JP2004243279A - Method and device for cleaning gas containing organic contaminant - Google Patents

Method and device for cleaning gas containing organic contaminant Download PDF

Info

Publication number
JP2004243279A
JP2004243279A JP2003038493A JP2003038493A JP2004243279A JP 2004243279 A JP2004243279 A JP 2004243279A JP 2003038493 A JP2003038493 A JP 2003038493A JP 2003038493 A JP2003038493 A JP 2003038493A JP 2004243279 A JP2004243279 A JP 2004243279A
Authority
JP
Japan
Prior art keywords
gas
adsorbent
cooling
organic
organic contaminants
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2003038493A
Other languages
Japanese (ja)
Other versions
JP3994157B2 (en
Inventor
Satoru Kobayashi
悟 小林
Akitsugu Ibusuki
堯嗣 指宿
Masami Sugasawa
正己 菅沢
Nobuyuki Kikukawa
伸行 菊川
Katsunori Kosuge
勝典 小菅
Makoto Takemori
信 竹森
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
National Institute of Advanced Industrial Science and Technology AIST
Original Assignee
National Institute of Advanced Industrial Science and Technology AIST
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by National Institute of Advanced Industrial Science and Technology AIST filed Critical National Institute of Advanced Industrial Science and Technology AIST
Priority to JP2003038493A priority Critical patent/JP3994157B2/en
Publication of JP2004243279A publication Critical patent/JP2004243279A/en
Application granted granted Critical
Publication of JP3994157B2 publication Critical patent/JP3994157B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Images

Landscapes

  • Treating Waste Gases (AREA)
  • Separation Of Gases By Adsorption (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a method and a device for efficiently cleaning the gas in a method using an adsorbent for cleaning a gas containing gaseous organic contaminants. <P>SOLUTION: The method and device include (i) a process A of removing the organic contaminants comprising a cooling process of liquifying part of the organic contaminants contained in the gas by cooling the gas and an adsorbing process adsorbing the organic contaminants contained in the gas to an adsorbent by bringing the gas out of the cooling process into contact with the adsorbent, and (ii) a process B of regenerating the adsorbent comprising a desorbing process desorbing the organic contaminants in the adsorbent by heating the adsorbent which has adsorbed the organic contaminants, a transferring process transferring the organic contaminants desorbed in the desorbing process to the cooling process, and a process transferring a gas existing in the cooling process to the desorbing process, in a method using an adsorbent for cleaning the gas containing the gaseous organic contaminants. <P>COPYRIGHT: (C)2004,JPO&NCIPI

