JP2004243272A - Catalyst for purification of exhaust gas - Google Patents

Catalyst for purification of exhaust gas Download PDF

Info

Publication number
JP2004243272A
JP2004243272A JP2003038319A JP2003038319A JP2004243272A JP 2004243272 A JP2004243272 A JP 2004243272A JP 2003038319 A JP2003038319 A JP 2003038319A JP 2003038319 A JP2003038319 A JP 2003038319A JP 2004243272 A JP2004243272 A JP 2004243272A
Authority
JP
Japan
Prior art keywords
layer
adsorption
purification
catalyst
inner layer
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2003038319A
Other languages
Japanese (ja)
Inventor
Masanori Shimada
真紀 島田
Katsuo Suga
克雄 菅
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nissan Motor Co Ltd
Original Assignee
Nissan Motor Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nissan Motor Co Ltd filed Critical Nissan Motor Co Ltd
Priority to JP2003038319A priority Critical patent/JP2004243272A/en
Publication of JP2004243272A publication Critical patent/JP2004243272A/en
Pending legal-status Critical Current

Links

Landscapes

  • Exhaust Gas After Treatment (AREA)
  • Exhaust Gas Treatment By Means Of Catalyst (AREA)
  • Catalysts (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a catalyst for purification of exhaust gas, the catalyst having both of HC removing performance and NOx removing performance. <P>SOLUTION: The catalyst for purification of exhaust gas is formed by depositing an HC adsorption layer, and adsorption removal inner layer and outer layer which adsorb/remove NOx and remove HC, in this order, on a monolithic carrier. The HC adsorption layer contains zeolite, and the adsorption removal inner layer and outer layer contain noble metals of Pt, Rh, Pd or a combination of these, one of or both of alkali metals and alkaline earth metals, and a refractory inorganic oxide. The molar ratio (inner layer/outer layer) of the alkali metals in the adsorption removal inner layer and outer layer ranges from 1/1 to 1/5 and the adsorption removal inner layer has 10 to 200 μm thickness. <P>COPYRIGHT: (C)2004,JPO&NCIPI

