JP2004241611A - Method for controlling projecting optical system in charged particle ray exposure device - Google Patents

Method for controlling projecting optical system in charged particle ray exposure device Download PDF

Info

Publication number
JP2004241611A
JP2004241611A JP2003029354A JP2003029354A JP2004241611A JP 2004241611 A JP2004241611 A JP 2004241611A JP 2003029354 A JP2003029354 A JP 2003029354A JP 2003029354 A JP2003029354 A JP 2003029354A JP 2004241611 A JP2004241611 A JP 2004241611A
Authority
JP
Japan
Prior art keywords
image
change
rotation
charged particle
optical system
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2003029354A
Other languages
Japanese (ja)
Inventor
Hiroyasu Shimizu
弘泰 清水
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nikon Corp
Original Assignee
Nikon Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nikon Corp filed Critical Nikon Corp
Priority to JP2003029354A priority Critical patent/JP2004241611A/en
Publication of JP2004241611A publication Critical patent/JP2004241611A/en
Pending legal-status Critical Current

Links

Images

Landscapes

  • Electron Beam Exposure (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a method for controlling a projecting optical system in a charged particle ray exposure device which does not cause a change of image magnification or the rotation of an image even when an image forming position is changed in accordance with the variation of a surface to be exposed. <P>SOLUTION: When the necessity of a change of an image forming position only by dF, the necessity of a change of image magnification only by dM and the necessity of a change of image rotation only by dR are simultaneously generated, and the surface to be exposed is changed only by dh; currents allowed to flow into three correction lenses L1, L2 and L3 are changed only by dI<SB>1</SB>, dI<SB>2</SB>and dI<SB>3</SB>determined by an expression (3) shown in Fig. <P>COPYRIGHT: (C)2004,JPO&NCIPI