Description

【0001】
【発明の属する技術分野】
本発明は、有機汚染物をガス状で含有するガスを清浄化するための方法及び装置に関するものである。
【0002】
【従来の技術】
有機溶剤等の有機汚染物をガス状で含有するガスを清浄化するために、内部に活性炭素繊維シートや粒状の活性炭等の吸着剤を充填した吸着剤室内に、有機汚染物含有ガスを導入して該汚染物を該吸着剤に吸着させた後、該吸着剤室内にスチーム又は温風を導入して該吸着剤に吸着した汚染物を脱離(脱着)させる方法が知られている。
しかし、このようなスチームを用いる方法は、一般に装置が大掛かりとなり、蒸気管理を必要とし、またスチームによる該吸着剤の加熱は伝熱によっているために、その加熱効率は余り高くなく、さらに装置全体における熱のロスを考慮に入れると、その加熱効率はかなり低く、ランニングコストが高くつくのが現状であった。また、溶剤等の汚染物の回収にはその溶剤を水から分離せねばならないため、公害防止のための厳しい水管理が必要であった。さらに、温風による加熱の場合、その熱容量が小さいため、液化回収にいたる濃度には十分に濃縮されず、効率が著しく低いのが現状であった。
【0003】
【発明が解決しようとする課題】
本発明は、有機汚染物をガス状で含有するガスを清浄化するために吸着剤を用いる方法及び装置において、該ガスを効率よく清浄化するための方法及び装置を提供することをその課題とする。
【0004】
【課題を解決するための手段】
本発明者らは、前記課題を解決すべく鋭意研究を重ねた結果、本発明を完成するに至った。
即ち、本発明によれば、以下に示す有機汚染物をガス状で含有するガスを清浄化するための方法及び装置が提供される。
(1)有機汚染物をガス状で含有するガスを清浄化する方法において、
(i)該ガスを冷却して、該ガス中に含まれている該有機汚染物の一部を液化する冷却工程と、該冷却工程からのガスを吸着剤と接触させて、該ガス中に含まれている該有機汚染物を該吸着剤に吸着させる吸着工程からなる有機汚染物の除去工程Aと、
(ii)該有機汚染物を吸着した吸着剤を電気的に直接加熱して、該吸着剤中の該有機汚染物を脱着させる脱着工程と、該脱着工程で脱着された該有機汚染物を該冷却工程に移送する工程と、該冷却工程に存在するガスを該脱着工程へ移送する工程からなる吸着剤の再生工程B、を包含することを特徴とする有機汚染物含有ガスの清浄化方法。
(2)該再生工程Bにおいて、該脱着された該有機汚染物の該冷却工程への移送を、ポンプ又はファンで行う前記(1)に記載の方法。
(3)有機汚染物をガス状で含有するガスを導入する導入手段、該導入手段によって導かれた前記ガスを冷却して該ガス中に含まれている有機汚染物を液化する冷却手段、該冷却手段によって冷却されて液化した前記有機汚染物を液状で回収する回収手段、前記冷却手段によって液化されずに残留する前記有機汚染物ガスを導出する導出手段、該導出手段によって誘導された前記ガスを吸着剤と接触させて該ガス中に含まれている有機汚染物を前記吸着剤に吸着させる吸着手段、前記吸着剤を電気的に直接加熱して該吸着剤に吸着された前記有機汚染物を脱着させる脱着手段、該脱着手段で脱着された前記有機汚染物ガスを前記冷却手段にフィードバックさせる移送手段を備え、該移送手段の前に三方弁を設け、前記吸着手段が作動するときは該三方弁を大気へ放出する側に切り替えるとともに、その他のときは前記冷却手段側へ切り替えることにより、有機汚染ガスを再度冷却手段へ移送するようにしたことを特徴とする有機汚染物含有ガスの清浄化装置。
(4)有機汚染物を脱着させる脱着手段を経たガスを大気側または冷却手段側へ選択導出する三方弁が冷却手段側に切り替えられたとき、未浄化の有機汚染物ガスを強制的に冷却手段へ導入するポンプ又はファン装置を設けたことを特徴とする前記(3)に記載の有機汚染物含有ガスの清浄化装置。
(5)有機汚染物をガス状で含有するガスを清浄化する方法において、
(i)該ガスを複数の吸着剤室を有しその内の1つは常に加熱装置内に位置する吸着装置の、該加熱装置内に位置しない残りの複数の吸着剤室に導入し、該ガス中に含まれている該有機汚染物を該吸着剤に吸着させる吸着工程からなる有機汚染物の除去工程Aと、
(ii)前記有機汚染物を吸着した吸着剤室の1つを前記加熱装置内に位置させて当該吸着剤室を電気的に直接加熱して、前記吸着剤中の前記有機汚染物を脱着させる脱着工程と、該脱着工程で脱着された前記有機汚染物を該冷却工程に移送する工程と、該冷却工程に存在するガスを、前記脱着工程の吸着剤室を介して該冷却工程に循環させる工程からなる吸着剤の再生工程B、を包含し、該有機汚染物除去工程Aにおいては、該吸着剤室における吸着工程の終了後、他の吸着剤室において該吸着工程を行なうことを特徴とする有機汚染物含有ガスの清浄化方法。
(6)該再生工程Bにおいて、該脱着された該有機汚染物の該冷却工程への移送を、ポンプ又はファンで行う前記(5)に記載の方法。
(7)有機汚染物をガス状で含有するガスを導入する導入手段、該導入手段によって誘導された前記ガスを、複数の吸着剤室を有しその内の1つは常に加熱装置内に位置する吸着装置の、該加熱装置内に位置しない残りの複数の吸着剤室に導入し、吸着剤と接触させて該ガス中に含まれている有機汚染物を前記吸着剤に吸着させる吸着手段、前記有機汚染物を吸着した吸着剤室の1つを前記加熱装置内に位置させて当該吸着剤室を電気的に直接加熱して、該吸着剤に吸着された前記有機汚染物を脱着させる脱着手段、該脱着手段で脱着された前記有機汚染物ガスを冷却して該ガス中に含まれている有機汚染物を液化する冷却手段、該冷却手段によって冷却されて液化した前記有機汚染物を液状で回収する回収手段、前記冷却手段によって液化されずに残留する前記有機汚染物ガスを前記吸着手段にフィードバックさせる移送手段を備えたことを特徴とする有機汚染物含有ガスの清浄化装置。
(8)該脱着された有機汚染物を該吸着剤室に存在するガスとともに該冷却装置へ移送させるための配管又は該冷却装置に存在するガスを該吸着剤室に移送させるための配管に、ポンプ又はファンを介在させた前記(7)に記載の装置。
【0005】
【発明の実施の形態】
本発明のガス清浄化方法の第1の態様は、冷却工程と吸着工程とからなるガス中に含まれるガス状の有機汚染物を除去する工程Aと、脱着工程と冷却工程とガス移送工程からなる有機汚染物を吸着した吸着剤から該有機汚染物を脱着させる吸着剤の再生工程Bを包含する。
以下、これらの工程について詳述する。
【0006】
(冷却工程)
この工程は、ガスを冷却して、それに含まれるガス状の有機汚染物を液化(凝縮)させてガス中から分離回収する工程である。
冷却温度は、ガス中に含まれている有機汚染物が液化する温度であり、通常、その沸点および系の温度よりも10℃以上低い温度、好ましくは30℃以上低い温度である。
【0007】
有機汚染物には、各種の揮発性有機化合物(VOC)、例えば、ベンゼン、トルエン等の芳香族化合物の他、アセトン、メチルエチルケトン等のケトン類、トリクレン、メチレンクロライド等クロロカーボン類、メタノール、イソプロピルアルコール等のアルコール類、HFC134a、PFC等の代替フロン類等が包含される。その有機汚染物の沸点は、通常、−50〜+250℃、特に−20〜+150℃の範囲である。
【0008】
有機汚染物を含むガスは、通常は空気であるが、他のガス(Nやアルゴン、水素、メタン等)であってもよい。ガス中に含まれる有機汚染物の割合は、通常、1volppm〜100vol%、特に、200volppm〜100vol%程度であるが、特に制限されない。
【0009】
冷却装置としては、その有機汚染物を液化し得るものであればどのようなものでよく、従来公知の各種のものを用いることができる。
【0010】
(吸着工程)
この工程は、前記冷却工程で大部分の有機汚染物が除去された後の通常、1volppm〜30vol%、好ましくは、100volppm〜5vol%の有機汚染物を含むガスを吸着剤に接触させて、それに含まれている有機汚染物を吸着分離する工程である。
吸着剤としては、有機汚染物に対して吸着性を示すものであればどのようなものでもよく、従来公知の各種のものを用いることができる。このようなものには、シリカ、アルミナ、マグネシア、ゼオライト、活性炭等が包含される。吸着剤の形態は、粉末状、顆粒状、シート状等の各種の形態であることができる。装置の構成によって適宜選定される。
【0011】
本発明で用いる好ましい吸着剤を例示すると、以下の通りである。
(i)繊維状活性炭、
(ii)表面に磁性体又は誘電体を被覆した粒状活性炭、
(iii)磁性体または誘電体を内包した非炭素系吸着剤、
(iv)磁性体又は誘電体中に分散された吸着剤。
【0012】
(脱着工程)
この工程は、有機汚染物を飽和吸着した吸着剤を電気的に直接加熱して、それに含まれる有機汚染物を脱着させ、それによって吸着剤を再生する工程である。
この場合、吸着剤の加熱方法としては、従来公知の各種の方法を用いることができる。このような方法としては、例えば、下記の方法を示すことができる。
【0013】
(1)吸着剤を充填した吸着容器内に、加熱具を配設する方法。
この場合の加熱具には、電熱ヒータや熱媒体を流通させる加熱コイル等が包含される。
(2)吸着剤として繊維状活性炭からなるシートを用い、このシートの両端に電極を付設し、その電極間に通電してその吸着剤シートを発熱させる方法。
(3)表面に磁性体又は誘電体を被覆した粒状活性炭を用い、これにマイクロ波や高周波を照射して該粒状活性炭を発熱させる方法。
(4)非炭素系吸着剤に磁性体又は誘電体を分散させた吸着剤を用い、これにマイクロ波や高周波を照射して、該吸着剤を発熱させる方法。
(5)基材が磁性体又は誘電体のハニカム型吸着剤にマイクロ波や高周波を照射して、該吸着剤を発熱させる方法。
(6)磁性体又は誘電体を吸着剤の中に分散させた吸着層にマイクロ波や高周波を照射して、該吸着剤を発熱させる方法。
【0014】
前記加熱方法のうち、特に、(3)の方法が好ましい。この方法は、活性炭を基本にしている吸着剤を用いることから、高表面積でかつ安価に実施することができ、被覆剤として磁性体を用いる場合、その加熱温度を、その磁性体のキューリー点によりコントロールすることができるので特に好ましい方法である。
即ち、その吸着剤の温度が該磁性体のキューリー点に達すると、該磁性体は発熱しなくなる。従って、その加熱温度の上限を磁性体のキューリー点に制限することができ、吸着剤を、そのキューリー点の温度に均一に加熱することが可能となる。また、この磁性体で表面を被覆した粒状活性炭は、難燃性のものであることから、その取扱いが安全であるという利点を有する。
【0015】
また、(5)の方法で基材を磁性体で構成した吸着剤を用いる方法も好ましい方法である。この方法は、前記同様、キューリー制御が可能である。
【0016】
前記吸着剤の加熱温度は、吸着剤から脱着させる有機汚染物の種類によって決まり、その有機汚染物の沸点よりも高い温度であり、通常、その沸点よりも10〜150℃高い温度、好ましくは30〜100℃高い温度であり、脱着効率等を見て適宜選定する。例えば、有機汚染物がトルエン(bp:110℃)の場合、150〜200℃であり、アセトン(bp:56℃)の場合、80〜120℃程度である。
【0017】
(脱着された有機汚染物を冷却工程へ移送する工程)
この工程は、脱着工程で得られたガス状の有機汚染物を、該脱着工程に存在するガスとともに冷却工程へ移送させる工程である。
前記のようにして脱着工程を実施する場合、その脱着工程からは、脱着された有機汚染物を含むガスが生成される。このガス中に含まれる有機汚染物をガスから分離回収するために、該ガスを前記冷却工程へ移送し、ここでその有機汚染物を液化除去する。
該移送ガス中に含まれる有機汚染物の濃度は、通常、0.1〜100vol%、特に、5〜90vol%程度である。
【0018】
該有機汚染物を含有するガスを脱着工程から冷却工程へ移送させるには、脱着工程と吸着工程の間を配管で連結すればよい。この場合、そのガスの移送を完璧に行うために、ポンプやファン(ブロワー)等のガス移送手段を用い、これを脱着工程と冷却工程を連結する配管に介在させるのが好ましい。また、これらのポンプやファンは、冷却工程と脱着工程とを連結する配管に介在させることもできる。
【0019】
(冷却工程から脱着工程へのガスの移送工程)
この工程は、冷却工程に存在するガスを脱着工程へ移送させる工程である。
冷却工程から脱着工程に移送されたガスは、その脱着工程を通過するとともに、その間に脱着工程で脱着された有機汚染物を同伴し、さらに、脱着工程と冷却工程を連結する配管を通って冷却工程へ循環される。
【0020】
吸着剤に吸着した有機汚染物を吸着剤から脱着する操作中には、前記のように、冷却工程、脱着工程及び冷却工程を通るガスの循環流が生じる。これによって、脱着工程で脱着された有機汚染物は、迅速に冷却工程に移送され、ここで液化され、ガス中から分離回収される。
【0021】
次に本発明の第1の態様について、図面を参照しながら詳述する。
図1は本発明を実施する場合のフローシートの1例を示す。
図1において、1はマイクロ被照射装置、2は表面に磁性体をコーティングした粒状活性炭(平均粒径:2mm)を石英管に充填した吸着剤容器、3は冷却装置、4は有機汚染物回収容器、5はファン、6、7は三方バルブ、8は有機汚染物含有ガス供給管、9は清浄化ガス排出管、10、11はガス移送用配管を示す。
【0022】
図1に示したフローシートに従って有機汚染物含有ガス(5vol%トルエン含有空気)を清浄化するには、該ガスをガス供給管8及び3方バルブ7を通って冷却装置3に導入する。冷却装置3は、2℃の水で冷却されており、その温度での飽和蒸気圧(トルエン濃度:1,000ppm)以上の濃度のトルエンは冷却されて液体となり、回収容器4に回収される。残った1,000ppmのトルエンを含む空気は、吸着剤容器2に導入され、ここでその空気中に含まれているトルエンが、その磁性体被覆粒状活性炭に吸着される。トルエン濃度がゼロになったガスは配管9を通って大気中に放出される。
吸着剤にトルエンが飽和吸着した時点で、3方バルブ6、7を切換えて、さらにポンプ5を駆動させるとともに、マイクロ波照射装置1より充填塔2の吸着剤にマイクロ波を照射する。吸着剤容器2内の吸着剤は磁性体損失によって200℃に加熱され、それに吸着されていたトルエンは脱着される。
【0023】
吸着剤から脱着したトルエンは、空気とともにファン5を有する配管11を通り、三方バルブ7を介して冷却装置3に導入され、ここで冷却される。この冷却により、空気中に含まれているトルエンは液化され、回収容器4に回収される。
冷却装置3内の空気は、配管10を通って吸着剤容器2内に導入され、その吸着剤容器2の吸着剤充填層を通過し、3方バルブ6、ファン5を有する配管11を通って冷却装置3に循環される。吸着剤容器2の吸着剤から脱着された有機汚染物は、この循環空気流に同伴して冷却装置3に導入される。
【0024】
本発明のガス清浄化方法の第2の態様は、吸着工程からなるガス中に含まれる有機汚染物を除去する工程Aと、脱着工程と冷却工程とガス移送工程からなる吸着剤再生工程Bを包含する。
以下、これらの工程について詳述する。
【0025】
(吸着工程)
この工程は、ガスを吸着剤に接触させて、ガス中に含まれる有機汚染物を吸着除去する工程である。吸着剤の具体例としては、前記した各種のものが挙げられる。
【0026】
(脱着工程)
この工程は、有機汚染物を吸着した吸着剤を電気的に直接加熱して、それに含まれる有機汚染物を脱着させ、それによって吸着剤を再生する工程である。この脱着工程を実施するための具体的方法としては、前記した各種の方法を示すことができる。
【0027】
(冷却工程)
この工程は、脱着工程からのガスを冷却して、それに含まれるガス状の有機汚染物を液化させてガス中から分離回収する工程である。この工程は、図1との関連で示した前記冷却工程と同様にして実施することができる。
【0028】
(脱着工程から冷却工程へのガスの移送工程)
この工程は、脱着工程に存在するガスを冷却工程へ移送する工程である。
脱着工程では、吸着剤に吸着されていた有機汚染物が過熱により脱着するが、この有機汚染物は、冷却工程へ移送され、ここで冷却液化され、液化された有機汚染物は回収される。
脱着工程から冷却工程へ移送されるガス中の有機汚染物の濃度は、0.1〜100vol%、特に、5〜90vol%である。
【0029】
(冷却工程から脱着工程へのガスの移送工程)
この工程は、冷却工程に存在するガスを脱着工程へ移送させる工程である。
冷却工程から脱着工程に移送されたガスは、その脱着工程を通過するとともに、その間に脱着工程で脱着された有機汚染物を同伴し、さらに、脱着工程と冷却工程を連結する配管を通って冷却工程へ循環される。
【0030】
吸着剤に吸着した有機汚染物を吸着剤から脱着する操作中には、前記のように、冷却工程、脱着工程及び冷却工程を通るガスの循環流が生じる。これによって、脱着工程で脱着された有機汚染物は、迅速に冷却工程に移送され、ここで液化され、ガス中から分離回収される。
【0031】
有機汚染物を含有するガスを脱着工程から冷却工程へ移送させるには、脱着工程と吸着工程の間を配管で連結すればよい。この場合、そのガスの移送を完璧に行うために、ポンプやファン(ブロワー)等のガス移送手段を用い、これを脱着工程と冷却工程を連結する配管に介在させるのが好ましい。また、これらのポンプやファンは、冷却工程と脱着工程とを連結する配管に介在させることもできる。