Description

【0001】
【発明の属する技術分野】
本発明は排気ガス浄化触媒に係り、更に詳細には、リーン域の窒素酸化物(NOx)浄化性能及び低温域の炭化水素(HC)浄化性能に優れた排気ガス浄化触媒に関する。
【0002】
【従来の技術】
従来から、リーン域でNOxを浄化する触媒は種々提案されており、例えば白金(Pt)とランタン(La)を多孔質担体に担持した触媒(例えば、特許文献1参照。)に代表されるように、リーン域でNOxを吸着し、理論空燃比(ストイキ)からリッチ域の時にNOxを放出させて浄化する触媒が知られている。
また、低温域でHCを浄化する触媒としては、ゼオライトを含む触媒が提案されている(例えば、特許文献2参照。)。
更に、2層以上の積層構造を備え、表層と内層の比較において、貴金属含有比とアルカリ土類金属含有比の双方とも表層が大きい触媒が提案されている(例えば、特許文献3参照。)。
【0003】
【特許文献1】
特開平5−168860号公報
【特許文献2】
特開平11−47596号公報
【特許文献3】
特開2001−129403号公報
【0004】
【発明が解決しようとする課題】
上述したNOx吸着浄化触媒とHC吸着浄化触媒とを組み合わせて、NOx吸着浄化機能とHC吸着浄化機能の両機能を併有する排気ガス浄化触媒を作成できれば便利であるが、かかる両機能を1つの触媒に兼備させようとすると、以下のような不具合を生じ実現が困難であった。
【0005】
即ち、HC吸着材であるゼオライトを含むゼオライト層上に、NOx吸着材であるアルカリ金属等と貴金属を含む貴金属層を積層し、下層のゼオライト層で低温HCの吸収し、上層の貴金属層でNOxの吸着、浄化、及び下層から脱離したHCの浄化を行わせることが考えられるが、この場合、まず、ハニカム担体などの一体構造型担体にゼオライト層をコートし、次いで、貴金属を含むアルミナ層をコートし、更にアルカリ金属等を含浸させて触媒を製造する必要がある。
【0006】
しかし、かかる製造法によれば、アルカリ金属等がゼオライト層にかなり吸収されてしまい、そのHC吸着機能が十分には発揮できなくなる。これに対し、炭酸バリウム(BaCO)のような固体のアルカリ金属化合物を用い、これと貴金属とアルミナを混合してスラリーを調製し、このスラリーをゼオライト層にコートすることが考えられ、この手法によって、確かにゼオライト層へのアルカリ金属等の吸収の大部分は抑制できる。
しかしながら、この手法によれば、アルカリ金属化合物として固体のものを用いるので、アルカリ金属の結晶子径が大きくなってしまい、リーン域におけるNOx吸着性能が悪化するという問題点があった。
【0007】
一方、ゼオライトは嵩高く、HC吸着浄化性能を十分に発揮できるだけの量のゼオライトをハニカム担体上にコートしようとすると、担体のセルが目詰まりして排圧が高くなってしまうので、ゼオライト層上には僅かな量のNOx浄化層しか設けることができず、十分なNOx浄化性能を発揮することができなくなる。
更に、上述した表層と内層の比較において、貴金属含有比とアルカリ土類金属含有比の双方とも表層が大きい触媒は、ゼオライト層がないので低温域でのHCの浄化ができず、また内層の厚みが記載されていないので、表層からのアルカリ土類金属の溶出を抑制できるかが不明であった。
【0008】
本発明は、このような従来技術の有する課題に鑑みてなされたものであり、その目的とするところは、HC浄化性能及びNOx浄化性能を兼備した排気ガス浄化触媒を提供することにある。
【0009】
【課題を解決するための手段】
本発明者らは、上記目的を達成すべく鋭意検討を重ねた結果、HC吸着層、NOxを吸着・浄化し且つHCを浄化する吸着浄化内層及び吸着浄化外層の三層構造とし、吸着浄化内層及び外層に含まれるアルカリ金属等の含有量を適切に調整し、吸着浄化内層の厚さを所定範囲に調整することなどにより、上記目的が達成できることを見出し、本発明を完成するに至った。
【0010】
即ち、本発明の排気ガス浄化触媒は、一体構造型担体に、HC吸着層、NOxを吸着・浄化し且つHCを浄化する吸着浄化内層及び外層をこの順で積層して成る。
かかるHC吸着層はゼオライトを含有し、吸着浄化内層及び外層は、白金(Pt)、ロジウム(Rh)及びパラジウム(Pd)から成る群より選ばれた少なくとも1種の貴金属と、アルカリ金属及び/又はアルカリ土類金属と、耐火性無機酸化物を含有する。
また、本発明の排気ガス浄化触媒では、吸着浄化内層に含まれるアルカリ金属及び/又はアルカリ土類金属と吸着浄化外層に含まれるアルカリ金属及び/又はアルカリ土類金属とのモル比が1/1〜1/50であり、吸着浄化内層の層の厚さが10〜200μmである。
【0011】
【発明の実施の形態】
以下、本発明の排気ガス浄化触媒について詳細に説明する。なお、本明細書において、「%」は特記しない限り質量百分率を表すものとする。
【0012】
上述の如く、本発明の排気ガス浄化触媒は、一体構造型担体に、HCを吸脱着するHC吸着層、NOxを吸着・浄化し且つHCを浄化する吸着浄化内層及び外層をこの順で積層して成り、該HC吸着層がゼオライトを含有し、該吸着浄化内層及び外層が、Pt、Rh又はPd及びこれらの任意の組合せに係る貴金属と、アルカリ金属及びアルカリ土類金属の一方又は双方と、耐火性無機酸化物を含有する。
このような、HC吸着層(ゼオライト層)、NOxを吸着・浄化し且つHCを浄化する吸着浄化内層及び外層をこの順でハニカム担体に担持した構造を備えることにより、低温域でのHC浄化とリーン域でのNOx浄化を1つの触媒で行なうことができる。
なお、一体構造型担体としては、例えばコーディエライトなどのセラミックスやフェライト系ステンレスなどの金属等の耐熱性材料から成るモノリス担体やハニカム担体が用いられる。
【0013】
また、本発明の排気ガス浄化触媒では、吸着浄化内層に含まれるアルカリ金属及びアルカリ土類金属の一方又は双方と吸着浄化外層に含まれるアルカリ金属及びアルカリ土類金属の一方又は双方とのモル比(内層/外層)が1/1〜1/50であることを要する。
吸着浄化内層と外層のアルカリ金属及びアルカリ土類金属の一方又は双方の含有モル比が1/1より吸着浄化内層の方が大きいと、HC脱離後の浄化性能が低下する可能性があり、1/50より吸着浄化内層の方が小さいと、吸着浄化内層及び外層としての効果が薄れ、吸着浄化性能が低下する可能性がある。
【0014】
更に、吸着浄化内層の層の厚さは10〜200μmであることを要する。
吸着浄化内層の層の厚さが10μm未満では、触媒調整時において、吸着浄化外層からのアルカリ金属、アルカリ土類金属のHC吸着層(ゼオライト層)への溶出を十分には抑制できず、ゼオライト層へアルカリ金属、アルカリ土類金属が溶出することによるHC吸着性能の低下を引き起こす可能性があり、吸着浄化内層の層の厚さが200μmを超えると、吸着浄化内層及び外層が厚くなりすぎ、HCのゼオライト層への拡散を阻害するためHC吸着性能が低下する可能性がある。
【0015】
また、本発明の触媒では、HC吸着層と(吸着浄化内層と吸着浄化外層の和)のコート層重量比は2/1〜1/10であることが好ましい。
