JP2004239173A - System for controlling combustion of internal combustion engine and method for controlling combustion - Google Patents

System for controlling combustion of internal combustion engine and method for controlling combustion Download PDF

Info

Publication number
JP2004239173A
JP2004239173A JP2003029611A JP2003029611A JP2004239173A JP 2004239173 A JP2004239173 A JP 2004239173A JP 2003029611 A JP2003029611 A JP 2003029611A JP 2003029611 A JP2003029611 A JP 2003029611A JP 2004239173 A JP2004239173 A JP 2004239173A
Authority
JP
Japan
Prior art keywords
value
related value
state
internal combustion
combustion engine
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2003029611A
Other languages
Japanese (ja)
Other versions
JP4233340B2 (en
Inventor
Nobuhiko Fukaya
信彦 深谷
Hiroshi Yasukawa
宏 安川
Shiyounosuke Koga
祥之助 古賀
Shunsaku Nakai
俊作 中井
Hironori Sato
裕紀 佐藤
Kazuhisa Okamoto
和久 岡本
Toru Matsui
徹 松井
Tomohito Morimoto
智史 森本
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Osaka Gas Co Ltd
Tokyo Gas Co Ltd
Original Assignee
Osaka Gas Co Ltd
Tokyo Gas Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Osaka Gas Co Ltd, Tokyo Gas Co Ltd filed Critical Osaka Gas Co Ltd
Priority to JP2003029611A priority Critical patent/JP4233340B2/en
Publication of JP2004239173A publication Critical patent/JP2004239173A/en
Application granted granted Critical
Publication of JP4233340B2 publication Critical patent/JP4233340B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Landscapes

  • Electrical Control Of Air Or Fuel Supplied To Internal-Combustion Engine (AREA)
  • Combined Controls Of Internal Combustion Engines (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a combustion control system capable of maintaining a stable combustion state even when the properties of fuel are unstable only by applying a variation of a comparatively narrow range on the combustion control system provided with state related value detecting means 23, 24, and 32 to detect a state related value regarding the operation state of an internal combustion engine 1; and a control means 21 to control the amount of fuel fed to the internal combustion engine 1 based on a state related value detected by a state related value detecting means. <P>SOLUTION: The combustion control system is provided with a heating value related value detecting means 33 to detect a heating value related value regarding a heating value of fuel fed to the internal combustion engine 1; and a correcting means 31 to correct a state related value, detected by a state related value detecting means 32, based on a heating value related value detected by the heating value detecting means 33 and input it to a control means 21. <P>COPYRIGHT: (C)2004,JPO&NCIPI