【0032】
次に本発明の第2の態様について、図面を参照しながら詳述する。
図2は本発明を実施する場合のフローシートの1例を示す。
図2において、20は吸着装置、21はマイクロ被照射装置、22は内部表面に吸着剤を塗布した磁性体で作られたハニカム形状の吸着層(吸着剤室)、23は冷却装置、24は有機汚染物回収容器、25はファン、26、27は脱離用蓋、28は有機汚染物含有ガス供給部、29は清浄化ガス排出部、30、31はガス移送用配管を示す。
【0033】
図2に示したフローシートに従って有機汚染物含有ガス(5vol%トルエン含有空気)を清浄化するには、該ガスをガス供給部28より、複数(4つ)の吸着剤室のうちの3つの吸着剤室22に導入する。ここでその空気中に含まれているトルエンが、そのハニカム内部表面に塗布された吸着剤に吸着される。トルエン濃度がゼロになったガスは反対側の清浄化ガス排出部29より大気中に放出される。
この吸着剤室を構成するハニカム状吸着層は回転しており、その吸着剤室22が脱離用蓋26、27の所にきた時点で、ファン25を駆動させるとともに、マイクロ波照射装置21より吸着剤室としてのハニカム形状吸着層22にマイクロ波を照射する。ハニカム形状吸着層の基材は磁性体損失によって200℃に加熱され、それに塗布された吸着剤に吸着されていたトルエンは脱着される。
【0034】
吸着剤から脱着したトルエンは、空気とともにファン25を有する配管30を通り、冷却装置23に導入され、ここで冷却される。この冷却により、空気中に含まれているトルエンは液化され、回収容器24に回収される。
冷却装置23内の空気は、配管31を通って脱離用蓋26からハニカム状吸着層22内に導入され、その吸着層を通過し、脱離用蓋27、ファン25を有する配管30を通って冷却装置23に循環される。ハニカム状吸着層22の吸着剤から脱着された有機汚染物は、この循環空気流に同伴して冷却装置23に導入される。
【0035】
以上のようにして、空気中に有機汚染物として含まれていたガス状のトルエンは、空気中から液体トルエンとして分離回収される。
前記した一連の吸着工程と脱着工程の操作終了後には、再び前記のようにして有機汚染物含有ガスの清浄化を行うことができる。特に、図2に示した装置を用いる清浄化方法は、セミ連続式であり、極めて効率的に実施することができる。
また、図1に示した装置を用いる清浄化方法は、吸着、脱着が一回でできる排出総量が小さい発生源で、装置自体が安価にできるため、特に優れた方法である。
【0036】
本発明においては、前記のように、冷却装置23、配管31、吸着層22及び配管30を通る循環ガス流を形成するが、これにより、ガス中から有機汚染物を、迅速かつ高率で回収することが可能となる。
吸着剤に吸着されていた有機汚染物を吸着剤から脱着させた後でも、前記循環ガス流を適当時間継続することにより、その脱着操作時の加熱により温度上昇した吸着剤を迅速に冷却することができる。
【0037】
冷却装置23は、クーラーのフィン形式のような冷却効率の良いものが望ましいが、有機汚染物によっては水で冷却するだけでも良い。冷却温度は冷却効率によって適宜選択される。例えば、トルエンの場合は、その冷却温度は20℃以下が望ましい。
【0038】
図2に示した吸着装置20は、4つの吸着剤室を持つ回転方式のものであるが、本発明で用いる吸着装置20は、このような回転方式に限定されるものではなく、他の方式、例えば、複数の吸着剤室を有する堅型又は横型の塔方式等であることができる。この場合の塔方式のものにおいては、吸着剤室は移動せずに、ガス流の流れが、配管と切替バルブによってコントロールされる。
【0039】
【実施例】
次に本発明を実施例によりさらに詳述する。
【0040】
実施例1
図1に示したフローシートに従って、トルエンを5vol%含む空気を清浄化処理した。この場合の主要な操作条件を以下に示す。
【0041】
(A:有機汚染物の除去工程)
(1)ガス導入管8
トルエン濃度:5vol%
(2)冷却装置3
冷却温度:2℃
(3)配管10
トルエン濃度:1000 volppm
(4)吸着剤容器2
温度 25℃
(5)ガス排出管9
トルエン濃度:実質的にゼロ%
【0042】
[B:吸着剤再生工程(脱着工程)]
(6)吸着剤容器2
温度:200℃
(7)配管11
脱着開始時でのトルエン濃度:1000 volppm
(8)冷却装置3
濃度:2℃
【0043】
【発明の効果】
本発明によれば、有機汚染物をガス状で含むガス中から、該有機汚染物を液体として効率的に分離除去をするための方法及び装置が提供される。
【図面の簡単な説明】
【図1】本発明の方法を実施する場合のフローシートの1例を示す。
【図2】本発明の方法を実施する場合の他のフローシートの1例を示す。
【符号の説明】
1 マイクロ波照射装置
2 吸着剤容器
3 冷却装置
4 液状有機汚染物回収容器
5 ファン
6、7 三方バルブ1、2
8 排ガス導入管
9 ガス排出管
10、11 ガス移送用配管
20 ガス吸着装置
21 マイクロ波照射装置
22 吸着剤室
23 冷却装置
24 有機汚染物回収容器
25 ファン
26、27 脱離用蓋
28 有機汚染物含有ガス供給部
29 清浄化ガス排出部
30、31 ガス移送用配管
[0001]
TECHNICAL FIELD OF THE INVENTION
The present invention relates to a method and an apparatus for cleaning a gas containing organic pollutants in a gaseous state.
[0002]
[Prior art]
In order to purify the gas containing organic pollutants such as organic solvents in a gaseous state, an organic pollutant-containing gas is introduced into an adsorbent chamber filled with an adsorbent such as an activated carbon fiber sheet or granular activated carbon. After the contaminants are adsorbed by the adsorbent, steam or warm air is introduced into the adsorbent chamber to desorb (desorb) the contaminants adsorbed on the adsorbent.
However, such a method using steam generally requires a large-scale apparatus, requires steam management, and since the heating of the adsorbent by steam is performed by heat transfer, the heating efficiency is not so high. In consideration of the heat loss in the above, the heating efficiency is considerably low and the running cost is high at present. In addition, in order to collect contaminants such as a solvent, the solvent must be separated from water, so that strict water control for preventing pollution was required. Furthermore, in the case of heating with hot air, the heat capacity is small, so that it is not sufficiently concentrated to a concentration for liquefaction and recovery, and the efficiency is extremely low at present.
[0003]
[Problems to be solved by the invention]
An object of the present invention is to provide a method and an apparatus using an adsorbent for purifying a gas containing an organic pollutant in a gaseous state, and to provide a method and an apparatus for efficiently purifying the gas. I do.
[0004]
[Means for Solving the Problems]
The present inventors have conducted intensive studies to solve the above problems, and as a result, completed the present invention.
That is, according to the present invention, there is provided a method and an apparatus for purifying a gas containing an organic contaminant in a gaseous state described below.
(1) In a method of purifying a gas containing an organic pollutant in a gaseous state,
(I) cooling the gas and liquefying a part of the organic contaminants contained in the gas; and bringing the gas from the cooling step into contact with an adsorbent, An organic contaminant removal step A comprising an adsorption step of adsorbing the organic contaminants contained in the adsorbent;
(Ii) a desorption step of directly heating the adsorbent that has adsorbed the organic contaminant to desorb the organic contaminant in the adsorbent, and removing the organic contaminant desorbed in the desorption step. A method for purifying a gas containing organic contaminants, comprising: a step of transferring to a cooling step; and a step B of regenerating an adsorbent, which includes a step of transferring gas present in the cooling step to the desorption step.
(2) The method according to (1), wherein, in the regeneration step B, the desorbed organic contaminants are transferred to the cooling step by a pump or a fan.
(3) introduction means for introducing a gas containing organic contaminants in a gaseous state, cooling means for cooling the gas guided by the introduction means to liquefy organic contaminants contained in the gas, Collection means for collecting the organic contaminants cooled and liquefied by the cooling means in a liquid form, derivation means for deriving the organic contaminant gas remaining without being liquefied by the cooling means, and the gas induced by the derivation means Means for adsorbing the organic contaminants contained in the gas to the adsorbent by contacting the adsorbent with the adsorbent, and the organic contaminants adsorbed on the adsorbent by electrically heating the adsorbent directly. Desorption means for desorbing the organic contaminant gas desorbed by the desorption means to the cooling means, and a three-way valve is provided in front of the transfer means to operate the adsorption means. The three-way valve is switched to the side for discharging to the atmosphere, and at other times, by switching to the cooling means, the organic pollutant-containing gas is transferred to the cooling means again. Purification equipment.
(4) When the three-way valve for selectively discharging the gas that has passed through the desorption means for desorbing organic pollutants to the atmosphere or to the cooling means is switched to the cooling means, the unpurified organic pollutant gas is forcibly cooled. The apparatus for purifying a gas containing organic pollutants according to the above (3), further comprising a pump or a fan device for introducing the gas to the organic pollutant.
(5) In a method of purifying a gas containing an organic pollutant in a gaseous state,
(I) introducing the gas into a plurality of adsorbent chambers having a plurality of adsorbent chambers, one of which is always located in the heating apparatus, and the other adsorbent chamber not located in the heating apparatus; An organic contaminant removal step A comprising an adsorption step of adsorbing the organic contaminant contained in gas to the adsorbent;
