JP2004239592A - Vehicular heat exchanger - Google Patents

Vehicular heat exchanger Download PDF

Info

Publication number
JP2004239592A
JP2004239592A JP2003176809A JP2003176809A JP2004239592A JP 2004239592 A JP2004239592 A JP 2004239592A JP 2003176809 A JP2003176809 A JP 2003176809A JP 2003176809 A JP2003176809 A JP 2003176809A JP 2004239592 A JP2004239592 A JP 2004239592A
Authority
JP
Japan
Prior art keywords
pipe
heat exchanger
inlet
auxiliary
header
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2003176809A
Other languages
Japanese (ja)
Inventor
Jinichi Hiyama
仁一 桧山
Yoshiaki Koga
美章 古賀
Masatake Niihama
正剛 新濱
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Marelli Corp
Original Assignee
Calsonic Kansei Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Calsonic Kansei Corp filed Critical Calsonic Kansei Corp
Priority to JP2003176809A priority Critical patent/JP2004239592A/en
Publication of JP2004239592A publication Critical patent/JP2004239592A/en
Pending legal-status Critical Current

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F28HEAT EXCHANGE IN GENERAL
    • F28FDETAILS OF HEAT-EXCHANGE AND HEAT-TRANSFER APPARATUS, OF GENERAL APPLICATION
    • F28F9/00Casings; Header boxes; Auxiliary supports for elements; Auxiliary members within casings
    • F28F9/02Header boxes; End plates
    • F28F9/0202Header boxes having their inner space divided by partitions
    • F28F9/0204Header boxes having their inner space divided by partitions for elongated header box, e.g. with transversal and longitudinal partitions
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F28HEAT EXCHANGE IN GENERAL
    • F28DHEAT-EXCHANGE APPARATUS, NOT PROVIDED FOR IN ANOTHER SUBCLASS, IN WHICH THE HEAT-EXCHANGE MEDIA DO NOT COME INTO DIRECT CONTACT
    • F28D1/00Heat-exchange apparatus having stationary conduit assemblies for one heat-exchange medium only, the media being in contact with different sides of the conduit wall, in which the other heat-exchange medium is a large body of fluid, e.g. domestic or motor car radiators
    • F28D1/02Heat-exchange apparatus having stationary conduit assemblies for one heat-exchange medium only, the media being in contact with different sides of the conduit wall, in which the other heat-exchange medium is a large body of fluid, e.g. domestic or motor car radiators with heat-exchange conduits immersed in the body of fluid
    • F28D1/04Heat-exchange apparatus having stationary conduit assemblies for one heat-exchange medium only, the media being in contact with different sides of the conduit wall, in which the other heat-exchange medium is a large body of fluid, e.g. domestic or motor car radiators with heat-exchange conduits immersed in the body of fluid with tubular conduits
    • F28D1/053Heat-exchange apparatus having stationary conduit assemblies for one heat-exchange medium only, the media being in contact with different sides of the conduit wall, in which the other heat-exchange medium is a large body of fluid, e.g. domestic or motor car radiators with heat-exchange conduits immersed in the body of fluid with tubular conduits the conduits being straight
    • F28D1/0535Heat-exchange apparatus having stationary conduit assemblies for one heat-exchange medium only, the media being in contact with different sides of the conduit wall, in which the other heat-exchange medium is a large body of fluid, e.g. domestic or motor car radiators with heat-exchange conduits immersed in the body of fluid with tubular conduits the conduits being straight the conduits having a non-circular cross-section
    • F28D1/05366Assemblies of conduits connected to common headers, e.g. core type radiators
    • F28D1/05391Assemblies of conduits connected to common headers, e.g. core type radiators with multiple rows of conduits or with multi-channel conduits combined with a particular flow pattern, e.g. multi-row multi-stage radiators
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F28HEAT EXCHANGE IN GENERAL
    • F28FDETAILS OF HEAT-EXCHANGE AND HEAT-TRANSFER APPARATUS, OF GENERAL APPLICATION
    • F28F9/00Casings; Header boxes; Auxiliary supports for elements; Auxiliary members within casings
    • F28F9/02Header boxes; End plates
    • F28F9/0219Arrangements for sealing end plates into casing or header box; Header box sub-elements
    • F28F9/0224Header boxes formed by sealing end plates into covers
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F28HEAT EXCHANGE IN GENERAL
    • F28FDETAILS OF HEAT-EXCHANGE AND HEAT-TRANSFER APPARATUS, OF GENERAL APPLICATION
    • F28F9/00Casings; Header boxes; Auxiliary supports for elements; Auxiliary members within casings
    • F28F9/02Header boxes; End plates
    • F28F9/0246Arrangements for connecting header boxes with flow lines
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F28HEAT EXCHANGE IN GENERAL
    • F28FDETAILS OF HEAT-EXCHANGE AND HEAT-TRANSFER APPARATUS, OF GENERAL APPLICATION
    • F28F9/00Casings; Header boxes; Auxiliary supports for elements; Auxiliary members within casings
    • F28F9/02Header boxes; End plates
    • F28F9/0246Arrangements for connecting header boxes with flow lines
    • F28F9/0251Massive connectors, e.g. blocks; Plate-like connectors
    • F28F9/0253Massive connectors, e.g. blocks; Plate-like connectors with multiple channels, e.g. with combined inflow and outflow channels

Landscapes

  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Thermal Sciences (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Air-Conditioning For Vehicles (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a vehicular heat exchanger capable of improving performance by maximally securing a core area in limited mounting space while securing easiness of piping connection work. <P>SOLUTION: A header pipe 7 provided with a heat exchanger outlet tank part 17B composing a most downstream side of a core is provided with a main pipe part 17 having a primary function of the header pipe 7, and an auxiliary pipe part 19 arranged in parallel with the main pipe part 17 and communicated with the heat exchanger outlet tank part 17B. By the auxiliary pipe part 19, piping connection workability of a conventional level can be secured. Since the main pipe part 17 and the auxiliary pipe part 19 share one wall (a partition wall part) 15, distinct from a conventional structure provided with an auxiliary pipe aside from a header pipe, there is no protrusion due to the auxiliary pipe or a support means such as a bracket, and the core area can be maximally secured in the limited mounting space. <P>COPYRIGHT: (C)2004,JPO&NCIPI

