JP2004241657A - Thermoelectric transducing device and thermoelectric transducing device-unit - Google Patents

Thermoelectric transducing device and thermoelectric transducing device-unit Download PDF

Info

Publication number
JP2004241657A
JP2004241657A JP2003030013A JP2003030013A JP2004241657A JP 2004241657 A JP2004241657 A JP 2004241657A JP 2003030013 A JP2003030013 A JP 2003030013A JP 2003030013 A JP2003030013 A JP 2003030013A JP 2004241657 A JP2004241657 A JP 2004241657A
Authority
JP
Japan
Prior art keywords
thermoelectric conversion
conversion device
thermoelectric
insulating film
multilayer structure
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2003030013A
Other languages
Japanese (ja)
Other versions
JP4334878B2 (en
Inventor
Susumu Sugiyama
進 杉山
Toshiyuki Toriyama
寿之 鳥山
Hiroshi Ueno
洋 上野
Koichi Itoigawa
貢一 糸魚川
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Ritsumeikan Trust
Tokai Rika Co Ltd
Original Assignee
Ritsumeikan Trust
Tokai Rika Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Ritsumeikan Trust, Tokai Rika Co Ltd filed Critical Ritsumeikan Trust
Priority to JP2003030013A priority Critical patent/JP4334878B2/en
Publication of JP2004241657A publication Critical patent/JP2004241657A/en
Application granted granted Critical
Publication of JP4334878B2 publication Critical patent/JP4334878B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Abstract

<P>PROBLEM TO BE SOLVED: To provide a thermoelectric transducing device wherein it has integrated thermoelectric couples and it can be formed at a low cost in comparison with a thermoelectric transducing device formed by using a semiconductor manufacturing apparatus and a thermoelectric device-unit using the device. <P>SOLUTION: The thermoelectric converting device 12 has an insulating film 20 having a flexibility, and a thermoelectric-couple group 21 comprising a plurality of thermoelectric couples 22 subjected to film formations on the insulating film 20 and connected in series with each other. Further, in the thermoelectric transducing device 12, a multilayer structure 20b is constituted by winding the insulating film 20, and the plurality of thermoelectric couples 22 connected in series with each other are integrated. Also, the thermoelectric transducing device 12 is made large in comparison with a thermoelectric transducing device using semiconductors, since its size including heat radiating and absorbing plates is made equal to 1 mm. Therefore, the thermoelectric transducing device 12 can be manufactured without using such a large-scale apparatus as a semiconductor manufacturing apparatus. <P>COPYRIGHT: (C)2004,JPO&NCIPI

