engine 11 shifts from the high load state to the low load state, as described above, the intake control valve 33 is switched from closed to open to shorten the intake pipe length, and the EGR valve 35 is opened to open the intake pipe 22. At this time, air flows into the intake pipe 22 from the sub tank 32, and the EGR rate fluctuates. Therefore, in the present embodiment, the ECU (control means) 36 maintains the opening of the EGR valve 35 at the opening before switching, that is, the closed state, for a predetermined period after switching the intake control valve 33 from the closed state to the open state. Like that. That is, the ECU 36 opens the EGR valve 35 after a lapse of a predetermined operation delay time (a predetermined period) since the switching of the intake control valve 33 to the open state.
At this time, as shown in FIG. 3A, when the operation delay time is set by the number of strokes, the number of strokes with respect to the engine load (engine speed, volume efficiency, throttle opening, intake air amount, in-cylinder pressure, etc.) The operation delay time of the EGR valve 35 is set as the operation delay stroke number from the map shown. When the operation delay time is set as time, as shown in FIG. 3B, the EGR valve is obtained from a map representing the engine load (volume efficiency, throttle opening, intake air amount, cylinder pressure, etc.) with respect to the engine speed. 35 operation delay times may be set.
[0029]
Here, the control of the ECU 36 in the variable intake device of the internal combustion engine of the present embodiment described above will be described in detail based on the flowchart of FIG. 4 and the time chart of FIG.
[0030]
As shown in FIG. 4, in step S1, the ECU 36 captures the engine speed detected by the crank angle sensor 26, and in step S2, the ECU 36 calculates based on the intake air amount detected by the air flow sensor 30 and the like. The ECU 36 reads the calculated volume efficiency, and reads the engine load calculated based on the engine speed and the throttle opening detected by the throttle position sensor 29 in step S3.
[0031]
In step S4, the opening / closing area of the intake control valve 33 is set from the map of the volumetric efficiency with respect to the engine speed shown in FIG. 2A, and the ECU 36 issues an opening instruction or a closing instruction to the intake control valve 33. In step S5, it is determined whether or not an opening instruction has been issued to the intake control valve 33. If a closing instruction has been issued, the process exits this routine without doing anything.
[0032]
On the other hand, if the opening instruction is given to the intake control valve 33 in step S5, the operation delay time of the EGR valve 35 is activated in step S6 from the map of the number of strokes with respect to the engine load shown in FIG. Set as the number of delay steps. Then, in step S7, it is determined whether or not a predetermined operation delay time has elapsed since the opening instruction of the intake control valve 33 using a timer or the like. If the operation delay time has not elapsed, the process proceeds to step S8. , The opening of the EGR valve 35 is kept at 0, that is, kept closed.
[0033]
Then, the processing of steps S7 and S8 is repeated until the operation delay time elapses, and after the operation delay time elapses, the process proceeds to step S9, where the opening degree of the EGR valve 35 is calculated based on the engine speed and the load. Controls the opening of the EGR valve 35 to an opening based on the calculated operating state, and controls the ignition timing to advance according to the opening of the EGR valve 35.
[0034]
Therefore, when the intake control valve 33 is switched from the closed state to the open state, the opening degree of the EGR valve 35 is maintained at the opening degree before the switching for a predetermined operation delay time, and the opening degree of the intake control valve 33 is increased with the opening operation of the intake control valve 33. At the time when air flows into the intake pipe 22 from the sub tank 32, the opening degree of the EGR valve 35 does not change. That is, the EGR valve 35 is closed to stop recirculation of exhaust gas. The phenomenon in which the EGR rate fluctuates due to the inflow of air into the cylinder 22 does not cause any problem, and the phenomenon in which the ignition timing becomes inappropriate can be reliably prevented.
[0035]
This phenomenon will be described in detail. As shown in FIG. 5, when the driver depresses the accelerator pedal and the throttle opening is large, the internal pressure of the intake pipe 22 and the sub tank 32 is relatively high because the engine 11 is in a high load state. High, the intake control valve 33 and the EGR valve 35 are closed. In this state, when the driver decreases the depression of the accelerator pedal and closes the throttle opening, the internal pressure of the intake pipe 22 decreases due to the low load of the engine 11, and the intake control valve 33 opens. Is opened after a predetermined operation delay time has elapsed, and exhaust gas is introduced into the intake pipe 22.
[0036]
In this case, when the intake control valve 33 is opened, the relatively high-pressure air in the sub tank 32 temporarily flows into the intake pipe 22, but this air inflow phenomenon into the intake pipe 22 is caused when the EGR valve 35 is closed. The EGR valve 35 is opened within the delay time, and after the air in the sub tank 32 flows into the intake pipe 22, the exhaust gas is introduced. Therefore, the phenomenon of air inflow from the sub tank 32 to the intake pipe 22 has no effect on the EGR rate. The target EGR rate (the EGR rate on the upstream side of the sub-tank 32) estimated from the opening degree of the sub-tank 32 is the same as the EGR rate on the downstream side of the sub-tank 32, and optimal ignition timing control can be performed.
[0037]
As described above, in the variable intake device of the internal combustion engine of the present embodiment, the intake tank 22 is connected to the surge tank 32 and the sub-tank 32 is connected to provide the intake control valve 33. When the engine 11 shifts from a high load state to a low load state, when the intake control valve 33 switches from a closed state to an open state, a predetermined operation delay time is determined by the EGR valve. The opening of 35 is maintained at the opening before switching, that is, in the closed state, and the EGR valve 35 is opened after the operation delay time has elapsed.