Description

【0001】
【発明の属する技術分野】
本発明は、3個以上の補正レンズにより、投影光学系における結像位置、像の回転、像倍率を制御する機能を有し、レチクルに形成されたパターンをウエハ等の感応基板に露光転写する荷電粒子線露光装置における投影光学系の制御方法に関するものである。
【0002】
【従来の技術】
半導体デバイスの高密度化に伴い、その製造工程においてレチクルからウエハに露光転写すべきパターンが微細化している。このような微細なパターンを露光転写するには、光学式露光転写装置ではその解像度が不足しており、光学式露光転写装置に変わるものとして、電子線等の荷電粒子線を使用した露光転写装置の開発が進められている。
【0003】
荷電粒子線露光装置においては、荷電粒子線源から放出された荷電粒子を、照明光学系を介してレチクル上に照射して照明し、レチクルに形成されたパターンを、投影光学系を介してウエハ上に結像させることにより、露光転写を行っている。
【0004】
図1に荷電粒子線露光装置の1例の概要を示す。荷電粒子線源1から放出された荷電粒子線2は第1照射レンズ3によって成形開口4を照射する。成形開口4を通過した荷電粒子線2は第2照射レンズ5および第3照射レンズ6により成形開口像をレチクル7上に結像する。レチクル7上には転写すべきパターンが形成されており、レチクル7を通過した荷電粒子線2は第1投影レンズ8及び第2投影レンズ9によってウエハ上のレジストなどの被露光物10上にレチクル7の像を結像する。
【0005】
荷電粒子線露光装置では通常、レチクルを1mm角程度に分割し、被露光物上には1/4程度に縮小して露光転写している。従って像の大きさは0.25mm角程度になっている。このような1度に露光される露光領域をサブフィールドといい、サブフィールドをつなぎあわせて全体の像、例えば半導体デバイスのパターンを形成する。
【0006】
このような荷電粒子線露光装置においては、上述のように、露光はサブフィールド毎に行われるが、サブフィールド毎に、形成されたパターンの占有率が異なり、従ってレチクル7を透過する荷電粒子線の量が異なってくる。そのために、サブフィールド毎にクーロン効果が異なり、そのままでは結像位置がサブフィールド毎に異なる現象が発生する。よって、予め計算されたサブフィールドのパターンの占有率に応じて、投影光学系の焦点位置を調整してやる必要がある。
【0007】
さらに、サブフィールド毎に露光を行っていく場合、投影光学系の光軸から異なった位置にあるサブフィールドを露光するために、偏向器を用いて荷電粒子線を偏向させる。そのとき、この偏向に伴って焦点合わせを行うが、それに伴って像の回転や倍率変動が発生するので、これらについても投影光学系により調整を行う必要がある。
加えて、例えば露光されるウエハ等の被露光物10の表面には、各種のプロセスにより歪みが生じ、ウエハホルダに吸着したとしても、被露光面の高さは一様になっていない。またウエハステージの高速化に伴い、ウエハステージが移動する際に上下方向に高さ変動が発生する。これに対する対応策として、高さセンサ等で被露光面の高さを測定して、それに合わせて投影光学系の結像位置を調整することが行われている。
【0008】
従って、上記結像位置、像の回転、像倍率を独立に制御可能とするために、通常の荷電粒子線露光装置には、最低3個の補正用レンズL1、L2、L3が設けられている。一般に荷電粒子線のレンズには、磁界を制御するものと電界を制御するものとがあるが、本発明において両者を区別する必要はないので、本欄及び発明の実施の形態の欄においては、レンズは磁界を制御するものであるとして説明する。本発明が、電界を制御する方式のレンズを用いた荷電粒子線露光装置を含むものであることは言うまでもない。
【0009】
結像位置、像の回転、像倍率を補正レンズにより制御するには、以下のような方法が採用されている。補正レンズはL1、L2、L3の3個が設けられているものとして、それらに流す励磁電流をそれぞれI、I、Iとする(実際にはATが問題となるので、電流の単位はATとする)。
【0010】
まず、補正レンズL1のみに単位電流を流して励磁し、そのときの結像位置の変化量を∂F/∂I、像倍率の変化量を∂M/∂I、像の回転量の変化量を∂R/∂Iとする。同様、補正レンズL2のみに単位電流を流して励磁し、そのときの結像位置の変化量を∂F/∂I、像倍率の変化量を∂M/∂I、像の回転量の変化量を∂R/∂Iとする。さらに、補正レンズL3のみに単位電流を流して励磁し、そのときの結像位置の変化量を∂F/∂I、像倍率の変化量を∂M/∂I、像の回転量の変化量を∂R/∂Iとする。
【0011】
すると、各々の補正レンズ流す電流を、それぞれdI、dI、dIだけ変化させたときの結像位置の変化量dF、像倍率の変化量dM、像の回転の変化量dRは、以下の(1)式により与えられる。
【0012】
【数1】