(Ii) one of the adsorbent chambers that has adsorbed the organic contaminant is located in the heating device, and the adsorbent chamber is directly electrically heated to desorb the organic contaminant in the adsorbent. A desorption step, a step of transferring the organic contaminants desorbed in the desorption step to the cooling step, and circulating a gas present in the cooling step to the cooling step via an adsorbent chamber of the desorption step. The organic contaminant removal step A, wherein the adsorption step is performed in another adsorbent chamber after the end of the adsorption step in the adsorbent chamber. Method for purifying organic pollutant-containing gas.
(6) The method according to (5), wherein, in the regeneration step B, the desorbed organic contaminants are transferred to the cooling step by a pump or a fan.
(7) Introducing means for introducing a gas containing an organic pollutant in a gaseous state, wherein the gas induced by the introducing means is provided with a plurality of adsorbent chambers, one of which is always located in a heating device. Adsorption means, which is introduced into the remaining plurality of adsorbent chambers not located in the heating apparatus, and is brought into contact with the adsorbent to adsorb organic contaminants contained in the gas to the adsorbent, One of the adsorbent chambers that has adsorbed the organic contaminant is located in the heating device, and the adsorbent chamber is electrically directly heated to desorb the organic contaminant adsorbed on the adsorbent. Means, cooling means for cooling the organic pollutant gas desorbed by the desorbing means to liquefy organic contaminants contained in the gas, and liquidizing the organic contaminant cooled and liquefied by the cooling means. Liquefied by the collecting means and the cooling means The organic contaminants organic contaminants containing gas cleaning apparatus characterized by comprising a transfer means for feeding back to said suction means gas remaining without being.
(8) a pipe for transferring the desorbed organic contaminants to the cooling device together with the gas present in the adsorbent chamber or a pipe for transferring gas existing in the cooling device to the adsorbent chamber; The device according to (7), wherein a pump or a fan is interposed.
[0005]
BEST MODE FOR CARRYING OUT THE INVENTION
The first aspect of the gas cleaning method of the present invention comprises a step A of removing gaseous organic contaminants contained in a gas comprising a cooling step and an adsorption step, a desorption step, a cooling step, and a gas transfer step. And regenerating step B of the adsorbent for desorbing the organic contaminant from the adsorbent adsorbing the organic contaminant.
Hereinafter, these steps will be described in detail.
[0006]
(Cooling process)
In this step, the gas is cooled, and the gaseous organic contaminants contained therein are liquefied (condensed) and separated and recovered from the gas.
The cooling temperature is a temperature at which the organic contaminants contained in the gas are liquefied, and is usually a temperature lower than its boiling point and the temperature of the system by 10 ° C. or more, preferably 30 ° C. or more.
[0007]
Organic pollutants include various volatile organic compounds (VOC), for example, aromatic compounds such as benzene and toluene, ketones such as acetone and methyl ethyl ketone, chlorocarbons such as trichlene and methylene chloride, methanol, and isopropyl alcohol. And other alternative fluorocarbons such as HFC134a and PFC. The boiling point of the organic contaminants is usually in the range of -50 to + 250C, especially -20 to + 150C.
[0008]
Gas containing organic contaminants, usually air, other gases (N 2 or argon, hydrogen, methane, etc.). The ratio of organic contaminants contained in the gas is usually about 1 volppm to 100 vol%, particularly about 200 volppm to 100 vol%, but is not particularly limited.
[0009]
As the cooling device, any device can be used as long as it can liquefy the organic contaminants, and various types of conventionally known devices can be used.
[0010]
(Adsorption process)
In this step, a gas containing 1 to 30 vol%, preferably 100 to 5 vol% of organic contaminants is usually brought into contact with the adsorbent after most of the organic contaminants have been removed in the cooling step. This is a step of adsorbing and separating contained organic contaminants.
As the adsorbent, any adsorbent may be used as long as it exhibits adsorbability to organic contaminants, and various conventionally known adsorbents can be used. These include silica, alumina, magnesia, zeolites, activated carbon, and the like. The form of the adsorbent can be various forms such as powder, granule, sheet and the like. It is appropriately selected depending on the configuration of the device.
[0011]
Examples of preferred adsorbents used in the present invention are as follows.
(I) fibrous activated carbon,
(Ii) granular activated carbon having a surface coated with a magnetic substance or a dielectric substance,
(Iii) a non-carbon-based adsorbent containing a magnetic substance or a dielectric substance,
(Iv) an adsorbent dispersed in a magnetic or dielectric material.
[0012]
(Desorption process)
In this step, the adsorbent which has saturatedly adsorbed the organic contaminants is electrically heated directly to desorb the organic contaminants contained therein, thereby regenerating the adsorbent.
In this case, as the heating method of the adsorbent, various conventionally known methods can be used. As such a method, for example, the following method can be shown.
[0013]
(1) A method of disposing a heating tool in an adsorption container filled with an adsorbent.
The heating tool in this case includes an electric heater, a heating coil through which a heat medium flows, and the like.
(2) A method in which a sheet made of fibrous activated carbon is used as an adsorbent, electrodes are attached to both ends of the sheet, and electricity is supplied between the electrodes to generate heat in the adsorbent sheet.
(3) A method in which granular activated carbon whose surface is coated with a magnetic substance or a dielectric substance is irradiated with microwaves or high frequencies to generate heat.
(4) A method of using an adsorbent in which a magnetic substance or a dielectric substance is dispersed in a non-carbon-based adsorbent and irradiating the adsorbent with microwaves or high-frequency waves to generate heat.
(5) A method in which a honeycomb or adsorbent having a magnetic or dielectric substrate is irradiated with microwaves or high-frequency waves to generate heat.
(6) A method in which a microwave or a high frequency is applied to an adsorption layer in which a magnetic substance or a dielectric substance is dispersed in an adsorbent to generate heat.
[0014]
Among the heating methods, the method (3) is particularly preferable. Since this method uses an adsorbent based on activated carbon, it can be implemented at a high surface area and at a low cost. When a magnetic material is used as a coating material, the heating temperature is determined by the Curie point of the magnetic material. This is a particularly preferred method because it can be controlled.
That is, when the temperature of the adsorbent reaches the Curie point of the magnetic material, the magnetic material does not generate heat. Therefore, the upper limit of the heating temperature can be limited to the Curie point of the magnetic substance, and the adsorbent can be uniformly heated to the temperature of the Curie point. Further, the granular activated carbon whose surface is coated with the magnetic material has an advantage that its handling is safe since it is flame retardant.
