JP2004239716A - Mounting structure of temperature sensor - Google Patents

Mounting structure of temperature sensor Download PDF

Info

Publication number
JP2004239716A
JP2004239716A JP2003028126A JP2003028126A JP2004239716A JP 2004239716 A JP2004239716 A JP 2004239716A JP 2003028126 A JP2003028126 A JP 2003028126A JP 2003028126 A JP2003028126 A JP 2003028126A JP 2004239716 A JP2004239716 A JP 2004239716A
Authority
JP
Japan
Prior art keywords
temperature sensor
flange
nut
boss
female screw
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2003028126A
Other languages
Japanese (ja)
Inventor
Takeshi Hanzawa
剛 半沢
Masahiko Nishi
雅彦 西
Masaki Iwatani
雅樹 岩谷
Takaaki Chiyousokabe
孝昭 長曽我部
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Niterra Co Ltd
Original Assignee
NGK Spark Plug Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by NGK Spark Plug Co Ltd filed Critical NGK Spark Plug Co Ltd
Priority to JP2003028126A priority Critical patent/JP2004239716A/en
Publication of JP2004239716A publication Critical patent/JP2004239716A/en
Pending legal-status Critical Current

Links

Images

Landscapes

  • Measuring Temperature Or Quantity Of Heat (AREA)
  • Exhaust Silencers (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide mounting structure of a temperature sensor which can maintain high hermeticity irrespective of temperature change by preventing screw looseness of a nut. <P>SOLUTION: In the mounting structure of a temperature sensor for attaching a temperature sensor in a waste gas tubing 20, it is provided with a female screw part 211 wherein a female screw 211a is formed in the interior periphery, and a slot 212 located in the piping 20 side rather than the female screw part 211, in which a through hole 212b having a diameter smaller than the minimum diameter of the female screw part 211. The temperature sensor is provided with a flange 13 against which an inside wall and a tip of the through hole 212b can abut, and a nut 14 arranged on opposite side to the gas piping 20 rather than the flange 13, in which nut an external screw 14a which comes out thread-engagement to the female screw 211a is formed. Line coefficient of thermal expansion of the flange 13 is enlarged more than 2.5×10<SP>-6</SP>/<SP>o</SP>C from line coefficient of thermal expansion of a boss 21. <P>COPYRIGHT: (C)2004,JPO&NCIPI