Figure 2004241611
【0013】
逆に言えば、dFだけの結像位置変化、dMだけの像倍率の変化、dRだけの像の回転の変化の必要が同時に生じたときには、各補正レンズL1、L2、L3に流す電流を(2)式で決定されるdI、dI、dIだけ変化させてやればよいことになる。
【0014】
【数2】
Figure 2004241611
【0015】
である。
【0016】
【発明が解決しようとする課題】
前記(2)式は、クーロン効果、偏向像面湾曲等を補正して、所定の結像位置にレチクルの像を結像させるための補正量を計算する式である。よって、ウエハ等の被露光面が、設計位置にある場合には、(2)式により算出された補正量を各補正レンズに加えることで、結像位置、像倍率、像の回転を適正なものにすることができる。しかしながら、実際の露光においては、被露光面が光軸方向にdhだけずれる場合がある。このような場合、もし、テレセン性が完全に保たれていれば、被露光面の変化に対応して、結像位置を変化させるようにすればよい。しかし、テレセン性が保たれていない場合には、結像位置が変化することにより像倍率の変化や像の回転の変化が発生する。
前述のように、実際の露光においては、予め求められたサブフィールドのパターンの占有率に対応して焦点位置を変化させ、かつ、偏向量に対応して像の回転や倍率変動が発生するのを防ぐような調整を行うと共に、焦点位置については、実際の被露光物の高さを測定して、それに合わせて焦点位置を調整している。しかし、結像位置が変化することによって、像倍率の変化や像の回転の変化が起こっても、これをリアルタイムに測定するのは非現実的であるので、補正が困難である。
【0017】
露光されるサブフィールドが小さい場合、又はパターン線幅が大きい場合は、像倍率や像の回転が多少変化し、その結果、形成されるパターンの形状やボケが多少変化しても無視できる。しかし、サブフィールドが大きくなったり、パターンの線幅が狭くなったりした場合には、この変化が、形成されるパターンの形状やボケに無視できないような影響を及ぼす。
【0018】
本発明はこのような事情に鑑みてなされたもので、被露光面の高さが標準位置から変化した場合でも、形成されるパターンに悪影響を及ぼすことが少ない荷電粒子線露光装置における投影光学系の制御方法を提供することを課題とする。
【0019】
【課題を解決するための手段】
前記課題を解決するための第1の手段は、3個以上の補正レンズにより、投影光学系における結像位置、像の回転、像倍率を制御する機能を有し、レチクルに形成されたパターンをウエハ等の感応基板に露光転写する荷電粒子線露光装置における投影光学系の制御方法であって、前記感応基板の光軸方向位置が基準位置から変化した場合に、それに合わせて、前記結像位置に加えて、前記像の回転、前記像倍率を調整することを特徴とするもの(請求項1)である。
【0020】
本手段においては、従来技術のように、感応基板の光軸方向位置が基準位置から変化した場合に、それに合わせて結像位置を変化させるのみでなく、この結像位置の変化に伴って発生する像の回転量の変化、像倍率の変化を同時に補正している。よって、像の回転量の変化、像倍率の変化が補正され、像の回転量の変化、像倍率の変化が小さく抑えられるので、微細なパターンであっても、またサブフィールドが広い場合であっても、精度よく露光転写を行うことができる。
前記課題を解決するための第2の手段は、前記第1の手段であって、予め、結像位置をΔFだけ変化させたときの、像倍率の変化ΔM、像の回転の変化ΔRから、前記感応基板の光軸方向位置が基準位置から単位量だけ変化した場合の像の回転の変化量、像倍率の変化量を求めておき、前記感応基板の光軸方向位置が基準位置から変化した場合に、これらの値に基づいて、前記結像位置に加えて、前記像の回転、前記像倍率を調整することを特徴とするもの(請求項2)である。本手段においては、予め、クーロン効果や偏向像面湾曲等を補償して、感応基板に結像位置を合わせる等のために、結像位置をΔFだけ変化させたときの、像倍率の変化ΔM、像の回転の変化ΔRから、前記感応基板の光軸方向位置が基準位置から単位量だけ変化した場合の像の回転の変化量、像倍率の変化量を求めておく。そして、感応基板の光軸方向位置が基準位置からΔhだけ変化した場合に、それに合わせて結像位置を変化させるのみでなく、これらの値に基づいて、調整すべき像の回転、前記像倍率の大きさを求め、それに合わせて前記像倍率、前記像の回転を調整するようにしている。よって、正確に像倍率、像の回転の補正ができ、これらの変化を小さく抑えることができる。
【0021】
【発明の実施の形態】
以下、本発明の実施の形態の例を説明する。本実施の形態が前提とする荷電粒子露光装置は図1に示す従来技術のものと同じであるので、その構成、作用については説明を省略する。
【0022】
本実施の形態においては、従来技術が前提として行っていたような各補正レンズL1、L2、L3の励磁電流を単位量変化させたときの像面位置、像倍率、像の回転の量の測定の他に、像面位置が単位量変化した場合の像倍率の変化量、像の回転の変化量を測定し、この値をそれぞれ∂M/∂h、∂R/∂hとしておく。そして、従来と同じ理由により、クーロン効果、偏向量等に応じて、像面位置をdF、像倍率をdM、像の回転量をdR変えなくてはならず、かつ、被露光面の変化dhがあるような場合には、各補正レンズL1、L2、L3に流す電流I、I、Iを、従来の(2)式に代えて、以下の(3)式により、それぞれdI、dI、dI変化させる。
【0023】
【数3】
Figure 2004241611
【0024】
【数4】
Figure 2004241611
は、焦点位置、像の回転を変化させずにΔMだけの像倍率の変化を与えるために必要な、各コイルに流す電流を意味し、
【数5】
Figure 2004241611
は、焦点位置、像倍率を変化させずにΔRだけの像の回転を与えるために、各コイルに流す電流を意味する。これらの値は、
【数6】
Figure 2004241611
の要素として求める。
このように、本実施の形態では、被露光面の光軸方向位置がdhずれたときに、結像位置のみでなく、像の回転、像の倍率を併せて調整しているので、被露光面が変動し、それに併せて結像位置を調整しても、像倍率の変化や像の回転量の変化が小さく抑えられ、従って、微細なパターンでも正確に露光転写を行うことができる。
【0025】
【発明の効果】
以上説明したように、本発明によれば、被露光面の変動に合わせて結像位置を変化させた場合でも、像倍率や像の回転を小さく抑え、その結果、形成されるパターンに悪影響を及ぼすことが少ない荷電粒子線露光装置における投影光学系の制御方法を提供することができる。
【図面の簡単な説明】
【図1】荷電粒子線露光装置の1例の概要を示す図である。
【符号の説明】
1…荷電粒子線源、2…荷電粒子線、3…第1照射レンズ、4…成形開口、5…第2照射レンズ、6…第3照射レンズ、7…レチクル、8…第1投影レンズ、9…第2投影レンズ、10…被露光物、[0001]
TECHNICAL FIELD OF THE INVENTION
The present invention has a function of controlling an image forming position, image rotation, and image magnification in a projection optical system by three or more correction lenses, and exposes and transfers a pattern formed on a reticle to a sensitive substrate such as a wafer. The present invention relates to a method for controlling a projection optical system in a charged particle beam exposure apparatus.
[0002]
[Prior art]
With the increase in the density of semiconductor devices, patterns to be exposed and transferred from a reticle to a wafer in the manufacturing process have become finer. To expose and transfer such a fine pattern, the resolution of the optical exposure transfer apparatus is insufficient, and as an alternative to the optical exposure transfer apparatus, an exposure transfer apparatus using a charged particle beam such as an electron beam. Is being developed.
[0003]
In a charged particle beam exposure apparatus, charged particles emitted from a charged particle beam source are irradiated on a reticle via an illumination optical system to illuminate the reticle, and a pattern formed on the reticle is projected onto a wafer via a projection optical system. Exposure transfer is performed by forming an image thereon.
[0004]
FIG. 1 shows an outline of an example of a charged particle beam exposure apparatus. The charged particle beam 2 emitted from the charged particle beam source 1 irradiates the shaped aperture 4 by the first irradiation lens 3. The charged particle beam 2 having passed through the shaping aperture 4 forms a shaping aperture image on the reticle 7 by the second irradiation lens 5 and the third irradiation lens 6. A pattern to be transferred is formed on the reticle 7, and the charged particle beam 2 passing through the reticle 7 is reticle-formed on a wafer 10 such as a resist on a wafer by a first projection lens 8 and a second projection lens 9. Image 7 is formed.