[0015]
Further, the method of using the adsorbent in which the base material is made of a magnetic material by the method (5) is also a preferable method. In this method, Curie control can be performed as described above.
[0016]
The heating temperature of the adsorbent is determined by the type of organic contaminant to be desorbed from the adsorbent, and is a temperature higher than the boiling point of the organic contaminant, usually 10 to 150 ° C. higher than the boiling point, preferably 30 ° C. The temperature is higher by about 100 ° C., and is appropriately selected in view of the desorption efficiency and the like. For example, when the organic contaminant is toluene (bp: 110 ° C.), the temperature is 150 to 200 ° C., and when the organic contaminant is acetone (bp: 56 ° C.), the temperature is about 80 to 120 ° C.
[0017]
(Process of transferring desorbed organic contaminants to the cooling process)
In this step, the gaseous organic contaminants obtained in the desorption step are transferred to the cooling step together with the gas present in the desorption step.
When the desorption step is performed as described above, a gas containing the desorbed organic contaminants is generated from the desorption step. In order to separate and recover the organic pollutants contained in the gas from the gas, the gas is transferred to the cooling step, where the organic pollutants are liquefied and removed.
The concentration of the organic contaminants contained in the transfer gas is usually about 0.1 to 100 vol%, particularly about 5 to 90 vol%.
[0018]
In order to transfer the gas containing the organic contaminants from the desorption step to the cooling step, a pipe may be connected between the desorption step and the adsorption step. In this case, in order to transfer the gas perfectly, it is preferable to use a gas transfer means such as a pump or a fan (blower) and to interpose this in a pipe connecting the desorption process and the cooling process. Further, these pumps and fans can be interposed in a pipe connecting the cooling step and the desorption step.
[0019]
(Transfer process of gas from cooling process to desorption process)
This step is a step of transferring the gas present in the cooling step to the desorption step.
The gas transferred from the cooling step to the desorption step passes through the desorption step, accompanied by organic contaminants desorbed in the desorption step, and further cooled through a pipe connecting the desorption step and the cooling step. Recirculated to the process.
[0020]
During the operation of desorbing the organic contaminants adsorbed on the adsorbent from the adsorbent, a circulating gas flow through the cooling step, the desorption step and the cooling step occurs, as described above. As a result, the organic contaminants desorbed in the desorption step are quickly transferred to the cooling step, where they are liquefied and separated and recovered from the gas.
[0021]
Next, the first embodiment of the present invention will be described in detail with reference to the drawings.
FIG. 1 shows an example of a flow sheet for implementing the present invention.
In FIG. 1, reference numeral 1 denotes a micro-irradiation device, 2 denotes an adsorbent container in which a quartz tube is filled with granular activated carbon (average particle size: 2 mm) whose surface is coated with a magnetic substance, 3 is a cooling device, 4 is an organic contaminant recovery. The container 5 is a fan, 6 and 7 are three-way valves, 8 is an organic pollutant-containing gas supply pipe, 9 is a cleaning gas discharge pipe, and 10 and 11 are gas transfer pipes.
[0022]
In order to purify the gas containing organic contaminants (air containing 5 vol% toluene) according to the flow sheet shown in FIG. 1, the gas is introduced into the cooling device 3 through the gas supply pipe 8 and the three-way valve 7. The cooling device 3 is cooled with water at 2 ° C., and the toluene having a concentration equal to or higher than the saturated vapor pressure (toluene concentration: 1,000 ppm) at that temperature is cooled to be a liquid and collected in the collection container 4. The remaining air containing 1,000 ppm of toluene is introduced into the adsorbent container 2, where the toluene contained in the air is adsorbed on the magnetic substance-coated granular activated carbon. The gas having a toluene concentration of zero is discharged into the atmosphere through the pipe 9.
When the toluene is saturated and adsorbed on the adsorbent, the three-way valves 6 and 7 are switched, the pump 5 is further driven, and the microwave is irradiated from the microwave irradiation device 1 onto the adsorbent in the packed tower 2. The adsorbent in the adsorbent container 2 is heated to 200 ° C. due to the loss of the magnetic substance, and the toluene adsorbed thereon is desorbed.
[0023]
The toluene desorbed from the adsorbent passes through the pipe 11 having the fan 5 together with the air, is introduced into the cooling device 3 through the three-way valve 7, and is cooled therein. By this cooling, the toluene contained in the air is liquefied and collected in the collection container 4.
The air in the cooling device 3 is introduced into the adsorbent container 2 through the pipe 10, passes through the adsorbent packed layer of the adsorbent container 2, passes through the pipe 11 having the three-way valve 6, and the fan 5. Circulated to the cooling device 3. Organic contaminants desorbed from the adsorbent in the adsorbent container 2 are introduced into the cooling device 3 along with the circulating air flow.
[0024]
The second aspect of the gas cleaning method of the present invention comprises a step A for removing organic contaminants contained in a gas comprising an adsorption step, and an adsorbent regeneration step B comprising a desorption step, a cooling step and a gas transfer step. Include.
Hereinafter, these steps will be described in detail.
[0025]
(Adsorption process)
This step is a step of bringing a gas into contact with an adsorbent to adsorb and remove organic contaminants contained in the gas. Specific examples of the adsorbent include those described above.
[0026]
(Desorption process)
In this step, the adsorbent having adsorbed the organic contaminants is electrically heated directly to desorb the organic contaminants contained therein, thereby regenerating the adsorbent. The various methods described above can be shown as specific methods for performing the desorption step.
[0027]
(Cooling process)
This step is a step of cooling the gas from the desorption step, liquefying the gaseous organic contaminants contained therein, and separating and recovering it from the gas. This step can be performed in the same manner as the cooling step shown in connection with FIG.
[0028]
(Transfer process of gas from desorption process to cooling process)
This step is a step of transferring the gas present in the desorption step to the cooling step.
In the desorption step, the organic contaminants adsorbed on the adsorbent are desorbed by overheating. The organic contaminants are transferred to a cooling step, where they are cooled and liquefied, and the liquefied organic contaminants are collected.
The concentration of the organic contaminant in the gas transferred from the desorption step to the cooling step is 0.1 to 100 vol%, particularly 5 to 90 vol%.
[0029]
(Transfer process of gas from cooling process to desorption process)
This step is a step of transferring the gas present in the cooling step to the desorption step.