Description

【0001】
【発明の属する技術分野】
本発明は、電子デバイスの供給電源や補助電源、及び温度センサや赤外線センサ等として利用可能な素子であって、温接点と冷接点との温度差により発電するゼーベック効果を利用した熱電変換デバイス及び熱電変換デバイスユニットに関するものである。
【0002】
【従来の技術】
近年、複数の熱電対を集積した熱電変換デバイスが提案されている。上記熱電変換デバイスの一例として、シリコン基板上に複数の熱電対を互いに直列接続した熱電変換デバイスが提案されている(例えば、特許文献1参照。)。特許文献1の熱電変換デバイスは、半導体製造装置を用いてLPCVD、APCVD、ドーピング、RIE、蒸着、ウェットエッチング等の処理を経て製造されている。LPCVDは、「low pressure chemical vapor deposition」であり、APCVDは、「atmospheric pressure chemical vapor deposition」であり、RIE「reactive ion etching」である。
【0003】
【特許文献1】
特開2002−50801号公報(段落番号「0020」〜「0023」、第3図)
【0004】
【発明が解決しようとする課題】
ところが、特許文献1の熱電変換デバイスにおいては、半導体製造装置を用いるため、製造工程が複雑でかつコスト高となってしまうという問題があった。このため、半導体製造装置を用いずにかつ集積した熱電対を有する熱電変換デバイスが望まれていた。
【0005】
本発明は、前述した事情に鑑みてなされたものであって、その目的は集積した熱電対を備えると共に半導体製造装置を用いて形成した熱電変換デバイスに比して低コストで形成できる熱電変換デバイス及び熱電変換デバイスユニットを提供することにある。
【0006】
【課題を解決するための手段】
上記目的を達成するために、請求項1に記載の発明は、可撓性を備えた絶縁性フィルムと、その絶縁性フィルム上に成膜形成されると共に互いに直列接続された複数の熱電対からなる熱電対群とを備え、前記絶縁性フィルムにおける各部位の少なくとも一つの部位同士を重ねることにより、又は複数の前記絶縁性フィルムを重ね合わせることにより多層構造部を構成したことを要旨とする。
【0007】
請求項2に記載の発明は、請求項1に記載の熱電変換デバイスにおいて、前記多層構造部は、その多層構造部端面にて前記熱電変換デバイス自体を自立可能とすることを要旨とする。
【0008】
請求項3に記載の発明は、請求項1又は請求項2に記載の熱電変換デバイスにおいて、前記多層構造部は、前記絶縁性フィルムを巻いたことにより形成されていることを要旨とする。
【0009】
請求項4に記載の発明は、請求項1乃至請求項3のうちいずれか1項に記載の熱電変換デバイスを備え、前記各熱電対は、第1接点及び第2接点をそれぞれ備え、前記各第1接点と熱交換可能に接続された第1熱交換体と、前記各第2接点と熱交換可能に接続された第2熱交換体とを備えたことを特徴とすることを要旨とする。
【0010】
【発明の実施の形態】
以下、本発明を具体化した一実施形態を図1〜図8に従って説明する。
図2及び図3に示すように熱電変換デバイスユニット11は、複数の熱電変換デバイス12、放熱板13、吸熱板14、及び前記放熱板13と前記吸熱板14とを固定するスペーサ15(図3でのみ図示)を備えている。前記放熱板13は第1熱交換体に相当し、前記吸熱板14は第2熱交換体に相当する。前記放熱板13は可撓性を備えると共にアルミニウムから構成され、前記吸熱板14は可撓性を備えると共に黒体材料(例えば、酸化コバルト)を混ぜたポリイミド系樹脂から構成されている。
【0011】
まず、熱電変換デバイス12について説明する。
図1に示すように、熱電変換デバイス12は、巻物状をなす絶縁性フィルム20と、その絶縁性フィルム20における熱電対成膜面20aに成膜された熱電対群21とを備えている。
【0012】
前記絶縁性フィルム20は可撓性を備えた長尺な帯状をなすフィルムから構成されており、同絶縁性フィルム20はその熱電対成膜面20a側に非導電性接着剤を塗布した状態で巻いて形成されている。即ち、絶縁性フィルム20が巻物状とされていることにより、絶縁性フィルム20における各部位同士が重ねられて多層構造部20bが構成されている。前記多層構造部20bの両端面は、それぞれ載置面20c及び積載面20dとされている。前記載置面20c及び積載面20dは多層構造部端面に相当する。前記載置面20cは放熱板13と当接する面であり、前記積載面20dは吸熱板14と当接する面である。前記載置面20c及び前記積載面20dは平面視リング形状(図4参照)とされている。前記載置面20cにて熱電変換デバイス12自体を自立可能とされている。即ち、水平な平面に対して載置面20cを当接させると熱電変換デバイス12が倒れないように、載置面20cは構成されている。
【0013】
図8(b)に示すように、前記絶縁性フィルム20を長尺な帯状に展開した状態において、同絶縁性フィルム20の熱電対成膜面20aの全面に亘って前記熱電対群21は蛇行状をなすように成膜されている。前記熱電対群21は、互いに直列接続された複数の熱電対22により形成されている。前記各熱電対22は、ニッケル(Ni)からなる第1金属線23と、モリブデン(Mo)からなる第2金属線24とをそれぞれ備えている。即ち、熱電対群21は、前記第1金属線23と前記第2金属線24とが交互に複数配置されると共に互いに接続されることにより構成されている。
【0014】
前記第1金属線23と前記第2金属線24との各接続点である接点25は、絶縁性フィルム20の短手方向(以下、単に短手方向という)両端側に位置するように形成されている。前記各接点25のうち短手方向における一端側に位置する接点25を第1接点としての冷接点25aといい、短手方向における他端側に位置する接点25を第2接点としての温接点25bという。
【0015】
図1に示すように、本実施形態では、冷接点25aは載置面20c側に位置し、温接点25bは積載面20d側に位置している。前記冷接点25aの先端面は前記載置面20cに対して面一とされ、前記温接点25bの先端面は前記積載面20dに対して面一とされている。前記熱電対群21の両端部には、端子26,27がそれぞれ接続されている。前記両端子26,27は、前記載置面20cから積載面20dとは反対方向へ向けて突出するように形成されている。前記端子26はリング形状をなす前記載置面20cの内周部に対応する位置に配置され、前記端子27はリング形状をなす前記載置面20cの外周部に対応する位置に配置されている。
【0016】
次に、前記熱電変換デバイス12を複数個備えた熱電変換デバイスユニット11について説明する。
図2及び図3に示すように、熱電変換デバイスユニット11を構成する放熱板13上には、複数(本実施形態では20個)の前記熱電変換デバイス12が密集して配置されている。図4及び図5に示すように、前記放熱板13には絶縁層13aを備えており、その絶縁層13a内には、互いに隣接する熱電変換デバイス12における熱電対群21同士を互いに直列接続する複数の配線31が配置されている。前記各配線31は、その両端面31a,31bが前記絶縁層13aの表面に対して凹むように配置されている。また、前記各配線31における両端面31a,31b以外の部分は、前記絶縁層13aに覆われている。
【0017】
前記熱電対群21と配線31との接続状態を詳しく述べると、前記各熱電対群21における端子26が前記各配線31の端面31aに接続され、前記各熱電対群21における端子27が前記各配線31の端面31bに接続されている。前記熱電変換デバイス12の載置面20cは前記絶縁層13aに対して非導電性接着剤にて固定されている。この非導電性接着剤は熱伝達性が高いものが好ましい。即ち、前記各熱電変換デバイス12における各冷接点25aが前記放熱板13に対して熱伝達可能にそれぞれ接着固定されている。
【0018】
図3に示すように、前記放熱板13には一対のスペーサ15を介して吸熱板14が同放熱板13に対して平行となるように固定されている。また、吸熱板14には、前記各熱電変換デバイス12の積載面20dが非導電性接着剤にて固定されている。この非導電性接着剤においても、熱伝達性が高いものが好ましい。即ち、前記各熱電変換デバイス12における各温接点25bが前記吸熱板14に対して熱伝達可能にそれぞれ接着固定されている。
【0019】
前記各熱電変換デバイス12は、一つの熱電変換デバイス12の外周面12aに対して、最高で6個の熱電変換デバイス12の外周面12aが当接するように、密集して配置されている。前記熱電変換デバイスユニット11の厚さtは1mmとされている(図3参照)。
【0020】
次に、本実施形態の熱電変換デバイスユニット11を構成する熱電変換デバイス12の製造方法について図6〜図8に従って説明する。
まず、図6(a),(b)に示すように、絶縁性フィルム20上にニッケル層を物理蒸着法としての真空蒸着法により成膜形成し、そのニッケル層をウェットエッチング等にて所定のパターンに形成することにより複数の短冊状の第1金属膜40を形成する。また、絶縁性フィルム20上に第1金属膜40を成形する方法として、物理蒸着法としてのステンシルマスクを利用して蒸着し所定パターンに成形してもよい。
【0021】
次に、前記第1金属膜40上にマスクを施し、そのマスク上及び熱電対成膜面20a上にモリブデン層を真空蒸着法により成膜形成し、前記マスクを除去することにより、同マスク上のモリブデン層も共に除去される。すると、図7(a),(b)に示すように、前記各第1金属膜40間に短冊状の第2金属膜41がそれぞれ形成され、その際、前記第1金属膜40と前記第2金属膜41とがなす境界部は互いに接続される。
【0022】
そして、図8(a),(b)に示すように、前記各第1金属膜40及び前記各第2金属膜41に対してウェットエッチング等にて接続規制孔42をそれぞれ形成し、この結果、各第1金属線23及び各第2金属線24を形成する。即ち、この接続規制孔42により前記各第1金属膜40と前記各第2金属膜41との接続部分が制限され、この結果、各第1金属膜40と各第2金属膜41とが蛇行状に接続される。次に、この複数の第1金属線23及び第2金属線24にて構成された熱電対群21の両端部に端子26,27をそれぞれ接続する(図1参照)。さらに、前記第1金属線23、第2金属線24、及び熱電対成膜面20aに対して非導電性接着剤を塗布して絶縁性フィルム20を巻くことにより、熱電変換デバイス12が完成する。
【0023】
従って、本実施形態の熱電変換デバイス12を備えた熱電変換デバイスユニット11によれば、以下のような効果を得ることができる。
(1)本実施形態では、熱電変換デバイス12は、可撓性を備えた絶縁性フィルム20と、その絶縁性フィルム20上に成膜形成されると共に互いに直列接続された複数の熱電対22からなる熱電対群21とを備えた。そして、前記絶縁性フィルム20を巻くことにより、多層構造部20bを構成すると共に前記直列接続された複数の熱電対22を集積した。また、この熱電変換デバイス12は放熱板13及び吸熱板14を含めたサイズが1mmとされているため、半導体を用いた熱電変換デバイスと比して大きい。従って、半導体製造装置のような大がかりな装置を用いずに熱電変換デバイス12を製造できるため、半導体製造装置を用いて熱電変換デバイスを製造する場合と比べて、低コストで熱電変換デバイス12を製造することができる。また、この熱電変換デバイス12により集積した熱電対22を得ることができる。
【0024】
(2)本実施形態では、熱電変換デバイス12は多層構造部20bを備えた。そして、多層構造部20bの載置面20cにて熱電変換デバイス12自体を自立可能とした。従って、載置面にてその全体を自立できない熱電変換デバイスと比べて、本実施形態では、安定した状態で放熱板13に対して熱電変換デバイス12を接着することができる。また、載置面にてその全体を自立できない熱電変換デバイスと比べて、本実施形態の熱電変換デバイス12は、放熱板13に対する接着強度を上げることができる。
【0025】
(3)本実施形態では、多層構造部20bを絶縁性フィルム20を巻いたことにより形成した。このように、絶縁性フィルム20を巻くことにより多層構造部20bを構成したため、一枚の絶縁性フィルム20にて多層構造部20bを構成することができる。また、絶縁性フィルム20を巻くことにより多層構造部20bを構成したため、熱電対成膜面20a側同士が直接対向することがなく、この結果、熱電対成膜面20a上の熱電対22同士が直接接触することがない。
【0026】
(4)本実施形態では、熱電変換デバイス12の各冷接点25aに放熱板13を接着固定し、熱電変換デバイス12の各温接点25bに吸熱板14を接着固定することにより熱電変換デバイスユニット11を構成した。従って、熱電変換デバイスユニット11の熱電変換デバイス12において、各冷接点25aは放熱板13を介して効率よく放熱を行うことができ、かつ各温接点25bは吸熱板14を介して効率よく熱吸収を行うことができる。
【0027】
(5)本実施形態では、熱電変換デバイスユニット11は、熱電変換デバイス12の絶縁性フィルム20、放熱板13、及び吸熱板14の3つが可撓性を有するようにした。従って、熱電変換デバイスユニット11を曲面に対して設置することができる。また、曲面に対して熱電変換デバイスユニット11を設置しても、平面に対して熱電変換デバイスユニット11を設置した場合と比して熱電変換効率を同じとすることができる。このように、熱電変換デバイスユニット11をフレキシブルに構成することにより、熱電変換デバイスユニット11の利用範囲を広げることができる。
【0028】
(他の実施形態)
なお、上記実施形態は以下のような他の実施形態に変更して具体化してもよい。
【0029】
・前記実施形態では、第1金属線23をニッケル(Ni)、第2金属線24をモリブデン(Mo)から構成していた。これに限らず、前記第1金属線23及び前記第2金属線24の材料(金属)は、熱電対として機能するものであれば、他の材料(金属)を採用してもよい。即ち、前記第1金属線23及び前記第2金属線24は、互いに異なる材料(金属)で熱電変換が行える材料(金属)であればどのような材料(金属)を採用してもよい。特に、ゼーベック係数の差が大きな2種類の材料(金属)を用いるほど、熱電対22の出力電圧(熱電変換効率)は大きくなる。
【0030】
・前記実施形態では、熱電変換デバイスユニット11において、各熱電変換デバイス12が一つの熱電変換デバイス12の外周面12aに対して、最高で6個の熱電変換デバイス12の外周面12aが当接するように、密集して配置していた。これに限らず、熱電変換デバイスユニット11において、各熱電変換デバイス12の外周面12aが互いに当接しないように各熱電変換デバイス12をそれぞれ配置してもよい。このようにすると、熱電変換デバイスユニット11において、可撓性がより一層向上する。
【0031】
・前記実施形態では、熱電変換デバイスユニット11は20個の熱電変換デバイス12を備えるように構成していた。これに限らず、熱電変換デバイスユニット11を構成する熱電変換デバイス12の数は、熱電変換量に応じて増やしたり減らしたりしてもよい。
【0032】
・前記実施形態では、熱電変換デバイスユニット11は複数の熱電変換デバイス12を備えていたが、一つの熱電変換デバイス12により熱電変換デバイスユニット11を構成してもよい。この場合、図9に示すように、吸熱板14(放熱板13)上の大多数の面積を占めるように、熱電変換デバイス12における絶縁性フィルム20の巻き数を増やしてもよい。
【0033】
・前記実施形態では、熱電変換デバイス12は、絶縁性フィルム20を巻くことにより多層構造部20bを構成していた。これに限らず、図10(a)に示すような多層構造部50を備えた熱電変換デバイス51を構成してもよい。なお、図10(a)においては、説明の便宜上複数の熱電対22の図示を省略している。即ち、熱電変換デバイス51は、前記絶縁性フィルム20を蛇行状に重ねることにより多層構造部50を構成する。言い換えると、絶縁性フィルム20の各部同士が重ねられて多層構造部50が構成されている。そして、前記絶縁性フィルム20の各部位を、互いに接着剤にて接着固定する。この多層構造部50の端面である多層構造部端面としての載置面50aにおいても、熱電変換デバイス51自体を自立可能とされている。この場合、図10(b)に示すように、前記絶縁性フィルム20の熱電対成膜面20aに形成された熱電対22の上面を絶縁材53にて覆う。このようにすることにより、図10(a)に示すように、絶縁性フィルム20における熱電対成膜面20a同士が対向する部分において、熱電対22同士が直接接触することを防ぐ。即ち、熱電対22同士が互いに対向する部位には絶縁材53が介在するようにした。
【0034】
・また、図11に示すような多層構造部60を備えた熱電変換デバイス61を構成してもよい。即ち、熱電変換デバイス61は、複数の前記絶縁性フィルム20を積層するように重ね合わせることにより多層構造部60を構成する。各絶縁性フィルム20を互いに非導電性接着剤にて接着固定する。この多層構造部60の端面である多層構造部端面としての載置面60aにおいても、熱電変換デバイス61自体を自立可能とされている。この場合、各絶縁性フィルム20上に形成された熱電対群21は、その端部同士を図示しない配線にて互いに直列接続となるように接続する。
【0035】
・前記実施形態では、熱電変換デバイス12の製造方法において、絶縁性フィルム20の熱電対成膜面20a上に対してニッケル層及びモリブデン層を形成する際に、物理蒸着法としての真空蒸着法を用いていた。これに限らず、メッキ法や、物理蒸着法としてのスパッタリング法にてニッケル層及びモリブデン層を形成してもよい。
【0036】
・前記実施形態では、放熱板13をアルミニウムから構成していたが、表面に金属膜を形成した絶縁性樹脂にて構成してもよい。
・前記実施形態では、熱電変換デバイスユニット11の厚さを1mmとしていたが、この熱電変換デバイスユニット11の厚さはいくつでもよい。
【0037】
次に、上記実施形態及び他の実施形態から把握できる技術的思想について以
下に追記する。
(イ)前記多層構造部は、前記絶縁性フィルムを蛇行状に重ねると共に前記絶縁性フィルム上の前記熱電対同士が互いに対向する部位には絶縁材を介在したことを特徴とする請求項1又は請求項2に記載の熱電変換デバイス。
【0038】
(ロ)前記熱電対群は、物理蒸着法又はメッキ法により形成されることを特徴とする請求項1乃至請求項3、技術的思想(イ)のうちいずれか1項に記載の熱電変換デバイス。
【0039】
【発明の効果】
以上詳述したように、本発明によれば、集積した熱電対を備えると共に半導体製造装置を用いて形成した熱電変換デバイスに比して低コストで形成できる。
【図面の簡単な説明】
【図1】本実施形態における熱電変換デバイスの斜視図。
【図2】本実施形態における熱電変換デバイスユニットの斜視図。
【図3】本実施形態における熱電変換デバイスユニットの正面図。
【図4】本実施形態における放熱板の平面図。
【図5】図4におけるA−A線矢視断面図。
【図6】(a)は、熱電変換デバイスの製造方法を示す断面図。(b)は、熱電変換デバイスの製造方法を示す平面図。