[0005]
In a charged particle beam exposure apparatus, usually, a reticle is divided into approximately 1 mm square, and the reticle is exposed and transferred on an object to be exposed by reducing it to about 1/4. Therefore, the size of the image is about 0.25 mm square. Such an exposure area exposed at one time is called a subfield, and the subfields are connected to form an entire image, for example, a pattern of a semiconductor device.
[0006]
In such a charged particle beam exposure apparatus, as described above, exposure is performed for each subfield, but the occupation ratio of the formed pattern is different for each subfield, and therefore, the charged particle beam transmitted through the reticle 7 is different. The amount will be different. Therefore, the Coulomb effect differs for each subfield, and a phenomenon occurs in which the imaging position differs for each subfield as it is. Therefore, it is necessary to adjust the focal position of the projection optical system in accordance with the subfield pattern occupancy calculated in advance.
[0007]
Further, when exposure is performed for each subfield, the charged particle beam is deflected using a deflector in order to expose subfields located at different positions from the optical axis of the projection optical system. At this time, focusing is performed in accordance with the deflection, but rotation and magnification fluctuation of the image occur in accordance with the deflection. Therefore, it is necessary to adjust these by the projection optical system.
In addition, for example, the surface of the exposure target 10 such as a wafer to be exposed is distorted by various processes, and even if the surface is exposed to the wafer holder, the height of the exposure target surface is not uniform. Further, as the speed of the wafer stage increases, the height of the wafer stage moves vertically when the wafer stage moves. As a countermeasure against this, the height of the surface to be exposed is measured by a height sensor or the like, and the image forming position of the projection optical system is adjusted accordingly.
[0008]
Therefore, in order to be able to independently control the image forming position, image rotation, and image magnification, a normal charged particle beam exposure apparatus is provided with at least three correction lenses L1, L2, and L3. . In general, charged particle beam lenses include those that control a magnetic field and those that control an electric field, but it is not necessary to distinguish between them in the present invention, so in this section and in the section of the embodiment of the invention, The lens will be described as controlling the magnetic field. It goes without saying that the present invention includes a charged particle beam exposure apparatus using a lens of a system for controlling an electric field.
[0009]
The following method is used to control the image formation position, image rotation, and image magnification by the correction lens. Assuming that three correction lenses L1, L2, and L3 are provided, the exciting currents flowing through them are I 1 , I 2 , and I 3 , respectively (actually, AT is a problem. Is AT).
[0010]
First, a unit current is applied to only the correction lens L1 to excite it. At that time, the amount of change in the imaging position is ∂F / ∂I 1 , the amount of change in the image magnification is ∂M / ∂I 1 , and the amount of rotation of the image is the variation and ∂R / ∂I 1. Similarly, a unit current is applied to only the correction lens L2 to excite it. At that time, the change amount of the imaging position is ΔF / ∂I 2 , the change amount of the image magnification is ∂M / ∂I 2 , and the rotation amount of the image is The change amount is set to ∂R / ∂I 2 . Further, a unit current is applied to only the correction lens L3 to excite it. At that time, the amount of change in the imaging position is ∂F / ∂I 3 , the amount of change in the image magnification is ∂M / ∂I 3 , and the amount of image rotation is the variation and ∂R / ∂I 3.
[0011]
Then, when the current flowing through each correction lens is changed by dI 1 , dI 2 , and dI 3 , the change amount dF of the imaging position, the change amount dM of the image magnification, and the change amount dR of the image rotation are as follows. Given by equation (1).
[0012]