HC吸着層と(吸着浄化内層と吸着浄化外層の和)のコート層重量比が2/1より大きく、HC吸着層重量が多いと、脱離してきたHCを吸着浄化内層及び外層で浄化しきれない可能性がある。一方、コート重量比が1/10より小さく、(吸着浄化内層と吸着浄化外層の和)のコート層重量が多いと、HC吸着を阻害する可能性がある。
【0016】
アルカリ金属及びアルカリ土類金属の一方又は双方が粉末形態で吸着浄化内層及び外層に含まれていることが好ましい。
本発明の排気ガス浄化触媒を作製する際に、アルカリが所定の濃度分布で含まれれば、特に限定されるものではないが、アルカリを溶液で含浸させるとゼオライト層にアルカリがしみ込んでしまうので、粉末形態を保持した状態であるスラリーを用いて担持することが望ましい。
【0017】
更に、アルカリ金属及びアルカリ土類金属が、吸着浄化内層を基準として0.5〜5%の割合で含まれ、アルカリ金属及びアルカリ土類金属の一方又は双方が、吸着浄化外層を基準として5〜15%の割合で含まれることが好ましい。
吸着浄化内層においては、含有するアルカリ金属及びアルカリ土類金属の濃度が、0.5%未満ではNOx吸着性能が低下するため、NOx浄化性能が著しく低下し、5%を超えると塩基性が強くなるため、HC浄化性能が低下する可能性がある。
一方、吸着浄化外層においては、含有するアルカリ金属及びアルカリ土類金属の濃度が、5%未満ではNOx吸着性能が著しく低下するため、NOx浄化性能が低下し、15%を超えると、耐久によりアルカリ金属、アルカリ土類金属の粒子が成長して基材の細孔閉塞等を引き起こし、NOx浄化性能に悪影響を及ぼす可能性がある。
【0018】
また、使用する耐火性無機酸化物としては、耐熱性があり、貴金属を担持できれば特に限定されるものではなく、代表的にはアルミナ等を挙げることができるが、更にセリウム(Ce)又はランタン(La)を担持したアルミナであることが望ましい。アルミナにCeやLaを担持することにより、排気ガス浄化触媒の浄化性能を向上することができる。
【0019】
更に、本発明の触媒では、吸着浄化内層の貴金属がPtとPdから成り、吸着浄化外層の貴金属がRhから成ることが望ましい。
HC吸着層から脱離したHCの浄化にはアルカリ金属及びアルカリ土類金属の含有比が小さい層、即ち吸着浄化内層にHC浄化性能に優れた貴金属、即ちPtやPdが含有されることが有効である。また、吸着浄化外層には、特にRhを担持することによりNOx浄化性能を向上することができる。
【0020】
【実施例】
以下、本発明を実施例及び比較例により更に詳細に説明するが、本発明はこれら実施例に限定されるものではない。
【0021】
(実施例1)
酢酸バリウム溶液の中にアルミナを投入して室温で1時間撹拌し、次いで、120℃で一昼夜乾燥し、更に600℃で1時間焼成した。これに2%テトラアンミン白金水酸塩溶液(pH=10.5)を含浸し、次いで、120℃で一昼夜乾燥し、更に400℃で1時間焼成し粉末を得た。これを粉末Aとした。
酢酸バリウム溶液の中にアルミナを投入して室温で1時間撹拌し、次いで、120℃で一昼夜乾燥し、更に600℃で1時間焼成した。これに6%テトラアンミン白金水酸塩溶液を含浸し、次いで、120℃で一昼夜乾燥し、更に400℃で1時間焼成し粉末を得た。これを粉末Bとした。
アルミナに6%硝酸ロジウム水溶液を含浸し、次いで、120℃で一昼夜乾燥し、更に400℃で1時間焼成し粉末を得た。これを粉末Cとした。
【0022】
βゼオライトを720g、シリカゾルを180g、水900gを磁性ボールミルに投入して混合粉砕しスラリーを得た。これを第1触媒スラリーとした。
粉末Aを555.3g、アルミナを25.2g、アルミナゾルを30g、水610gを磁性ボールミルに投入して混合粉砕しスラリーを得た。これを第2触媒スラリーとした。
粉末Cを318.6g、粉末Bを453.6g、アルミナを37.8g、アルミナゾルを90g、水900gを磁性ボールミルに投入して混合粉砕しスラリーを得た。これを第3触媒スラリーとした。
【0023】
第1触媒スラリーをコーディエライト質モノリス担体(触媒容量:1.2L、セル数:400セル/平方インチ)に付着させ、空気流にてセル内の余剰のスラリーを取り除いて130℃で乾燥し、次いで、400℃で1時間焼成し触媒を得た。これを触媒aとした。
第2触媒スラリーを触媒aに付着させ、空気流にてセル内の余剰のスラリーを取り除いて130℃で乾燥し、次いで、400℃で1時間焼成し触媒を得た。これを触媒bとした。
第3触媒スラリーを触媒bに付着させ、空気流にてセル内の余剰のスラリーを取り除いて130℃で乾燥し、次いで、400℃で1時間焼成し本例の排気ガス浄化触媒を得た。該触媒の第二層の厚さは50μm、第二層と第三層におけるアルカリ金属等の含有モル比は1/6、第一層と(第二層と第三層の和)のコート量比は1/3、第二層のBaの濃度は1%、第三層のBaの濃度は6%であった。
【0024】
(実施例2)
粉末Bの作製工程おいてアルミナにナトリウム(Na)を担持させ、第二層の層の厚さを170μmとして、表1所定の比率とした以外は、実施例1と同様の操作を繰り返し、本例の排気ガス浄化触媒を得た。
【0025】
(実施例3)
粉末Bの作製工程おいてアルミナにBaとストロンチウム(Sr)を担持させ、第二層の層の厚さを110μmとして、表1所定の比率とした以外は、実施例1と同様の操作を繰り返し、本例の排気ガス浄化触媒を得た。
【0026】
(実施例4)
粉末Bの作製工程おいてアルミナにBaとNaを担持させ、第二層の層の厚さを100μmとして、表1所定の比率とした以外は、実施例1と同様の操作を繰り返し、本例の排気ガス浄化触媒を得た。
【0027】
(実施例5)
粉末Aの作製工程おいてアルミナにBaとマグネシウム(Mg)を担持させ、第二層の層の厚さを100μmとして、表1所定の比率とした以外は、実施例1と同様の操作を繰り返し、本例の排気ガス浄化触媒を得た。
【0028】
(実施例6)
粉末Aの作製工程おいてアルミナにBaとSrを担持させ、粉末Bの作製工程おいてアルミナにBaとSrを担持させ、粉末Aを555.3g、アルミナを25.2g、βゼオライトを229.5g、アルミナゾル90g、水900gを磁性ボールミルに投入して混合粉砕し第2触媒スラリーを作製し、第二層の層の厚さを190μmとして、表1所定の比率とした以外は、実施例1と同様の操作を繰り返し、本例の排気ガス浄化触媒を得た。
【0029】
(比較例1)
第二層の層の厚さを210μmとして、表1所定の比率とした以外は、実施例1と同様の操作を繰り返し、本例の排気ガス浄化触媒を得た。
【0030】
(比較例2)
粉末Bの作製工程おいてアルミナにBaを担持させず、第二層の層の厚さを100μmとして、表1所定の比率とした以外は、実施例1と同様の操作を繰り返し、本例の排気ガス浄化触媒を得た。
【0031】
(比較例3)
第二層の層の厚さを5μmにして、表1所定の比率とした以外は、実施例1と同様の操作を繰り返し、本例の排気ガス浄化触媒を得た。
上記各例の排気ガス浄化触媒の仕様を表1に示す。
【0032】
【表1】