【図7】(a)は、熱電変換デバイスの製造方法を示す断面図。(b)は、熱電変換デバイスの製造方法を示す平面図。
【図8】(a)は、熱電変換デバイスの製造方法を示す断面図。(b)は、熱電変換デバイスの製造方法を示す平面図。
【図9】他の実施形態における熱電変換デバイス及び吸熱板の底面図。
【図10】(a)は、他の実施形態における熱電変換デバイス及び吸熱板の底面図。(b)は、他の実施形態における熱電変換デバイスの部分断面図。
【図11】他の実施形態における熱電変換デバイスの断面図。
【符号の説明】
11…熱電変換デバイスユニット、12,51,61…熱電変換デバイス、
13…第1熱交換体としての放熱板、14…第2熱交換体としての吸熱板、
20…絶縁性フィルム、20b,50,60…多層構造部、
20c,50a,60a…多層構造部端面としての載置面、
20d…多層構造部端面としての積載面、21…熱電対群、22…熱電対、
25a…第1接点としての冷接点、25b…第2接点としての温接点。
[0001]
TECHNICAL FIELD OF THE INVENTION
The present invention is a device that can be used as a power supply or an auxiliary power supply of an electronic device, and a temperature sensor or an infrared sensor, and a thermoelectric conversion device using the Seebeck effect of generating power by a temperature difference between a hot junction and a cold junction, and The present invention relates to a thermoelectric conversion device unit.
[0002]
[Prior art]
In recent years, thermoelectric conversion devices in which a plurality of thermocouples are integrated have been proposed. As an example of the thermoelectric conversion device, a thermoelectric conversion device in which a plurality of thermocouples are connected in series on a silicon substrate has been proposed (for example, see Patent Document 1). The thermoelectric conversion device of Patent Document 1 is manufactured using a semiconductor manufacturing apparatus through processes such as LPCVD, APCVD, doping, RIE, vapor deposition, and wet etching. LPCVD is “low pressure chemical vapor deposition”, and APCVD is “atmospheric pressure chemical vapor deposition” and RIE is “reactive ion etching”.
[0003]
[Patent Document 1]
JP-A-2002-50801 (paragraph numbers “0020” to “0023”, FIG. 3)
[0004]
[Problems to be solved by the invention]
However, in the thermoelectric conversion device of Patent Document 1, there is a problem that the manufacturing process is complicated and the cost is high because a semiconductor manufacturing apparatus is used. Therefore, a thermoelectric conversion device having an integrated thermocouple without using a semiconductor manufacturing apparatus has been desired.
[0005]
The present invention has been made in view of the above circumstances, and has as its object to provide a thermoelectric conversion device that includes an integrated thermocouple and can be formed at a lower cost than a thermoelectric conversion device formed using a semiconductor manufacturing apparatus. And a thermoelectric conversion device unit.
[0006]
[Means for Solving the Problems]
In order to achieve the above object, the invention according to claim 1 includes an insulating film having flexibility and a plurality of thermocouples formed in a film on the insulating film and connected in series to each other. The gist of the present invention is that a thermocouple group is provided, and at least one of the portions in the insulating film is overlapped with each other, or a plurality of the insulating films are overlapped to form a multilayer structure.
[0007]
According to a second aspect of the present invention, in the thermoelectric conversion device according to the first aspect, the multi-layer structure portion is configured such that the thermoelectric conversion device itself can be self-standing at an end face of the multi-layer structure portion.
[0008]
According to a third aspect of the invention, in the thermoelectric conversion device according to the first or second aspect, the multi-layer structure is formed by winding the insulating film.
[0009]
According to a fourth aspect of the invention, there is provided the thermoelectric conversion device according to any one of the first to third aspects, wherein each of the thermocouples includes a first contact and a second contact, respectively. The gist of the invention is characterized by comprising a first heat exchanger that is heat-exchangeably connected to the first contact, and a second heat exchanger that is heat-exchangeably connected to each of the second contacts. .
[0010]
BEST MODE FOR CARRYING OUT THE INVENTION
An embodiment of the present invention will be described below with reference to FIGS.
As shown in FIGS. 2 and 3, the thermoelectric conversion device unit 11 includes a plurality of thermoelectric conversion devices 12, a heat radiating plate 13, a heat absorbing plate 14, and a spacer 15 for fixing the heat radiating plate 13 and the heat absorbing plate 14 (FIG. 3). Only shown in the figure). The heat radiating plate 13 corresponds to a first heat exchanger, and the heat absorbing plate 14 corresponds to a second heat exchanger. The heat radiating plate 13 has flexibility and is made of aluminum, and the heat absorbing plate 14 has flexibility and is made of a polyimide resin mixed with a black body material (for example, cobalt oxide).
[0011]
First, the thermoelectric conversion device 12 will be described.
As shown in FIG. 1, the thermoelectric conversion device 12 includes a roll-shaped insulating film 20 and a thermocouple group 21 formed on a thermocouple forming surface 20 a of the insulating film 20.
[0012]
The insulating film 20 is made of a long and strip-shaped film having flexibility, and the insulating film 20 is coated with a non-conductive adhesive on the thermocouple film forming surface 20a side. It is formed by winding. That is, since the insulating film 20 has a roll shape, the respective portions of the insulating film 20 are overlapped with each other to form the multilayer structure portion 20b. Both end surfaces of the multilayer structure portion 20b are a mounting surface 20c and a loading surface 20d, respectively. The placing surface 20c and the loading surface 20d correspond to end surfaces of the multilayer structure. The mounting surface 20c is a surface that contacts the heat radiating plate 13, and the loading surface 20d is a surface that contacts the heat absorbing plate 14. The placing surface 20c and the loading surface 20d have a ring shape in plan view (see FIG. 4). The thermoelectric conversion device 12 itself can be made independent on the mounting surface 20c. That is, the mounting surface 20c is configured so that the thermoelectric conversion device 12 does not fall when the mounting surface 20c is brought into contact with a horizontal plane.
[0013]
As shown in FIG. 8B, in a state where the insulating film 20 is developed in a long strip shape, the thermocouple group 21 meanders over the entire surface of the thermocouple film forming surface 20a of the insulating film 20. The film is formed in a shape. The thermocouple group 21 is formed by a plurality of thermocouples 22 connected in series. Each of the thermocouples 22 includes a first metal wire 23 made of nickel (Ni) and a second metal wire 24 made of molybdenum (Mo). That is, the thermocouple group 21 is configured by alternately arranging a plurality of the first metal wires 23 and the second metal wires 24 and connecting them.
[0014]
Contact points 25, which are connection points between the first metal wire 23 and the second metal wire 24, are formed so as to be located at both ends in the short direction (hereinafter, simply referred to as the short direction) of the insulating film 20. ing. Among the contacts 25, the contact 25 located at one end in the short direction is referred to as a cold contact 25a as a first contact, and the contact 25 located at the other end in the short direction is a hot contact 25b as a second contact. That.
[0015]
As shown in FIG. 1, in the present embodiment, the cold junction 25a is located on the mounting surface 20c side, and the hot junction 25b is located on the loading surface 20d side. The distal end surface of the cold junction 25a is flush with the mounting surface 20c, and the distal end surface of the hot junction 25b is flush with the loading surface 20d. Terminals 26 and 27 are respectively connected to both ends of the thermocouple group 21. The terminals 26 and 27 are formed so as to protrude from the mounting surface 20c in a direction opposite to the loading surface 20d. The terminal 26 is disposed at a position corresponding to an inner peripheral portion of the mounting surface 20c having a ring shape, and the terminal 27 is disposed at a position corresponding to an outer peripheral portion of the mounting surface 20c having a ring shape. .
[0016]
Next, the thermoelectric conversion device unit 11 including a plurality of the thermoelectric conversion devices 12 will be described.