(Equation 1)
Figure 2004241611
[0013]
Conversely, when it is necessary to simultaneously change the imaging position by dF, change the image magnification by dM, and change the rotation of the image by dR, the current flowing through each of the correction lenses L1, L2, and L3 is ( It suffices to change only dI 1 , dI 2 , and dI 3 determined by equation (2).
[0014]
(Equation 2)
Figure 2004241611
[0015]
It is.
[0016]
[Problems to be solved by the invention]
The above equation (2) is an equation for calculating a correction amount for forming an image of a reticle at a predetermined image forming position by correcting the Coulomb effect, deflection field curvature, and the like. Therefore, when the exposure surface such as a wafer is at the design position, the correction amount calculated by the equation (2) is added to each correction lens, so that the image formation position, the image magnification, and the rotation of the image are properly adjusted. Can be something. However, in actual exposure, the surface to be exposed may be shifted by dh in the optical axis direction. In such a case, if the telecentricity is completely maintained, the imaging position may be changed in accordance with the change of the surface to be exposed. However, when telecentricity is not maintained, a change in image position causes a change in image magnification and a change in image rotation.
As described above, in the actual exposure, the focus position is changed in accordance with the occupation ratio of the pattern of the subfield determined in advance, and the rotation and magnification of the image occur in accordance with the amount of deflection. The focus position is adjusted by measuring the actual height of the object to be exposed and adjusting the focus position accordingly. However, even if a change in the image position causes a change in the image magnification or a change in the rotation of the image, it is impractical to measure the change in real time, so that it is difficult to correct it.
[0017]
When the subfield to be exposed is small or when the pattern line width is large, the image magnification and the rotation of the image slightly change. As a result, even if the shape or blur of the formed pattern slightly changes, it can be ignored. However, when the subfield becomes large or the line width of the pattern becomes narrow, this change has a considerable effect on the shape and blur of the formed pattern.
[0018]
The present invention has been made in view of such circumstances, and even when the height of a surface to be exposed changes from a standard position, a projection optical system in a charged particle beam exposure apparatus that does not adversely affect a pattern to be formed. It is an object to provide a control method of
[0019]
[Means for Solving the Problems]
A first means for solving the above-mentioned problem has a function of controlling an image formation position, an image rotation, and an image magnification in a projection optical system by using three or more correction lenses, and is capable of controlling a pattern formed on a reticle. A method of controlling a projection optical system in a charged particle beam exposure apparatus that performs exposure transfer on a sensitive substrate such as a wafer, wherein when the optical axis direction position of the sensitive substrate changes from a reference position, the image forming position is adjusted accordingly. In addition to the above, the rotation of the image and the image magnification are adjusted (claim 1).
[0020]
According to this means, when the position of the sensitive substrate in the optical axis direction changes from the reference position as in the related art, not only does the image forming position change in accordance with the change, but also a change in the image forming position occurs. The change in the amount of rotation of the image and the change in the image magnification are simultaneously corrected. Therefore, the change in the image rotation amount and the change in the image magnification are corrected, and the change in the image rotation amount and the change in the image magnification are suppressed to a small value. However, exposure transfer can be performed with high accuracy.