Figure 2004243272
【0033】
[性能評価]
(モデルガス評価試験)
(耐久方法)
排気量4500ccのエンジンの排気系に上記各例の触媒を装着し、軽油(S=10ppm以下)を使用し、触媒入口温度を650℃とし、50時間運転した。
(評価方法)
耐久後の各例の触媒40ccを用いて、下記条件にてガスを流通させた際のHC減少量を調べ、HC吸着率を求めた。HC吸着率は次式▲1▼
(HC吸着率)=(HC減少量)/(触媒へのHC流入量)×100…▲1▼で算出される。
Figure 2004243272
【0034】
その後、下記条件にて昇温させるとともにガスを流通させた際のHC排出量を調べ、HC浄化率を求めた。HC浄化率は次式▲2▼
(HC浄化率)=[(HC吸着量)−(昇温時のHC排出量)]/(HC吸着量)×100…▲2▼で算出される。
(評価条件)
・モデルガス組成 O:10vol%、HO:10vol%、N:バランス
・流量 60L/min
・初期流通温度 100℃
・到達温度 400℃
・昇温速度 100℃/min
・流通時間 3min
【0035】
(エンジン評価試験)
(耐久方法)
排気量4500ccのエンジンの排気系に上記各例の触媒を装着し、軽油(S=10ppm以下)を使用し、触媒入口温度を650℃とし、50時間運転した。
(評価方法)
排気量2500ccのディーゼルエンジンの排気系に耐久後の上記各例の触媒を装着して、リーン(A/F=30)状態で40sec、リッチ(A/F=11)状態4secの運転を行い、この区間における排気浄化率(NOx転化率)を求めた。このとき、触媒入口温度は250℃とした。得られた結果を表2に示す。
【0036】
【表2】
Figure 2004243272
【0037】
表2より、本発明の範囲に属する実施例1〜6は、本発明外の比較例1〜3よりもHC吸着層へのアルカリ成分の染み出し量、NOx転化率が優れていることが分かる。
また、現時点では、第二層、第三層のアルカリ成分の添加量のバランスという観点から実施例3が最も良好な結果をもたらすものと思われる。
【0038】
【発明の効果】
以上説明してきたように、本発明によれば、HC吸着層、NOxを吸着・浄化し且つHCを浄化する吸着浄化内層及び吸着浄化外層の三層構造とし、吸着浄化内層及び外層に含まれるアルカリ金属等の含有量を適切に調整し、吸着浄化内層の厚さを所定範囲に調整することなどとしたため、HC浄化性能及びNOx浄化性能を兼備した排気ガス浄化触媒を提供することができる。[0001]
TECHNICAL FIELD OF THE INVENTION
The present invention relates to an exhaust gas purifying catalyst, and more particularly, to an exhaust gas purifying catalyst having excellent nitrogen oxide (NOx) purifying performance in a lean region and hydrocarbon (HC) purifying performance in a low temperature region.
[0002]
[Prior art]
Conventionally, various catalysts for purifying NOx in a lean region have been proposed, as exemplified by a catalyst in which platinum (Pt) and lanthanum (La) are supported on a porous carrier (for example, see Patent Document 1). Further, there is known a catalyst which adsorbs NOx in a lean region and releases and purifies NOx in a rich region from a stoichiometric air-fuel ratio (stoichiometric ratio).
As a catalyst for purifying HC in a low temperature range, a catalyst containing zeolite has been proposed (for example, see Patent Document 2).
Further, there has been proposed a catalyst having a laminated structure of two or more layers and having a large surface layer in both the noble metal content ratio and the alkaline earth metal content ratio in comparison between the surface layer and the inner layer (for example, see Patent Document 3).
[0003]
[Patent Document 1]
JP-A-5-168860 [Patent Document 2]
JP-A-11-47596 [Patent Document 3]
JP 2001-129403 A
[Problems to be solved by the invention]
It would be convenient if the above-mentioned NOx adsorption purification catalyst and HC adsorption purification catalyst could be combined to create an exhaust gas purification catalyst having both functions of NOx adsorption purification function and HC adsorption purification function. However, it is difficult to realize the following problems.
[0005]
That is, a noble metal layer containing an alkali metal or the like and a noble metal as a NOx adsorbent is laminated on a zeolite layer containing a zeolite as an HC adsorbent, a low-temperature HC is absorbed by a lower zeolite layer, and NOx is absorbed by an upper noble metal layer. Adsorption, purification, and purification of HC desorbed from the lower layer can be considered. In this case, first, a zeolite layer is coated on a monolithic carrier such as a honeycomb carrier, and then an alumina layer containing a noble metal is applied. And then impregnated with an alkali metal or the like to produce a catalyst.
[0006]
However, according to such a production method, the alkali metal or the like is considerably absorbed in the zeolite layer, and the HC adsorption function cannot be sufficiently exhibited. On the other hand, it is considered that a solid alkali metal compound such as barium carbonate (BaCO 3 ) is mixed with a noble metal and alumina to prepare a slurry, and this slurry is coated on a zeolite layer. Thus, most of the absorption of the alkali metal or the like into the zeolite layer can be suppressed.
However, according to this method, since a solid alkali metal compound is used, the crystallite diameter of the alkali metal becomes large, and there is a problem that the NOx adsorption performance in a lean region is deteriorated.
[0007]
On the other hand, zeolite is bulky, and if an attempt is made to coat the honeycomb carrier with an amount of zeolite that can sufficiently exhibit HC adsorption purification performance, the carrier cells are clogged and the exhaust pressure increases. Can only provide a small amount of NOx purification layer, and cannot exhibit sufficient NOx purification performance.
Furthermore, in the comparison between the surface layer and the inner layer described above, a catalyst having a large surface layer in both the noble metal content ratio and the alkaline earth metal content ratio has no zeolite layer and therefore cannot purify HC in a low temperature region, and has a large thickness of the inner layer. However, it was unclear whether the elution of the alkaline earth metal from the surface layer could be suppressed.
[0008]
The present invention has been made in view of such problems of the related art, and an object of the present invention is to provide an exhaust gas purification catalyst having both HC purification performance and NOx purification performance.
[0009]
[Means for Solving the Problems]
The present inventors have conducted intensive studies to achieve the above object, and as a result, have a three-layer structure of an HC adsorption layer, an adsorption purification inner layer that adsorbs and purifies NOx and purifies HC, and an adsorption purification inner layer. The present inventors have found that the above object can be achieved by appropriately adjusting the content of the alkali metal and the like contained in the outer layer and adjusting the thickness of the inner layer for adsorption and purification to a predetermined range, and have completed the present invention.
[0010]
That is, the exhaust gas purifying catalyst of the present invention is formed by laminating an HC adsorbing layer, an adsorption purifying inner layer for adsorbing and purifying NOx, and purifying HC on an integral structure carrier in this order.
The HC adsorbing layer contains zeolite, and the inner and outer layers for adsorption purification are at least one noble metal selected from the group consisting of platinum (Pt), rhodium (Rh) and palladium (Pd), and an alkali metal and / or Contains alkaline earth metals and refractory inorganic oxides.
Further, in the exhaust gas purifying catalyst of the present invention, the molar ratio of the alkali metal and / or alkaline earth metal contained in the inner layer for adsorption purification to the alkali metal and / or alkaline earth metal contained in the outer layer for adsorption purification is 1/1. 1/1/50, and the thickness of the inner layer for adsorption and purification is 10-200 μm.
[0011]
BEST MODE FOR CARRYING OUT THE INVENTION
Hereinafter, the exhaust gas purifying catalyst of the present invention will be described in detail. In addition, in this specification, "%" represents a mass percentage unless otherwise specified.
[0012]
As described above, the exhaust gas purifying catalyst of the present invention is obtained by laminating an HC adsorbing layer for adsorbing and desorbing HC, an inner layer for adsorbing and purifying for adsorbing and purifying NOx, and purifying HC on an integral structure type carrier in this order. Wherein the HC adsorption layer contains zeolite, and the adsorption purification inner layer and the outer layer are noble metals according to Pt, Rh or Pd and any combination thereof, and one or both of an alkali metal and an alkaline earth metal, Contains refractory inorganic oxides.