[0038]
Therefore, when the intake control valve 33 is switched from the closed state to the open state, air flows from the sub tank 32 into the intake pipe 22, but the EGR valve 35 opens after a predetermined operation delay time has elapsed, so that the EGR valve 35 is opened. At this time, the internal pressures of the intake pipe 22 and the sub-tank 32 are the same, the air flowing into the intake pipe 22 does not affect the fluctuation of the EGR rate, the ignition timing is not inappropriate, and the ignition timing is stable and appropriate. Control can be enabled. In addition, even if a control delay occurs in the opening operation of the intake control valve 33 with respect to the opening operation of the EGR valve 35, the predetermined operation delay time is set in consideration of the control delay time, as described above. The EGR valve 35 is opened after the air flows from the sub tank 32 into the intake pipe 22, so that the control delay does not affect the EGR rate and the optimal ignition timing control can be performed.
[0039]
In the above-described embodiment, when the intake control valve 33 is switched from the closed state to the open state, the opening degree of the EGR valve 35 is set to 0 for a predetermined operation delay time. However, when the EGR valve 35 is already open, the predetermined degree is set. May be set to the opening before switching only for the operation delay time. In this case, when the intake control valve 33 is switched to the open state, the opening degree of the EGR valve 35 is changed to be large, but is maintained at the current small opening degree for a predetermined operation delay time, so that the sub tank 32 is opened. The effect of the air flowing from the air into the intake pipe 22 on the EGR rate can be minimized.
[0040]
【The invention's effect】
As described above in detail in the embodiment, according to the variable intake device for the internal combustion engine of the first aspect of the present invention, the surge tank communicates with the intake pipe and the communication distance with the combustion chamber is shorter than the surge tank. A control valve is provided at a communication portion between the intake pipe and the sub tank, and an EGR mechanism for recirculating exhaust gas to an intake pipe upstream of the communication portion is provided. An ignition timing correction means for correcting the ignition timing is provided. The control means controls the operation of the control valve and the EGR valve based on the operation state of the internal combustion engine detected by the operation state detection means, and opens and closes the control valve. Since the opening of the EGR valve is maintained at the opening before the switching for a predetermined period after switching to, when the control valve is switched from closed to open in accordance with the operating state of the engine, the opening of the EGR valve is maintained for the predetermined period. The opening degree before switching is maintained, and the opening degree of the EGR valve does not change at the time when air flows from the sub tank to the intake pipe with the opening operation of the control valve, so that the ignition timing becomes inappropriate. Can be reliably prevented.
[0041]
According to the variable intake device for an internal combustion engine of the second aspect, the control means closes the EGR valve when the control valve is closed, and closes the EGR valve for a predetermined period after switching the control valve from closed to open. When the control valve is switched from the closed state to the open state, the EGR valve is closed for a predetermined period to stop the recirculation of exhaust gas, and the EGR rate is reduced by the inflow of air from the sub tank to the intake pipe. The fluctuating phenomenon does not cause any problem, and the phenomenon that the ignition timing becomes inappropriate can be reliably prevented.
[0042]
According to the variable intake device for an internal combustion engine according to the third aspect of the present invention, the predetermined period is set shorter as the load on the internal combustion engine increases, so that the predetermined period is set in accordance with the period in which the influence of the inflow of air from the sub tank occurs. It can be set to an appropriate value, and the operation delay of the EGR valve can be reduced while reliably preventing the phenomenon that the ignition timing becomes inappropriate.
[0043]
According to the variable intake device for an internal combustion engine of the invention of claim 4, the predetermined period is set shorter as the rotation speed of the internal combustion engine is higher, so that the predetermined period is set in accordance with the period in which the influence of the inflow of air from the sub tank occurs. The operation delay of the EGR valve can be reduced while reliably preventing a phenomenon that the ignition timing becomes inappropriate.
[Brief description of the drawings]
FIG. 1 is a schematic configuration diagram of a variable intake device for an internal combustion engine according to an embodiment of the present invention.
FIG. 2 is a graph showing an open / close region of an intake control valve.
FIG. 3 is a graph showing an operation delay time of an EGR valve.
FIG. 4 is a flowchart of control by the variable intake device of the internal combustion engine according to the embodiment.
FIG. 5 is a time chart of control in the variable intake device of the internal combustion engine of the embodiment.
FIG. 6 is a graph showing an operating state change in a conventional variable intake device for an internal combustion engine.
[Explanation of symbols]
11 engine (internal combustion engine)
17 Combustion chamber 12 Spark plug 22 Intake pipe 24 Injection 26 Crank angle sensor (operating state detecting means)
28 Throttle valve 29 Throttle position sensor (operating state detecting means)
30 airflow sensor (operating state detecting means)
31 surge tank 32 sub tank 33 intake control valve 34 EGR passage 35 EGR valve 36 electronic control unit, ECU (ignition timing correction means, control means)