The gas transferred from the cooling step to the desorption step passes through the desorption step, accompanied by organic contaminants desorbed in the desorption step, and further cooled through a pipe connecting the desorption step and the cooling step. Recirculated to the process.
[0030]
During the operation of desorbing the organic contaminants adsorbed on the adsorbent from the adsorbent, a circulating gas flow through the cooling step, the desorption step and the cooling step occurs, as described above. As a result, the organic contaminants desorbed in the desorption step are quickly transferred to the cooling step, where they are liquefied and separated and recovered from the gas.
[0031]
In order to transfer the gas containing organic contaminants from the desorption step to the cooling step, a pipe may be connected between the desorption step and the adsorption step. In this case, in order to transfer the gas perfectly, it is preferable to use a gas transfer means such as a pump or a fan (blower) and to interpose this in a pipe connecting the desorption process and the cooling process. Further, these pumps and fans can be interposed in a pipe connecting the cooling step and the desorption step.
[0032]
Next, a second embodiment of the present invention will be described in detail with reference to the drawings.
FIG. 2 shows an example of a flow sheet for implementing the present invention.
In FIG. 2, reference numeral 20 denotes an adsorption device, 21 denotes a micro irradiation device, 22 denotes a honeycomb-shaped adsorption layer (adsorbent chamber) made of a magnetic material having an inner surface coated with an adsorbent, 23 denotes a cooling device, and 24 denotes a cooling device. An organic contaminant collection container, 25 is a fan, 26 and 27 are desorption covers, 28 is an organic contaminant-containing gas supply unit, 29 is a cleaning gas discharge unit, and 30 and 31 are gas transfer pipes.
[0033]
In order to purify the gas containing organic pollutants (air containing 5 vol% toluene) according to the flow sheet shown in FIG. 2, the gas is supplied from the gas supply unit 28 to three of the plurality (four) of the adsorbent chambers. It is introduced into the adsorbent chamber 22. Here, the toluene contained in the air is adsorbed by the adsorbent applied to the inner surface of the honeycomb. The gas having a toluene concentration of zero is discharged into the atmosphere from the opposite side of the cleaning gas discharge unit 29.
The honeycomb-shaped adsorbent layer constituting the adsorbent chamber is rotating. When the adsorbent chamber 22 reaches the desorption lids 26 and 27, the fan 25 is driven and the microwave irradiation device 21 The microwave is applied to the honeycomb-shaped adsorption layer 22 as the adsorbent chamber. The substrate of the honeycomb-shaped adsorption layer is heated to 200 ° C. due to the loss of the magnetic substance, and the toluene adsorbed by the adsorbent applied thereto is desorbed.
[0034]
The toluene desorbed from the adsorbent passes through a pipe 30 having a fan 25 together with air, and is introduced into a cooling device 23 where it is cooled. Due to this cooling, the toluene contained in the air is liquefied and collected in the collection container 24.
The air in the cooling device 23 is introduced into the honeycomb-shaped adsorption layer 22 from the desorption lid 26 through the pipe 31, passes through the adsorption layer, passes through the desorption lid 27, and the pipe 30 having the fan 25. And circulated to the cooling device 23. Organic contaminants desorbed from the adsorbent of the honeycomb-shaped adsorption layer 22 are introduced into the cooling device 23 along with the circulating air flow.
[0035]
As described above, gaseous toluene contained in the air as organic contaminants is separated and recovered from the air as liquid toluene.
After the end of the series of operations of the adsorption step and the desorption step, the gas containing organic pollutants can be purified again as described above. In particular, the cleaning method using the apparatus shown in FIG. 2 is a semi-continuous method, and can be performed extremely efficiently.
Further, the cleaning method using the apparatus shown in FIG. 1 is a particularly excellent method because it is a source having a small total discharge amount that can be adsorbed and desorbed at one time and the apparatus itself can be inexpensive.
[0036]
In the present invention, as described above, a circulating gas flow passing through the cooling device 23, the pipe 31, the adsorption layer 22, and the pipe 30 is formed, whereby the organic contaminants are quickly and efficiently recovered from the gas. It is possible to do.
Even after desorbing the organic contaminants adsorbed by the adsorbent from the adsorbent, by continuing the circulating gas flow for an appropriate period of time, the adsorbent whose temperature has increased due to heating during the desorption operation can be quickly cooled. Can be.
[0037]
The cooling device 23 is desirably one having a high cooling efficiency such as a fin type of a cooler. The cooling temperature is appropriately selected depending on the cooling efficiency. For example, in the case of toluene, the cooling temperature is desirably 20 ° C. or less.
[0038]
Although the adsorption device 20 shown in FIG. 2 is of a rotary type having four adsorbent chambers, the adsorption device 20 used in the present invention is not limited to such a rotary type, but may be of another type. For example, a rigid or horizontal tower system having a plurality of adsorbent chambers can be used. In the tower type in this case, the flow of the gas flow is controlled by the piping and the switching valve without moving the adsorbent chamber.
[0039]
【Example】
Next, the present invention will be described in more detail by way of examples.
[0040]
Example 1
According to the flow sheet shown in FIG. 1, air containing 5 vol% of toluene was subjected to a cleaning treatment. The main operating conditions in this case are shown below.
[0041]
(A: Organic contaminant removal step)
(1) Gas inlet pipe 8
Toluene concentration: 5 vol%
(2) Cooling device 3
Cooling temperature: 2 ° C
(3) Piping 10
Toluene concentration: 1000 volppm
(4) Adsorbent container 2
Temperature 25 ℃
(5) Gas discharge pipe 9
Toluene concentration: virtually zero%
[0042]
[B: Adsorbent regeneration step (desorption step)]
(6) Adsorbent container 2
Temperature: 200 ° C
(7) Piping 11
Toluene concentration at the start of desorption: 1000 volppm
(8) Cooling device 3
Concentration: 2 ° C
[0043]
【The invention's effect】
According to the present invention, there is provided a method and an apparatus for efficiently separating and removing an organic pollutant as a liquid from a gas containing the organic pollutant in a gaseous state.
[Brief description of the drawings]
FIG. 1 shows an example of a flow sheet for carrying out the method of the present invention.
FIG. 2 shows an example of another flow sheet when carrying out the method of the present invention.
[Explanation of symbols]
DESCRIPTION OF SYMBOLS 1 Microwave irradiation device 2 Adsorbent container 3 Cooling device 4 Liquid organic contaminant collection container 5 Fan 6, 7 Three-way valve 1, 2
8 Exhaust gas introduction pipe 9 Gas exhaust pipe 10, 11 Gas transfer pipe 20 Gas adsorption device 21 Microwave irradiation device 22 Adsorbent room 23 Cooling device 24 Organic contaminant collection container 25 Fan 26, 27 Desorption lid 28 Organic contaminant Contained gas supply section 29 Purified gas discharge sections 30, 31 Gas transfer piping