Description

【0001】
【発明の属する技術分野】
本発明は、ヘッダパイプ間で熱交換媒体を流通させて空気との熱交換を行う車両用熱交換器に関する。
【0002】
【従来の技術】
この種の車両用熱交換としては、アウターフィンを介して複数多段に積層されたチューブの両端にヘッダパイプを連通接続し、ヘッダパイプの冷媒導入口から取り入れた冷媒を前記チューブに流通させて、このチューブを流通する冷媒と外部空気との熱交換をした後、該冷媒をヘッダパイプの冷媒排出口から排出するものが知られている。
【0003】
ところで、上述のような車両用熱交換器は、一般に車両のエンジンルームに配置され、熱交換器本体の配置後にヘッダパイプへの入口側/出口側配管の接続作業が行われる。このとき、ヘッダパイプに設けられた冷媒排出口の位置によっては、冷媒排出口への配管接続作業が不自然な姿勢を強いられ、作業効率が悪いという問題がある。
【0004】
そこで、例えば特許文献1、2に開示されるように、ヘッダパイプの下端部に設けられた冷媒排出口に、配管接続作業が容易な位置(ヘッダパイプの上端側)まで配索される補助パイプを接続して、この補助パイプを介して配管やリキッドタンクを接続する構造が提案されている。
【0005】
【特許文献1】
特開平10−141887号公報
【0006】
【特許文献2】
特開平10−267467号公報
【0007】
【発明が解決しようとする課題】
しかしながら、この方法では、別体の補助パイプをヘッダパイプの冷媒排出口に接続し、なおかつブラケットなどの支持手段を用いて補助パイプをヘッダパイプに支持させなければならない。そのため、補助パイプおよび支持手段が熱交換器本体から出っ張り、限られた車両搭載スペース内に納めるためにコア(放熱部)面積を縮小させて対応している。
【0008】
本発明は、このような従来技術をもとに為されたものであって、その目的は、配管接続作業の容易性を確保しつつも限られた搭載スペース内でコア面積を最大限に確保して熱交換性能を向上できる車両用熱交換器の提供である。
【0009】
【課題を解決するための手段】
請求項1記載の発明は、複数多段に積層したチューブの両端にヘッダパイプを連通接続し、熱交換媒体を前記チューブに流通させてこのチューブを流通する熱交換媒体と外部空気との熱交換をおこなう車両用熱交換器において、コアの最下流部を構成する熱交換器出口タンク部を備えるヘッダパイプは、ヘッダパイプの本来の機能を有するメインパイプ部と、前記メインパイプ部に沿って設けられ前記メインパイプの熱交換器出口タンク部と連通される補助パイプ部と、を備え、これらメインパイプ部と補助パイプ部とで1つの壁を共有していることを特徴とするものである。
【0010】
請求項2記載の発明は、請求項1記載の車両用熱交換器において、前記補助パイプ部を備えるヘッダパイプのメインパイプ部には、導入口を有してコアの最上流部を構成する熱交換器入口タンク部およびコアの最下流部を構成する熱交換器出口タンク部が設けられ、前記熱交換器入口タンク部に開口する導入口の近傍に、前記補助パイプ部に開口する排出口を設けたことを特徴とするものである。
【0011】
請求項3記載の発明は、請求項2記載の車両用熱交換器において、前記ヘッダパイプに固定され入口側配管を受け入れて該入口側配管と前記導入口とを連通接続するための入口側配管コネクタと、前記ヘッダパイプに固定され出口側配管を受け入れて該出口側配管と前記排出口とを連通接続するための出口側配管コネクタと、を一体形成した一体型配管コネクタを設けたことを特徴とするものである。
【0012】
請求項4記載の発明は、請求項3記載の車両用熱交換器において、一体型配管コネクタの入口側配管コネクタ部は、前記補助パイプ部を貫通してメインパイプ部に連通接続される筒状接続部を備えることを特徴とするものである。
【0013】
請求項5記載の発明は、請求項1〜3のいずれか1項記載の車両用熱交換器において、前記壁に、メインパイプ部を流通する熱交換媒体と補助パイプ部を流通する熱交換媒体との熱の授受を遮断するための断熱部を設けたことを特徴とするものである。
【0014】
請求項6記載の発明は、請求項1記載の車両用熱交換器において、前記ヘッダパイプ内の仕切板の区画によって、前記熱交換媒体が前記ヘッダパイプ間を第1パス、第2パス、・・・と複数回蛇行して流通する構造であり、前記補助パイプ部に開口する排出口を第1パスより下流のパスに対応する位置に配置したことを特徴とするものである。
【0015】
請求項7記載の発明は、請求項6記載の車両用熱交換器において、前記補助パイプ部の下流端部を第1パスより下流のパスに対応する位置までとし、前記補助パイプ部に開口する排出口を第1パスより下流のパスに対応する位置に配置したことを特徴とするものである。
【0016】
【発明の効果】
請求項1記載の発明によれば、メインパイプ部に沿って補助パイプ部を設けたため、従来と同様、配管接続作業の容易性が確保される。しかも、これらメインパイプ部と補助パイプ部は1つの壁を共用するため、従来のようにヘッダパイプと別に補助パイプを設けた構造と異なり、補助パイプおよびブラケットなどの支持手段による出っ張りがなくなるため、その分、限られた搭載スペース内でコア(放熱部)面積を拡大でき、熱交換性能を向上できる。つまり、請求項1記載の発明によれば、配管接続作業の容易性を確保しつつも限られた搭載スペース内でコア面積を最大限に確保して熱交換性能を向上できる。
【0017】
請求項2記載の発明によれば、入口側配管および出口側配管の接続作業を効率良く行うことができる。
【0018】
請求項3記載の発明によれば、請求項2記載の発明の効果に加え、入口側配管コネクタおよび出口側配管コネクタを一体形成したことで、部品点数および製造工数を削減でき、さらに製造コストを削減できる。
【0019】
請求項4記載の発明によれば、配管コネクタの取付方向からみてメインパイプ部が補助パイプ部に隠れる配置であっても、配管コネクタの取り付けを成立させることができる。
【0020】
請求項5記載の発明によれば、請求項1〜3のいずれか1項記載の発明の効果に加え、断熱部によってメインパイプ部を流通する熱交換媒体と補助パイプ部を流通する熱交換媒体との熱の授受を遮断できる。これにより、補助パイプ部を流通する熱交換媒体つまり熱交換器のコアで熱交換し終わった熱交換媒体が、熱交換前または熱交換途中の熱交換媒体からの悪影響を受けずにすむ。
【0021】
請求項6記載の発明によれば、請求項1記載の発明の効果に加え、補助パイプ部に開口する排出口を第1パスより下流のパスに対応する位置に配置したため、コンパクトな構造でありながらも、補助パイプ部を流通する冷媒(コアで熱交換し終わって冷媒)が、最も温度差のある第1パスを流通する冷媒からの悪影響を受け難い構造となる。
【0022】
請求項7記載の発明によれば、請求項6記載の発明の効果に加え、補助パイプ部の下流端部を第1パスより下流のパスに対応する位置までとし、補助パイプ部に開口する排出口を第1パスより下流のパスに対応する位置に配置したことを特徴とするため、補助パイプ部を流通する冷媒(コアで熱交換し終わって冷媒)が、第1パスの冷媒の悪影響をさらに受け難い構造となる。
【0023】
【発明の実施の形態】
以下、本発明にかかる熱交換器を車両用コンデンサに適用した実施形態を図面に基づいて説明する。
【0024】
第1実施形態:図1〜図8は本発明の熱交換器の第1実施形態である。図1は本第1実施形態におけるコンデンサ(熱交換器)の全体図であって、(a)は上面図、(b)は正面図である。コンデンサ1は、車両のエンジンルーム前部に配置され、波形のアウターフィン3を介して複数多段に積層された扁平チューブ5の両端に、上下方向に配置された左右一対のヘッダパイプ7、9を連通接続してなる。チューブ5の積層方向最外側(上端側および下端側)には、チューブ5とアウターフィン3とを補強するために横断面コ字状のサイドプレート11、13が両ヘッダパイプ7、9間に亘って配設されている。
【0025】
図2に示すように、一方のヘッダパイプ7(左側ヘッダパイプ)は、ヘッダパイプ7の長手方向に沿って並設されるメインパイプ部17と補助パイプ部19とを備えている。また、他方のヘッダパイプ9(右側ヘッダパイプ)は、ヘッダパイプ7の長手方向に沿って並設されるメインパイプ部23とリキッドタンク部25とを備えている。
【0026】
この実施形態のコンデンサ1はサブクール式のコンデンサであって、両ヘッダパイプ7、9のメインパイプ部17、23内に設けられこれらメインパイプ部17、23を上下に分割する仕切板27、29によって、コンデンサ1のコアが上側の第1パス1A(この第1実施形態では凝縮部)と下側の第2パス1B(この第1実施形態ではサブクール部)とに分割され、右側ヘッダパイプ9のメインパイプ部23の上部に形成された凝縮部出口タンク部23Aと、右側ヘッダパイプ9のメインパイプ部23の下部に形成されたサブクール部入口タンク部23Bと、の間にリキッドタンク部25が連通接続されている。
【0027】
そして、この実施形態の特徴点は、この左側ヘッダパイプ7の下端部に位置する熱交換器出口タンク部17Bから排出される冷媒を、補助パイプ部19を介して左側ヘッダパイプ7の上側に向けて導けるようになっている点である。
図3〜図8はこの左側ヘッダパイプ7の詳細構造を示すものである。この左側ヘッダパイプ7は、互いに嵌合されるタンクプレート35とエンドプレート37とからなる2分割タイプである。このヘッダパイプ7は、その両端が閉塞部材39、41によって閉塞され、内部空間は長手方向に沿う仕切壁部15によってメインパイプ部17と補助パイプ部19とに区画されている。つまり、メインパイプ部17と補助パイプ部19とはヘッダパイプ7の長手方向に沿って並設され、これらメインパイプ部17と補助パイプ部19で1つの壁(仕切壁部15)を共有している。
【0028】
メインパイプ部17の長手方向にそって等間隔に設けられたチューブ取付口36には、チューブ5の長手方向端部が挿嵌されており、メインパイプ部17はチューブ5と連通接続されることでヘッダパイプの本来の機能を果たすようになっている。なお、仕切板27よって内部空間を上下に仕切られたメインパイプ部17の上側空間は、冷媒導入口43が開口されてコアの最上流部を構成する熱交換器入口タンク部17Aとなっており、またメインパイプ部17の下側空間はコアの最下流部を構成する熱交換器出口タンク部17Bとなっている。
【0029】
一方、補助パイプ部19は、メインパイプ部17と同一長さで形成されており、メインパイプ部17に形成された熱交換器出口タンク部17Bと連通孔45を通じて連通し、ヘッダパイプ7の一端部(下端部)の熱交換器出口タンク部17Bから排出される冷媒をヘッダパイプ7の他端側(上側)に導くものである。
【0030】
ここで、メインパイプ部17の熱交換器入口タンク部17Aに開口する冷媒導入口43の近傍位置に、補助パイプ部19に開口する冷媒排出口47が設けられており、この左側ヘッダパイプ7には入口側配管コネクタ部49aおよび出口側配管コネクタ部49bが一体形成されたブロック状の一体型の配管コネクタ49が固定されている。
【0031】
入口側配管コネクタ部49aは、図示せぬ入口側配管を受け入れてこの入口側配管とメインパイプ部17の冷媒導入口43とを連通接続するため連通路51を有し、また、出口側配管コネクタ部49bは、図示せぬ出口側配管を受け入れてこの出口側配管と補助パイプ部19の冷媒排出口47とを連通接続するため連通路53を有する。ここで、配管コネクタ49は、チューブ5の長手方向に沿って連設されたメインパイプ部17と補助パイプ部19のうち補助パイプ部19側からヘッダパイプ7に取り付けられており、配管コネクタ49がコアの厚み方向(通風方向)に大きく出っ張らないようになっている。これに対応して、この配管コネクタ49の入口側配管コネクタ部49aには、補助パイプ部19を貫通してメインパイプ部17の冷媒導入口43に嵌合されメインパイプ部17と連通接続される筒状接続部55が設けられている。なお、この実施形態では、筒状接続部55は配管コネクタ本体の嵌合孔部57に嵌入される筒状部材として、配管コネクタ本体とは別体で形成されている。
【0032】
以上の構成により、図2に示すように、図示せぬコンプレッサから圧送される冷媒は、配管コネクタ49を通じて凝縮部入口タンク部(熱交換器入口タンク部)17Aに導入される。導入された冷媒は、凝縮部(第1パス1A)のチューブ5を流通して凝縮部出口タンク部23Aに流入した後、リキッドタンク部25に流入して気液分離される。リキッドタンク部25の下部に貯留する液相冷媒は、連通孔33を通じてサブクール部入口タンク部23Bに流入して、サブクール部(第2パス1B)のチューブ5を流通して過冷却されて、サブクール部出口タンク部(熱交換器出口タンク部)17Bに至る。そして、熱交換器出口タンク部17Bに至った低温冷媒は、連通孔45を通じて補助パイプ部19に流入して、補助パイプ部19の下端から上端側に向けて導びかれて、上端部に位置する冷媒排出口47から配管コネクタ49を介して出口側配管へと排出される。
【0033】
このようなコンデンサ1によれば、以下のような効果がある。
【0034】
まず第1に、ヘッダパイプ7は、長手方向に沿って並設されたメインパイプ部17と補助パイプ部19とを備えるため、該補助パイプ部19を利用して、従来と同様の配管取付作業性を確保できる。しかも、メインパイプ部17と補助パイプ部19とは1つの壁(仕切壁部)15を共有しているため、従来のようにヘッダパイプと別に補助パイプを設けた構造と異なり、補助パイプおよびブラケットなどの支持手段による出っ張りがなくなり、その分、限られた車両搭載スペース内でコア(放熱部)面積を拡大でき、放熱性能を向上できる。
【0035】
第2に、一方(左側)のヘッダパイプ7のメインパイプ部17には、熱交換器入口タンク部17Aおよび熱交換器出口タンク部17Bが設けられ、熱交換器入口タンク部17Aに開口する冷媒導入口43の近傍位置に、補助パイプ部19に開口する冷媒排出口47を設けたため、入口側配管および出口側配管の接続作業を効率良く行うことができる。
【0036】
第3に、第2の効果に加え、入口側配管コネクタ49aおよび出口側配管コネクタ49bを一体形成した配管コネクタ49を設けたことで、部品点数および製造工数を削減でき、さらに製造コストを削減できる。
【0037】
第4に、配管コネクタ49の入口側配管コネクタ部49aは、補助パイプ部19を貫通してメインパイプ部17に連通接続される筒状接続部55を備えるため、配管コネクタ49の取付方向からみてメインパイプ部17が補助パイプ部19に隠れる配置であっても、配管コネクタ49の取り付けを成立させることができる。特に、チューブ5の長手方向に沿ってメインパイプ部17と補助パイプ部19を連設し、その連設方向から配管コネクタ49を取り付ける構造を成立させることができ、コアの厚み方向(通風方向)に対してヘッダパイプ7および配管コネクタ49が大きく出っ張らないようにすることができる。
【0038】
なお、上述の実施形態では、メインパイプ部17と補助パイプ部19とを備えるヘッダパイプ7は、タンクプレート35とエンドプレート37とからなる2分割タイプであるが、本発明にあっては、引き抜きまたは押し出し形成による一体形成タイプであってもよいし、また、ヘッダパイプ7の断面形状は例えば図10〜図13のような断面形状であってもよく、上述の実施形態に限定されるものでない。
【0039】
また、上述の実施形態では、メインパイプ部17と補助パイプ部19の連設方向Xに沿って配管コネクタ49を取り付ける構造を採っているが、本発明においては、例えば図14に示すように、ヘッダパイプ7の長手方向Zから該ヘッダパイプ7の開口端部に配管コネクタ102取り付けるような構造であってもよいし、また、メインパイプ部17と補助パイプ部19の連設方向と直交する方向Y(図1中矢印参照)から取り付けるような構造であってもよく、上述の実施形態に限定されるものではない。
【0040】
第2実施形態:図9は本発明にかかる熱交換器の第2実施形態を示す。この第2実施形態の構造は、仕切壁部15に断熱部101を設けた点で、第1実施形態と異なる。
【0041】
このような構造によればメインパイプ部17を流通する冷媒と補助パイプ部19を流通する冷媒との熱の授受を遮断できる利点がある。つまり、コンパクトな構造でありながらも、補助パイプ部19を流通する冷媒(コアで熱交換し終わった冷媒)が、熱交換前または熱交換途中の冷媒からの悪影響を受けずにすむ。
【0042】