A second means for solving the above-mentioned problem is the first means, wherein a change in the image magnification ΔM and a change in the rotation of the image ΔR when the imaging position is changed by ΔF in advance, The amount of change in image rotation and the amount of change in image magnification when the optical axis direction position of the sensitive substrate has changed by a unit amount from the reference position have been obtained, and the optical axis direction position of the sensitive substrate has changed from the reference position. In this case, the rotation of the image and the image magnification are adjusted based on these values in addition to the imaging position (claim 2). In this means, the change in image magnification ΔM when the image formation position is changed by ΔF in order to compensate the Coulomb effect, the deflection field curvature and the like in advance and adjust the image formation position to the sensitive substrate, etc. From the change ΔR in image rotation, the amount of change in image rotation and the amount of change in image magnification when the position of the sensitive substrate in the optical axis direction changes by a unit amount from the reference position are determined in advance. When the position of the sensitive substrate in the optical axis direction changes from the reference position by Δh, not only the image forming position is changed accordingly, but also the rotation of the image to be adjusted based on these values, the image magnification, Is determined, and the image magnification and the rotation of the image are adjusted accordingly. Therefore, the image magnification and the rotation of the image can be accurately corrected, and these changes can be suppressed to a small value.
[0021]
BEST MODE FOR CARRYING OUT THE INVENTION
Hereinafter, embodiments of the present invention will be described. Since the charged particle exposure apparatus according to the present embodiment is the same as the conventional apparatus shown in FIG. 1, the description of the configuration and operation thereof will be omitted.
[0022]
In this embodiment, the measurement of the image plane position, the image magnification, and the amount of image rotation when the excitation current of each of the correction lenses L1, L2, and L3 is changed by a unit amount, which is performed as a premise of the related art. In addition, the amount of change in image magnification and the amount of change in image rotation when the image plane position changes by a unit amount are measured, and these values are set as ΔM / Δh and ΔR / Δh, respectively. For the same reason as in the prior art, it is necessary to change the image plane position by dF, the image magnification by dM, the image rotation amount by dR according to the Coulomb effect, the amount of deflection, and the like, and the change dh of the surface to be exposed. In such a case, the currents I 1 , I 2 , and I 3 flowing through the correction lenses L1, L2, and L3 are respectively set to dI 1 by the following equation (3) instead of the conventional equation (2). , DI 2 , dI 3 .
[0023]
[Equation 3]
Figure 2004241611
[0024]
(Equation 4)
Figure 2004241611
Means a current flowing through each coil, which is required to change the image magnification by ΔM without changing the focus position and the rotation of the image,
(Equation 5)
Figure 2004241611
Means a current flowing through each coil in order to rotate the image by ΔR without changing the focal position and the image magnification. These values are
(Equation 6)
Figure 2004241611
As an element of
As described above, in the present embodiment, when the position of the surface to be exposed is shifted in the optical axis direction by dh, not only the image formation position but also the rotation of the image and the magnification of the image are adjusted together. Even if the surface fluctuates and the imaging position is adjusted accordingly, the change in image magnification and the change in the amount of rotation of the image can be suppressed to a small degree, and therefore, exposure and transfer can be accurately performed even with a fine pattern.
[0025]
【The invention's effect】
As described above, according to the present invention, even when the image forming position is changed in accordance with the fluctuation of the surface to be exposed, the image magnification and the rotation of the image are suppressed small, and as a result, the formed pattern is adversely affected. It is possible to provide a method of controlling a projection optical system in a charged particle beam exposure apparatus that has little effect.
[Brief description of the drawings]
FIG. 1 is a diagram showing an outline of an example of a charged particle beam exposure apparatus.
[Explanation of symbols]
DESCRIPTION OF SYMBOLS 1 ... charged particle beam source, 2 ... charged particle beam, 3 ... 1st irradiation lens, 4 ... shaping aperture, 5 ... 2nd irradiation lens, 6 ... 3rd irradiation lens, 7 ... reticle, 8 ... 1st projection lens, 9: second projection lens, 10: object to be exposed,