Description

【0001】
【発明の属する技術分野】
本発明は温度センサの取付構造に関する。本発明の温度センサの取付構造は、車両の排気ガス管内の排気ガスの温度を検知するために用いて好適である。
【0002】
【従来の技術】
従来、特許文献1記載の温度センサの取付構造が知られている。この温度センサの取付構造は、車両の排気ガス管内の排気ガスの温度を検知すべく排気ガス管に温度センサを取付けるためのものである。排気ガス管は、雌ねじが形成された雌ねじ部と、雌ねじ部よりも排気ガス管側に位置し、雌ねじ部の最小径よりも小径の挿通孔が形成された挿通部とを備えたボスを有している。また、温度センサは、挿通孔の内壁と当接可能なフランジと、フランジよりも排気ガス管とは反対側に配置され、雌ねじと螺合する雄ねじが形成されたナットとを有している。そして、ナットに形成された雄ねじをボスの雌ねじに螺合させて締め付けることにより、フランジの先端がボスの挿通孔の内壁に押圧され、排気ガス管内の気密性が確保された状態で温度センサがボスに取り付けられる。特許文献1記載の取付構造では、これらボス、フランジ及びナットの各線熱膨張係数の差が2×10−6/°C以下にされている。
【0003】
この取付構造によれば、ボス、フランジ及びナットの各線熱膨張係数の差が2×10−6/°C以下にされているため、排気ガス管内の温度変化に伴うボス、フランジ及びナットの各熱変形量が略同一になる。そのため、排気ガス管内の排気ガスの温度変化や車両の振動にかかわらず、ナットのねじゆるみが防止され、気密性を保つことができると考えられる。これにより温度センサの検知精度を高い耐久性で維持できると考えられる。
【0004】
【特許文献1】
特開2002−122486号公報
【0005】
【発明が解決しようとする課題】
しかし、排気ガス管内の排気ガスの温度変化は非常に激しく、ナットのねじゆるみを防止するためには、高温になればなる程、ボスにナットが締め付けられることが好ましい。換言すれば、排気ガス管内において、排気ガスの温度が高くなればなる程、排気ガスの分子運動が激しくなるため、高温である程、高い気密性が要求される。この点、上記従来の温度センサの取付構造では、ボスにナットが締め付けられる程度が温度によってほぼ一定であるため、特に高温時(例えば600°C以上)において、ナットのねじゆるみが懸念される。つまり、温度変化にかかわらず気密性が略一定であるため、高温における気密性、ひいては検知精度が懸念される。
【0006】
また、排気ガス管内の排気ガスは非常に高温になるため、上記従来の温度センサの取付構造のように、ボス、フランジ及びナットの線熱膨張係数の差が2×10−6/°C以下であることを実現するためにこれらに同じ材料を使用したのでは、ボスとフランジとの間又はボスとナットとの間で凝着しやすく、焼付きが発生しやすい。この場合、温度センサ等の点検等が不便である。
【0007】
本発明は、上記従来の実情に鑑みてなされたものであって、高温において、より高い気密性を維持できるとともに、焼付きが発生し難い温度センサの取付構造を提供することを解決すべき課題としている。
【0008】
【課題を解決するための手段】
第1発明の温度センサの取付構造は、対象物内の流体の温度を検知すべく該対象物に温度センサを取付けるための温度センサの取付構造であって、該対象物は、雌ねじが形成された雌ねじ部と、該雌ねじ部よりも該対象物側に位置し、該雌ねじ部の最小径よりも小径の挿通孔が形成された挿通部とを備えたボスを有し、該温度センサは、該挿通孔の内壁と当接可能なフランジと、該フランジよりも該対象物とは反対側に配置され、該雌ねじと螺合する雄ねじが形成されたナットとを有する温度センサの取付構造において、
前記フランジの線熱膨張係数は前記ボスの線熱膨張係数より2.5×10−6/°C以上大きいことを特徴とする。
【0009】
第1発明の温度センサの取付構造では、フランジの線熱膨張係数がボスの線熱膨張係数より2.5×10−6/°C以上大きいため、対象物(例えば、排気ガス管)内の流体(例えば、排気ガス)の温度が高くなればなる程、フランジの熱変形量がボスの熱変形量より大きくなる。そのため、対象物内の流体の温度が高くなればなる程、より大きな力でフランジがボスの挿通孔の内壁に押圧され、対象物内の気密性が確保された状態で温度センサがボスに取り付けられる。他方、この際、ボスの雌ねじとナットの雄ねじとは螺合しており、ボスとナットとの相対移動量はそれほど大きくはない。そのため、排気ガス管内の温度が高くなればなる程、より大きな力でナットがボスに押圧されることとなる。つまり、排気ガス管内の温度が高くなればなる程、ボスに対するナットの軸方向の押圧力が増し、ナットのねじゆるみが防止される。こうして、この温度センサの取付構造では、高温における気密性が確保され、ひいては検知精度が向上する。
【0010】
また、この温度センサの取付構造では、ボスとフランジとに同じ材料を使用しないようにできるため、同じ材料を使用した場合に比べ、ボスとフランジとの間に焼付きが発生し難く、温度センサ等の点検等に支障を来すことはない。
【0011】
したがって、第1発明の温度センサの取付構造によれば、高温において、より高い気密性を維持できるとともに、焼付きが発生し難い。
【0012】
第2発明の温度センサの取付構造は、対象物内の流体の温度を検知すべく該対象物に温度センサを取付けるための温度センサの取付構造であって、該対象物は、雌ねじが形成された雌ねじ部と、該雌ねじ部よりも該対象物側に位置し、該雌ねじ部の最小径よりも小径の挿通孔が形成された挿通部とを備えたボスを有し、該温度センサは、該挿通孔の内壁と当接可能なフランジと、該フランジよりも該対象物とは反対側に配置され、該雌ねじと螺合する雄ねじが形成されたナットとを有する温度センサの取付構造において、
前記フランジの線熱膨張係数と前記ナットの線熱膨張係数との差は2.5×10−6/°C未満であり、前記ナットの線熱膨張係数は前記ボスの線熱膨張係数より2.5×10−6/°C以上大きいことを特徴とする。
【0013】
第2発明の温度センサの取付構造では、フランジの線熱膨張係数とナットの線熱膨張係数との差は2.5×10−6/°C未満であり、ナットの線熱膨張係数がボスの線熱膨張係数より2.5×10−6/°C以上大きい。つまり、フランジ、ナット及びボスの間において、ボスの線熱膨張係数が一番小さく、フランジの線熱膨張係数とナットの線熱膨張係数とはほとんど同じである。そのため、対象物内の流体の温度が高くなればなる程、より大きな力でフランジがボスの挿通孔の内壁に押圧され、対象物内の気密性が確保された状態で温度センサがボスに取り付けられる。他方、対象物内の流体の温度が高くなればなる程、フランジのみならずナットの熱変形量もボスの熱変形量より大きくなり、ナット自体がボスに押圧される。こうして、対象物内の流体の温度が高くなればなる程、ボスにナットが締め付けられ、ナットのねじゆるみが防止される。そのため、この温度センサの取付構造では、高温における気密性が確保され、ひいては検知精度が向上する。
【0014】
また、この温度センサの取付構造でも、ボスとナットとに同じ材料を使用しないようにできるため、同じ材料を使用した場合に比べ、ボスとナットとの間に焼付きが発生し難く、温度センサ等の点検等に支障を来すことはない。
【0015】
したがって、第2発明の温度センサの取付構造によっても、高温において、より高い気密性を維持できるとともに、焼付が発生し難い。
【0016】
第2発明の温度センサの取付構造においては、フランジ、ナット及びボスの順で線熱膨張係数が小さくなっていることが好ましい。つまり、フランジ、ナット及びボスの間において、ボスの線熱膨張係数が一番小さく、ナットの線熱膨張係数はフランジの線熱膨張係数より僅かに小さい。これにより、対象物内の流体の温度が高くなればなる程、フランジ及びナットの熱変形量がボスの熱変形量より大きくなるとともに、フランジの熱変形量がナットの熱変形量よりも僅かに大きくなる。そのため、対象物内の流体の温度が高くなればなる程、より大きな力でフランジがボスの挿通孔の内壁に押圧されるとともに、ナット自体が大きな力でボスに押圧され、より高い気密性を確保できる。
【0017】
第1発明及び第2発明の温度センサの取付構造においては、挿通孔の雌ねじ部側内壁には第1テーパ面が形成され、フランジには第1テーパ面と当接可能な第2テーパ面が形成され、第1テーパ面が雌ねじ部の軸直角方向(雌ねじ部の軸方向と直交する方向)となす角度は第2テーパ面が軸直角方向となす角度より大きいことが好ましい。これにより、第2テーパ面は、その円周方向長さのうち最も長い部分で第1テーパ面と当接することになる。そのため、ボスにナットを締め付ける際、フランジがボスに押圧される力が広範囲かつ均等に分散され、高い気密性を確保することができる。また、ボスからフランジに伝達される車両の振動が広範囲かつ均等に吸収されるため、車両の振動にかかわらず、高い気密性を確保することができる。
【0018】
第1発明及び第2発明の温度センサの取付構造においては、ボス、フランジ及びナットは、耐熱性を有するNi合金又はFe合金であることが好ましい。対象物が排気ガス管である場合には、排気ガス管内の流体である排気ガスの温度は非常に高温となるためである。このような合金としては、ステンレス鋼等がある。
【0019】
【発明の実施の形態】
以下、本発明を具体化した実施形態1、2を図面を参照しつつ説明する。
【0020】
(実施形態1)
図1に実施形態1の温度センサの取付構造により取り付けられる温度センサの断面図を示す。この温度センサは、ハウジング1と、ハウジング1内に収納され、温度により変化する電気的特性を電気信号として出力可能な感温素子としてのサーミスタ5と、サーミスタ5からの電気信号をハウジング1外に取り出すための一対のリード線6とを備えている。
【0021】
より詳細には、ハウジング1は第1ハウジング2とナット部3と第2ハウジング4とから構成されている。第1ハウジング2は先端が閉じられた円筒状をなし、その先端側には温度により変化する電気的特性を電気信号として一対の電極5aに出力するサーミスタ5が配置されている。一対の電極5aは、一対の芯線11の一端11aに接続されている。両芯線11はシース12により被覆され、シース12の基端側は第1ハウジング2から突出している。
【0022】
第2ハウジング4は第1ハウジング2より大径の円筒状をなしている。そして、第2ハウジング4の先端側と第1ハウジング2の基端側とが重ね合わせられて同軸に配置され、フランジ13の後端にて結合されている。
【0023】
また、ナット部3は、温度が検知される流体の漏れを防止するフランジ13と、温度センサを排気通路等に固定するナット14とからなる。フランジ13は、第1ハウジング2の基端側に固定され、フランジ13の後端に第2ハウジング4の先端が固定されている。また、フランジ13の第2ハウジング4側には、雄ねじ14a及び六角ナット部14bを有するナット14が回動可能に設けられている。なお、フランジ13は径方向に突出する突出部を有しており、突出部の先端には後述する第2テーパ面13aが形成されている。
【0024】
第1ハウジング2の基端から突出した一対の芯線11の他端11bは、第2ハウジング4内において、一対のリード線6の一端6aとかしめ端子16によりかしめられている。また、芯線11の他端11bとリード線6の一端6aには、かしめ端子16とともに絶縁チューブ17が被せられている。
【0025】
また、第2ハウジング4の基端側には、耐熱ゴム製のグロメット18がかしめ固定されている。一対のリード線6はグロメット18を貫通して、第2ハウジング4の基端より突出している。
【0026】
以上の構成をした温度センサの取付構造の断面図を図2に示す。この温度センサの取付構造は、温度センサを車両の排気ガス管20に取り付けて、排気ガスGの温度を広範囲にわたって検出するために用いられる。ここで、対象物が排気ガス管20であり、流体が排気ガスGである。
【0027】
この温度センサの取付構造では、図3にも示すように、排気ガス管20にボス210が溶接により接合されている。ボス210は、ナット14の雄ねじ14aと螺合する雌ねじ211aが形成された雌ねじ部211と、雌ねじ部211よりも排気ガス管20側に位置し、雌ねじ部211の最小径よりも小径の挿通孔212bが形成された挿通部212とを備えている。そして、挿通孔212bの雌ねじ部211側内壁には第1テーパ面212cが形成されている。また、フランジ13の先端には第1テーパ面212cと当接可能な第2テーパ面13aが形成されている。第1テーパ面212cの雌ねじ部211の軸直角方向(雌ねじ部211の軸方向と直交する方向)となす角度はθ1であり、第2テーパ面13aの雌ねじ部211の軸直角方向となす角度はθ2である。そして、θ1の方がθ2より大きくなっている。
【0028】
また、フランジ13はSUS310(線熱膨張係数17.5×10−6/°C)製であり、ナット14はSUS430(線熱膨張係数11.9×10−6/°C)製であり、ボス210はSNB16(線熱膨張係数13.6×10−6/°C)製である。
【0029】
この温度センサの取付構造では、フランジ13の線熱膨張係数はボス210の線熱膨張係数より2.5×10−6/°C以上大きいため、排気ガス管20内の排気ガスGの温度が高くなればなる程、フランジ13の熱変形量がボス210の熱変形量より大きくなる。そのため、排気ガス管20内の温度が高くなればなる程、より大きな力でフランジ13の先端の第2テーパ面13aがボス210の挿通孔212bの第1テーパ面212cに押圧され、排気ガス管20内の気密性が確保された状態で温度センサがボス210に取り付けられる。他方、この際、ボス210の雌ねじ211aとナット14の雄ねじ14aとは螺合しており、ボス210とナット14との相対移動量はそれほど大きくはない。そのため、排気ガス管20内の温度が高くなればなる程、より大きな力でナット14がボス210に押圧されることとなる。つまり、排気ガス管20内の温度が高くなればなる程、ボス210に対するナット14の軸方向の押圧力が増し、ナット14のねじゆるみが防止される。こうして、この温度センサの取付構造では、高温における気密性が確保され、ひいては検知精度が向上する。