By providing such a structure in which the HC adsorbing layer (zeolite layer), the inner layer for adsorbing and purifying NOx and the outer layer for adsorbing and purifying NOx and purifying HC are supported in this order on the honeycomb carrier, it is possible to purify HC in a low temperature range. NOx purification in the lean region can be performed with one catalyst.
As the monolithic carrier, a monolith carrier or a honeycomb carrier made of a heat-resistant material such as ceramics such as cordierite or a metal such as ferrite stainless steel is used.
[0013]
Further, in the exhaust gas purifying catalyst of the present invention, the molar ratio of one or both of the alkali metal and alkaline earth metal contained in the inner layer of adsorption purification to one or both of the alkali metal and alkaline earth metal contained in the outer layer of adsorption purification is further reduced. (Inner / outer layer) should be 1/1 to 1/50.
If the content ratio of one or both of the alkali metal and alkaline earth metal in the inner layer and the outer layer is larger than 1/1, the purification performance after desorption of HC may decrease, If the inner layer of the adsorption purification is smaller than 1/50, the effect as the inner layer and the outer layer of the adsorption purification is weakened, and the adsorption purification performance may be reduced.
[0014]
Further, the thickness of the inner layer of the adsorption purification layer needs to be 10 to 200 μm.
When the thickness of the inner layer of the adsorption purification is less than 10 μm, the elution of the alkali metal and alkaline earth metal from the outer layer of the adsorption purification into the HC adsorption layer (zeolite layer) cannot be sufficiently suppressed during the preparation of the catalyst. Alkali metal and alkaline earth metal may be eluted into the layer, which may cause a decrease in HC adsorption performance due to elution.If the thickness of the adsorption purification inner layer exceeds 200 μm, the adsorption purification inner layer and the outer layer become too thick, Since the diffusion of HC into the zeolite layer is inhibited, there is a possibility that the HC adsorption performance is reduced.
[0015]
Further, in the catalyst of the present invention, it is preferable that the weight ratio of the HC adsorption layer and the coat layer (sum of the adsorption purification inner layer and the adsorption purification outer layer) is 2/1 to 1/10.
If the weight ratio of the HC adsorption layer and the coat layer (sum of the adsorption purification inner layer and the adsorption purification outer layer) is greater than 2/1 and the HC adsorption layer weight is large, the desorbed HC can be completely purified by the adsorption purification inner layer and the outer layer. May not be. On the other hand, if the coat weight ratio is smaller than 1/10 and the weight of the coat layer (sum of the inner layer for adsorption purification and the outer layer for adsorption purification) is large, HC adsorption may be hindered.
[0016]
Preferably, one or both of the alkali metal and the alkaline earth metal are contained in the inner and outer layers of the adsorption purification in powder form.
When producing the exhaust gas purifying catalyst of the present invention, as long as the alkali is contained in a predetermined concentration distribution, it is not particularly limited, but if the alkali is impregnated with a solution, the alkali soaks into the zeolite layer, It is desirable to carry by using a slurry that is in a state of maintaining a powder form.
[0017]
Further, an alkali metal and an alkaline earth metal are contained at a ratio of 0.5 to 5% based on the inner surface of the adsorption purification, and one or both of the alkali metal and the alkaline earth metal are 5 to 5% based on the outer layer of the adsorption purification. Preferably, it is contained at a rate of 15%.
In the inner layer of adsorption purification, when the concentration of the contained alkali metal and alkaline earth metal is less than 0.5%, the NOx adsorption performance is reduced. Therefore, the NOx purification performance is remarkably reduced. Therefore, the HC purification performance may be reduced.
On the other hand, in the outer layer of adsorption purification, when the concentration of the contained alkali metal and alkaline earth metal is less than 5%, the NOx adsorption performance is remarkably reduced, and the NOx purification performance is reduced. Particles of metals and alkaline earth metals grow and cause pore blockage of the base material and the like, which may adversely affect NOx purification performance.
[0018]
The refractory inorganic oxide to be used is not particularly limited as long as it has heat resistance and can support a noble metal. Representative examples thereof include alumina and the like. Further, cerium (Ce) or lanthanum ( It is desirable to use alumina supporting La). By supporting Ce or La on alumina, the purification performance of the exhaust gas purification catalyst can be improved.
[0019]
Further, in the catalyst of the present invention, it is desirable that the noble metal of the inner layer of adsorption purification is composed of Pt and Pd, and the noble metal of the outer layer of adsorption purification is composed of Rh.
In order to purify HC desorbed from the HC adsorption layer, it is effective that the layer having a small content ratio of alkali metal and alkaline earth metal, that is, the noble metal having excellent HC purification performance, that is, Pt or Pd, is contained in the inner layer of adsorption purification. It is. In addition, NOx purification performance can be improved by supporting Rh particularly on the outer layer of adsorption purification.
[0020]
【Example】
Hereinafter, the present invention will be described in more detail with reference to Examples and Comparative Examples, but the present invention is not limited to these Examples.
[0021]
(Example 1)
Alumina was put into the barium acetate solution, stirred at room temperature for 1 hour, then dried at 120 ° C. for 24 hours, and calcined at 600 ° C. for 1 hour. This was impregnated with a 2% tetraammine platinum hydroxide solution (pH = 10.5), dried at 120 ° C. all day and night, and further calcined at 400 ° C. for 1 hour to obtain a powder. This was designated as powder A.
Alumina was put into the barium acetate solution, stirred at room temperature for 1 hour, then dried at 120 ° C. for 24 hours, and calcined at 600 ° C. for 1 hour. This was impregnated with a 6% tetraammine platinum hydroxide solution, dried at 120 ° C. for 24 hours, and calcined at 400 ° C. for 1 hour to obtain a powder. This was designated as powder B.
Alumina was impregnated with a 6% aqueous solution of rhodium nitrate, dried at 120 ° C. for 24 hours, and calcined at 400 ° C. for 1 hour to obtain a powder. This was designated as powder C.
[0022]
720 g of β zeolite, 180 g of silica sol, and 900 g of water were charged into a magnetic ball mill and mixed and pulverized to obtain a slurry. This was used as a first catalyst slurry.
555.3 g of powder A, 25.2 g of alumina, 30 g of alumina sol, and 610 g of water were charged into a magnetic ball mill and mixed and pulverized to obtain a slurry. This was used as a second catalyst slurry.