第3実施形態:図15は本発明にかかる熱交換器の第3実施形態を示す。この第3実施形態の熱交換器300は、主に以下の2点で第1実施形態と異なっている。第1に、コアを流通する冷媒の蛇行数(パス数)が第1実施形態の熱交換器1と異なる。具体的には、第1パス1Aおよび第2パス1Bおよび第3パス1Cが凝縮部として構成され且つ第4パス1Dがサブクール部として構成され、全体として4つのパス1A〜1Dにより構成されている。第2に、補助パイプ19の排出口47が、第1パス1Aより下流のパス1Bに対応する位置に配置されている点で第1実施形態と異なる。
【0043】
このような構造によれば、コンパクトな構造でありながらも、補助パイプ部19を流通する冷媒(コアで熱交換し終わって冷媒)が、最も温度差のある第1パス1Aを流通する冷媒からの悪影響を受けずにすむ。なお、図16に示す第4実施形態の熱交換器400のように、入口側配管コネクタ49aと出口側配管コネクタ49bとが別体で形成されていても、同様の効果が得られる。
【0044】
第5実施形態:図17は本発明の第5実施形態の熱交換器500を示す。この第5実施形態の熱交換器500は、補助パイプ部19が、第4パス1Dから第2パス1Bまでで形成されている点で第4実施形態と異なっている。つまり、補助パイプ部19が、第1パス1Aまでは延在しておらず、第1パス1Aより下流のパス1Bに対応する位置までで形成されている。
【0045】
このような構造によれば、補助パイプ部19を流通する冷媒(コアで熱交換し終わって冷媒)が、第1パス1Aの冷媒の悪影響をさらに受け難い構造とすることができる。
【0046】
以上要するに、本発明によれば、補助パイプ部により配管取付作業性を確保できる構造でありながらも、メインパイプ部と補助パイプ部とは1つの壁(仕切壁部)を共有しているため、従来のようにヘッダパイプと別に補助パイプを設けた構造と異なり、補助パイプおよびブラケットなどの支持手段による出っ張りがなくなり、その分、限られた車両搭載スペース内でコア(放熱部)面積を拡大でき、熱交換器の熱交換性能を向上できる。
【0047】
なお、上述の実施形態にあっては、冷媒導入口43(入口側配管コネクタ49a)を備える一方(入口側)のヘッダパイプ7に補助パイプ部19を形成した構造であるが、本発明にあっては、図18に示すように冷媒導入口43(入口側配管コネクタ49a)を備えない他方のヘッダパイプ9に補助パイプ部19を設けた構造であってもよい。
【0048】
また、上述の実施形態にあっては、リキッドタンク25を有してサブクール部を備える熱交換器1、300、400、500であるが、本発明にあっては、図18に示すようにリキッドタンクおよびサブクール部を備えない熱交換器600であってもよい。また、本発明にあっては、コアを流通する冷媒の蛇行回数(パス数)は上述の実施形態に限定されるものではない。
【図面の簡単な説明】
【図1】図1(a)は本発明の第1実施形態におけるコンデンサ(熱交換器)の上面図、図1(b)はコンデンサの正面図。
【図2】図2は同コンデンサ内を流れる冷媒(熱交換媒体)の流通経路を示す概略図。
【図3】図3は同コンデンサの左側ヘッダパイプの断面図。
【図4】図4は同コンデンサの左側ヘッダパイプの上端部近傍の分解斜視図。
【図5】図5は図1(a)中SB−SB断面のうち図1(b)中A部拡大図。
【図6】図6は図1(a)中SB−SB断面のうち図1(b)中B部拡大図。
【図7】図7は図1(b)中A部の拡大分解図。
【図8】図8は図1(b)中B部の拡大分解図。
【図9】図9は本発明の第2実施形態を示す図であって、メインパイプ部と補助パイプ部との間に断熱部を設けたヘッダパイプを示す図。
【図10】図10はヘッダパイプの一変形例を示す断面図。
【図11】図11はヘッダパイプの一変形例を示す断面図。
【図12】図12はヘッダパイプの一変形例を示す断面図。
【図13】図13はヘッダパイプの一変形例を示す断面図。
【図14】図14は配管コネクタの変形例を示す図。
【図15】図15は本発明の第3実施形態のコンデンサ(熱交換器)の模式図。
【図16】図16は本発明の第4実施形態のコンデンサ(熱交換器)の模式図。
【図17】図17は本発明の第5実施形態のコンデンサ(熱交換器)の模式図。
【図18】図18は本発明の第6実施形態のコンデンサ(熱交換器)の模式図。
【符号の説明】
1…コンデンサ(熱交換器)
1A…第1パス
1B…第2パス
1C…第3パス
1D…第4パス
5…チューブ
7…左側ヘッダパイプ(ヘッダパイプ)
15…仕切壁部(壁)
17…メインパイプ部
17A…凝縮部入口タンク部(熱交換器入口タンク部)
17B…サブクール部出口タンク部(熱交換器出口タンク部)
19…補助パイプ部
43…冷媒導入口
45…連通孔
47…冷媒排出口
49…配管コネクタ
49a…入口側配管コネクタ部
49b…出口側配管コネクタ部
55…筒状接続部
101…断熱部
102…配管コネクタ
300…コンデンサ(熱交換器)
400…コンデンサ(熱交換器)
500…コンデンサ(熱交換器)
600…コンデンサ(熱交換器)
[0001]
TECHNICAL FIELD OF THE INVENTION
The present invention relates to a vehicle heat exchanger that exchanges heat with air by flowing a heat exchange medium between header pipes.
[0002]
[Prior art]
As this kind of heat exchange for vehicles, a header pipe is connected and connected to both ends of tubes stacked in multiple stages through outer fins, and a refrigerant taken in from a refrigerant inlet of the header pipe flows through the tubes. It is known that the heat exchange between the refrigerant flowing through the tube and external air is performed, and then the refrigerant is discharged from a refrigerant outlet of a header pipe.
[0003]
By the way, the above-mentioned heat exchanger for vehicles is generally arranged in the engine room of the vehicle, and after the arrangement of the heat exchanger body, the work of connecting the inlet / outlet piping to the header pipe is performed. At this time, depending on the position of the refrigerant outlet provided in the header pipe, the work of connecting the pipe to the refrigerant outlet is forced to have an unnatural posture, and there is a problem that work efficiency is poor.
[0004]
Therefore, as disclosed in, for example, Patent Documents 1 and 2, an auxiliary pipe routed to a refrigerant discharge port provided at a lower end portion of the header pipe to a position (upper end side of the header pipe) where piping connection work is easy. And a structure in which piping and a liquid tank are connected through the auxiliary pipe has been proposed.
[0005]
[Patent Document 1]
Japanese Patent Application Laid-Open No. Hei 10-141887
[Patent Document 2]
JP 10-267467 A
[Problems to be solved by the invention]
However, in this method, a separate auxiliary pipe must be connected to the refrigerant outlet of the header pipe, and the auxiliary pipe must be supported by the header pipe using a support means such as a bracket. For this reason, the auxiliary pipe and the support means protrude from the heat exchanger main body, and the area of the core (radiator) is reduced to accommodate the auxiliary pipe and the support means in a limited space for mounting the vehicle.
[0008]
The present invention has been made on the basis of such conventional technology, and its purpose is to secure the maximum core area in a limited mounting space while securing the ease of piping connection work. The present invention provides a vehicle heat exchanger capable of improving heat exchange performance.
[0009]
[Means for Solving the Problems]
According to the first aspect of the present invention, header pipes are connected to both ends of a plurality of tubes stacked in multiple stages, and a heat exchange medium flows through the tubes to exchange heat between the heat exchange medium flowing through the tubes and external air. In the heat exchanger for a vehicle to be performed, a header pipe including a heat exchanger outlet tank portion constituting the most downstream portion of the core is provided along the main pipe portion having the original function of the header pipe and the main pipe portion. An auxiliary pipe portion communicating with the heat exchanger outlet tank portion of the main pipe, wherein the main pipe portion and the auxiliary pipe portion share one wall.
[0010]
According to a second aspect of the present invention, in the heat exchanger for a vehicle according to the first aspect, the main pipe portion of the header pipe including the auxiliary pipe portion has an inlet and constitutes the most upstream portion of the core. A heat exchanger outlet tank part that constitutes the most downstream part of the exchanger inlet tank part and the core is provided, and a discharge port that opens to the auxiliary pipe part near an inlet that opens to the heat exchanger inlet tank part. It is characterized by having been provided.
[0011]
According to a third aspect of the present invention, in the heat exchanger for a vehicle according to the second aspect, an inlet-side pipe fixed to the header pipe for receiving the inlet-side pipe and connecting the inlet-side pipe with the introduction port. An integrated pipe connector integrally formed with a connector and an outlet pipe connector fixed to the header pipe for receiving the outlet pipe and connecting the outlet pipe to the discharge port is provided. It is assumed that.
[0012]
According to a fourth aspect of the present invention, in the heat exchanger for a vehicle according to the third aspect, an inlet-side pipe connector of the integrated pipe connector is connected to the main pipe by passing through the auxiliary pipe. It is characterized by having a connection part.
[0013]
According to a fifth aspect of the present invention, in the heat exchanger for a vehicle according to any one of the first to third aspects, the heat exchange medium flowing through the main pipe portion and the heat exchange medium flowing through the auxiliary pipe portion pass through the wall. And a heat insulating portion for interrupting the transfer of heat to and from the heat exchanger.
[0014]