【0030】
また、この温度センサの取付構造では、ボス210とフランジ13とに同じ材料を使用しないため、ボス210とフランジ13との間に焼付きが発生し難く、温度センサ等の点検等に支障を来すことはない。
【0031】
さらに、この温度センサの取付構造では、第1テーパ面212cが軸直角方向となす角度θ1は第2テーパ面13aが軸直角方向となす角度θ2より大きいため、第2テーパ面13aは、その円周方向長さのうち最も長い部分で第1テーパ面212cと当接する。そのため、ナット14をボス210に締め付ける際、フランジ13がボス210に押圧される力が広範囲かつ均等に分散され、ボス210の変形を極力少なくすることができる。また、ボス210からフランジ13に伝達される車両の振動が広範囲かつ均等に吸収されるため、車両の振動にかかわらず、高い気密性を確保することができる。
【0032】
したがって、実施形態1の温度センサの取付構造によれば、高温において、より高い気密性を維持できるとともに、焼付きが発生し難い。
【0033】
(実施形態2)
実施形態2の温度センサの取付構造は、図1〜図3に示すように、実施形態1と同様の構成である。ただし、実施形態2においては、フランジ13はSUS304(線熱膨張係数18.7×10−6/°C)製であり、ナット14はSUS316(線熱膨張係数18.5×10−6/°C)製であり、ボス210はSNB16(線熱膨張係数13.6×10−6/°C)製である。
【0034】
この温度センサの取付構造では、フランジ13、ナット14及びボス210の順で線熱膨張係数が小さくなっており、フランジ13の線熱膨張係数とナット14の線熱膨張係数との差は2.5×10−6/°C未満であり、ナット14の線熱膨張係数はボス210の線熱膨張係数より2.5×10−6/°C以上大きくなっている。これにより、排気ガス管20内の温度が高くなればなる程、フランジ13及びナット14の熱変形量がボス210の熱変形量より大きくなるとともに、フランジ13の熱変形量がナット14の熱変形量よりも僅かに大きくなる。そのため、排気ガス管20内の温度が高くなればなる程、より大きな力でフランジ13の先端の第2テーパ面13aがボス210の挿通孔212bの第1テーパ面212cに押圧されるとともに、ナット14自体が大きな力でボス210に押圧され、より高い気密性を確保できる。
【0035】
また、この温度センサの取付構造においても、ボス210とフランジ13とに同じ材料を使用しないため、ボス210とフランジ13との間に焼付きが発生し難い。
【0036】
したがって、実施形態2の温度センサの取付構造によっても、高温において、より高い気密性を維持できるとともに、焼付きが発生し難い。その他の作用、効果は実施形態1と同様である。なお、ボス210をSS(線熱膨張係数15.0×10−6/°C)製、SUS430(線熱膨張係数11.9×10−6/°C)製とすることも可能である。
【図面の簡単な説明】
【図1】実施形態の温度センサの取付構造に係り、温度センサの断面図である。
【図2】実施形態の温度センサの取付構造の断面図である。
【図3】実施形態の温度センサの取付構造の拡大断面図である。
【符号の説明】
20…対象物(排気ガス管)
G…流体(排気ガス)
210…ボス
211…雌ねじ部
211a…雌ねじ
212…挿通部
212b…挿通孔
212c…第1テーパ面
13…フランジ
13a…第2テーパ面
14…ナット
14a…雄ねじ
[0001]
TECHNICAL FIELD OF THE INVENTION
The present invention relates to a temperature sensor mounting structure. The temperature sensor mounting structure of the present invention is suitable for use in detecting the temperature of exhaust gas in an exhaust gas pipe of a vehicle.
[0002]
[Prior art]
Conventionally, a mounting structure of a temperature sensor described in Patent Document 1 is known. This mounting structure of the temperature sensor is for mounting a temperature sensor on the exhaust gas pipe to detect the temperature of the exhaust gas in the exhaust gas pipe of the vehicle. The exhaust gas pipe has a boss provided with a female screw portion having a female screw formed therein and an insertion portion located closer to the exhaust gas pipe than the female screw portion and having an insertion hole smaller in diameter than the minimum diameter of the female screw portion. are doing. Further, the temperature sensor has a flange which can be brought into contact with the inner wall of the insertion hole, and a nut which is arranged on the opposite side of the exhaust gas pipe with respect to the flange and has a male screw formed to be screwed with the female screw. Then, the male screw formed on the nut is screwed into the female screw of the boss and tightened, so that the tip of the flange is pressed against the inner wall of the boss insertion hole, and the temperature sensor is turned on in a state where airtightness in the exhaust gas pipe is secured. Attached to the boss. In the mounting structure described in Patent Literature 1, the difference between the linear thermal expansion coefficients of the boss, flange, and nut is set to 2 × 10 −6 / ° C. or less.
[0003]
According to this mounting structure, the difference between the linear thermal expansion coefficients of the boss, the flange, and the nut is set to 2 × 10 −6 / ° C. or less, so that each of the boss, the flange, and the nut due to a temperature change in the exhaust gas pipe. The amounts of thermal deformation become substantially the same. Therefore, regardless of the temperature change of the exhaust gas in the exhaust gas pipe or the vibration of the vehicle, it is considered that the screw of the nut is prevented from being loosened and the airtightness can be maintained. Thus, it is considered that the detection accuracy of the temperature sensor can be maintained with high durability.
[0004]
[Patent Document 1]
JP-A-2002-122486 [0005]
[Problems to be solved by the invention]
However, the temperature change of the exhaust gas in the exhaust gas pipe is extremely severe, and in order to prevent the nut from loosening, it is preferable that the nut be tightened to the boss as the temperature becomes higher. In other words, the higher the temperature of the exhaust gas in the exhaust gas pipe becomes, the more the molecular motion of the exhaust gas becomes. Therefore, the higher the temperature is, the higher the airtightness is required. In this regard, in the above-described conventional temperature sensor mounting structure, the degree to which the nut is tightened to the boss is substantially constant depending on the temperature. Therefore, there is a concern that the nut may be loosened particularly at high temperatures (for example, 600 ° C. or higher). That is, the airtightness is substantially constant irrespective of the temperature change, so that the airtightness at a high temperature and, consequently, the detection accuracy are concerned.
[0006]
Further, since the exhaust gas in the exhaust gas pipe becomes extremely hot, the difference in the linear thermal expansion coefficient between the boss, the flange, and the nut is 2 × 10 −6 / ° C. or less as in the above-described conventional temperature sensor mounting structure. If the same material is used for realizing the above, adhesion is likely to occur between the boss and the flange or between the boss and the nut, and seizure tends to occur. In this case, it is inconvenient to check the temperature sensor and the like.
[0007]
The present invention has been made in view of the above-described conventional circumstances, and a problem to be solved is to provide a temperature sensor mounting structure that can maintain higher airtightness at high temperatures and is less likely to cause seizure. And
[0008]
[Means for Solving the Problems]