318.6 g of powder C, 453.6 g of powder B, 37.8 g of alumina, 90 g of alumina sol, and 900 g of water were charged into a magnetic ball mill and mixed and pulverized to obtain a slurry. This was used as a third catalyst slurry.
[0023]
The first catalyst slurry is attached to a cordierite-based monolithic carrier (catalyst capacity: 1.2 L, number of cells: 400 cells / square inch), excess slurry in the cells is removed by an air stream, and the slurry is dried at 130 ° C. Then, it was calcined at 400 ° C. for 1 hour to obtain a catalyst. This was designated as catalyst a.
The second catalyst slurry was attached to the catalyst a, the excess slurry in the cell was removed with an air stream, dried at 130 ° C., and then calcined at 400 ° C. for 1 hour to obtain a catalyst. This was designated as catalyst b.
The third catalyst slurry was adhered to the catalyst b, the excess slurry in the cell was removed by an air stream, dried at 130 ° C., and then calcined at 400 ° C. for 1 hour to obtain the exhaust gas purifying catalyst of this example. The thickness of the second layer of the catalyst is 50 μm, the molar ratio of the alkali metal and the like in the second layer and the third layer is 、, and the coating amount of the first layer and the (sum of the second layer and the third layer) The ratio was 1/3, the concentration of Ba in the second layer was 1%, and the concentration of Ba in the third layer was 6%.
[0024]
(Example 2)
The same operation as in Example 1 was repeated except that sodium (Na) was supported on alumina in the step of preparing powder B, the thickness of the second layer was 170 μm, and the ratio was set to a predetermined ratio in Table 1. An example exhaust gas purification catalyst was obtained.
[0025]
(Example 3)
The same operation as in Example 1 was repeated except that Ba and strontium (Sr) were supported on alumina in the step of preparing powder B, and the thickness of the second layer was 110 μm and the ratio was set to a predetermined ratio in Table 1. Thus, an exhaust gas purifying catalyst of this example was obtained.
[0026]
(Example 4)
The same operation as in Example 1 was repeated except that Ba and Na were supported on alumina in the process of preparing powder B, the thickness of the second layer was set to 100 μm, and the ratio was set to a predetermined ratio in Table 1. Was obtained.
[0027]
(Example 5)
The same operation as in Example 1 was repeated except that Ba and magnesium (Mg) were supported on alumina in the process of preparing powder A, and the thickness of the second layer was set to 100 μm and the ratio was set to a predetermined ratio in Table 1. Thus, an exhaust gas purifying catalyst of this example was obtained.
[0028]
(Example 6)
Ba and Sr are supported on alumina in the step of preparing powder A, and Ba and Sr are supported on alumina in the step of preparing powder B. 555.3 g of powder A, 25.2 g of alumina, and 229. Example 1 was repeated except that 5 g, 90 g of alumina sol, and 900 g of water were put into a magnetic ball mill and mixed and pulverized to prepare a second catalyst slurry. The thickness of the second layer was 190 μm and the ratio was set to a predetermined ratio in Table 1. The same operation as described above was repeated to obtain the exhaust gas purifying catalyst of this example.
[0029]
(Comparative Example 1)
The same operation as in Example 1 was repeated, except that the thickness of the second layer was set to a predetermined ratio in Table 1 with a thickness of 210 μm, to obtain an exhaust gas purification catalyst of this example.
[0030]
(Comparative Example 2)
The same operation as in Example 1 was repeated except that Ba was not supported on alumina in the process of preparing powder B, and the thickness of the second layer was set to a predetermined ratio in Table 1 by setting the thickness of the second layer to 100 μm. An exhaust gas purification catalyst was obtained.
[0031]
(Comparative Example 3)
The same operation as in Example 1 was repeated, except that the thickness of the second layer was 5 μm and the ratio was set to a predetermined ratio in Table 1, to obtain an exhaust gas purification catalyst of this example.
Table 1 shows the specifications of the exhaust gas purifying catalyst of each of the above examples.
[0032]
[Table 1]
Figure 2004243272
[0033]
[Performance evaluation]
(Model gas evaluation test)
(Durability method)
The catalyst of each of the above examples was mounted on an exhaust system of an engine having a displacement of 4500 cc, and the operation was performed for 50 hours at a catalyst inlet temperature of 650 ° C. using light oil (S = 10 ppm or less).
(Evaluation method)
Using 40 cc of the catalyst of each example after the endurance, the amount of HC reduction when flowing gas under the following conditions was examined, and the HC adsorption rate was obtained. The HC adsorption rate is given by the following equation (1)
(HC adsorption rate) = (HC reduction amount) / (HC inflow amount to catalyst) × 100 (1)
Figure 2004243272
[0034]
Thereafter, the temperature was raised under the following conditions and the amount of HC discharged when the gas was circulated was examined to determine the HC purification rate. The HC purification rate is given by the following formula (2)
(HC purification rate) = [(HC adsorption amount) − (HC discharge amount at temperature rise)] / (HC adsorption amount) × 100 (2)
(Evaluation conditions)
Model gas composition O 2: 10vol%, H 2 O: 10vol%, N 2: balance Flow rate 60L / min
・ Initial circulation temperature 100 ℃
・ Achieved temperature 400 ℃
・ Heating rate 100 ℃ / min
・ Distribution time 3min
[0035]
(Engine evaluation test)
(Durability method)
The catalyst of each of the above examples was mounted on the exhaust system of an engine with a displacement of 4500 cc, and was operated for 50 hours at a catalyst inlet temperature of 650 ° C. using light oil (S = 10 ppm or less).
(Evaluation method)
The catalyst of each of the above examples after durability was mounted on the exhaust system of a diesel engine with a displacement of 2500 cc, and operation was performed in a lean (A / F = 30) state for 40 sec and in a rich (A / F = 11) state for 4 sec. The exhaust gas purification rate (NOx conversion rate) in this section was determined. At this time, the catalyst inlet temperature was 250 ° C. Table 2 shows the obtained results.
[0036]
[Table 2]
Figure 2004243272
[0037]
From Table 2, it can be seen that Examples 1 to 6 belonging to the scope of the present invention are superior to Comparative Examples 1 to 3 excluding the present invention in the amount of the alkaline component leached into the HC adsorption layer and the NOx conversion rate. .
At the present time, it is considered that Example 3 provides the best result from the viewpoint of the balance between the amounts of the alkali components added to the second layer and the third layer.
[0038]
【The invention's effect】
As described above, according to the present invention, the three-layer structure of the HC adsorption layer, the adsorption purification inner layer that adsorbs and purifies NOx, and purifies the HC has a three-layer structure, and the alkali contained in the adsorption purification inner layer and the outer purification layer. Since the content of metals and the like is appropriately adjusted and the thickness of the inner layer of the adsorption purification is adjusted to a predetermined range, it is possible to provide an exhaust gas purification catalyst having both HC purification performance and NOx purification performance.