Claims (2)

3個以上の補正レンズにより、投影光学系における結像位置、像の回転、像倍率を制御する機能を有し、レチクルに形成されたパターンをウエハ等の感応基板に露光転写する荷電粒子線露光装置における投影光学系の制御方法であって、前記感応基板の光軸方向位置が基準位置から変化した場合に、それに合わせて、前記結像位置に加えて、前記像の回転、前記像倍率を調整することを特徴とする荷電粒子線露光装置における投影光学系の制御方法。Charged particle beam exposure for exposing and transferring the pattern formed on the reticle to a sensitive substrate such as a wafer, with the function of controlling the image formation position, image rotation and image magnification in the projection optical system by three or more correction lenses A control method of a projection optical system in an apparatus, wherein when the position of the sensitive substrate in the optical axis direction changes from a reference position, in addition to the imaging position, the rotation of the image and the image magnification are adjusted accordingly. A method for controlling a projection optical system in a charged particle beam exposure apparatus, characterized by adjusting. 請求項1に記載の荷電粒子線露光装置における投影光学系の制御方法であって、予め、結像位置をΔFだけ変化させたときの、像倍率の変化ΔM、像の回転の変化ΔRから、前記感応基板の光軸方向位置が基準位置から単位量だけ変化した場合の像の回転の変化量、像倍率の変化量を求めておき、前記感応基板の光軸方向位置が基準位置から変化した場合に、これらの値に基づいて、前記結像位置に加えて、前記像の回転、前記像倍率を調整することを特徴とする荷電粒子線露光装置における投影光学系の制御方法。2. A method for controlling a projection optical system in a charged particle beam exposure apparatus according to claim 1, wherein a change in image magnification ΔM and a change in image rotation ΔR when the image forming position is changed by ΔF in advance. The amount of change in image rotation and the amount of change in image magnification when the optical axis direction position of the sensitive substrate has changed from the reference position by a unit amount have been determined, and the optical axis direction position of the sensitive substrate has changed from the reference position. A method of controlling a projection optical system in a charged particle beam exposure apparatus, comprising adjusting the rotation of the image and the image magnification in addition to the imaging position based on these values.
JP2003029354A 2003-02-06 2003-02-06 Method for controlling projecting optical system in charged particle ray exposure device Pending JP2004241611A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2003029354A JP2004241611A (en) 2003-02-06 2003-02-06 Method for controlling projecting optical system in charged particle ray exposure device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2003029354A JP2004241611A (en) 2003-02-06 2003-02-06 Method for controlling projecting optical system in charged particle ray exposure device