As shown in FIGS. 2 and 3, a plurality (20 in the present embodiment) of the thermoelectric conversion devices 12 are densely arranged on a radiator plate 13 constituting the thermoelectric conversion device unit 11. As shown in FIGS. 4 and 5, the radiator plate 13 is provided with an insulating layer 13a, in which the thermocouple groups 21 of the thermoelectric conversion devices 12 adjacent to each other are connected in series. A plurality of wirings 31 are arranged. Each of the wirings 31 is arranged such that both end surfaces 31a and 31b are recessed with respect to the surface of the insulating layer 13a. In addition, portions of each wiring 31 other than both end surfaces 31a and 31b are covered with the insulating layer 13a.
[0017]
The connection state between the thermocouple group 21 and the wiring 31 will be described in detail. A terminal 26 in each thermocouple group 21 is connected to an end surface 31a of each wiring 31 and a terminal 27 in each thermocouple group 21 is connected to each of the thermocouple groups 21. It is connected to the end face 31 b of the wiring 31. The mounting surface 20c of the thermoelectric conversion device 12 is fixed to the insulating layer 13a with a non-conductive adhesive. The non-conductive adhesive preferably has a high heat transfer property. That is, each cold junction 25a in each thermoelectric conversion device 12 is bonded and fixed to the heat sink 13 so that heat can be transmitted.
[0018]
As shown in FIG. 3, a heat absorbing plate 14 is fixed to the heat radiating plate 13 via a pair of spacers 15 so as to be parallel to the heat radiating plate 13. Further, the mounting surface 20d of each thermoelectric conversion device 12 is fixed to the heat absorbing plate 14 with a non-conductive adhesive. Among these non-conductive adhesives, those having high heat transfer are preferable. That is, each hot junction 25b in each thermoelectric conversion device 12 is bonded and fixed to the heat absorbing plate 14 so that heat can be transmitted.
[0019]
The thermoelectric conversion devices 12 are densely arranged so that the outer peripheral surfaces 12a of up to six thermoelectric conversion devices 12 contact the outer peripheral surface 12a of one thermoelectric conversion device 12. The thickness t of the thermoelectric conversion device unit 11 is 1 mm (see FIG. 3).
[0020]
Next, a method of manufacturing the thermoelectric conversion device 12 constituting the thermoelectric conversion device unit 11 of the present embodiment will be described with reference to FIGS.
First, as shown in FIGS. 6A and 6B, a nickel layer is formed on the insulating film 20 by a vacuum vapor deposition method as a physical vapor deposition method, and the nickel layer is formed by a predetermined method such as wet etching. A plurality of strip-shaped first metal films 40 are formed by forming a pattern. In addition, as a method of forming the first metal film 40 on the insulating film 20, a first pattern may be formed by vapor deposition using a stencil mask as a physical vapor deposition method.
[0021]
Next, a mask is formed on the first metal film 40, a molybdenum layer is formed on the mask and on the thermocouple film-forming surface 20a by a vacuum evaporation method, and the mask is removed. The molybdenum layer is also removed. Then, as shown in FIGS. 7A and 7B, a strip-shaped second metal film 41 is formed between each of the first metal films 40. At this time, the first metal film 40 and the second metal film 41 are formed. The boundary between the two metal films 41 is connected to each other.
[0022]
Then, as shown in FIGS. 8A and 8B, connection restricting holes 42 are respectively formed in the first metal films 40 and the second metal films 41 by wet etching or the like. The first metal lines 23 and the second metal lines 24 are formed. That is, the connection portions between the first metal films 40 and the second metal films 41 are restricted by the connection restriction holes 42. As a result, the first metal films 40 and the second metal films 41 meander. Connected. Next, terminals 26 and 27 are connected to both ends of the thermocouple group 21 constituted by the plurality of first metal wires 23 and second metal wires 24 (see FIG. 1). Further, a non-conductive adhesive is applied to the first metal wire 23, the second metal wire 24, and the thermocouple film forming surface 20a, and the insulating film 20 is wound, thereby completing the thermoelectric conversion device 12. .
[0023]
Therefore, according to the thermoelectric conversion device unit 11 including the thermoelectric conversion device 12 of the present embodiment, the following effects can be obtained.
(1) In the present embodiment, the thermoelectric conversion device 12 is composed of a flexible insulating film 20 and a plurality of thermocouples 22 formed on the insulating film 20 and connected in series with each other. Thermocouple group 21. Then, by winding the insulating film 20, a multilayer structure portion 20b was formed, and the plurality of thermocouples 22 connected in series were integrated. In addition, since the size of the thermoelectric conversion device 12 including the heat radiation plate 13 and the heat absorption plate 14 is 1 mm, the size is larger than that of a thermoelectric conversion device using a semiconductor. Therefore, since the thermoelectric conversion device 12 can be manufactured without using a large-scale apparatus such as a semiconductor manufacturing apparatus, the thermoelectric conversion device 12 can be manufactured at low cost as compared with a case where the thermoelectric conversion device is manufactured using a semiconductor manufacturing apparatus. can do. Further, the thermocouple 22 integrated by the thermoelectric conversion device 12 can be obtained.
[0024]
(2) In the present embodiment, the thermoelectric conversion device 12 has the multilayer structure 20b. Then, the thermoelectric conversion device 12 itself can be made independent on the mounting surface 20c of the multilayer structure portion 20b. Therefore, in the present embodiment, the thermoelectric conversion device 12 can be bonded to the heat sink 13 in a stable state, as compared with a thermoelectric conversion device that cannot stand alone on the mounting surface. Moreover, the thermoelectric conversion device 12 of the present embodiment can increase the adhesive strength to the heat radiating plate 13 as compared with a thermoelectric conversion device that cannot stand alone on the mounting surface.
[0025]
(3) In the present embodiment, the multilayer structure portion 20b is formed by winding the insulating film 20. As described above, since the multilayer structure portion 20b is formed by winding the insulating film 20, the multilayer structure portion 20b can be configured by one insulating film 20. Moreover, since the multilayer structure portion 20b is formed by winding the insulating film 20, the thermocouple film forming surfaces 20a do not directly face each other, and as a result, the thermocouples 22 on the thermocouple film forming surface 20a are connected to each other. There is no direct contact.
[0026]
(4) In the present embodiment, the heat dissipation plate 13 is bonded and fixed to each cold junction 25 a of the thermoelectric conversion device 12, and the heat absorption plate 14 is bonded and fixed to each hot junction 25 b of the thermoelectric conversion device 12. Was configured. Therefore, in the thermoelectric conversion device 12 of the thermoelectric conversion device unit 11, each cold junction 25 a can efficiently radiate heat through the heat radiating plate 13, and each hot junction 25 b efficiently absorbs heat through the heat absorbing plate 14. It can be performed.
[0027]
(5) In the present embodiment, the thermoelectric conversion device unit 11 is configured such that three of the insulating film 20, the heat radiating plate 13, and the heat absorbing plate 14 of the thermoelectric conversion device 12 have flexibility. Therefore, the thermoelectric conversion device unit 11 can be installed on a curved surface. Further, even if the thermoelectric conversion device unit 11 is installed on a curved surface, the thermoelectric conversion efficiency can be made the same as compared with the case where the thermoelectric conversion device unit 11 is installed on a flat surface. As described above, by flexibly configuring the thermoelectric conversion device unit 11, the use range of the thermoelectric conversion device unit 11 can be expanded.