Claims (6)

一体構造型担体に、HC吸着層、NOxを吸着・浄化し且つHCを浄化する吸着浄化内層及び外層をこの順で積層して成り、
HC吸着層がゼオライトを含有し、
吸着浄化内層及び外層が、白金、ロジウム及びパラジウムから成る群より選ばれた少なくとも1種の貴金属と、アルカリ金属及び/又はアルカリ土類金属と、耐火性無機酸化物を含有し、
吸着浄化内層に含まれるアルカリ金属及び/又はアルカリ土類金属と吸着浄化外層に含まれるアルカリ金属及び/又はアルカリ土類金属とのモル比が1/1〜1/50であり、
吸着浄化内層の層の厚さが10〜200μmであることを特徴とする排気ガス浄化触媒。
An HC adsorption layer, an adsorption purification inner layer for adsorbing and purifying NOx and an HC purification layer and an outer layer are laminated on the monolithic carrier in this order,
HC adsorption layer contains zeolite,
The inner layer and the outer layer for adsorption purification contain at least one noble metal selected from the group consisting of platinum, rhodium and palladium, an alkali metal and / or an alkaline earth metal, and a refractory inorganic oxide;
The molar ratio of the alkali metal and / or alkaline earth metal contained in the adsorption purification inner layer to the alkali metal and / or alkaline earth metal contained in the adsorption purification outer layer is 1/1 to 1/50,
An exhaust gas purifying catalyst, wherein the thickness of the inner layer of the adsorption purification is 10 to 200 μm.
HC吸着層と(吸着浄化内層と吸着浄化外層の和)との重量比が2/1〜1/10であることを特徴とする請求項1に記載の排気ガス浄化触媒。The exhaust gas purifying catalyst according to claim 1, wherein the weight ratio of the HC adsorption layer and the (sum of the inner layer of the adsorption purification and the outer layer of the adsorption purification) is 2/1 to 1/10. アルカリ金属及び/又はアルカリ土類金属が粉末形態で吸着浄化内層及び外層に含まれていることを特徴とする請求項1又は2に記載の排気ガス浄化触媒。The exhaust gas purifying catalyst according to claim 1 or 2, wherein the alkali metal and / or the alkaline earth metal are contained in a form of powder in the inner layer and the outer layer for adsorption purification. アルカリ金属及び/又はアルカリ土類金属が、吸着浄化内層を基準として0.5〜5%の割合で含まれ、
アルカリ金属及び/又はアルカリ土類金属が、吸着浄化外層を基準として5〜15%の割合で含まれることを特徴とする請求項1〜3のいずれか1つの項に記載の排気ガス浄化触媒。
An alkali metal and / or an alkaline earth metal are contained in a ratio of 0.5 to 5% based on the inner layer of the adsorption purification;
The exhaust gas purifying catalyst according to any one of claims 1 to 3, wherein the alkali metal and / or alkaline earth metal is contained in a ratio of 5 to 15% based on the outer layer of the adsorption purification.
耐火性無機酸化物が、セリウム又はランタンを担持したアルミナであることを特徴とする請求項1〜4のいずれか1つの項に記載の排気ガス浄化触媒。The exhaust gas purifying catalyst according to any one of claims 1 to 4, wherein the refractory inorganic oxide is cerium or lanthanum-supported alumina. 吸着浄化内層の貴金属が白金とパラジウムから成り、吸着浄化外層の貴金属がロジウムから成ることを特徴とする請求項1〜5のいずれか1つの項に記載の排気ガス浄化触媒。The exhaust gas purification catalyst according to any one of claims 1 to 5, wherein the noble metal of the inner layer of adsorption purification is made of platinum and palladium, and the noble metal of the outer layer of adsorption purification is made of rhodium.
JP2003038319A 2003-02-17 2003-02-17 Catalyst for purification of exhaust gas Pending JP2004243272A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2003038319A JP2004243272A (en) 2003-02-17 2003-02-17 Catalyst for purification of exhaust gas