A temperature sensor mounting structure according to a first aspect of the present invention is a temperature sensor mounting structure for mounting a temperature sensor on an object to detect a temperature of a fluid in the object, wherein the object has an internal thread. And a boss having an insertion portion, which is located closer to the object than the internal thread portion and has an insertion hole smaller in diameter than the minimum diameter of the internal thread portion, the temperature sensor includes: In the mounting structure of the temperature sensor having a flange that can be in contact with the inner wall of the insertion hole, and a nut that is disposed on the opposite side of the object from the flange and that has a male screw formed to screw with the female screw,
The linear thermal expansion coefficient of the flange is greater than the linear thermal expansion coefficient of the boss by 2.5 × 10 −6 / ° C. or more.
[0009]
In the mounting structure of the temperature sensor according to the first aspect of the invention, since the linear thermal expansion coefficient of the flange is larger than the linear thermal expansion coefficient of the boss by 2.5 × 10 −6 / ° C. or more, the temperature inside the object (for example, the exhaust gas pipe) is increased. The higher the temperature of the fluid (eg, exhaust gas), the greater the amount of thermal deformation of the flange than the amount of thermal deformation of the boss. Therefore, as the temperature of the fluid in the object increases, the flange is pressed against the inner wall of the insertion hole of the boss with a larger force, and the temperature sensor is attached to the boss in a state where airtightness in the object is secured. Can be On the other hand, at this time, the female screw of the boss and the male screw of the nut are screwed together, and the relative movement amount between the boss and the nut is not so large. Therefore, as the temperature in the exhaust gas pipe increases, the nut is pressed against the boss with a larger force. That is, as the temperature in the exhaust gas pipe increases, the axial pressing force of the nut against the boss increases, and the nut is prevented from loosening. In this way, in the mounting structure of the temperature sensor, airtightness at high temperatures is ensured, and the detection accuracy is improved.
[0010]
In addition, in the mounting structure of the temperature sensor, since the same material can not be used for the boss and the flange, seizure is less likely to occur between the boss and the flange than when the same material is used. There will be no hindrance to inspections.
[0011]
Therefore, according to the temperature sensor mounting structure of the first invention, higher airtightness can be maintained at a high temperature, and seizure hardly occurs.
[0012]
A mounting structure for a temperature sensor according to a second aspect of the present invention is a mounting structure for a temperature sensor for mounting a temperature sensor on an object to detect a temperature of a fluid in the object, wherein the object has an internal thread. And a boss having an insertion portion, which is located closer to the object than the internal thread portion and has an insertion hole smaller in diameter than the minimum diameter of the internal thread portion, the temperature sensor includes: In the mounting structure of the temperature sensor having a flange that can be in contact with the inner wall of the insertion hole, and a nut that is disposed on the opposite side of the object from the flange and that has a male screw formed to screw with the female screw,
The difference between the linear thermal expansion coefficient of the flange and the linear thermal expansion coefficient of the nut is less than 2.5 × 10 −6 / ° C., and the linear thermal expansion coefficient of the nut is two times greater than the linear thermal expansion coefficient of the boss. 0.5 × 10 −6 / ° C. or more.
[0013]
In the temperature sensor mounting structure of the second invention, the difference between the linear thermal expansion coefficient of the flange and the linear thermal expansion coefficient of the nut is less than 2.5 × 10 −6 / ° C., and the linear thermal expansion coefficient of the nut is lower than the boss. 2.5 × 10 −6 / ° C. or more than the linear thermal expansion coefficient of That is, the linear thermal expansion coefficient of the boss is the smallest among the flange, the nut, and the boss, and the linear thermal expansion coefficient of the flange is almost the same as the linear thermal expansion coefficient of the nut. Therefore, as the temperature of the fluid in the object increases, the flange is pressed against the inner wall of the insertion hole of the boss with a larger force, and the temperature sensor is attached to the boss in a state where airtightness in the object is secured. Can be On the other hand, as the temperature of the fluid in the object increases, not only the flange but also the nut has a larger thermal deformation than the boss, and the nut itself is pressed against the boss. Thus, the higher the temperature of the fluid in the object, the tighter the nut is tightened to the boss, and the loosening of the nut is prevented. Therefore, with this temperature sensor mounting structure, airtightness at high temperatures is ensured, and the detection accuracy is improved.
[0014]
In addition, even with this temperature sensor mounting structure, the same material can not be used for the boss and the nut, so that seizure is less likely to occur between the boss and the nut than when the same material is used. There will be no hindrance to inspections.
[0015]
Therefore, even with the temperature sensor mounting structure of the second invention, higher airtightness can be maintained at a high temperature and seizure hardly occurs.
[0016]