Publications (1)

Publication Number Publication Date
JP2004241611A true JP2004241611A (en) 2004-08-26

Family

ID=32956553

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2003029354A Pending JP2004241611A (en) 2003-02-06 2003-02-06 Method for controlling projecting optical system in charged particle ray exposure device

Country Status (1)

Country Link
JP (1) JP2004241611A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005268788A (en) * 2004-03-15 2005-09-29 Ims Nanofabrication Gmbh Particle-optical projection device
WO2021100463A1 (en) * 2019-11-21 2021-05-27 株式会社ニューフレアテクノロジー Multi-charged particle beam adjustment method, multi-charged particle beam emission method, and multi-charged particle beam emission device

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005268788A (en) * 2004-03-15 2005-09-29 Ims Nanofabrication Gmbh Particle-optical projection device
WO2021100463A1 (en) * 2019-11-21 2021-05-27 株式会社ニューフレアテクノロジー Multi-charged particle beam adjustment method, multi-charged particle beam emission method, and multi-charged particle beam emission device
TWI791173B (en) * 2019-11-21 2023-02-01 日商紐富來科技股份有限公司 Multi-charged particle beam adjustment method, multi-charged particle beam irradiation method, and multi-charged particle beam irradiation apparatus
US11804360B2 (en) 2019-11-21 2023-10-31 Nuflare Technology, Inc. Multi charged particle beam adjustment method, multi charged particle beam irradiation method, and multi charged particle beam irradiation apparatus
JP7400830B2 (en) 2019-11-21 2023-12-19 株式会社ニューフレアテクノロジー Multi-charged particle beam adjustment method, multi-charged particle beam irradiation method, and multi-charged particle beam irradiation device

Similar Documents

Publication Publication Date Title
JP5116996B2 (en) Charged particle beam drawing method, exposure apparatus, and device manufacturing method
JP2002075830A (en) Charged-particle beam exposure method, reticle and manufacturing method of device
JP3599629B2 (en) Illumination optical system and exposure apparatus using the illumination optical system
JP2004193516A (en) Charged-particle beam exposure apparatus, and control method thereof
US20040157143A1 (en) Exposure method and lithography system, exposure apparatus and method of making the apparatus, and method of manufacturing device
US6528806B1 (en) Charged-particle-beam microlithography apparatus, reticles, and methods for reducing proximity effects, and device-manufacturing methods comprising same
US6027843A (en) Charged-particle-beam microlithography methods including correction of imaging faults
JPH09320931A (en) Method for measuring imaging characteristic and transfer device by the method
JP2008004596A (en) Charged particle beam drawing method, aligner, and process for fabricating device
US5663568A (en) Apparatus for controlling a charged particle beam and a lithographic process in which the apparatus is used
US7034314B2 (en) Projection apparatus for projecting a pattern formed on a mask onto a substrate and a control method for a projection apparatus
US7394068B2 (en) Mask inspection apparatus, mask inspection method, and electron beam exposure system
TW543107B (en) Electron beam exposure apparatus, exposing method by electron beam, manufacturing method of semiconductor device, and detecting method of electron beam shape
JP2005032837A (en) Method for charged particle beam lithography and method of manufacturing device using the same
JP2004241611A (en) Method for controlling projecting optical system in charged particle ray exposure device
JP2006344614A (en) Exposure method and exposure apparatus
JP3697494B2 (en) Beam edge blur measurement method and refocus amount determination method, stencil mask used in these methods, and charged particle beam exposure method and apparatus
JP2001244165A (en) Method for correcting proximity effect, reticle, and method of manufacturing device
US6831260B2 (en) Electron beam exposure apparatus, reduction projection system, and device manufacturing method
JP2003077798A (en) Proximity effect correcting method and device manufacturing method
JP3282324B2 (en) Charged particle beam exposure method
JP4356064B2 (en) Charged particle beam exposure apparatus and device manufacturing method using the apparatus
JP2000323376A (en) Electron beam transfer exposure method and device manufacture using the same
JP4494734B2 (en) Charged particle beam drawing method, charged particle beam exposure apparatus, and device manufacturing method
JP4402529B2 (en) Charged particle beam exposure method, charged particle beam exposure apparatus and device manufacturing method