Description

【0001】
【発明の属する技術分野】
本発明は、内燃機関の運転状態に関する状態関連値を検出する状態関連値検出手段と、前記状態関連値検出手段で検出された状態関連値に基づいて前記内燃機関への燃料供給量を制御する制御手段とを備えた燃焼制御システム及び燃焼制御方法に関する。
【0002】
【従来の技術】
従来の内燃機関の燃焼制御システムは、内燃機関の運転状態に関する状態関連値として例えば吸気路に流通する空気の温度、圧力、湿度等を検出する各種センサ(状態関連値検出手段)と、吸気路を流通する空気に対して供給される燃料供給量を調整可能な燃料制御弁を働かせて、夫々のセンサで検出された状態関連値に基づいて前記内燃機関への燃料供給量を制御する制御手段として機能するコントロールユニットとを備え、この内燃機関の燃焼制御システムにより、燃焼室に吸気され燃焼する混合気の空燃比を、安定且つ高効率の燃焼状態を得ることができる最適な空燃比に維持することができる。
【0003】
一般的に利用されている内燃機関の多くは、上記内燃機関に供給される燃料の発熱量が一定であることを前提にして、最適な空燃比等の各種条件が設定されていた。
即ち、上記のような従来の燃焼制御システムを備えた内燃機関において、発熱量が一定でない燃料を供給すると、ノッキングや失火等による効率の低下や排ガス性状の悪化等が発生する恐れがある。
【0004】
そこで、従来の内燃機関の燃焼制御システムとして、燃料の燃焼化学当量値の変化傾向に基づいて空燃比をフィードフォワード制御するものが提案されている(例えば、特許文献1参照。)。かかる燃焼制御システムは、内燃機関において、バイオガスやオフガス等の燃料を供給することを想定しており、燃料の燃焼化学当量値が変化しても、その燃焼化学当量値の変化傾向に基づいて、吸気路を流通する空気への燃料供給量を制御し、空燃比をその燃料に適した最適空燃比に調整して、好ましい燃焼状態を維持するためのものである。
また、この特許文献1に開示されている燃焼制御システムは、内燃機関に供給される燃料の一部を取出し、取り出した燃料に所定量の空気を混合して実際に燃焼させ、その燃焼後に排出される排ガスの酸素濃度を検出することにより、その酸素濃度から燃料の燃焼化学当量値を算出し、その算出した燃焼化学当量値に基づいて、直接燃料供給量等を上記予測した燃料化学当量値に適したものにフィードフォワード制御するように構成されている。
【0005】
【特許文献1】
特開2002−221099号公報
【0006】
【発明が解決しようとする課題】
しかし、特許文献1に開示されている燃焼制御システムでは、燃料の燃焼化学当量値自身を認識するために、取り出した燃料を燃焼させるための燃焼装置が必要であり燃焼制御システムが複雑且つ高価になる。
また、この燃焼制御システムは、予め格納しておいた燃焼化学当量値と最適な燃料供給量との相関関係を用いて、認識した燃焼化学当量値から最適な燃料供給量を導出し、燃料供給量を制御するという、燃料の性状が安定していない内燃機関に特化したものである。よって、従来の燃料の性状が安定していることを前提とする内燃機関を、燃料の性状が不安定な場合にも対応できるように改造する場合においては、燃焼制御システムとしてのコントロールユニット自身を取り替えるなどの大幅な変更が必要となる。
【0007】
従って、本発明は、上記の事情に鑑みて、燃料の性状が安定していることを前提とする内燃機関に対して、比較的小幅な変更を加えるだけで、燃料の性状が不安定な場合にも安定した燃焼状態を維持できる燃焼制御システムを実現することを目的とする。
【0008】
【課題を解決するための手段】
この目的を達成するための本発明に係る内燃機関の燃焼制御システムの第一特徴構成は、内燃機関の運転状態に関する状態関連値を検出する状態関連値検出手段と、
前記状態関連値検出手段で検出された状態関連値に基づいて前記内燃機関への燃料供給量を制御する制御手段とを備えた燃焼制御システムであって、
前記内燃機関へ供給される燃料の発熱量に関する発熱量関連値を検出する発熱量関連値検出手段と、
前記状態関連値検出手段で検出された前記状態関連値を、前記発熱量関連値検出手段で検出された発熱量関連値に基づいて補正して、前記制御手段に入力する補正手段とを備えた点にある。
【0009】
また、この目的を達成するための本発明に係る内燃機関の燃焼制御方法の特徴構成は、内燃機関の運転状態に関する状態関連値を検出し、前記検出された状態関連値に基づいて前記内燃機関への燃料供給量を制御する内燃機関の燃焼制御方法であって、
前記内燃機関へ供給される燃料の発熱量に関する発熱量関連値を検出し、前記検出された前記状態関連値を、前記検出された発熱量関連値に基づいて補正して、前記補正後の前記状態関連値に基づいて前記燃料供給量を制御する点にある。
【0010】
即ち、上記第一特徴構成の内燃機関の燃焼制御システム及び燃焼制御方法によれば、上記状態関連値検出手段から出力された状態関連値が一旦上記補正手段に取込まれ、取込まれた上記状態関連値が上記発熱量関連値検出手段で検出された燃料の発熱量関連値に基づいて補正され、補正後の状態関連値が制御手段に入力される。そして、その入力された補正後の状態関連値に基づいて燃料供給量が制御されるので、燃料の発熱量が不安定な場合でも、上記燃料供給量を上記発熱量関連値が示す燃料の発熱量に適したものに制御して、燃焼状態を安定したものに維持し、効率の低下や排ガス性状の悪化等を防止することができる。
【0011】
そして、かかる内燃機関の燃焼制御システムは、従来の少なくとも1つの上記状態関連値検出手段とコントロールユニットからなる上記制御手段とにより燃焼制御を行う燃焼制御システムに対して、上記発熱量関連値検出手段に接続された補正手段として機能する演算処理装置等を、ある状態関連値検出手段と上記コントロールユニットとの間に介装するだけで、実現することができる。
【0012】
本発明に係る内燃機関の燃焼制御システムの第二特徴構成は、上記第一特徴構成に加えて、前記発熱量関連値検出手段が、前記発熱量関連値として、前記燃料中における音速又は熱伝導度を検出する手段である点にある。
【0013】
即ち、上記第二特徴構成の内燃機関の燃焼制御システムによれば、上記発熱量関連値検出手段を上記燃料の発熱量との間に相関を有する燃料中における音速又は熱伝導度を計測するという簡単且つ安価に構成できるものとして、その計測された音速又は熱伝導度を上記発熱量関連値として検出することができる。
【0014】
本発明に係る内燃機関の燃焼制御システムの第三特徴構成は、上記第一乃至第二特徴構成に加えて、前記運転状態検出手段の1つとして、前記内燃機関へ供給される空気の比熱に関する空気比熱関連値を前記状態値として検出する空気比熱関連値検出手段を備え、
前記補正手段が、前記空気比熱関連値検出手段で検出された空気比熱関連値を、前記発熱量関連値検出手段で検出された発熱量関連値に基づいて補正して前記制御手段に入力する手段であり、
前記制御手段が、前記補正手段で補正された空気比熱関連値を含む複数の前記運転状態関連値に基づいて、前記内燃機関への燃料供給量を制御する手段である点にある。
【0015】
内燃機関において、燃焼室に吸気される空気の比熱は、燃焼室における温度上昇状態、即ち燃焼状態に影響を与えるものであるので、好ましくは空気の湿度を上記空気比熱関連値として検出する湿度センサ等の上記空気比熱関連値検出手段を設けて、上記制御手段により、上記空気比熱関連値に基づいて燃料供給量を制御して、燃焼室における燃焼状態を安定させることが好ましい。
【0016】
更に、上記のように空気比熱関連値に基づいて燃料供給量を制御する内燃機関において、上記第三特徴構成の内燃機関の燃焼制御システムによれば、上記空気比熱関連値と同様に燃焼室における燃焼状態に影響を与える燃料の発熱量関連値を、上記空気比熱関連値に容易に換算することができ、その換算した上記発熱量関連値により補正した上記空気比熱関連値に基づいて燃料供給量を制御することで、空気の比熱が不安定であり更には燃料の発熱量が不安定な場合でも、燃焼室における燃焼状態を安定したものとすることができる。
【0017】
更に、本発明に係る内燃機関の燃焼制御システムによれば、通常のガソリン等のように発熱量が安定している燃料ではなく、厳密な組成の調整がされておらず発熱量が不安定となる可能性がある天然ガス系都市ガスや、比重の差によりボンベから供給されるプロパンとブタン等との割合が変化して発熱量が不安定となる可能性がある液化石油ガス(LPG)等の、例えば複数の炭化水素からなりその割合が変化して発熱量が変化する可能性がある気体燃料を使用しても、その燃料の発熱量関連値に基づいて補正され状態値により燃料供給量を制御して、燃料状態を安定したものに維持することができる。
【0018】
【発明の実施の形態】
本発明に係る内燃機関の燃焼制御システムの実施形態を図面に基づいて説明する。
【0019】
図1に示す内燃機関としてのエンジン1は、シリンダ4内面と、シリンダ4内に復移動自在に収容されているピストン5の頂面とによって規定される燃焼室2に、吸気路3から燃料と空気との混合気を吸気し、吸気した混合気を燃焼室2において燃焼・膨張させてピストンを押し下げて軸動力を得るように構成されている。
【0020】
また、エンジン1の吸気路3には、吸気路3を流通する空気に、天然ガス系都市ガスである燃料を供給して、混合気を形成するミキサ6が設けられている。
【0021】
燃料は、先ず、ガバナ10により低圧とされて燃料供給路7に供給された後に、燃料供給路7に連通する燃料供給路8を介してミキサ6に供給される。
また、燃料供給路8には、燃料供給路8を流通しミキサ6に供給される燃料流量を調整可能な燃料制御弁11が設けられている。
【0022】
更に、エンジン1の吸気路3のミキサ6の上流側には、エンジン1の運転状態に関する状態関連値を検出する状態関連値検出手段として、空気の温度を検出しその温度に関する温度データTを出力する温度センサ23、空気の圧力を検出しその圧力に関する圧力データPを出力する圧力センサ24、空気の湿度を検出しその湿度に関する湿度データHuを出力する湿度センサ32が設けられている。
【0023】
エンジン1の燃焼制御システムとして設けられたメインコントロールユニット20(以下、MCU20と略称する。)は、所定の入力信号に基づいて各種演算処理を行い、演算結果に基づいて所定の出力信号を出力するコンピュータからなり、このMCU20が所定のプログラムを実行することで機能する制御手段21等により、エンジン1の燃焼制御等の各種制御が行われる。そのため、上記各センサ23,24,32で検出された上記状態関連値としての空気の温度,圧力,湿度に関する各種データT,P,Huは、直接又は間接的にMCU20に入力され、制御手段21では、これら入力されたデータに基づいて、ミキサ6に供給される燃料供給量がエンジン1の上記状態関連値に対して最適なものとなるための燃料制御弁11の弁開度に関する制御量データGを演算処理により導出する。そして、MCU20は、制御手段21で演算処理して導出した制御量データGを燃料制御弁11側に出力することで、燃料制御弁11の弁開度は、その制御量データGに基づいて設定され、空気に対する燃料供給量,即ち、燃焼室2に吸気される混合気の空燃比が制御される。即ち、制御量データGが増加すればミキサ6への燃料供給量は増加し、逆に、制御量データGが減少すればミキサ6への燃料制御量は減少する。
【0024】
エンジン1の燃料供給路7のガバナ10の下流側には、ミキサ6へ供給される燃料の発熱量に関する発熱量関連値を検出し、その発熱量関連値を示す発熱量データCalを出力する熱量計33(発熱量関連値検出手段の一例)が設けられている。
【0025】
具体的には、上記熱量計33は、上記燃料の発熱量との間に相関を有する燃料中における音速又は熱伝導度を、上記発熱量関連値として検出するように構成されている。
【0026】
エンジン1に設けられたSCU30は、上記熱量計33から出力された発熱量データCal及び上記湿度センサ32から出力された湿度データHuが入力され、その入力されたデータに基づいて各種演算処理を行い、演算結果に関する所定の出力信号をMCU20側に出力するコンピュータからなる。
【0027】
詳しくは、SCU30が所定のプログラムを実行することで機能する補正手段31では、上記湿度センサ32で検出された空気の湿度に関する湿度データHuを、熱量系33から出力された発熱量データCalに基づいて補正して、補正後の湿度データHu’をMCU20側に出力するように構成されている。
【0028】
即ち、本エンジン1の燃焼制御システムは、湿度データHuと温度データTと圧力データPとを直接MCU20に入力して燃料制御量を制御するMCU20を備えたエンジン1に対して、熱量計33を設置すると共に、湿度センサ30とMCU20との間にSCU30を介装するというような簡単な改変により構成されている。
【0029】
これまで説明してきたMCU20及びSCU30における各演算処理の詳細について、図2のブロック線図に基づいて説明する。
【0030】
湿度センサ32から出力された空気の湿度に関する湿度データHuと、熱量計33から出力された燃料の発熱量に関する熱量データCalとは、SCU30に入力されて、補正手段31における補正演算処理51に利用される。
【0031】
即ち、補正手段51は、上記湿度データHuと上記熱量データCalとを、下記の数1に示す式に代入して、補正後の湿度データHu’を得る。
【0032】
【数1】
Hu’=Hu−P(Cal)
【0033】
即ち、上記数1に示す式において、上記熱量データCalが代入される項P(Cal)は、熱量データCalの基準からの変化量を上記空気の比熱に関連する湿度データHuの変化量に換算する式であり、例えば、P(Cal)=a(Cal−b)(a,bはエンジン試験から求めた定数)とすることができる。よって、熱量データCalの増加は、空気の比熱の減少として取り扱われ、逆に、熱量データCalの減少は、空気の比熱の増加として取り扱われる。
【0034】
また、上記補正処理51においは、上記熱量計33を流通した燃料がミキサ6に到達するまでの時間遅れを考慮して、補正後の湿度データHu’をその時間遅れ分遅らせて出力している。
【0035】
次に、上記補正処理51により補正した補正後の湿度データHu’は、上記温度センサ23から出力された空気の温度に関する温度データT及び上記圧力センサ24から出力された空気の圧力に関する圧力データPと共に、MCU20に入力されて、制御手段21における制御量演算処理52に利用される。
【0036】
即ち、制御手段21は、上記補正後の湿度データHu’と上記温度データTと上記圧力データPとを、下記の数2に示す式に代入して、燃料制御弁11の弁開度、即ち燃料供給量に関する制御量データGを得る。
【0037】
【数2】
G=Q(Hu’)+R(T,P)
【0038】
上記数2に示す式において、補正後の湿度データHu’が代入される項Q(Hu’)は、空気の湿度から認識される空気の比熱との変化量とそれに対して変化させるべき燃料供給量に関する制御量データGとの相関を示す式であり、例えば、Q(Hu’)=α・Hu’(αはエンジン試験から求めた定数)とすることができる。よって、空気の比熱に関する湿度データHu’の増加に対しては、燃料供給量に関する制御量データGは増加され、逆に、湿度データHu’の減少に対しては、燃料供給量に関する制御量データGは減少される。