Claims (8)

有機汚染物をガス状で含有するガスを清浄化する方法において、
(i)該ガスを冷却して、該ガス中に含まれている該有機汚染物の一部を液化する冷却工程と、該冷却工程からのガスを吸着剤と接触させて、該ガス中に含まれている該有機汚染物を該吸着剤に吸着させる吸着工程からなる有機汚染物の除去工程Aと、
(ii)該有機汚染物を吸着した吸着剤を電気的に直接加熱して、該吸着剤中の該有機汚染物を脱着させる脱着工程と、該脱着工程で脱着された該有機汚染物を該冷却工程に移送する工程と、該冷却工程に存在するガスを該脱着工程へ移送する工程からなる吸着剤の再生工程B、を包含することを特徴とする有機汚染物含有ガスの清浄化方法。
In a method of purifying a gas containing organic pollutants in a gaseous state,
(I) cooling the gas and liquefying a part of the organic contaminants contained in the gas; and bringing the gas from the cooling step into contact with an adsorbent, An organic contaminant removal step A comprising an adsorption step of adsorbing the organic contaminants contained in the adsorbent;
(Ii) a desorption step of directly heating the adsorbent that has adsorbed the organic contaminant to desorb the organic contaminant in the adsorbent, and removing the organic contaminant desorbed in the desorption step. A method for purifying a gas containing organic contaminants, comprising: a step of transferring to a cooling step; and a step B of regenerating an adsorbent, which includes a step of transferring gas present in the cooling step to the desorption step.
該再生工程Bにおいて、該脱着された該有機汚染物の該冷却工程への移送を、ポンプ又はファンで行う請求項1に記載の方法。The method according to claim 1, wherein in the regeneration step B, the transfer of the desorbed organic contaminants to the cooling step is performed by a pump or a fan. 有機汚染物をガス状で含有するガスを導入する導入手段、該導入手段によって導かれた前記ガスを冷却して該ガス中に含まれている有機汚染物を液化する冷却手段、該冷却手段によって冷却されて液化した前記有機汚染物を液状で回収する回収手段、前記冷却手段によって液化されずに残留する前記有機汚染物ガスを導出する導出手段、該導出手段によって誘導された前記ガスを吸着剤と接触させて該ガス中に含まれている有機汚染物を前記吸着剤に吸着させる吸着手段、前記吸着剤を電気的に直接加熱して該吸着剤に吸着された前記有機汚染物を脱着させる脱着手段、該脱着手段で脱着された前記有機汚染物ガスを前記冷却手段にフィードバックさせる移送手段を備え、該移送手段の前に三方弁を設け、前記吸着手段が作動するときは該三方弁を大気へ放出する側に切り替えるとともに、その他のときは前記冷却手段側へ切り替えることにより、有機汚染ガスを再度冷却手段へ移送するようにしたことを特徴とする有機汚染物含有ガスの清浄化装置。Introduction means for introducing a gas containing organic contaminants in gaseous form, cooling means for cooling the gas guided by the introduction means to liquefy organic contaminants contained in the gas, A collecting means for collecting the organic contaminants cooled and liquefied in a liquid state, a deriving means for deriving the organic contaminant gas remaining without being liquefied by the cooling means, an adsorbent Adsorption means for adsorbing organic contaminants contained in the gas to the adsorbent by contacting the adsorbent, and electrically heating the adsorbent directly to desorb the organic contaminants adsorbed on the adsorbent A desorption means, a transfer means for feeding back the organic contaminant gas desorbed by the desorption means to the cooling means, a three-way valve is provided in front of the transfer means, and the three-way valve is provided when the adsorption means is operated. Switching the valve to the side for discharging to the atmosphere, and at other times, switching to the cooling means side, so that the organic pollutant gas is transferred to the cooling means again. apparatus. 有機汚染物を脱着させる脱着手段を経たガスを大気側または冷却手段側へ選択導出する三方弁が冷却手段側に切り替えられたとき、未浄化の有機汚染物ガスを強制的に冷却手段へ導入するポンプ又はファン装置を設けたことを特徴とする請求項3に記載の有機汚染物含有ガスの清浄化装置。When the three-way valve for selectively discharging the gas passing through the desorption means for desorbing the organic pollutant to the atmosphere side or the cooling means side is switched to the cooling means side, the unpurified organic pollutant gas is forcibly introduced to the cooling means. The organic pollutant-containing gas purifying apparatus according to claim 3, further comprising a pump or a fan device. 有機汚染物をガス状で含有するガスを清浄化する方法において、
(i)該ガスを複数の吸着剤室を有しその内の1つは常に加熱装置内に位置する吸着装置の、該加熱装置内に位置しない残りの複数の吸着剤室に導入し、該ガス中に含まれている該有機汚染物を該吸着剤に吸着させる吸着工程からなる有機汚染物の除去工程Aと、
(ii)前記有機汚染物を吸着した吸着剤室の1つを前記加熱装置内に位置させて当該吸着剤室を電気的に直接加熱して、前記吸着剤中の前記有機汚染物を脱着させる脱着工程と、該脱着工程で脱着された前記有機汚染物を該冷却工程に移送する工程と、該冷却工程に存在するガスを、前記脱着工程の吸着剤室を介して該冷却工程に循環させる工程からなる吸着剤の再生工程B、を包含し、該有機汚染物除去工程Aにおいては、該吸着剤室における吸着工程の終了後、他の吸着剤室において該吸着工程を行なうことを特徴とする有機汚染物含有ガスの清浄化方法。
In a method of purifying a gas containing organic pollutants in a gaseous state,
(I) introducing the gas into a plurality of adsorbent chambers having a plurality of adsorbent chambers, one of which is always located in the heating apparatus, and the other adsorbent chamber not located in the heating apparatus; An organic contaminant removal step A comprising an adsorption step of adsorbing the organic contaminant contained in gas to the adsorbent;
(Ii) one of the adsorbent chambers that has adsorbed the organic contaminant is located in the heating device, and the adsorbent chamber is directly electrically heated to desorb the organic contaminant in the adsorbent. A desorption step, a step of transferring the organic contaminants desorbed in the desorption step to the cooling step, and circulating a gas present in the cooling step to the cooling step via an adsorbent chamber of the desorption step. The organic contaminant removal step A, wherein the adsorption step is performed in another adsorbent chamber after the end of the adsorption step in the adsorbent chamber. Method for purifying organic pollutant-containing gas.
該再生工程Bにおいて、該脱着された該有機汚染物の該冷却工程への移送を、ポンプ又はファンで行う請求項5に記載の方法。The method according to claim 5, wherein in the regeneration step B, the transfer of the desorbed organic contaminants to the cooling step is performed by a pump or a fan. 有機汚染物をガス状で含有するガスを導入する導入手段、該導入手段によって誘導された前記ガスを、複数の吸着剤室を有しその内の1つは常に加熱装置内に位置する吸着装置の、該加熱装置内に位置しない残りの複数の吸着剤室に導入し、吸着剤と接触させて該ガス中に含まれている有機汚染物を前記吸着剤に吸着させる吸着手段、前記有機汚染物を吸着した吸着剤室の1つを前記加熱装置内に位置させて当該吸着剤室を電気的に直接加熱して、該吸着剤に吸着された前記有機汚染物を脱着させる脱着手段、該脱着手段で脱着された前記有機汚染物ガスを冷却して該ガス中に含まれている有機汚染物を液化する冷却手段、該冷却手段によって冷却されて液化した前記有機汚染物を液状で回収する回収手段、前記冷却手段によって液化されずに残留する前記有機汚染物ガスを前記吸着手段にフィードバックさせる移送手段を備えたことを特徴とする有機汚染物含有ガスの清浄化装置。Introducing means for introducing a gas containing organic contaminants in a gaseous state, an adsorbing apparatus having a plurality of adsorbent chambers, one of which is always located in a heating apparatus, for introducing the gas guided by the introducing means Adsorbing means for introducing the organic contaminants contained in the gas into the adsorbent by introducing the adsorbent into the remaining plurality of adsorbent chambers not located in the heating device; A desorption means for positioning one of the adsorbent chambers adsorbing the substance in the heating device and electrically directly heating the adsorbent chamber to desorb the organic contaminants adsorbed on the adsorbent; Cooling means for cooling the organic contaminant gas desorbed by the desorption means to liquefy the organic contaminants contained in the gas, and recovering the organic contaminant cooled and liquefied by the cooling means in a liquid state Not liquefied by the recovery means and the cooling means Remaining the organic contaminants organic contaminants containing gas cleaning apparatus characterized by comprising a transfer means for feeding back to said suction means gas. 該脱着された有機汚染物を該吸着剤室に存在するガスとともに該冷却装置へ移送させるための配管又は該冷却装置に存在するガスを該吸着剤室に移送させるための配管に、ポンプ又はファンを介在させた請求項7に記載の装置。A pipe or a fan for transferring the desorbed organic contaminants to the cooling device together with the gas existing in the adsorbent chamber or a pipe for transferring the gas existing in the cooling device to the adsorbent chamber. The device according to claim 7, wherein
JP2003038493A 2003-02-17 2003-02-17 Method and apparatus for purifying gases containing organic contaminants Expired - Lifetime JP3994157B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2003038493A JP3994157B2 (en) 2003-02-17 2003-02-17 Method and apparatus for purifying gases containing organic contaminants