In the temperature sensor mounting structure of the second invention, it is preferable that the linear thermal expansion coefficient is reduced in the order of the flange, the nut, and the boss. That is, the linear thermal expansion coefficient of the boss is the smallest among the flange, the nut, and the boss, and the linear thermal expansion coefficient of the nut is slightly smaller than the linear thermal expansion coefficient of the flange. Thereby, as the temperature of the fluid in the object increases, the thermal deformation of the flange and the nut becomes larger than the thermal deformation of the boss, and the thermal deformation of the flange becomes slightly smaller than the thermal deformation of the nut. growing. Therefore, as the temperature of the fluid in the object increases, the flange is pressed against the inner wall of the insertion hole of the boss with a larger force, and the nut itself is pressed against the boss with a large force, thereby increasing the airtightness. Can be secured.
[0017]
In the mounting structure of the temperature sensor according to the first and second inventions, a first tapered surface is formed on the inner wall of the insertion hole on the female screw portion side, and a second tapered surface capable of contacting the first tapered surface is formed on the flange. The angle formed by the first tapered surface and the direction perpendicular to the axis of the female screw portion (the direction orthogonal to the axial direction of the female screw portion) is preferably larger than the angle formed by the second tapered surface with the direction perpendicular to the axis. As a result, the second tapered surface comes into contact with the first tapered surface at the longest portion of the circumferential length. Therefore, when the nut is fastened to the boss, the force with which the flange is pressed against the boss is widely and evenly distributed, and high airtightness can be secured. Further, since the vibration of the vehicle transmitted from the boss to the flange is widely and evenly absorbed, high airtightness can be ensured regardless of the vibration of the vehicle.
[0018]
In the temperature sensor mounting structure of the first invention and the second invention, the boss, the flange and the nut are preferably made of a heat-resistant Ni alloy or Fe alloy. This is because, when the object is an exhaust gas pipe, the temperature of the exhaust gas as a fluid in the exhaust gas pipe becomes extremely high. Such alloys include stainless steel.
[0019]
BEST MODE FOR CARRYING OUT THE INVENTION
Hereinafter, embodiments 1 and 2 that embody the present invention will be described with reference to the drawings.
[0020]
(Embodiment 1)
FIG. 1 shows a cross-sectional view of a temperature sensor mounted by the temperature sensor mounting structure of the first embodiment. The temperature sensor includes a housing 1, a thermistor 5 housed in the housing 1, and serving as a temperature-sensitive element capable of outputting an electrical characteristic that changes with temperature as an electric signal, and an electric signal from the thermistor 5 outside the housing 1. And a pair of lead wires 6 for taking out.
[0021]
More specifically, the housing 1 includes a first housing 2, a nut portion 3, and a second housing 4. The first housing 2 has a cylindrical shape with a closed end, and a thermistor 5 that outputs electric characteristics, which change with temperature, to the pair of electrodes 5a as electric signals is disposed on the end side. The pair of electrodes 5a is connected to one end 11a of the pair of core wires 11. The two core wires 11 are covered with a sheath 12, and the proximal end side of the sheath 12 protrudes from the first housing 2.
[0022]
The second housing 4 has a cylindrical shape with a larger diameter than the first housing 2. The distal end of the second housing 4 and the proximal end of the first housing 2 are overlapped and arranged coaxially, and are joined at the rear end of the flange 13.
[0023]
The nut portion 3 includes a flange 13 for preventing leakage of a fluid whose temperature is detected, and a nut 14 for fixing the temperature sensor to an exhaust passage or the like. The flange 13 is fixed to the proximal end of the first housing 2, and the distal end of the second housing 4 is fixed to the rear end of the flange 13. On the second housing 4 side of the flange 13, a nut 14 having a male screw 14a and a hexagon nut portion 14b is rotatably provided. The flange 13 has a protruding portion that protrudes in the radial direction, and a second tapered surface 13a described later is formed at the tip of the protruding portion.
[0024]
The other end 11 b of the pair of core wires 11 protruding from the base end of the first housing 2 is caulked in the second housing 4 by one end 6 a of a pair of lead wires 6 and a caulking terminal 16. The other end 11b of the core wire 11 and the one end 6a of the lead wire 6 are covered with an insulating tube 17 together with a caulking terminal 16.
[0025]
A grommet 18 made of heat-resistant rubber is fixed to the base end side of the second housing 4 by caulking. The pair of lead wires 6 penetrate the grommet 18 and protrude from the base end of the second housing 4.
[0026]
FIG. 2 shows a cross-sectional view of the mounting structure of the temperature sensor having the above configuration. This mounting structure of the temperature sensor is used for mounting the temperature sensor on the exhaust gas pipe 20 of the vehicle and detecting the temperature of the exhaust gas G over a wide range. Here, the object is the exhaust gas pipe 20, and the fluid is the exhaust gas G.
[0027]
In the mounting structure of the temperature sensor, as shown in FIG. 3, the boss 210 is joined to the exhaust gas pipe 20 by welding. The boss 210 has a female screw portion 211 formed with a female screw 211 a screwed with the male screw 14 a of the nut 14, and an insertion hole located closer to the exhaust gas pipe 20 than the female screw portion 211 and having a diameter smaller than the minimum diameter of the female screw portion 211. And an insertion portion 212 in which a 212b is formed. A first tapered surface 212c is formed on the inner wall of the insertion hole 212b on the female screw portion 211 side. In addition, a second tapered surface 13a that can contact the first tapered surface 212c is formed at the tip of the flange 13. The angle formed by the female thread portion 211 of the first tapered surface 212c in the direction perpendicular to the axis (the direction orthogonal to the axial direction of the female screw portion 211) is θ1, and the angle formed by the female thread portion 211 of the second tapered surface 13a with the axis perpendicular to the axis is θ2. And θ1 is larger than θ2.