【0039】
また、上記数2に示す式において、温度データTと圧力データPとが代入される項R(T,P)は、空気の温度及び圧力から認識される空気の密度の変化量とそれに対して変化させるべき燃料供給量に関する制御量データGとの相関を示す式であり、例えば、R(T,P)=β・T+γ・P(β,γはエンジン試験から求めた定数)とすることができる。よって、空気の温度に関する温度データTの増加に対しては、温度増加による空気密度の減少を考慮して、燃料供給量に関する制御量データGは減少され、逆に、温度データTの減少に対しては制御量データGは増加される。また、空気の圧力に関する圧力データPの増加に対しては、圧力増加による空気密度の増加を考慮して、燃料供給量に関する制御量データGは増加され、逆に、圧力データPの減少に対しては制御量データGは減少される。
【0040】
そして、制御手段21は、上記のような制御量演算処理52により得た制御量データGを燃料制御弁11に出力し、ミキサ6への燃料供給量を、空気の湿度,温度,圧力に対して最適な空燃比を維持できる適切なものに制御することができる。
【0041】
次に、本発明に係るエンジン1の燃焼制御システムの効果を確認するために、供給する燃料の発熱量を10900kcal/Nm程度から10500kcal/Nm程度まで変化させた場合において、本発明及び従来のエンジン1の軸動力による発電効率の計測し、その結果を説明する。
結果、従来のエンジンの燃焼制御システム、即ち、湿度データHuと温度データTと圧力データPとを直接MCU20に入力して燃料制御量を制御する制御システムでは、上記発電効率が37.2%から34.4%までの2.8ポイント低下したのに対して、本発明に係るエンジン1の燃料制御システムでは、36.9%から36.7%までの0.2ポイントしか低下せずに、燃料の発熱量が変化しても安定した燃料状態を得て、効率の低下や排ガス性状の悪化等を防止することができた。
【0042】
〔別実施の形態〕
次に、本発明の別の実施の形態を説明する。
〈1〉 上記の実施形態において、燃料として特に組成の変化が大きいと予測される天然ガス系都市ガスを用いたが、燃料として、都市ガス以外の炭化水素系気体燃料、又はガソリン、軽油、重油、アルコール、水素等の燃料を使用することができる。
【0043】
〈2〉 上記実施の形態において、制御手段21は、ミキサ11へ連通する燃料供給路8に設けられた燃料制御弁11へ動作量データを出力して燃料供給量を制御するように構成したが、別に、燃料供給路8をバイパスして吸気路3に開口し、通常はエンジン始動時や急激な負荷上昇時等において燃料を追加供給するための燃料供給路9に設けられた燃料制御弁12に、動作量データを出力して、燃料供給量を制御しても構わない。
【0044】
〈3〉 上記実施の形態において、制御手段21として機能するMCU20と補正手段31として機能するSCU30とを別体のコンピュータで夫々構成したが、1つのコンピュータを上記制御手段21及び補正手段31として機能させても構わない。
【0045】
〈4〉 本発明は、エンジンの燃焼形態を特に限定するものではなく、火花点火式や圧縮時着火式等のエンジンに対して適用することができる。
【図面の簡単な説明】
【図1】エンジンの燃焼制御システムの概略構成図
【図2】燃焼制御処理のブロック線図
【符号の説明】
1:エンジン(内燃機関)
2:燃焼室
3:吸気路
7,8,9:燃料供給路
10:ガバナ
11,12:燃料制御弁
20:メインコントロールユニット(MCU)
21:制御手段
23:温度センサ(状態関連値検出手段)
24:圧力センサ(状態関連値検出手段)
30:サブコントロールユニット(SCU)
31:補正手段
32:湿度センサ(状態関連値検出手段)
33:熱量計(発熱量関連値検出手段)
[0001]
TECHNICAL FIELD OF THE INVENTION
The present invention relates to a state-related value detecting means for detecting a state-related value relating to an operation state of an internal combustion engine, and controlling a fuel supply amount to the internal combustion engine based on the state-related value detected by the state-related value detecting means. The present invention relates to a combustion control system and a combustion control method including control means.
[0002]
[Prior art]
A conventional combustion control system for an internal combustion engine includes various sensors (state-related value detecting means) for detecting, for example, temperature, pressure, humidity, and the like of air flowing through an intake path as state-related values relating to an operating state of the internal combustion engine; Control means for controlling a fuel supply amount to the internal combustion engine based on a state-related value detected by each sensor by operating a fuel control valve capable of adjusting a fuel supply amount supplied to air flowing through the engine. The combustion control system of the internal combustion engine maintains the air-fuel ratio of the air-fuel mixture which is taken into the combustion chamber and burns at an optimum air-fuel ratio capable of obtaining a stable and highly efficient combustion state. can do.
[0003]
In many of the commonly used internal combustion engines, various conditions such as an optimal air-fuel ratio are set on the assumption that the calorific value of the fuel supplied to the internal combustion engine is constant.
That is, in an internal combustion engine equipped with the above-described conventional combustion control system, if a fuel having a non-uniform calorific value is supplied, there is a risk that knocking, misfiring, etc., lower efficiency, deteriorate exhaust gas properties, and the like.
[0004]
Therefore, as a conventional combustion control system for an internal combustion engine, a system has been proposed in which the air-fuel ratio is feed-forward controlled based on a change tendency of a combustion chemical equivalent value of fuel (for example, see Patent Document 1). Such a combustion control system is supposed to supply a fuel such as biogas or off-gas in an internal combustion engine, and even if the combustion stoichiometric value of the fuel changes, based on the change tendency of the combustion stoichiometric value. The purpose is to control the amount of fuel supplied to the air flowing through the intake passage, adjust the air-fuel ratio to an optimum air-fuel ratio suitable for the fuel, and maintain a preferable combustion state.
Further, the combustion control system disclosed in Patent Document 1 extracts a part of the fuel supplied to the internal combustion engine, mixes the extracted fuel with a predetermined amount of air to actually burn the fuel, and discharges the fuel after the combustion. By detecting the oxygen concentration of the exhaust gas to be discharged, the combustion chemical equivalent value of the fuel is calculated from the oxygen concentration, and based on the calculated combustion chemical equivalent value, the fuel supply amount or the like is directly predicted as the fuel chemical equivalent value. It is configured to perform feed-forward control to a suitable one.
[0005]
[Patent Document 1]
JP-A-2002-221099
[Problems to be solved by the invention]
However, the combustion control system disclosed in Patent Literature 1 requires a combustion device for burning the extracted fuel in order to recognize the combustion chemical equivalent value itself of the fuel, and the combustion control system is complicated and expensive. Become.
Further, the combustion control system derives an optimal fuel supply amount from the recognized combustion chemical equivalent value by using a correlation between a previously stored combustion chemical equivalent value and an optimal fuel supply amount, and performs fuel supply. Controlling the amount is specialized for an internal combustion engine whose fuel properties are not stable. Therefore, when remodeling a conventional internal combustion engine that assumes that the properties of fuel are stable so that it can cope with the case where the properties of fuel are unstable, the control unit itself as a combustion control system must be replaced. Significant changes such as replacement are required.
[0007]
Accordingly, the present invention has been made in view of the above-described circumstances, and is based on the premise that the properties of the fuel are stable. It is another object of the present invention to realize a combustion control system capable of maintaining a stable combustion state.
[0008]
[Means for Solving the Problems]