[0028]
(Other embodiments)
The above embodiment may be embodied by being changed to another embodiment as described below.
[0029]
In the above embodiment, the first metal wire 23 is made of nickel (Ni), and the second metal wire 24 is made of molybdenum (Mo). However, the material (metal) of the first metal wire 23 and the second metal wire 24 may be other material (metal) as long as it functions as a thermocouple. That is, the first metal wire 23 and the second metal wire 24 may use any material (metal) as long as the material (metal) can perform thermoelectric conversion using different materials (metal). In particular, as two types of materials (metals) having a large Seebeck coefficient difference are used, the output voltage (thermoelectric conversion efficiency) of the thermocouple 22 increases.
[0030]
In the above-described embodiment, in the thermoelectric conversion device unit 11, each thermoelectric conversion device 12 is configured such that the outer peripheral surfaces 12 a of up to six thermoelectric conversion devices 12 contact the outer peripheral surface 12 a of one thermoelectric conversion device 12. Was densely arranged. Not limited to this, in the thermoelectric conversion device unit 11, the thermoelectric conversion devices 12 may be arranged such that the outer peripheral surfaces 12a of the thermoelectric conversion devices 12 do not abut each other. By doing so, the flexibility of the thermoelectric conversion device unit 11 is further improved.
[0031]
In the embodiment, the thermoelectric conversion device unit 11 is configured to include the 20 thermoelectric conversion devices 12. However, the number of thermoelectric conversion devices 12 constituting the thermoelectric conversion device unit 11 may be increased or decreased according to the amount of thermoelectric conversion.
[0032]
In the above-described embodiment, the thermoelectric conversion device unit 11 includes the plurality of thermoelectric conversion devices 12. However, the thermoelectric conversion device unit 11 may be configured by one thermoelectric conversion device 12. In this case, as shown in FIG. 9, the number of turns of the insulating film 20 in the thermoelectric conversion device 12 may be increased so as to occupy a large area on the heat absorbing plate 14 (radiating plate 13).
[0033]
-In the said embodiment, the thermoelectric conversion device 12 comprised the multilayer structure part 20b by winding the insulating film 20. However, the invention is not limited thereto, and a thermoelectric conversion device 51 having a multilayer structure 50 as shown in FIG. In FIG. 10A, illustration of a plurality of thermocouples 22 is omitted for convenience of explanation. That is, the thermoelectric conversion device 51 configures the multilayer structure 50 by laminating the insulating films 20 in a meandering manner. In other words, the respective portions of the insulating film 20 are overlapped to form the multilayer structure 50. Then, each part of the insulating film 20 is bonded and fixed to each other with an adhesive. The thermoelectric conversion device 51 itself can be made independent on the mounting surface 50a as an end face of the multilayer structure part 50 which is an end face of the multilayer structure part 50. In this case, as shown in FIG. 10B, the upper surface of the thermocouple 22 formed on the thermocouple deposition surface 20a of the insulating film 20 is covered with an insulating material 53. This prevents the thermocouples 22 from directly contacting each other in the portion of the insulating film 20 where the thermocouple deposition surfaces 20a face each other, as shown in FIG. That is, the insulating material 53 is interposed between the portions where the thermocouples 22 face each other.
[0034]
The thermoelectric conversion device 61 having the multilayer structure 60 as shown in FIG. 11 may be configured. That is, the thermoelectric conversion device 61 configures the multilayer structure 60 by stacking a plurality of the insulating films 20 so as to be stacked. The insulating films 20 are bonded and fixed to each other with a non-conductive adhesive. The thermoelectric conversion device 61 itself can be made independent on the mounting surface 60a as the end face of the multilayer structure part, which is the end face of the multilayer structure part 60. In this case, the thermocouple groups 21 formed on the respective insulating films 20 are connected at their ends to each other in series by a wiring (not shown).
[0035]
In the embodiment, in the method for manufacturing the thermoelectric conversion device 12, when forming the nickel layer and the molybdenum layer on the thermocouple film-forming surface 20a of the insulating film 20, a vacuum evaporation method as a physical evaporation method is used. Was used. However, the present invention is not limited thereto, and the nickel layer and the molybdenum layer may be formed by a plating method or a sputtering method as a physical vapor deposition method.
[0036]
In the above embodiment, the heat radiating plate 13 is made of aluminum, but may be made of an insulating resin having a metal film formed on the surface.
-In the said embodiment, although the thickness of the thermoelectric conversion device unit 11 was set to 1 mm, the thickness of this thermoelectric conversion device unit 11 may be any number.
[0037]
Next, technical ideas that can be grasped from the above embodiment and other embodiments will be additionally described below.
(A) The multilayer structure portion is characterized in that the insulating films are stacked in a meandering shape, and an insulating material is interposed in a portion on the insulating film where the thermocouples face each other. The thermoelectric conversion device according to claim 2.
[0038]
(B) The thermocouple device according to any one of claims 1 to 3, and the technical idea (a), wherein the thermocouple group is formed by a physical vapor deposition method or a plating method. .
[0039]
【The invention's effect】
As described in detail above, according to the present invention, an integrated thermocouple can be provided and formed at a lower cost than a thermoelectric conversion device formed using a semiconductor manufacturing apparatus.
[Brief description of the drawings]
FIG. 1 is a perspective view of a thermoelectric conversion device according to an embodiment.
FIG. 2 is a perspective view of the thermoelectric conversion device unit according to the embodiment.
FIG. 3 is a front view of the thermoelectric conversion device unit according to the embodiment.
FIG. 4 is a plan view of a heat sink according to the embodiment.
FIG. 5 is a sectional view taken along line AA in FIG. 4;
FIG. 6A is a sectional view illustrating a method for manufacturing a thermoelectric conversion device. (B) is a top view which shows the manufacturing method of a thermoelectric conversion device.
FIG. 7A is a cross-sectional view illustrating a method for manufacturing a thermoelectric conversion device. (B) is a top view which shows the manufacturing method of a thermoelectric conversion device.
FIG. 8A is a cross-sectional view illustrating a method for manufacturing a thermoelectric conversion device. (B) is a top view which shows the manufacturing method of a thermoelectric conversion device.
FIG. 9 is a bottom view of a thermoelectric conversion device and a heat absorbing plate according to another embodiment.
FIG. 10A is a bottom view of a thermoelectric conversion device and a heat absorbing plate according to another embodiment. (B) is a partial sectional view of a thermoelectric conversion device in another embodiment.
FIG. 11 is a sectional view of a thermoelectric conversion device according to another embodiment.
[Explanation of symbols]
11: thermoelectric conversion device unit, 12, 51, 61: thermoelectric conversion device
13: a heat sink as a first heat exchanger, 14: a heat absorbing plate as a second heat exchanger,
20: an insulating film; 20b, 50, 60: a multilayer structure;
20c, 50a, 60a: mounting surface as an end surface of the multilayer structure portion;
20d: loading surface as an end face of the multilayer structure portion, 21: thermocouple group, 22: thermocouple,
25a: Cold contact as the first contact, 25b: Hot contact as the second contact.