According to a sixth aspect of the present invention, in the heat exchanger for a vehicle according to the first aspect, the heat exchange medium is provided between the header pipes in a first pass, a second pass, and the like by a partition plate in the header pipe. And a plurality of meandering circulations, wherein the discharge port opening to the auxiliary pipe portion is arranged at a position corresponding to a path downstream of the first path.
[0015]
According to a seventh aspect of the present invention, in the heat exchanger for a vehicle according to the sixth aspect, the downstream end of the auxiliary pipe portion is set to a position corresponding to a path downstream of the first path, and is opened to the auxiliary pipe portion. The discharge port is arranged at a position corresponding to a path downstream of the first path.
[0016]
【The invention's effect】
According to the first aspect of the present invention, since the auxiliary pipe portion is provided along the main pipe portion, easiness of pipe connection work is ensured as in the related art. Moreover, since the main pipe portion and the auxiliary pipe portion share one wall, unlike the conventional structure in which the auxiliary pipe is provided separately from the header pipe, there is no protrusion due to the support means such as the auxiliary pipe and the bracket. To that extent, the core (radiator) area can be increased in a limited mounting space, and the heat exchange performance can be improved. In other words, according to the first aspect of the present invention, the heat exchange performance can be improved by securing the maximum core area in the limited mounting space while ensuring the ease of the pipe connection work.
[0017]
According to the second aspect of the present invention, it is possible to efficiently connect the inlet side pipe and the outlet side pipe.
[0018]
According to the invention of claim 3, in addition to the effect of the invention of claim 2, the number of parts and the number of manufacturing steps can be reduced by integrally forming the inlet-side piping connector and the outlet-side piping connector, and the manufacturing cost can be further reduced. Can be reduced.
[0019]
According to the invention described in claim 4, even when the main pipe portion is hidden by the auxiliary pipe portion when viewed from the mounting direction of the piping connector, the mounting of the piping connector can be established.
[0020]
According to the invention of claim 5, in addition to the effect of the invention of any one of claims 1 to 3, the heat exchange medium flowing through the main pipe portion and the heat exchange medium flowing through the auxiliary pipe portion by the heat insulating portion. Transfer of heat to and from can be cut off. Thus, the heat exchange medium flowing through the auxiliary pipe portion, that is, the heat exchange medium that has completed heat exchange in the core of the heat exchanger, does not need to be adversely affected by the heat exchange medium before or during heat exchange.
[0021]
According to the sixth aspect of the present invention, in addition to the effect of the first aspect of the present invention, the discharge port opened to the auxiliary pipe portion is arranged at a position corresponding to a path downstream of the first path, so that the structure is compact. However, the refrigerant flowing through the auxiliary pipe portion (the refrigerant that has completed heat exchange in the core) is less likely to be adversely affected by the refrigerant flowing through the first path having the largest temperature difference.
[0022]
According to the seventh aspect of the invention, in addition to the effect of the sixth aspect, the downstream end of the auxiliary pipe portion is set to a position corresponding to a path downstream of the first path, and the drainage opening to the auxiliary pipe portion is provided. Since the outlet is disposed at a position corresponding to a path downstream of the first path, the refrigerant flowing through the auxiliary pipe portion (the refrigerant that has been subjected to heat exchange in the core) does not adversely affect the refrigerant in the first path. The structure is more difficult to receive.
[0023]
BEST MODE FOR CARRYING OUT THE INVENTION
Hereinafter, an embodiment in which a heat exchanger according to the present invention is applied to a vehicle condenser will be described with reference to the drawings.
[0024]
First Embodiment FIGS. 1 to 8 show a first embodiment of a heat exchanger according to the present invention. FIG. 1 is an overall view of a condenser (heat exchanger) according to the first embodiment, in which (a) is a top view and (b) is a front view. The condenser 1 is disposed at the front of the engine room of the vehicle, and a pair of left and right header pipes 7, 9 disposed in the up and down direction at both ends of a plurality of flat tubes 5 stacked in multiple stages via corrugated outer fins 3. The connection is established. On the outermost side (upper end side and lower end side) of the tube 5 in the stacking direction, side plates 11 and 13 having a U-shaped cross section extend between the header pipes 7 and 9 to reinforce the tube 5 and the outer fin 3. It is arranged.
[0025]
As shown in FIG. 2, one header pipe 7 (left header pipe) includes a main pipe section 17 and an auxiliary pipe section 19 which are arranged side by side along the longitudinal direction of the header pipe 7. The other header pipe 9 (right header pipe) includes a main pipe section 23 and a liquid tank section 25 which are arranged side by side along the longitudinal direction of the header pipe 7.
[0026]
The condenser 1 according to this embodiment is a subcooled condenser, and is provided in the main pipe sections 17 and 23 of the header pipes 7 and 9 by partitioning plates 27 and 29 which divide the main pipe sections 17 and 23 vertically. The core of the condenser 1 is divided into an upper first path 1A (a condensing section in the first embodiment) and a lower second path 1B (a subcooling section in the first embodiment). A liquid tank portion 25 communicates between a condensing portion outlet tank portion 23A formed above the main pipe portion 23 and a subcool portion inlet tank portion 23B formed below the main pipe portion 23 of the right header pipe 9. It is connected.
[0027]
The feature of this embodiment is that the refrigerant discharged from the heat exchanger outlet tank 17B located at the lower end of the left header pipe 7 is directed upward through the auxiliary pipe 19 to the upper side of the left header pipe 7. It is a point that can be guided.
3 to 8 show the detailed structure of the left header pipe 7. The left header pipe 7 is of a two-part type composed of a tank plate 35 and an end plate 37 fitted to each other. Both ends of the header pipe 7 are closed by closing members 39 and 41, and the internal space is divided into a main pipe section 17 and an auxiliary pipe section 19 by a partition wall section 15 extending in the longitudinal direction. In other words, the main pipe section 17 and the auxiliary pipe section 19 are arranged side by side along the longitudinal direction of the header pipe 7, and the main pipe section 17 and the auxiliary pipe section 19 share one wall (partition wall section 15). I have.
[0028]