A first characteristic configuration of a combustion control system for an internal combustion engine according to the present invention for achieving this object is a state-related value detection unit that detects a state-related value related to an operation state of the internal combustion engine,
Control means for controlling a fuel supply amount to the internal combustion engine based on the state-related value detected by the state-related value detection means,
A calorific value-related value detecting means for detecting a calorific value related to a calorific value of the fuel supplied to the internal combustion engine;
Correcting means for correcting the state-related value detected by the state-related value detecting means based on the heat-related value detected by the heat-related value detecting means and inputting the corrected value to the control means. On the point.
[0009]
Further, in order to achieve this object, a characteristic configuration of a combustion control method for an internal combustion engine according to the present invention detects a state-related value related to an operating state of the internal combustion engine, and based on the detected state-related value, A combustion control method for an internal combustion engine that controls a fuel supply amount to
A heating value related value related to a heating value of the fuel supplied to the internal combustion engine is detected, and the detected state related value is corrected based on the detected heating value related value. The point is that the fuel supply amount is controlled based on a state-related value.
[0010]
That is, according to the combustion control system and the combustion control method of the internal combustion engine having the first characteristic configuration, the state-related value output from the state-related value detection means is temporarily taken into the correction means, The state-related value is corrected based on the heating value-related value of the fuel detected by the heating value-related value detecting means, and the corrected state-related value is input to the control means. Further, since the fuel supply amount is controlled based on the inputted corrected state-related value, even if the heat value of the fuel is unstable, the fuel supply amount is represented by the heat value of the fuel indicated by the heat value-related value. By controlling the amount to be appropriate to the amount, the combustion state can be maintained stable, and a decrease in efficiency, deterioration of exhaust gas properties, and the like can be prevented.
[0011]
The combustion control system for the internal combustion engine is characterized in that the heat generation amount related value detecting means is different from the conventional combustion control system which performs the combustion control by at least one of the state related value detecting means and the control means comprising a control unit. Can be realized only by interposing an arithmetic processing unit or the like functioning as a correction unit connected to the control unit between a certain state-related value detection unit and the control unit.
[0012]
A second characteristic configuration of the combustion control system for the internal combustion engine according to the present invention is the above-mentioned first characteristic configuration, wherein the heat value-related value detecting means sets the heat value related value as a sonic velocity or heat conduction in the fuel. It is a means of detecting the degree.
[0013]
That is, according to the combustion control system for an internal combustion engine having the second characteristic configuration, the heat value-related value detecting means measures the sound speed or the heat conductivity in the fuel having a correlation with the heat value of the fuel. As a simple and inexpensive device, the measured speed of sound or thermal conductivity can be detected as the above-mentioned heating value-related value.
[0014]
A third characteristic configuration of the combustion control system for an internal combustion engine according to the present invention, in addition to the first and second characteristic configurations, relates to a specific heat of air supplied to the internal combustion engine as one of the operating state detecting means. An air-specific heat-related value detection unit that detects an air-specific heat-related value as the state value,
Means for correcting the air specific heat related value detected by the air specific heat related value detecting means based on the heat value related value detected by the heat value related value detecting means, and inputting the corrected value to the control means. And
The control means is a means for controlling a fuel supply amount to the internal combustion engine based on a plurality of the operation state related values including the air specific heat related value corrected by the correction means.
[0015]
In an internal combustion engine, since the specific heat of the air taken into the combustion chamber affects the temperature rise state in the combustion chamber, that is, the combustion state, it is preferable that the humidity sensor detects the humidity of the air as the air specific heat related value. It is preferable that the above-mentioned air specific heat related value detecting means is provided, and the control means controls the fuel supply amount based on the air specific heat related value to stabilize the combustion state in the combustion chamber.
[0016]
Furthermore, in the internal combustion engine that controls the fuel supply amount based on the air-specific heat-related value as described above, according to the combustion control system of the internal combustion engine having the third characteristic configuration, the combustion chamber in the combustion chamber similarly to the air-specific heat-related value. The calorific value related to the fuel that affects the combustion state can be easily converted to the air specific heat related value, and the fuel supply amount based on the air specific heat related value corrected by the converted calorific value related value. , The combustion state in the combustion chamber can be stabilized even when the specific heat of the air is unstable and the calorific value of the fuel is unstable.
[0017]