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2003038493A JP3994157B2 (en) 2003-02-17 2003-02-17 Method and apparatus for purifying gases containing organic contaminants

Publications (2)

Publication Number Publication Date
JP2004243279A true JP2004243279A (en) 2004-09-02
JP3994157B2 JP3994157B2 (en) 2007-10-17

Family

ID=33023014

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2003038493A Expired - Lifetime JP3994157B2 (en) 2003-02-17 2003-02-17 Method and apparatus for purifying gases containing organic contaminants

Country Status (1)

Country Link
JP (1) JP3994157B2 (en)

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006187767A (en) * 2004-12-10 2006-07-20 Nippon Steel Chem Co Ltd Treatment method of volatile organic compound
JP2009045535A (en) * 2007-08-17 2009-03-05 Osaka Univ Recovering unit of volatile organic compound
JP2010221140A (en) * 2009-03-24 2010-10-07 Taikisha Ltd Adsorption type gas treatment equipment
CN106731473A (en) * 2017-03-16 2017-05-31 上海兰宝环保科技有限公司 Industrial organic waste-gas purification device
WO2020116670A1 (en) * 2018-12-05 2020-06-11 주식회사 에코프로 Vocs removal system using slotted waveguides
JP2020189269A (en) * 2019-05-22 2020-11-26 国立研究開発法人物質・材料研究機構 Combustible gas absorption recovery material, and, recovery method of combustible gas
WO2023234218A1 (en) * 2022-06-03 2023-12-07 株式会社村田製作所 Voc removal method
WO2023234217A1 (en) * 2022-06-03 2023-12-07 株式会社村田製作所 Voc removal device

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101323108B1 (en) * 2013-03-18 2013-10-30 주식회사 에코프로 Honeycomb rotor type vocs removal system with horizontally polarized microwave radiation
CN108159841B (en) * 2017-12-29 2021-01-29 常德金鹏印务有限公司 Waste gas purification device convenient for heat recovery

Cited By (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006187767A (en) * 2004-12-10 2006-07-20 Nippon Steel Chem Co Ltd Treatment method of volatile organic compound
JP4704903B2 (en) * 2004-12-10 2011-06-22 新日鐵化学株式会社 Method for treating volatile organic compounds
JP2009045535A (en) * 2007-08-17 2009-03-05 Osaka Univ Recovering unit of volatile organic compound
JP4608685B2 (en) * 2007-08-17 2011-01-12 国立大学法人大阪大学 Volatile organic compound recovery unit
JP2010221140A (en) * 2009-03-24 2010-10-07 Taikisha Ltd Adsorption type gas treatment equipment
CN106731473A (en) * 2017-03-16 2017-05-31 上海兰宝环保科技有限公司 Industrial organic waste-gas purification device
WO2020116670A1 (en) * 2018-12-05 2020-06-11 주식회사 에코프로 Vocs removal system using slotted waveguides
CN111565818A (en) * 2018-12-05 2020-08-21 艾可普罗有限公司 VOCs removing system using groove type wave guide tube
JP2021510619A (en) * 2018-12-05 2021-04-30 エコプロ カンパニー リミテッド VOCs removal system using slot type waveguide
CN111565818B (en) * 2018-12-05 2022-05-24 艾可普罗Hn有限公司 VOCs removing system using groove type wave guide tube
JP2020189269A (en) * 2019-05-22 2020-11-26 国立研究開発法人物質・材料研究機構 Combustible gas absorption recovery material, and, recovery method of combustible gas
WO2023234218A1 (en) * 2022-06-03 2023-12-07 株式会社村田製作所 Voc removal method
WO2023234217A1 (en) * 2022-06-03 2023-12-07 株式会社村田製作所 Voc removal device

Also Published As

Publication number Publication date
JP3994157B2 (en) 2007-10-17

Similar Documents

Publication Publication Date Title
JP5298292B2 (en) A temperature swing method VOC concentration and a low-temperature liquefied VOC recovery method in which moisture is removed using an adsorbent and cold energy is recovered.
JP3841479B2 (en) Organic solvent recovery system and organic solvent recovery method
JPH0775714A (en) Organic solvent vapor adsorption apparatus
JP3994157B2 (en) Method and apparatus for purifying gases containing organic contaminants
JP3044279B2 (en) Simple gas adsorption recovery method
CN109045926B (en) VOCs-containing waste gas treatment device and method
KR101723507B1 (en) System for separating chemical material from exhaust gas
JP2004344703A (en) Method and apparatus for treating carbon dioxide
US6726746B2 (en) Apparatus and method for removing and fractionating sorbates from sorbents
JP2009273975A (en) System for treatment of gas containing organic solvent
JP2001038144A (en) Gas treating device
JP2012081411A (en) Solvent dehydrator
JP2017000991A (en) Concentrator and organic solvent recovery system
JP2004036523A (en) Exhaust gas treatment apparatus
JP3922449B2 (en) Organic solvent recovery system
JPH05237333A (en) Method for recovering solvent
JPH0584417A (en) Method and equipment for recovering solvent
JPH0631163A (en) Method and device for regeneration of activated carbon and adsorption treating device
JP2012081412A (en) Solvent dehydrator
WO2008023659A1 (en) Apparatus for treating organic-containing gas and method of treating the same
JPH0938445A (en) Method for regenerating adsorption tower
CN110624360A (en) VOCs waste gas purification device, purification method and purification system
EP0793526B1 (en) Method and apparatus for purification of ventilating air
JP2001137647A (en) Multistage adsorption treating device for waste gas and method
JPH06312117A (en) Solvent recovery

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20041124

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20051110

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20051115

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20060116

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20070703

R150 Certificate of patent or registration of utility model

Ref document number: 3994157

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

EXPY Cancellation because of completion of term