[0028]
The flange 13 is made of SUS310 (linear thermal expansion coefficient 17.5 × 10 −6 / ° C), the nut 14 is made of SUS430 (linear thermal expansion coefficient 11.9 × 10 −6 / ° C), The boss 210 is made of SNB16 (linear thermal expansion coefficient 13.6 × 10 −6 / ° C.).
[0029]
In this mounting structure of the temperature sensor, since the linear thermal expansion coefficient of the flange 13 is larger than the linear thermal expansion coefficient of the boss 210 by 2.5 × 10 −6 / ° C. or more, the temperature of the exhaust gas G in the exhaust gas pipe 20 is reduced. As the height increases, the thermal deformation of the flange 13 becomes larger than the thermal deformation of the boss 210. Therefore, as the temperature inside the exhaust gas pipe 20 increases, the second tapered surface 13a at the tip of the flange 13 is pressed against the first tapered surface 212c of the insertion hole 212b of the boss 210 with a larger force, and The temperature sensor is attached to the boss 210 in a state where the airtightness in the inside 20 is ensured. On the other hand, at this time, the female screw 211a of the boss 210 and the male screw 14a of the nut 14 are screwed together, and the relative movement amount between the boss 210 and the nut 14 is not so large. Therefore, as the temperature in the exhaust gas pipe 20 increases, the nut 14 is pressed against the boss 210 with a larger force. That is, as the temperature in the exhaust gas pipe 20 increases, the axial pressing force of the nut 14 against the boss 210 increases, and the nut 14 is prevented from being loosened. In this way, in the mounting structure of the temperature sensor, airtightness at high temperatures is ensured, and the detection accuracy is improved.
[0030]
Further, in the mounting structure of the temperature sensor, since the same material is not used for the boss 210 and the flange 13, seizure hardly occurs between the boss 210 and the flange 13, which hinders inspection of the temperature sensor and the like. Never do.
[0031]
Further, in this mounting structure of the temperature sensor, since the angle θ1 formed by the first tapered surface 212c and the direction perpendicular to the axis is larger than the angle θ2 formed by the second tapered surface 13a and the direction perpendicular to the axis, the second tapered surface 13a has a circular shape. The longest part of the circumferential length contacts the first tapered surface 212c. Therefore, when the nut 14 is fastened to the boss 210, the force by which the flange 13 is pressed by the boss 210 is widely and evenly distributed, and the deformation of the boss 210 can be minimized. Further, since the vibration of the vehicle transmitted from the boss 210 to the flange 13 is widely and uniformly absorbed, high airtightness can be ensured regardless of the vibration of the vehicle.
[0032]
Therefore, according to the mounting structure of the temperature sensor of the first embodiment, higher airtightness can be maintained at a high temperature and seizure hardly occurs.
[0033]
(Embodiment 2)
The mounting structure of the temperature sensor of the second embodiment has the same configuration as that of the first embodiment, as shown in FIGS. However, in the second embodiment, the flange 13 is made of SUS304 (linear thermal expansion coefficient 18.7 × 10 −6 / ° C.), and the nut 14 is made of SUS316 (linear thermal expansion coefficient 18.5 × 10 −6 / ° C.). C), and the boss 210 is made of SNB16 (linear thermal expansion coefficient: 13.6 × 10 −6 / ° C.).
[0034]
In this temperature sensor mounting structure, the linear thermal expansion coefficient decreases in the order of the flange 13, the nut 14, and the boss 210, and the difference between the linear thermal expansion coefficient of the flange 13 and the linear thermal expansion coefficient of the nut 14 is 2. It is less than 5 × 10 −6 / ° C., and the linear thermal expansion coefficient of the nut 14 is larger than the linear thermal expansion coefficient of the boss 210 by 2.5 × 10 −6 / ° C. or more. Accordingly, as the temperature in the exhaust gas pipe 20 increases, the thermal deformation of the flange 13 and the nut 14 becomes larger than the thermal deformation of the boss 210, and the thermal deformation of the flange 13 decreases. Slightly larger than the volume. Therefore, as the temperature in the exhaust gas pipe 20 increases, the second tapered surface 13a at the end of the flange 13 is pressed against the first tapered surface 212c of the insertion hole 212b of the boss 210 with a larger force, and the nut 14 itself is pressed by the boss 210 with a large force, and higher airtightness can be secured.
[0035]
Also, in this temperature sensor mounting structure, since the same material is not used for the boss 210 and the flange 13, seizure hardly occurs between the boss 210 and the flange 13.
[0036]
Therefore, even with the mounting structure of the temperature sensor of the second embodiment, higher airtightness can be maintained at a high temperature, and seizure hardly occurs. Other functions and effects are the same as those of the first embodiment. Note that the boss 210 can be made of SS (linear thermal expansion coefficient 15.0 × 10 −6 / ° C) and SUS430 (linear thermal expansion coefficient 11.9 × 10 −6 / ° C).
[Brief description of the drawings]
FIG. 1 is a sectional view of a temperature sensor according to a mounting structure of a temperature sensor according to an embodiment.
FIG. 2 is a cross-sectional view of a mounting structure of the temperature sensor according to the embodiment.
FIG. 3 is an enlarged sectional view of a mounting structure of the temperature sensor according to the embodiment.
[Explanation of symbols]
20: Object (exhaust gas pipe)
G: Fluid (exhaust gas)
210 boss 211 female screw portion 211a female screw 212 insertion portion 212b insertion hole 212c first tapered surface 13 flange 13a second tapered surface 14 nut 14a male screw