Furthermore, according to the combustion control system for an internal combustion engine according to the present invention, the fuel is not a fuel whose calorific value is stable like ordinary gasoline or the like, and the calorific value is unstable due to strict adjustment of the composition. Natural gas-based city gas that may be generated, or liquefied petroleum gas (LPG) that may have an unstable calorific value due to a change in the ratio of propane and butane supplied from the cylinder due to a difference in specific gravity For example, even if a gaseous fuel composed of a plurality of hydrocarbons and the proportion of which changes and the calorific value may change is used, the fuel supply amount is corrected based on the calorific value related to the fuel and the state value. To maintain a stable fuel state.
[0018]
BEST MODE FOR CARRYING OUT THE INVENTION
An embodiment of a combustion control system for an internal combustion engine according to the present invention will be described with reference to the drawings.
[0019]
An engine 1 as an internal combustion engine shown in FIG. 1 has a combustion chamber 2 defined by an inner surface of a cylinder 4 and a top surface of a piston 5 housed in the cylinder 4 so as to be able to move backward. An air-fuel mixture with air is sucked, and the air-fuel mixture is burned and expanded in the combustion chamber 2 to push down a piston to obtain shaft power.
[0020]
Further, the intake path 3 of the engine 1 is provided with a mixer 6 that supplies fuel, which is a natural gas-based city gas, to air flowing through the intake path 3 to form an air-fuel mixture.
[0021]
The fuel is first reduced in pressure by the governor 10 and supplied to the fuel supply path 7, and then supplied to the mixer 6 via the fuel supply path 8 communicating with the fuel supply path 7.
Further, the fuel supply path 8 is provided with a fuel control valve 11 capable of adjusting the flow rate of fuel supplied to the mixer 6 through the fuel supply path 8.
[0022]
Further, on the upstream side of the mixer 6 in the intake path 3 of the engine 1, as a state-related value detecting means for detecting a state-related value relating to the operating state of the engine 1, the temperature of the air is detected and temperature data T relating to the temperature is output. Temperature sensor 23, a pressure sensor 24 for detecting pressure of air and outputting pressure data P relating to the pressure, and a humidity sensor 32 for detecting humidity of air and outputting humidity data Hu relating to the humidity.
[0023]
A main control unit 20 (hereinafter abbreviated as MCU 20) provided as a combustion control system of the engine 1 performs various arithmetic processes based on a predetermined input signal, and outputs a predetermined output signal based on the calculation result. Various controls such as the combustion control of the engine 1 are performed by the control means 21 and the like, which are constituted by a computer and function by the MCU 20 executing a predetermined program. Therefore, various data T, P, and Hu relating to the temperature, pressure, and humidity of the air as the state-related values detected by the sensors 23, 24, and 32 are directly or indirectly input to the MCU 20, and are transmitted to the control unit 21. On the basis of these input data, the control amount data relating to the valve opening of the fuel control valve 11 is set so that the fuel supply amount supplied to the mixer 6 becomes optimal with respect to the state-related value of the engine 1. G is derived by arithmetic processing. Then, the MCU 20 outputs the control amount data G derived by arithmetic processing by the control means 21 to the fuel control valve 11 side, so that the valve opening of the fuel control valve 11 is set based on the control amount data G. The amount of fuel supplied to the air, that is, the air-fuel ratio of the air-fuel mixture taken into the combustion chamber 2 is controlled. That is, if the control amount data G increases, the fuel supply amount to the mixer 6 increases. Conversely, if the control amount data G decreases, the fuel control amount to the mixer 6 decreases.
[0024]
On the downstream side of the governor 10 in the fuel supply path 7 of the engine 1, a calorific value for detecting a calorific value related to the calorific value of the fuel supplied to the mixer 6 and outputting calorific value data Cal indicating the calorific value is detected. A total 33 (an example of a heating value related value detecting unit) is provided.
[0025]
Specifically, the calorimeter 33 is configured to detect a sonic velocity or a thermal conductivity in the fuel having a correlation with the calorific value of the fuel as the calorific value-related value.
[0026]
The SCU 30 provided in the engine 1 receives the calorific value data Cal output from the calorimeter 33 and the humidity data Hu output from the humidity sensor 32, and performs various arithmetic processing based on the input data. And a computer that outputs a predetermined output signal relating to the calculation result to the MCU 20 side.
[0027]
More specifically, the correction unit 31 that functions when the SCU 30 executes a predetermined program converts the humidity data Hu relating to the humidity of the air detected by the humidity sensor 32 based on the calorific value data Cal output from the calorific value system 33. The corrected humidity data Hu ′ is output to the MCU 20 side.
[0028]
That is, the combustion control system of the present engine 1 controls the calorimeter 33 with respect to the engine 1 including the MCU 20 that directly inputs the humidity data Hu, the temperature data T, and the pressure data P to the MCU 20 and controls the fuel control amount. It is configured by a simple modification such as installing the SCU 30 between the humidity sensor 30 and the MCU 20 while installing.
[0029]
The details of each arithmetic processing in the MCU 20 and the SCU 30 described above will be described based on the block diagram of FIG.
[0030]
The humidity data Hu about the humidity of the air outputted from the humidity sensor 32 and the calorie data Cal about the calorific value of the fuel outputted from the calorimeter 33 are inputted to the SCU 30 and used for the correction arithmetic processing 51 in the correction means 31. Is done.
[0031]
That is, the correction unit 51 substitutes the humidity data Hu and the calorific value data Cal into the following equation 1 to obtain corrected humidity data Hu ′.
[0032]
(Equation 1)
Hu '= Hu-P (Cal)
[0033]
That is, in the equation (1), the term P (Cal) into which the calorific value data Cal is substituted is obtained by converting the variation of the calorific value data Cal from the reference into the variation of the humidity data Hu related to the specific heat of the air. For example, P (Cal) = a (Cal−b) (a and b are constants obtained from an engine test). Therefore, an increase in the calorie data Cal is treated as a decrease in the specific heat of air, and conversely, a decrease in the calorie data Cal is treated as an increase in the specific heat of air.