Claims (4)

一端部が内燃機関の燃焼室に連通して他端部がサージタンクに連通する吸気管と、前記燃焼室に対する連通距離が前記サージタンクより短くなるように前記吸気管に連通するサブタンクと、前記吸気管と前記サブタンクとの連通部に設けられて該連通部を開閉する制御弁と、前記連通部より上流側の前記吸気管へ排気を再循環させるEGR通路及び該EGR通路に設けられたEGR弁を有するEGR機構と、前記内燃機関の運転状態を検出する運転状態検出手段と、少なくとも前記EGR弁の作動状態に応じて点火時期を補正する点火時期補正手段と、前記運転状態検出手段の検出結果に基づいて前記制御弁及び前記EGR弁の作動を制御すると共に該制御弁を閉から開に切換えてから所定期間は前記EGR弁の開度を切換前の開度に保持する制御手段とを具えたことを特徴とする内燃機関の可変吸気装置。An intake pipe having one end communicating with the combustion chamber of the internal combustion engine and the other end communicating with the surge tank; a sub-tank communicating with the intake pipe such that a communication distance to the combustion chamber is shorter than the surge tank; A control valve provided at a communicating portion between the intake pipe and the sub-tank to open and close the communicating portion; an EGR passage for recirculating exhaust gas to the intake pipe upstream of the communicating portion; and an EGR provided at the EGR passage. An EGR mechanism having a valve, operating state detecting means for detecting an operating state of the internal combustion engine, ignition timing correcting means for correcting an ignition timing at least according to an operating state of the EGR valve, and detection of the operating state detecting means The operation of the control valve and the EGR valve is controlled based on the result, and the opening of the EGR valve is maintained at the opening before switching for a predetermined period after the control valve is switched from closed to open. Variable intake apparatus for an internal combustion engine, characterized in that it comprises a control means. 請求項1記載の内燃機関の可変吸気装置において、前記制御手段は、前記制御弁が閉のときは前記EGR弁を閉とし、前記制御弁を閉から開に切換えてから所定期間は前記EGR弁を閉状態に保持することを特徴とする内燃機関の可変吸気装置。2. The variable intake system for an internal combustion engine according to claim 1, wherein said control means closes said EGR valve when said control valve is closed, and said EGR valve for a predetermined period after switching said control valve from closed to open. A variable intake device for an internal combustion engine, wherein the variable intake device is held in a closed state. 請求項1または2記載の内燃機関の可変吸気装置において、前記所定期間は、前記内燃機関の負荷が高いほど短く設定されることを特徴とする内燃機関の可変吸気装置。3. The variable intake device for an internal combustion engine according to claim 1, wherein the predetermined period is set shorter as the load on the internal combustion engine increases. 請求項1または2記載の内燃機関の可変吸気装置において、前記所定期間は、前記内燃機関の回転数が高いほど短く設定されることを特徴とする内燃機関の可変吸気装置。3. The variable intake device for an internal combustion engine according to claim 1, wherein the predetermined period is set to be shorter as the rotation speed of the internal combustion engine is higher. 4.
JP2003033118A 2003-02-12 2003-02-12 Variable intake device for internal combustion engine Withdrawn JP2004245062A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2003033118A JP2004245062A (en) 2003-02-12 2003-02-12 Variable intake device for internal combustion engine