Claims (5)

対象物内の流体の温度を検知すべく該対象物に温度センサを取付けるための温度センサの取付構造であって、該対象物は、雌ねじが形成された雌ねじ部と、該雌ねじ部よりも該対象物側に位置し、該雌ねじ部の最小径よりも小径の挿通孔が形成された挿通部とを備えたボスを有し、該温度センサは、該挿通孔の内壁と当接可能なフランジと、該フランジよりも該対象物とは反対側に配置され、該雌ねじと螺合する雄ねじが形成されたナットとを有する温度センサの取付構造において、
前記フランジの線熱膨張係数は前記ボスの線熱膨張係数より2.5×10−6/°C以上大きいことを特徴とする温度センサの取付構造。
An attachment structure for a temperature sensor for attaching a temperature sensor to the object in order to detect a temperature of a fluid in the object, wherein the object has a female screw part having a female screw formed therein and a female screw part having a female screw part. A boss having an insertion portion formed on the object side and having an insertion hole having a diameter smaller than the minimum diameter of the female screw portion, wherein the temperature sensor has a flange capable of contacting an inner wall of the insertion hole. And a nut disposed on the opposite side of the object from the flange and having a nut formed with a male screw to be screwed with the female screw,
The mounting structure of a temperature sensor, wherein a linear thermal expansion coefficient of the flange is greater than a linear thermal expansion coefficient of the boss by 2.5 × 10 −6 / ° C. or more.
対象物内の流体の温度を検知すべく該対象物に温度センサを取付けるための温度センサの取付構造であって、該対象物は、雌ねじが形成された雌ねじ部と、該雌ねじ部よりも該対象物側に位置し、該雌ねじ部の最小径よりも小径の挿通孔が形成された挿通部とを備えたボスを有し、該温度センサは、該挿通孔の内壁と当接可能なフランジと、該フランジよりも該対象物とは反対側に配置され、該雌ねじと螺合する雄ねじが形成されたナットとを有する温度センサの取付構造において、
前記フランジの線熱膨張係数と前記ナットの線熱膨張係数との差は2.5×10−6/°C未満であり、該ナットの線熱膨張係数は前記ボスの線熱膨張係数より2.5×10−6/°C以上大きいことを特徴とする温度センサの取付構造。
An attachment structure for a temperature sensor for attaching a temperature sensor to the object in order to detect a temperature of a fluid in the object, wherein the object has a female screw part having a female screw formed therein and a female screw part having a female screw part. A boss having an insertion portion formed on the object side and having an insertion hole having a diameter smaller than the minimum diameter of the female screw portion, wherein the temperature sensor has a flange capable of contacting an inner wall of the insertion hole. And a nut disposed on the opposite side of the object from the flange and having a nut formed with a male screw to be screwed with the female screw,
The difference between the linear thermal expansion coefficient of the flange and the linear thermal expansion coefficient of the nut is less than 2.5 × 10 −6 / ° C., and the linear thermal expansion coefficient of the nut is two times greater than the linear thermal expansion coefficient of the boss. A mounting structure for a temperature sensor, wherein the temperature sensor mounting structure is larger than 5 × 10 −6 / ° C.
前記フランジ、前記ナット及び前記ボスの順で線熱膨張係数が小さくなっていることを特徴とする請求項2記載の温度センサの取付構造。The mounting structure for a temperature sensor according to claim 2, wherein a linear thermal expansion coefficient decreases in the order of the flange, the nut, and the boss. 前記挿通孔の前記雌ねじ部側内壁には第1テーパ面が形成され、前記フランジには該第1テーパ面と当接可能な第2テーパ面が形成され、該第1テーパ面が該雌ねじ部の軸直角方向となす角度は該第2テーパ面が該軸直角方向となす角度より大きいことを特徴とする請求項1乃至3のいずれか1項記載の温度センサの取付構造。A first tapered surface is formed on the inner wall of the insertion hole on the female screw portion side, and a second tapered surface is formed on the flange so as to be in contact with the first tapered surface, and the first tapered surface is formed on the female screw portion. The mounting structure of the temperature sensor according to any one of claims 1 to 3, wherein an angle formed by the second tapered surface with respect to the axis perpendicular direction is larger than an angle formed by the second tapered surface with the axis perpendicular direction. 前記ボス、前記フランジ及び前記ナットは、耐熱性を有するNi合金又はFe合金であることを特徴とする請求項1乃至4のいずれか1項記載の温度センサの取付構造。The mounting structure for a temperature sensor according to any one of claims 1 to 4, wherein the boss, the flange, and the nut are made of a heat-resistant Ni alloy or a Fe alloy.
JP2003028126A 2003-02-05 2003-02-05 Mounting structure of temperature sensor Pending JP2004239716A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2003028126A JP2004239716A (en) 2003-02-05 2003-02-05 Mounting structure of temperature sensor