Claims (4)

可撓性を備えた絶縁性フィルムと、その絶縁性フィルム上に成膜形成されると共に互いに直列接続された複数の熱電対からなる熱電対群とを備え、
前記絶縁性フィルムにおける各部位の少なくとも一つの部位同士を重ねることにより、又は複数の前記絶縁性フィルムを重ね合わせることにより多層構造部を構成したことを特徴とする熱電変換デバイス。
Insulating film with flexibility, comprising a thermocouple group consisting of a plurality of thermocouples formed in a film on the insulating film and connected in series with each other,
A thermoelectric conversion device, wherein a multilayer structure is formed by overlapping at least one of the respective portions of the insulating film or by overlapping a plurality of the insulating films.
前記多層構造部は、その多層構造部端面にて前記熱電変換デバイス自体を自立可能とすることを特徴とする請求項1に記載の熱電変換デバイス。2. The thermoelectric conversion device according to claim 1, wherein the multilayer structure enables the thermoelectric conversion device itself to be self-supporting at an end face of the multilayer structure. 3. 前記多層構造部は、前記絶縁性フィルムを巻いたことにより形成されていることを特徴とする請求項1又は請求項2に記載の熱電変換デバイス。The thermoelectric conversion device according to claim 1, wherein the multilayer structure is formed by winding the insulating film. 請求項1乃至請求項3のうちいずれか1項に記載の熱電変換デバイスを備え、
前記各熱電対は、第1接点及び第2接点をそれぞれ備え、
前記各第1接点と熱交換可能に接続された第1熱交換体と、
前記各第2接点と熱交換可能に接続された第2熱交換体とを備えたことを特徴とする熱電変換デバイスユニット。
The thermoelectric conversion device according to any one of claims 1 to 3,
Each of the thermocouples has a first contact and a second contact, respectively.
A first heat exchanger connected to each of the first contacts so as to be able to exchange heat;
A thermoelectric conversion device unit, comprising: a second heat exchanger connected to each of the second contacts so as to be capable of exchanging heat.
JP2003030013A 2003-02-06 2003-02-06 Thermoelectric conversion device unit Expired - Fee Related JP4334878B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2003030013A JP4334878B2 (en) 2003-02-06 2003-02-06 Thermoelectric conversion device unit