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2003038319A JP2004243272A (en) 2003-02-17 2003-02-17 Catalyst for purification of exhaust gas

Publications (1)

Publication Number Publication Date
JP2004243272A true JP2004243272A (en) 2004-09-02

Family

ID=33022877

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2003038319A Pending JP2004243272A (en) 2003-02-17 2003-02-17 Catalyst for purification of exhaust gas

Country Status (1)

Country Link
JP (1) JP2004243272A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009052542A (en) * 2007-08-01 2009-03-12 Nissan Motor Co Ltd Exhaust emission control system

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009052542A (en) * 2007-08-01 2009-03-12 Nissan Motor Co Ltd Exhaust emission control system
US9810120B2 (en) 2007-08-01 2017-11-07 Nissan Motor Co., Ltd. Exhaust gas purifying system

Similar Documents

Publication Publication Date Title
JP3859940B2 (en) Exhaust gas purification catalyst and method for producing the same
JP4019357B2 (en) Method for producing exhaust gas purification catalyst powder and method for producing exhaust gas purification catalyst
EP1188908B1 (en) Exhaust gas purifying system
JP4863596B2 (en) Exhaust gas purification system
JP2002045701A (en) Catalyst for purifying exhaust gas
JP2007160168A (en) Exhaust gas purifying device
WO2012147411A1 (en) Lean nox trap type exhaust gas purification catalyst and exhaust gas purification system
JP2005161225A (en) Catalyst for purifying exhaust gas
JP3952617B2 (en) Exhaust gas purification device, exhaust gas purification method and exhaust gas purification catalyst for internal combustion engine
JP2003047850A (en) Catalyst, catalyst for cleaning exhaust gas and method of producing catalyst
JP2004330046A (en) Catalyst for cleaning diesel engine exhaust gas and its production method
JP2004313972A (en) Exhaust gas cleaning catalyst and exhaust gas cleaning method
JP2006231204A (en) Catalyst for cleaning exhaust gas
JP2000042368A (en) Exhaust gas purifying method
JP2007130580A (en) Apparatus and method of purifying exhaust gas
JP2009208045A (en) Exhaust gas cleaning catalyst
JPH1113462A (en) Exhaust gas emission control device
JP2006167540A (en) Hydrocarbon adsorption/combustion catalyst
JPH10165819A (en) Catalyst for cleaning of exhaust gas and its use method
JP2004321894A (en) Exhaust gas cleaning catalyst and method for producing the same
JP2004243272A (en) Catalyst for purification of exhaust gas
JP3965793B2 (en) Exhaust gas purification device, exhaust gas purification method and exhaust gas purification catalyst for internal combustion engine
JP3622893B2 (en) NOx absorbent and exhaust gas purification catalyst using the same
JP2004209324A (en) Catalyst for cleaning exhaust gas
JP2003135970A (en) Exhaust gas cleaning catalyst

Legal Events

Date Code Title Description
A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20070509