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2003028126A JP2004239716A (en) 2003-02-05 2003-02-05 Mounting structure of temperature sensor

Publications (1)

Publication Number Publication Date
JP2004239716A true JP2004239716A (en) 2004-08-26

Family

ID=32955665

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2003028126A Pending JP2004239716A (en) 2003-02-05 2003-02-05 Mounting structure of temperature sensor

Country Status (1)

Country Link
JP (1) JP2004239716A (en)

Cited By (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007218871A (en) * 2006-02-20 2007-08-30 Ngk Spark Plug Co Ltd Method for manufacturing temperature sensor and method for inspecting the same
JP2011128013A (en) * 2009-12-17 2011-06-30 Ngk Spark Plug Co Ltd Mounting structure of temperature sensor
JP2011128014A (en) * 2009-12-17 2011-06-30 Ngk Spark Plug Co Ltd Temperature sensor and mounting structure therefor
CN102235916A (en) * 2010-04-30 2011-11-09 蒋鸿斌 High temperature thermometer for measuring temperature by utilizing screw threads
CN102465750A (en) * 2010-11-18 2012-05-23 铃木株式会社 Mounting structure of component to exhaust pipe
WO2013019309A1 (en) * 2011-07-29 2013-02-07 Continental Automotive Systems Us, Inc. Anti-rotation structure for a valve installed in an exhaust boss of a reductant delivery system
US20130126644A1 (en) * 2011-11-22 2013-05-23 Jeremy Popovich Threaded Injector Mount
JP2015192934A (en) * 2014-03-31 2015-11-05 東京理化器械株式会社 reactor
DE102015218180A1 (en) 2015-09-22 2017-03-23 Zf Friedrichshafen Ag A megnet field sensor, a support member for supporting a magnetic field sensor, a magnetic field sensor module, and a method of manufacturing a magnetic field sensor
CN112067150A (en) * 2020-09-03 2020-12-11 浙江赛威科光电科技有限公司 Mounting structure and mounting method of low-temperature sensor
CN113916388A (en) * 2021-10-08 2022-01-11 中国商用飞机有限责任公司 Aircraft fuel temperature sensor mounting assembly

Cited By (17)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007218871A (en) * 2006-02-20 2007-08-30 Ngk Spark Plug Co Ltd Method for manufacturing temperature sensor and method for inspecting the same
JP2011128013A (en) * 2009-12-17 2011-06-30 Ngk Spark Plug Co Ltd Mounting structure of temperature sensor
JP2011128014A (en) * 2009-12-17 2011-06-30 Ngk Spark Plug Co Ltd Temperature sensor and mounting structure therefor
CN102235916A (en) * 2010-04-30 2011-11-09 蒋鸿斌 High temperature thermometer for measuring temperature by utilizing screw threads
US8752866B2 (en) 2010-11-18 2014-06-17 Suzuki Motor Corporation Mounting structure of component to exhaust pipe
CN102465750A (en) * 2010-11-18 2012-05-23 铃木株式会社 Mounting structure of component to exhaust pipe
CN102465750B (en) * 2010-11-18 2015-09-30 铃木株式会社 To the mounting structure of the parts that outlet pipe is installed
CN103890342A (en) * 2011-07-29 2014-06-25 大陆汽车***美国有限公司 Anti-rotation structure for a valve installed in an exhaust boss of a reductant delivery system
US9115624B2 (en) 2011-07-29 2015-08-25 Continental Automotive Systems, Inc. Anti-rotation structure for a valve installed in an exhaust boss of a reductant delivery system
WO2013019309A1 (en) * 2011-07-29 2013-02-07 Continental Automotive Systems Us, Inc. Anti-rotation structure for a valve installed in an exhaust boss of a reductant delivery system
CN103890342B (en) * 2011-07-29 2016-10-19 大陆汽车***美国有限公司 The anti-rotational structure of the valve being arranged in the exhaust sleeve of reducing agent induction system
US20130126644A1 (en) * 2011-11-22 2013-05-23 Jeremy Popovich Threaded Injector Mount
JP2015192934A (en) * 2014-03-31 2015-11-05 東京理化器械株式会社 reactor
DE102015218180A1 (en) 2015-09-22 2017-03-23 Zf Friedrichshafen Ag A megnet field sensor, a support member for supporting a magnetic field sensor, a magnetic field sensor module, and a method of manufacturing a magnetic field sensor
CN112067150A (en) * 2020-09-03 2020-12-11 浙江赛威科光电科技有限公司 Mounting structure and mounting method of low-temperature sensor
CN113916388A (en) * 2021-10-08 2022-01-11 中国商用飞机有限责任公司 Aircraft fuel temperature sensor mounting assembly
CN113916388B (en) * 2021-10-08 2022-07-19 中国商用飞机有限责任公司 Aircraft fuel temperature sensor mounting assembly

Similar Documents

Publication Publication Date Title
US8177425B2 (en) Temperature-measuring device
JP5085398B2 (en) Temperature sensor
EP2420807B1 (en) Temperature sensor
JP2004239716A (en) Mounting structure of temperature sensor
US6997607B2 (en) Temperature sensor
JP2000162051A (en) Temperature sensor
JP2013519075A (en) Exhaust gas temperature sensor with strain relief and / or vibration resistant sleeve
KR20090117658A (en) Temperature sensor
JP2002122486A (en) Mounting structure of temperature sensor
US20090279586A1 (en) Temperature sensor
JP2010223750A (en) Gas sensor and method of manufacturing the same
JP2018100965A (en) High-temperature exhaust sensor
JP2006047273A (en) Temperature sensor
JP2005181225A (en) Gas sensor
JP2013029482A (en) Temperature sensor
JP2012225739A (en) Temperature measurement device and temperature sensor
JP2011242148A (en) Attachment structure for gas sensor
JP4829007B2 (en) Temperature sensor
JP3826095B2 (en) Temperature sensor
JP2002350239A (en) Temperature sensor
JP2006258724A (en) Vibration-proof temperature sensor
JP5192460B2 (en) Temperature sensor
JP3353407B2 (en) Thermistor temperature sensor
JP3826098B2 (en) Temperature sensor
JP2002350237A (en) Temperature sensor