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2003030013A JP4334878B2 (en) 2003-02-06 2003-02-06 Thermoelectric conversion device unit

Publications (2)

Publication Number Publication Date
JP2004241657A true JP2004241657A (en) 2004-08-26
JP4334878B2 JP4334878B2 (en) 2009-09-30

Family

ID=32957019

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2003030013A Expired - Fee Related JP4334878B2 (en) 2003-02-06 2003-02-06 Thermoelectric conversion device unit

Country Status (1)

Country Link
JP (1) JP4334878B2 (en)

Cited By (19)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007103879A (en) * 2005-10-07 2007-04-19 Univ Kanagawa Thermoelectric element
WO2008013584A2 (en) * 2006-07-21 2008-01-31 Caterpillar Inc. Thermoelectric device
JP2008130594A (en) * 2006-11-16 2008-06-05 Tokai Rika Co Ltd Thermoelectric conversion device and manufacturing method thereof
JP2008190992A (en) * 2007-02-05 2008-08-21 Seiko Npc Corp Infrared sensor
WO2008111587A1 (en) * 2007-03-13 2008-09-18 Sumitomo Chemical Company, Limited Substrate for thermoelectric conversion module, and thermoelectric conversion module
EP1994572A2 (en) * 2006-02-10 2008-11-26 Digital Angel Corporation Improved low power thermoelectric generator
WO2008144800A1 (en) * 2007-05-25 2008-12-04 Jason Andrew Hopkins Manufacturing process for thermoelectric generator
WO2009045862A2 (en) * 2007-09-28 2009-04-09 Battelle Memorial Institute Thermoelectric devices
WO2008104312A3 (en) * 2007-02-26 2009-07-16 Heusler Isabellenhuette Thermopile wire, winding support, and method and machine for the production of a thermoelectric generator
WO2010007110A2 (en) * 2008-07-16 2010-01-21 Leibniz-Institut Für Festkörper- Und Werkstoffforschung Dresden E.V. Thermoelectric component and method for the production thereof
JP2010135643A (en) * 2008-12-05 2010-06-17 Toshiba Corp Thermoelectric conversion device, thermoelectric power generation system, and thermoelectric power generation method
US7763791B2 (en) * 2006-12-29 2010-07-27 Caterpillar Inc Thin film with oriented cracks on a flexible substrate
US7834263B2 (en) 2003-12-02 2010-11-16 Battelle Memorial Institute Thermoelectric power source utilizing ambient energy harvesting for remote sensing and transmitting
US7851691B2 (en) 2003-12-02 2010-12-14 Battelle Memorial Institute Thermoelectric devices and applications for the same
US8198527B2 (en) 2008-12-08 2012-06-12 Perpetua Power Source Technologies, Inc. Field-deployable electronics platform having thermoelectric power source and electronics module
US8455751B2 (en) 2003-12-02 2013-06-04 Battelle Memorial Institute Thermoelectric devices and applications for the same
DE102012105743A1 (en) * 2012-06-29 2014-01-02 Elringklinger Ag Heat shielding device with thermoelectric energy use
EP2733757A3 (en) * 2012-11-20 2014-06-11 Astrium GmbH Thermoelectric thin film generator
US9281461B2 (en) 2003-12-02 2016-03-08 Battelle Memorial Institute Thermoelectric devices and applications for the same