[0034]
In the correction process 51, the corrected humidity data Hu 'is output with a delay corresponding to the time delay in consideration of the time delay until the fuel flowing through the calorimeter 33 reaches the mixer 6. .
[0035]
Next, the corrected humidity data Hu ′ corrected by the correction processing 51 is used as the temperature data T relating to the temperature of the air outputted from the temperature sensor 23 and the pressure data P relating to the pressure of the air outputted from the pressure sensor 24. At the same time, it is input to the MCU 20 and used for the control amount calculation processing 52 in the control means 21.
[0036]
That is, the control means 21 substitutes the corrected humidity data Hu ′, the temperature data T, and the pressure data P into the following equation (2) to obtain the valve opening of the fuel control valve 11, that is, Control amount data G relating to the fuel supply amount is obtained.
[0037]
(Equation 2)
G = Q (Hu ') + R (T, P)
[0038]
In the equation (2), the term Q (Hu ') into which the corrected humidity data Hu' is substituted is the amount of change in the specific heat of the air recognized from the humidity of the air and the fuel supply to be changed with respect thereto. This is an expression indicating a correlation with the control amount data G relating to the amount, and may be, for example, Q (Hu ′) = α · Hu ′ (α is a constant obtained from an engine test). Therefore, when the humidity data Hu ′ related to the specific heat of air increases, the control amount data G related to the fuel supply amount increases. Conversely, when the humidity data Hu ′ decreases, the control amount data G related to the fuel supply amount increases. G is reduced.
[0039]
In the equation (2), the term R (T, P) into which the temperature data T and the pressure data P are substituted is the amount of change in the density of the air recognized from the temperature and the pressure of the air, and This is an equation showing the correlation with the control amount data G relating to the fuel supply amount to be changed. For example, R (T, P) = β · T + γ · P (β and γ are constants obtained from an engine test). it can. Therefore, when the temperature data T relating to the temperature of the air increases, the control amount data G relating to the fuel supply amount is reduced in consideration of the decrease in the air density due to the temperature increase. Thus, the control amount data G is increased. With respect to the increase in the pressure data P relating to the pressure of the air, the control amount data G relating to the fuel supply amount is increased in consideration of the increase in the air density due to the increase in the pressure, and conversely, the decrease in the pressure data P Thus, the control amount data G is reduced.
[0040]
Then, the control means 21 outputs the control amount data G obtained by the above-described control amount calculation processing 52 to the fuel control valve 11, and controls the fuel supply amount to the mixer 6 with respect to the humidity, temperature and pressure of air. Thus, the air-fuel ratio can be controlled to an appropriate value that can maintain the optimum air-fuel ratio.
[0041]
Next, in order to confirm the effect of the combustion control system of the engine 1 according to the present invention, in the case of changing the heating value of the fuel supplied from 10900kcal / Nm 3 about to about 10500kcal / Nm 3, the present invention and the conventional The power generation efficiency by the shaft power of the engine 1 is measured, and the result will be described.
As a result, in a conventional engine combustion control system, that is, a control system in which the humidity data Hu, the temperature data T, and the pressure data P are directly input to the MCU 20 to control the fuel control amount, the power generation efficiency is reduced from 37.2%. Whereas the fuel control system of the engine 1 according to the present invention decreases only 2.8 points from 36.9% to 36.7%, while the fuel control system of the present invention has decreased by 2.8 points to 34.4%, Even if the calorific value of the fuel changed, a stable fuel state was obtained, and a decrease in efficiency, a deterioration in exhaust gas properties, and the like could be prevented.
[0042]
[Another embodiment]
Next, another embodiment of the present invention will be described.
<1> In the above embodiment, a natural gas-based city gas, whose composition is expected to change particularly greatly, was used as the fuel. However, as the fuel, a hydrocarbon-based gas fuel other than the city gas, or gasoline, light oil, or heavy oil was used. , Alcohol, hydrogen and the like.
[0043]
<2> In the above embodiment, the control means 21 is configured to output the operation amount data to the fuel control valve 11 provided in the fuel supply path 8 communicating with the mixer 11 to control the fuel supply amount. Separately, a fuel control valve 12 is provided in a fuel supply passage 9 for bypassing the fuel supply passage 8 and opening the intake passage 3 to supply additional fuel when the engine is started or a sudden increase in load is performed. Alternatively, the operation amount data may be output to control the fuel supply amount.
[0044]
<3> In the above embodiment, the MCU 20 functioning as the control means 21 and the SCU 30 functioning as the correction means 31 are respectively constituted by separate computers, but one computer functions as the control means 21 and the correction means 31. You may let it.
[0045]
<4> The present invention is not particularly limited to the combustion mode of the engine, and can be applied to a spark ignition type, a compression ignition type, or the like.
[Brief description of the drawings]
FIG. 1 is a schematic configuration diagram of an engine combustion control system. FIG. 2 is a block diagram of a combustion control process.
1: Engine (internal combustion engine)
2: Combustion chamber 3: Intake paths 7, 8, 9: Fuel supply path 10: Governors 11, 12: Fuel control valve 20: Main control unit (MCU)
21: Control means 23: Temperature sensor (state-related value detecting means)
24: pressure sensor (state-related value detecting means)
30: Sub control unit (SCU)
31: correction means 32: humidity sensor (state-related value detection means)
33: calorimeter (heat value related value detection means)