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2003033118A JP2004245062A (en) 2003-02-12 2003-02-12 Variable intake device for internal combustion engine

Publications (1)

Publication Number Publication Date
JP2004245062A true JP2004245062A (en) 2004-09-02

Family

ID=33019199

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2003033118A Withdrawn JP2004245062A (en) 2003-02-12 2003-02-12 Variable intake device for internal combustion engine

Country Status (1)

Country Link
JP (1) JP2004245062A (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007231773A (en) * 2006-02-28 2007-09-13 Toyota Motor Corp Internal combustion engine
JP2008157050A (en) * 2006-12-21 2008-07-10 Toyota Motor Corp Control device for internal combustion engine
AT504180B1 (en) * 2007-11-08 2009-02-15 Avl List Gmbh Combustion engine with an intake system and an exhaust system
CN108331676A (en) * 2017-01-17 2018-07-27 丰田自动车株式会社 The control method of internal-combustion engine system and internal combustion engine

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007231773A (en) * 2006-02-28 2007-09-13 Toyota Motor Corp Internal combustion engine
JP4720541B2 (en) * 2006-02-28 2011-07-13 トヨタ自動車株式会社 Internal combustion engine
JP2008157050A (en) * 2006-12-21 2008-07-10 Toyota Motor Corp Control device for internal combustion engine
AT504180B1 (en) * 2007-11-08 2009-02-15 Avl List Gmbh Combustion engine with an intake system and an exhaust system
CN108331676A (en) * 2017-01-17 2018-07-27 丰田自动车株式会社 The control method of internal-combustion engine system and internal combustion engine
CN108331676B (en) * 2017-01-17 2020-10-16 丰田自动车株式会社 Internal combustion engine system and control method of internal combustion engine

Similar Documents

Publication Publication Date Title
JP5545654B2 (en) Turbocharged internal combustion engine
JPH1061477A (en) Controller for inner-cylinder injection spark ignition type internal combustion engine
JPH1193731A (en) Fuel injection control device for cylinder injection internal combustion engine
US10865730B2 (en) Fuel supply system for engine, fuel injection control device for engine, and fuel supply method for engine
JP5212552B2 (en) Control device for internal combustion engine
JP2004245062A (en) Variable intake device for internal combustion engine
JP2013130121A (en) Exhaust gas recirculation system for spark-ignition-type internal combustion engine
JP2006329003A (en) Secondary air supply device for internal combustion engine
JP2016217286A (en) Control device of engine system
JP3985419B2 (en) Control device for internal combustion engine
JP5688959B2 (en) Control device for internal combustion engine
JP2009191660A (en) Control device of internal combustion engine
JP2006207504A (en) Method for estimating egr quantity for engine and engine control device
JP2006220062A (en) Controller of hydrogen addition internal combustion engine
CN101091049A (en) Engine
JP2010144527A (en) Fuel injection control device and fuel injection control method for internal combustion engine
US20070056537A1 (en) Control apparatus for internal combustion engine
JP4232636B2 (en) Control device for internal combustion engine
JP2021183836A (en) Engine device
JP3757738B2 (en) Ignition timing control device for internal combustion engine
JP3767063B2 (en) Air-fuel ratio control device for internal combustion engine
JP2014074338A (en) Control device of internal combustion engine
JP2004245063A (en) Variable suction system of internal combustion engine
JP7177385B2 (en) engine controller
JP2022012630A (en) Engine device

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20050512

A761 Written withdrawal of application

Free format text: JAPANESE INTERMEDIATE CODE: A761

Effective date: 20061020