A longitudinal end portion of the tube 5 is inserted into a tube mounting port 36 provided at equal intervals along the longitudinal direction of the main pipe portion 17, and the main pipe portion 17 is connected to and connected to the tube 5. With this, the original function of the header pipe is performed. The upper space of the main pipe portion 17 in which the inner space is vertically divided by the partition plate 27 is a heat exchanger inlet tank portion 17A which has the refrigerant inlet 43 opened and constitutes the most upstream portion of the core. The lower space of the main pipe portion 17 is a heat exchanger outlet tank portion 17B constituting the most downstream portion of the core.
[0029]
On the other hand, the auxiliary pipe portion 19 is formed to have the same length as the main pipe portion 17, communicates with the heat exchanger outlet tank portion 17 </ b> B formed in the main pipe portion 17 through the communication hole 45, and has one end of the header pipe 7. The refrigerant discharged from the heat exchanger outlet tank portion 17B of the lower portion (lower portion) is guided to the other end side (upper side) of the header pipe 7.
[0030]
Here, a refrigerant outlet 47 opening to the auxiliary pipe 19 is provided near the refrigerant inlet 43 opening to the heat exchanger inlet tank 17A of the main pipe 17. A block-shaped integral pipe connector 49 in which an inlet-side pipe connector 49a and an outlet-side pipe connector 49b are integrally formed is fixed.
[0031]
The inlet-side piping connector portion 49a has a communication passage 51 for receiving an inlet-side piping (not shown) and connecting the inlet-side piping with the refrigerant inlet 43 of the main pipe portion 17, and has an outlet-side piping connector. The portion 49b has a communication passage 53 for receiving an outlet-side pipe (not shown) and connecting the outlet-side pipe to the refrigerant outlet 47 of the auxiliary pipe section 19 in communication. Here, the piping connector 49 is attached to the header pipe 7 from the auxiliary pipe portion 19 side of the main pipe portion 17 and the auxiliary pipe portion 19 continuously provided along the longitudinal direction of the tube 5. It does not protrude greatly in the thickness direction (ventilation direction) of the core. Correspondingly, the inlet-side piping connector portion 49a of the piping connector 49 penetrates through the auxiliary pipe portion 19, is fitted to the refrigerant inlet 43 of the main pipe portion 17, and is connected to and connected to the main pipe portion 17. A tubular connecting portion 55 is provided. In this embodiment, the tubular connecting portion 55 is formed as a tubular member to be fitted into the fitting hole 57 of the pipe connector main body, and is formed separately from the pipe connector main body.
[0032]
With the above configuration, as shown in FIG. 2, the refrigerant pumped from the compressor (not shown) is introduced into the condenser inlet tank portion (heat exchanger inlet tank portion) 17 </ b> A through the pipe connector 49. The introduced refrigerant flows through the tube 5 of the condenser (first path 1A), flows into the condenser outlet tank 23A, flows into the liquid tank 25, and is separated into gas and liquid. The liquid refrigerant stored in the lower part of the liquid tank section 25 flows into the subcool section inlet tank section 23B through the communication hole 33, flows through the tube 5 of the subcool section (second path 1B), is supercooled, and is subcooled. To the outlet tank section (heat exchanger outlet tank section) 17B. The low-temperature refrigerant that has reached the heat exchanger outlet tank portion 17B flows into the auxiliary pipe portion 19 through the communication hole 45, is guided from the lower end of the auxiliary pipe portion 19 toward the upper end, and is located at the upper end. The refrigerant is discharged from the refrigerant outlet 47 through the pipe connector 49 to the outlet pipe.
[0033]
According to such a capacitor 1, the following effects are obtained.
[0034]
Firstly, since the header pipe 7 includes the main pipe part 17 and the auxiliary pipe part 19 arranged side by side in the longitudinal direction, the pipe mounting work similar to the conventional one is performed by using the auxiliary pipe part 19. Nature can be secured. Moreover, since the main pipe portion 17 and the auxiliary pipe portion 19 share one wall (partition wall portion) 15, unlike the conventional structure in which the auxiliary pipe is provided separately from the header pipe, the auxiliary pipe and the bracket are different. As a result, there is no protrusion due to the supporting means, and the area of the core (radiator) can be increased in the limited space for mounting the vehicle, and the radiation performance can be improved.
[0035]
Second, a heat exchanger inlet tank 17A and a heat exchanger outlet tank 17B are provided in the main pipe portion 17 of one (left side) header pipe 7, and the refrigerant opening to the heat exchanger inlet tank 17A. Since the refrigerant outlet 47 that opens to the auxiliary pipe portion 19 is provided near the inlet 43, the work of connecting the inlet pipe and the outlet pipe can be performed efficiently.
[0036]
Third, in addition to the second effect, by providing the piping connector 49 in which the inlet-side piping connector 49a and the outlet-side piping connector 49b are integrally formed, the number of parts and the number of manufacturing steps can be reduced, and the manufacturing cost can be further reduced. .
[0037]
Fourth, since the inlet side pipe connector portion 49a of the pipe connector 49 includes the cylindrical connection portion 55 that penetrates through the auxiliary pipe portion 19 and is connected to the main pipe portion 17, it is viewed from the mounting direction of the pipe connector 49. Even if the main pipe portion 17 is arranged to be hidden by the auxiliary pipe portion 19, the attachment of the piping connector 49 can be established. In particular, a structure in which the main pipe portion 17 and the auxiliary pipe portion 19 are continuously provided along the longitudinal direction of the tube 5 and a pipe connector 49 is attached from the connection direction can be established, and the thickness direction of the core (ventilation direction). However, the header pipe 7 and the piping connector 49 can be prevented from protruding significantly.
[0038]
In the above-described embodiment, the header pipe 7 including the main pipe section 17 and the auxiliary pipe section 19 is of a two-part type composed of the tank plate 35 and the end plate 37. Alternatively, it may be an integrally formed type by extrusion, and the cross-sectional shape of the header pipe 7 may be, for example, a cross-sectional shape as shown in FIGS. 10 to 13, and is not limited to the above-described embodiment. .
[0039]
Further, in the above-described embodiment, the structure in which the pipe connector 49 is attached along the direction X in which the main pipe portion 17 and the auxiliary pipe portion 19 are connected is adopted. However, in the present invention, for example, as shown in FIG. The pipe connector 102 may be attached to the opening end of the header pipe 7 from the longitudinal direction Z of the header pipe 7, or a direction orthogonal to the direction in which the main pipe section 17 and the auxiliary pipe section 19 are connected. A structure that attaches from Y (see the arrow in FIG. 1) may be used, and is not limited to the above-described embodiment.