Claims (6)

内燃機関の運転状態に関する状態関連値を検出する状態関連値検出手段と、
前記状態関連値検出手段で検出された状態関連値に基づいて前記内燃機関への燃料供給量を制御する制御手段とを備えた燃焼制御システムであって、
前記内燃機関へ供給される燃料の発熱量に関する発熱量関連値を検出する発熱量関連値検出手段と、
前記状態関連値検出手段で検出された前記状態関連値を、前記発熱量関連値検出手段で検出された発熱量関連値に基づいて補正して、前記制御手段に入力する補正手段とを備えた内燃機関の燃焼制御システム。
State-related value detection means for detecting a state-related value related to the operating state of the internal combustion engine,
Control means for controlling a fuel supply amount to the internal combustion engine based on the state-related value detected by the state-related value detection means,
A calorific value-related value detecting means for detecting a calorific value related to a calorific value of the fuel supplied to the internal combustion engine;
Correcting means for correcting the state-related value detected by the state-related value detecting means based on the heat-related value detected by the heat-related value detecting means and inputting the corrected value to the control means. A combustion control system for an internal combustion engine.
前記発熱量関連値検出手段が、前記発熱量関連値として、前記燃料中における音速又は熱伝導度を検出する手段である請求項1に記載の内燃機関の燃焼制御システム。2. The combustion control system for an internal combustion engine according to claim 1, wherein the heat value-related value detecting means detects a sound speed or a thermal conductivity in the fuel as the heat value-related value. 前記運転状態検出手段の1つとして、前記内燃機関へ供給される空気の比熱に関する空気比熱関連値を前記状態値として検出する空気比熱関連値検出手段を備え、
前記補正手段が、前記空気比熱関連値検出手段で検出された空気比熱関連値を、前記発熱量関連値検出手段で検出された発熱量関連値に基づいて補正して前記制御手段に入力する手段であり、
前記制御手段が、前記補正手段で補正された空気比熱関連値を含む複数の前記運転状態関連値に基づいて、前記内燃機関への燃料供給量を制御する手段である請求項1又は2に記載の内燃機関の燃焼制御システム。
As one of the operating state detecting means, air specific heat related value detecting means for detecting, as the state value, an air specific heat related value related to specific heat of air supplied to the internal combustion engine,
Means for correcting the air specific heat related value detected by the air specific heat related value detecting means based on the heat value related value detected by the heat value related value detecting means, and inputting the corrected value to the control means. And
3. The control unit according to claim 1, wherein the control unit controls a fuel supply amount to the internal combustion engine based on a plurality of the operation state related values including an air specific heat related value corrected by the correction unit. 4. Internal combustion engine combustion control system.
前記空気比熱関連値検出手段が、前記空気比熱関連値として前記空気の湿度を検出する湿度センサである請求項3に記載の内燃機関の燃焼制御システム。4. The combustion control system for an internal combustion engine according to claim 3, wherein the air-specific heat-related value detecting means is a humidity sensor that detects the humidity of the air as the air-specific heat-related value. 前記燃料が炭化水素系の気体燃料である請求項1から4の何れか1項に記載の内燃機関の燃焼制御システム。The combustion control system for an internal combustion engine according to any one of claims 1 to 4, wherein the fuel is a hydrocarbon-based gaseous fuel. 内燃機関の運転状態に関する状態関連値を検出し、前記検出された状態関連値に基づいて前記内燃機関への燃料供給量を制御する内燃機関の燃焼制御方法であって、
前記内燃機関へ供給される燃料の発熱量に関する発熱量関連値を検出し、前記検出された前記状態関連値を、前記検出された発熱量関連値に基づいて補正して、前記補正後の前記状態関連値に基づいて前記燃料供給量を制御する内燃機関の燃焼制御方法。
A combustion control method for an internal combustion engine that detects a state-related value related to an operation state of the internal combustion engine and controls a fuel supply amount to the internal combustion engine based on the detected state-related value,
A heating value related value related to a heating value of the fuel supplied to the internal combustion engine is detected, and the detected state related value is corrected based on the detected heating value related value. A combustion control method for an internal combustion engine that controls the fuel supply amount based on a state-related value.
JP2003029611A 2003-02-06 2003-02-06 Combustion control system and combustion control method for internal combustion engine Expired - Fee Related JP4233340B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2003029611A JP4233340B2 (en) 2003-02-06 2003-02-06 Combustion control system and combustion control method for internal combustion engine