Cited By (28)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8269096B2 (en) 2003-05-19 2012-09-18 Ingo Stark Low power thermoelectric generator
US9281461B2 (en) 2003-12-02 2016-03-08 Battelle Memorial Institute Thermoelectric devices and applications for the same
US8455751B2 (en) 2003-12-02 2013-06-04 Battelle Memorial Institute Thermoelectric devices and applications for the same
US7851691B2 (en) 2003-12-02 2010-12-14 Battelle Memorial Institute Thermoelectric devices and applications for the same
US7834263B2 (en) 2003-12-02 2010-11-16 Battelle Memorial Institute Thermoelectric power source utilizing ambient energy harvesting for remote sensing and transmitting
JP2007103879A (en) * 2005-10-07 2007-04-19 Univ Kanagawa Thermoelectric element
EP1994572A4 (en) * 2006-02-10 2009-11-11 Digital Angel Corp Improved low power thermoelectric generator
EP1994572A2 (en) * 2006-02-10 2008-11-26 Digital Angel Corporation Improved low power thermoelectric generator
JP2009526401A (en) * 2006-02-10 2009-07-16 デストロン フィアリング コーポレイション Improved low-power thermoelectric generator
WO2008013584A2 (en) * 2006-07-21 2008-01-31 Caterpillar Inc. Thermoelectric device
WO2008013584A3 (en) * 2006-07-21 2008-09-04 Caterpillar Inc Thermoelectric device
JP2008130594A (en) * 2006-11-16 2008-06-05 Tokai Rika Co Ltd Thermoelectric conversion device and manufacturing method thereof
US7763791B2 (en) * 2006-12-29 2010-07-27 Caterpillar Inc Thin film with oriented cracks on a flexible substrate
JP2008190992A (en) * 2007-02-05 2008-08-21 Seiko Npc Corp Infrared sensor
KR101330102B1 (en) 2007-02-26 2013-11-18 이자벨렌휘테 호이슬러 게엠베하 운트 코. 카게 Thermopile wire, winding support and method and machine for the production of a thermoelectric generator
WO2008104312A3 (en) * 2007-02-26 2009-07-16 Heusler Isabellenhuette Thermopile wire, winding support, and method and machine for the production of a thermoelectric generator
WO2008111587A1 (en) * 2007-03-13 2008-09-18 Sumitomo Chemical Company, Limited Substrate for thermoelectric conversion module, and thermoelectric conversion module
JP2008227178A (en) * 2007-03-13 2008-09-25 Sumitomo Chemical Co Ltd Thermoelectric conversion module and substrate therefor
AU2007202399A1 (en) * 2007-05-25 2008-12-11 Hopkins, Jason Andrew Mr Manufacturing process for thermoelectric generators
WO2008144800A1 (en) * 2007-05-25 2008-12-04 Jason Andrew Hopkins Manufacturing process for thermoelectric generator
WO2009045862A3 (en) * 2007-09-28 2009-11-05 Battelle Memorial Institute Thermoelectric devices
WO2009045862A2 (en) * 2007-09-28 2009-04-09 Battelle Memorial Institute Thermoelectric devices
WO2010007110A3 (en) * 2008-07-16 2010-11-18 Leibniz-Institut Für Festkörper- Und Werkstoffforschung Dresden E.V. Thermoelectric component and method for the production thereof
WO2010007110A2 (en) * 2008-07-16 2010-01-21 Leibniz-Institut Für Festkörper- Und Werkstoffforschung Dresden E.V. Thermoelectric component and method for the production thereof
JP2010135643A (en) * 2008-12-05 2010-06-17 Toshiba Corp Thermoelectric conversion device, thermoelectric power generation system, and thermoelectric power generation method
US8198527B2 (en) 2008-12-08 2012-06-12 Perpetua Power Source Technologies, Inc. Field-deployable electronics platform having thermoelectric power source and electronics module
DE102012105743A1 (en) * 2012-06-29 2014-01-02 Elringklinger Ag Heat shielding device with thermoelectric energy use
EP2733757A3 (en) * 2012-11-20 2014-06-11 Astrium GmbH Thermoelectric thin film generator

Also Published As

Publication number Publication date
JP4334878B2 (en) 2009-09-30

Similar Documents

Publication Publication Date Title
JP4334878B2 (en) Thermoelectric conversion device unit
JP4345279B2 (en) Method for manufacturing thermoelectric conversion device
US6043423A (en) Thermoelectric device and thermoelectric module
TWI382507B (en) Semiconductor package
JP2013508983A (en) Planar thermoelectric generator
US20180175272A1 (en) Thermoelectric conversion module
JP2781608B2 (en) Thermoelectric converter
JP2008060488A (en) One-side electrode thermoelectric conversion module
JP4622577B2 (en) Cascade module for thermoelectric conversion
US10553773B2 (en) Flexible encapsulation of a flexible thin-film based thermoelectric device with sputter deposited layer of N-type and P-type thermoelectric legs
JP2005328000A (en) Thermoelectric conversion device
US10566515B2 (en) Extended area of sputter deposited N-type and P-type thermoelectric legs in a flexible thin-film based thermoelectric device
JP6431992B2 (en) Thermoelectric conversion element and thermoelectric conversion module
JP2007123530A (en) Thermoelectric conversion device and manufacturing method thereof
JP6174246B2 (en) Thermoelectric conversion element, thermoelectric conversion module, and method of manufacturing thermoelectric conversion element
JP4275399B2 (en) Thermoelectric conversion device, thermoelectric conversion device unit, and method of manufacturing thermoelectric conversion device
US20160247995A1 (en) Thermoelectric converter having thermoelectric conversion elements connected to each other via wiring pattern, and method for fabricating the thermoelectric converter
JP6505585B2 (en) Thermoelectric conversion element
US20200203592A1 (en) Electric power generation from a thin-film based thermoelectric module placed between each hot plate and cold plate of a number of hot plates and cold plates
US10367131B2 (en) Extended area of sputter deposited n-type and p-type thermoelectric legs in a flexible thin-film based thermoelectric device
JP2004179480A (en) Thin film thermoelectric element and its manufacturing method
CN109841725B (en) Thermoelectric module board and thermoelectric module assembly comprising same
US11024789B2 (en) Flexible encapsulation of a flexible thin-film based thermoelectric device with sputter deposited layer of N-type and P-type thermoelectric legs
US20210249579A1 (en) Flexible encapsulation of a flexible thin-film based thermoelectric device with sputter deposited layer of n-type and p-type thermoelectric legs
US20210249580A1 (en) Flexible encapsulation of a flexible thin-film based thermoelectric device with sputter deposited layer of n-type and p-type thermoelectric legs

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20050928

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20081020

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20081028

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20081203

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20090106

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20090209

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20090317

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20090410

A911 Transfer to examiner for re-examination before appeal (zenchi)

Free format text: JAPANESE INTERMEDIATE CODE: A911

Effective date: 20090520

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20090609

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20090624

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120703

Year of fee payment: 3

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

LAPS Cancellation because of no payment of annual fees