[0040]
Second Embodiment FIG. 9 shows a second embodiment of the heat exchanger according to the present invention. The structure of the second embodiment is different from that of the first embodiment in that a heat insulating portion 101 is provided on a partition wall portion 15.
[0041]
According to such a structure, there is an advantage that the transfer of heat between the refrigerant flowing through the main pipe portion 17 and the refrigerant flowing through the auxiliary pipe portion 19 can be blocked. That is, although having a compact structure, the refrigerant flowing through the auxiliary pipe portion 19 (the refrigerant that has been subjected to the heat exchange in the core) is not adversely affected by the refrigerant before or during the heat exchange.
[0042]
Third Embodiment FIG. 15 shows a third embodiment of the heat exchanger according to the present invention. The heat exchanger 300 of the third embodiment differs from the first embodiment mainly in the following two points. First, the number of meanders (the number of passes) of the refrigerant flowing through the core is different from that of the heat exchanger 1 of the first embodiment. Specifically, the first pass 1A, the second pass 1B, and the third pass 1C are configured as a condensing unit, and the fourth pass 1D is configured as a subcool unit, and is configured as a whole with four passes 1A to 1D. . Second, the second embodiment differs from the first embodiment in that the outlet 47 of the auxiliary pipe 19 is arranged at a position corresponding to the path 1B downstream of the first path 1A.
[0043]
According to such a structure, although having a compact structure, the refrigerant flowing through the auxiliary pipe portion 19 (the refrigerant after heat exchange in the core) is separated from the refrigerant flowing through the first path 1A having the largest temperature difference. It does not need to be adversely affected. Similar effects can be obtained even if the inlet-side piping connector 49a and the outlet-side piping connector 49b are formed separately as in the heat exchanger 400 of the fourth embodiment shown in FIG.
[0044]
Fifth Embodiment: FIG. 17 shows a heat exchanger 500 according to a fifth embodiment of the present invention. The heat exchanger 500 of the fifth embodiment is different from the fourth embodiment in that the auxiliary pipe portion 19 is formed from the fourth pass 1D to the second pass 1B. That is, the auxiliary pipe portion 19 does not extend to the first path 1A, but is formed up to a position corresponding to the path 1B downstream of the first path 1A.
[0045]
According to such a structure, the refrigerant flowing through the auxiliary pipe portion 19 (the refrigerant that has been subjected to heat exchange in the core) can be configured to be less likely to be adversely affected by the refrigerant in the first path 1A.
[0046]
In short, according to the present invention, the main pipe portion and the auxiliary pipe portion share one wall (partition wall portion), although the pipe mounting workability can be secured by the auxiliary pipe portion. Unlike the conventional structure in which an auxiliary pipe is provided separately from the header pipe, there is no protrusion due to support means such as the auxiliary pipe and the bracket, and the core (radiator) area can be increased in the limited vehicle mounting space. The heat exchange performance of the heat exchanger can be improved.
[0047]
In the above-described embodiment, the auxiliary pipe portion 19 is formed in the header pipe 7 (the inlet side) provided with the refrigerant inlet 43 (the inlet side pipe connector 49a). In addition, as shown in FIG. 18, a structure in which the auxiliary pipe portion 19 is provided on the other header pipe 9 which does not include the refrigerant introduction port 43 (the inlet side pipe connector 49a) may be used.
[0048]
Further, in the above-described embodiment, the heat exchangers 1, 300, 400, and 500 having the liquid tank 25 and the subcool portion are provided. In the present invention, as shown in FIG. The heat exchanger 600 may not include the tank and the subcool unit. Further, in the present invention, the number of meandering times (number of passes) of the refrigerant flowing through the core is not limited to the above-described embodiment.
[Brief description of the drawings]
FIG. 1A is a top view of a condenser (heat exchanger) according to a first embodiment of the present invention, and FIG. 1B is a front view of the condenser.
FIG. 2 is a schematic diagram showing a flow path of a refrigerant (heat exchange medium) flowing in the condenser.
FIG. 3 is a sectional view of a left header pipe of the condenser.
FIG. 4 is an exploded perspective view showing the vicinity of the upper end of a left header pipe of the condenser.
FIG. 5 is an enlarged view of a section A in FIG. 1 (b) of the cross section taken along line SB-SB in FIG. 1 (a).
FIG. 6 is an enlarged view of a portion B in FIG. 1 (b) of a cross section taken along line SB-SB in FIG. 1 (a).
FIG. 7 is an enlarged exploded view of a portion A in FIG. 1 (b).
FIG. 8 is an enlarged exploded view of a portion B in FIG. 1 (b).
FIG. 9 is a view showing a second embodiment of the present invention, and is a view showing a header pipe in which a heat insulating section is provided between a main pipe section and an auxiliary pipe section.
FIG. 10 is a sectional view showing a modification of the header pipe.
FIG. 11 is a sectional view showing a modification of the header pipe.
FIG. 12 is a sectional view showing a modification of the header pipe.
FIG. 13 is a sectional view showing a modification of the header pipe.
FIG. 14 is a view showing a modified example of the piping connector.
FIG. 15 is a schematic diagram of a condenser (heat exchanger) according to a third embodiment of the present invention.
FIG. 16 is a schematic view of a condenser (heat exchanger) according to a fourth embodiment of the present invention.
FIG. 17 is a schematic view of a condenser (heat exchanger) according to a fifth embodiment of the present invention.
FIG. 18 is a schematic view of a condenser (heat exchanger) according to a sixth embodiment of the present invention.
[Explanation of symbols]
1… Condenser (heat exchanger)
1A 1st pass 1B 2nd pass 1C 3rd pass 1D 4th pass 5 Tube 7 Left header pipe (header pipe)
15: Partition wall (wall)
17: Main pipe section 17A: Condensing section inlet tank section (heat exchanger inlet tank section)
17B: Subcooler outlet tank (heat exchanger outlet tank)
19 ... Auxiliary pipe part 43 ... Refrigerant inlet 45 ... Communication hole 47 ... Refrigerant outlet 49 ... Piping connector 49a ... Inlet side piping connector part 49b ... Outlet side piping connector part 55 ... Cylindrical connection part 101 ... Heat insulation part 102 ... Piping Connector 300: condenser (heat exchanger)
400… Condenser (heat exchanger)
500… Condenser (heat exchanger)
600 ... condenser (heat exchanger)

Claims (7)

複数多段に積層したチューブ(5)の両端にヘッダパイプ(7、9)を連通接続し、熱交換媒体を前記チューブ(5)に流通させてこのチューブ(5)を流通する熱交換媒体と外部空気との熱交換をおこなう車両用熱交換器(1、300、400、500、600)において、
コアの最下流部を構成する熱交換器出口タンク部(17B)を備えるヘッダパイプ(7)は、ヘッダパイプ(7)の本来の機能を有するメインパイプ部(17)と、前記メインパイプ部(17)に沿って並設され前記メインパイプ部(17)の熱交換器出口タンク部(17B)と連通される補助パイプ部(19)と、を備え、
これらメインパイプ部(17)と補助パイプ部(19)とで1つの壁(15)を共有していることを特徴とする車両用熱交換器(1、300、400、500、600)。
Header pipes (7, 9) are connected to both ends of the tubes (5) stacked in multiple stages, and a heat exchange medium is allowed to flow through the tubes (5) so that the heat exchange medium flowing through the tubes (5) is connected to the outside. In a vehicle heat exchanger (1, 300, 400, 500, 600) that performs heat exchange with air,
The header pipe (7) including the heat exchanger outlet tank (17B) constituting the most downstream portion of the core includes a main pipe (17) having an original function of the header pipe (7) and the main pipe (17). 17) an auxiliary pipe section (19) which is arranged in parallel along 17) and communicates with the heat exchanger outlet tank section (17B) of the main pipe section (17).
A heat exchanger for vehicles (1, 300, 400, 500, 600) characterized in that one wall (15) is shared by the main pipe part (17) and the auxiliary pipe part (19).
請求項1記載の車両用熱交換器(1、300、400、500、600)において、
前記メインパイプ部(17)および補助パイプ部(19)を備えるヘッダパイプ(7)は、そのメインパイプ部(17)が、導入口(43)を有してコアの最上流部を構成する熱交換器入口タンク部(17A)およびコアの最下流部を構成する熱交換器出口タンク部(17B)を備え、
前記熱交換器入口タンク部(17A)に開口する導入口(43)の近傍に、前記補助パイプ部(19)に開口する排出口(47)を設けたことを特徴とする車両用熱交換器(1)。
The vehicle heat exchanger (1, 300, 400, 500, 600) according to claim 1,
The header pipe (7) provided with the main pipe section (17) and the auxiliary pipe section (19) has a main pipe section (17) having an inlet (43) and constituting the most upstream part of the core. A heat exchanger outlet tank part (17B) that constitutes the exchanger inlet tank part (17A) and the most downstream part of the core;
An exhaust port (47) opening to the auxiliary pipe section (19) is provided near an inlet port (43) opening to the heat exchanger inlet tank section (17A). (1).
請求項2記載の車両用熱交換器(1)において、
前記ヘッダパイプ(7)に固定され入口側配管を受け入れて該入口側配管と前記導入口(43)とを連通接続するための入口側配管コネクタ(49a)と、前記ヘッダパイプ(7)に固定され出口側配管を受け入れて該出口側配管と前記排出口(47)とを連通接続するための出口側配管コネクタ(49b)と、を一体形成した一体型の配管コネクタ(49)を設けたことを特徴とする車両用熱交換器(1)。
The vehicle heat exchanger (1) according to claim 2,
An inlet-side pipe connector (49a) fixed to the header pipe (7) for receiving the inlet-side pipe and communicating the inlet-side pipe with the inlet (43), and fixed to the header pipe (7). And an outlet-side piping connector (49b) for receiving the outlet-side piping and connecting the outlet-side piping with the discharge port (47). A heat exchanger for a vehicle (1), characterized in that:
請求項3記載の車両用熱交換器(1)において、
前記配管コネクタ(49)の入口側配管コネクタ部(49a)は、前記補助パイプ部(19)を貫通してメインパイプ部(17)に連通接続される筒状接続部(55)を備えることを特徴とする車両用熱交換器(1)。
The vehicle heat exchanger (1) according to claim 3,
An inlet-side pipe connector (49a) of the pipe connector (49) includes a tubular connection part (55) penetrating the auxiliary pipe part (19) and connected to the main pipe part (17). A heat exchanger for a vehicle (1).
請求項1〜3のいずれか1項記載の車両用熱交換器(1)において、
前記壁(15)に、メインパイプ部(17)を流通する熱交換媒体と補助パイプ部(19)を流通する熱交換媒体との熱の授受を遮断するための断熱部(101)を設けたことを特徴とする車両用熱交換器(1)。
The vehicle heat exchanger (1) according to any one of claims 1 to 3,
The wall (15) is provided with a heat insulating portion (101) for blocking the transfer of heat between the heat exchange medium flowing through the main pipe portion (17) and the heat exchange medium flowing through the auxiliary pipe portion (19). A vehicle heat exchanger (1), characterized in that:
請求項1記載の車両用熱交換器(1、300、400、500、600)において、
前記ヘッダパイプ(7、9)内の仕切板の区画によって、前記熱交換媒体が前記ヘッダパイプ(7、9)間を第1パス(1A)、第2パス(1B)、・・・と複数回蛇行して流通する構造であり、
前記補助パイプ部(19)に開口する排出口(47)を第1パス(1A)より下流のパス(1B、・・)に対応する位置に配置したことを特徴とする車両用熱交換器(300、400、500、600)。
The vehicle heat exchanger (1, 300, 400, 500, 600) according to claim 1,
The heat exchange medium passes between the header pipes (7, 9) in a plurality of first pass (1A), second pass (1B),... It is a meandering and circulating structure,
A heat exchanger (4) for a vehicle, wherein a discharge port (47) opening to the auxiliary pipe portion (19) is arranged at a position corresponding to a path (1B,...) Downstream of the first path (1A). 300, 400, 500, 600).
請求項6記載の車両用熱交換器(300,400、500、600)において、
前記補助パイプ部(19)の下流端部を第1パス(1A)より下流のパス(1B、・・)に対応する位置までとし、
前記補助パイプ部(19)に開口する排出口(47)を第1パス(1A)より下流のパス(1B、・・)に対応する位置に配置したことを特徴とする車両用熱交換器(500)。
The vehicle heat exchanger (300, 400, 500, 600) according to claim 6,
The downstream end of the auxiliary pipe part (19) is set to a position corresponding to a path (1B,...) Downstream from the first path (1A),
A heat exchanger (4) for a vehicle, wherein a discharge port (47) opening to the auxiliary pipe portion (19) is arranged at a position corresponding to a path (1B,...) Downstream of the first path (1A). 500).
JP2003176809A 2002-12-11 2003-06-20 Vehicular heat exchanger Pending JP2004239592A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2003176809A JP2004239592A (en) 2002-12-11 2003-06-20 Vehicular heat exchanger

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2002359831 2002-12-11
JP2003176809A JP2004239592A (en) 2002-12-11 2003-06-20 Vehicular heat exchanger

Publications (1)

Publication Number Publication Date
JP2004239592A true JP2004239592A (en) 2004-08-26

Family

ID=32964497

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2003176809A Pending JP2004239592A (en) 2002-12-11 2003-06-20 Vehicular heat exchanger

Country Status (1)

Country Link
JP (1) JP2004239592A (en)

Cited By (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2006059783A1 (en) * 2004-11-30 2006-06-08 Showa Denko K.K. Heat exchanger
JP2010065965A (en) * 2008-09-12 2010-03-25 Showa Denko Kk Heat exchanger
EP2553374A1 (en) * 2010-03-29 2013-02-06 Carrier Corporation Heat exchanger
KR101476914B1 (en) * 2013-07-12 2014-12-26 고동환 Automotive heat exchangers
WO2016052305A1 (en) * 2014-09-30 2016-04-07 ダイキン工業株式会社 Heat exchanger
JP2017015388A (en) * 2016-09-28 2017-01-19 ダイキン工業株式会社 Heat exchanger
CN106461296A (en) * 2014-05-19 2017-02-22 三菱电机株式会社 Air-conditioning device
JP2019086196A (en) * 2017-11-06 2019-06-06 三菱電機株式会社 Heat exchanger header and heat exchanger
JPWO2021186766A1 (en) * 2020-03-19 2021-09-23
WO2021199458A1 (en) * 2020-03-31 2021-10-07 三菱電機株式会社 Heat exchanger header, heat exchanger, method for manufacturing heat exchanger header, and method for manufacturing heat exchanger

Cited By (19)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101069060B (en) * 2004-11-30 2010-08-04 昭和电工株式会社 Heat exchanger
US7784529B2 (en) 2004-11-30 2010-08-31 Showa Denko K.K. Heat exchanger
WO2006059783A1 (en) * 2004-11-30 2006-06-08 Showa Denko K.K. Heat exchanger
JP2010065965A (en) * 2008-09-12 2010-03-25 Showa Denko Kk Heat exchanger
EP2553374A1 (en) * 2010-03-29 2013-02-06 Carrier Corporation Heat exchanger
KR101476914B1 (en) * 2013-07-12 2014-12-26 고동환 Automotive heat exchangers
CN106461296B (en) * 2014-05-19 2019-03-05 三菱电机株式会社 Air-conditioning device
CN106461296A (en) * 2014-05-19 2017-02-22 三菱电机株式会社 Air-conditioning device
WO2016052305A1 (en) * 2014-09-30 2016-04-07 ダイキン工業株式会社 Heat exchanger
JP2016070622A (en) * 2014-09-30 2016-05-09 ダイキン工業株式会社 Heat exchanger
JP2017015388A (en) * 2016-09-28 2017-01-19 ダイキン工業株式会社 Heat exchanger
JP2019086196A (en) * 2017-11-06 2019-06-06 三菱電機株式会社 Heat exchanger header and heat exchanger
JP7117839B2 (en) 2017-11-06 2022-08-15 三菱電機株式会社 Heat exchanger headers and heat exchangers
JPWO2021186766A1 (en) * 2020-03-19 2021-09-23
DE112020006927T5 (en) 2020-03-19 2023-01-12 Mitsubishi Electric Corporation Heat exchanger manifold, heat exchanger, method of making a heat exchanger manifold, and method of making a heat exchanger
JP7471392B2 (en) 2020-03-19 2024-04-19 三菱電機株式会社 Heat exchanger header, heat exchanger, method for manufacturing a heat exchanger header, and method for manufacturing a heat exchanger
WO2021199458A1 (en) * 2020-03-31 2021-10-07 三菱電機株式会社 Heat exchanger header, heat exchanger, method for manufacturing heat exchanger header, and method for manufacturing heat exchanger
JPWO2021199458A1 (en) * 2020-03-31 2021-10-07
JP7361887B2 (en) 2020-03-31 2023-10-16 三菱電機株式会社 Heat exchanger header, heat exchanger, method for manufacturing heat exchanger header, and method for manufacturing heat exchanger

Similar Documents

Publication Publication Date Title
US5184672A (en) Heat exchanger
JP3810875B2 (en) Integrated heat exchanger
JP3131774B2 (en) Multi-flow condenser for vehicle air conditioner
US20050061489A1 (en) Integrated multi-function return tube for combo heat exchangers
JP2006183994A (en) Heat exchanger
JP2000346568A (en) Heat exchanger
JP2004225961A (en) Multi-flow type heat exchanger
JP2004239592A (en) Vehicular heat exchanger
JP4207333B2 (en) Condenser with integrated receiver
JPH0345300B2 (en)
JPH1162587A (en) Radiator with built-in oil cooler
JP2004299609A (en) Heat exchanging apparatus for vehicle
JP2004239598A (en) Heat exchanger
JP2002350002A (en) Condenser
JPH09280773A (en) Liquid receiving part built-in type condenser
JPH03117887A (en) Heat exchanger
JP3218053B2 (en) Condenser
JPH03279763A (en) Multiple heat exchanger
JP2004226030A (en) Heat exchanger for vehicle
JPH11281287A (en) Heat exchanger
JPH11337289A (en) Heat exchanger
JP2002318090A (en) Duplex heat exchanger
EP3943861B1 (en) A heat exachanger
JP4328411B2 (en) Heat exchanger
JP2687593B2 (en) Refrigerant condenser

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20060324

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20081224

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20090106

A02 Decision of refusal

Effective date: 20090929

Free format text: JAPANESE INTERMEDIATE CODE: A02