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2003029611A JP4233340B2 (en) 2003-02-06 2003-02-06 Combustion control system and combustion control method for internal combustion engine

Publications (2)

Publication Number Publication Date
JP2004239173A true JP2004239173A (en) 2004-08-26
JP4233340B2 JP4233340B2 (en) 2009-03-04

Family

ID=32956744

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2003029611A Expired - Fee Related JP4233340B2 (en) 2003-02-06 2003-02-06 Combustion control system and combustion control method for internal combustion engine

Country Status (1)

Country Link
JP (1) JP4233340B2 (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101447428B1 (en) * 2014-04-29 2014-10-08 한국가스공사 air-fuel ratio operating device using gas caloric value sensor for a certain process
CN104713124A (en) * 2015-04-02 2015-06-17 桂林市淦隆信息科技有限公司 Intelligent combustion control system for liquid fuel
CN111911296A (en) * 2020-08-24 2020-11-10 一汽解放汽车有限公司 Fuel calorific value determination method and device, vehicle and storage medium

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH04178550A (en) * 1990-11-14 1992-06-25 Hitachi Ltd Thermal fuel nature sensor
JPH08232751A (en) * 1995-02-27 1996-09-10 Honda Motor Co Ltd Suction air amount estimating device for internal combustion engine
JPH10148143A (en) * 1996-11-20 1998-06-02 Fuji Heavy Ind Ltd Fuel injection control device and ignition timing control device for compressed natural gas engine

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH04178550A (en) * 1990-11-14 1992-06-25 Hitachi Ltd Thermal fuel nature sensor
JPH08232751A (en) * 1995-02-27 1996-09-10 Honda Motor Co Ltd Suction air amount estimating device for internal combustion engine
JPH10148143A (en) * 1996-11-20 1998-06-02 Fuji Heavy Ind Ltd Fuel injection control device and ignition timing control device for compressed natural gas engine

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101447428B1 (en) * 2014-04-29 2014-10-08 한국가스공사 air-fuel ratio operating device using gas caloric value sensor for a certain process
CN104713124A (en) * 2015-04-02 2015-06-17 桂林市淦隆信息科技有限公司 Intelligent combustion control system for liquid fuel
CN111911296A (en) * 2020-08-24 2020-11-10 一汽解放汽车有限公司 Fuel calorific value determination method and device, vehicle and storage medium
CN111911296B (en) * 2020-08-24 2022-07-12 一汽解放汽车有限公司 Fuel calorific value determination method and device, vehicle and storage medium

Also Published As

Publication number Publication date
JP4233340B2 (en) 2009-03-04

Similar Documents

Publication Publication Date Title
JP4885567B2 (en) Control method of engine combustor
JP2009057870A (en) Gas engine integration control method and its device
WO2010056789A8 (en) Gaseous fuel engine charge density control system
JP5667413B2 (en) Engine control method
JP2005220917A (en) Method and device for controlling internal combustion engine and internal combustion engine using the method and the device
US7149619B2 (en) Method of regulating an internal combustion engine
US6340005B1 (en) Air-fuel control system
JP2008095680A (en) Compensating for varying fuel and air properties in ion signal
JP2000220481A (en) Air-fuel ratio control device for gas engine and its operating method
JP2006249954A (en) Gas supply device and operation method for gas engine
JP4191586B2 (en) Combustion control method and combustion control apparatus for gas engine
JP2004190640A (en) Premixed forced ignition type gas engine
CN111502837A (en) Internal combustion engine and method for operating an internal combustion engine
JP4660500B2 (en) Fuel supply mechanism for internal combustion engine
JP4452092B2 (en) Combustion control method and apparatus for gas engine
JP2005054613A (en) Method and device for feeding fuel gas and air in lean burn gas engine
JP4256767B2 (en) Combustion control method and apparatus for gas engine
JP4233340B2 (en) Combustion control system and combustion control method for internal combustion engine
JP2007218223A (en) Gas engine with motor driving supercharger
JP6306772B2 (en) Internal combustion engine having a fuel gas characteristic measurement system
JP2005226621A (en) Engine system including instrumentation engine and operation method thereof
JP4738426B2 (en) Gas engine control method and apparatus
JP4319577B2 (en) Pilot oil administration timing adjustment method and pilot oil administration timing adjustment device for pilot ignition gas engine
JP2006132355A (en) Internal combustion engine and operation control device for internal combustion engine
JP7409785B2 (en) Gas engine control device, gas engine system, and gas engine control program

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20060117

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20080401

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20080612

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20080804

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20081127

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20081209

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20111219

Year of fee payment: 3

R150 Certificate of patent or registration of utility model

Ref document number: 4233340

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20111219

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20141219

Year of fee payment: 6

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees